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Understanding how and why local communities change is a pressing task
for conservation, especially in freshwater systems. It remains challenging
because of the complexity of biodiversity changes, driven by the

spatio-temporal heterogeneity of human pressures. Using a compilation
ofriverine fish community time series (93% between 1993 and 2019) across
the Palaearctic, Nearctic and Australasia realms, we assessed how past

and recent anthropogenic pressures drive community changes across
both space and time. We found evidence of rapid changes in community
composition of 30% per decade characterized by important changesin
the dominant species, together with a13% increase in total abundance

per decade and a 7% increase in species richness per decade. The spatial
heterogeneity in these trends could be traced back to the strength and

timing of anthropogenic pressures and was mainly mediated by non-native
species introductions. Specifically, we demonstrate that the negative
effects of anthropogenic pressures on species richness and total abundance
were compensated over time by the establishment of non-native species, a
pattern consistent with previously reported biotic homogenization at the
globalscale. Overall, our study suggests that accounting for the complexity
of community changes and its driversis a crucial step to reach global
conservation goals.

Biological communities are undergoing dramatic reassembly in
response to an array of ever-growing human impacts'. Changes
in species composition and not necessarily systematic reductions in
local-scale species richness are becoming increasingly recognized?,
often resulting in ecosystem consequences manifested across large
spatial scales*’. Repeated calls have been made for greater scientific
clarity regarding how heterogeneous rates of species losses and gains
across space may shift community structure over time®. Advancing this
knowledge is particularly relevant for freshwater ecosystems, where
vertebrate populations are declining substantially faster than those
interrestrial or marine systems’.

Land use conversionisa persistent and pervasive threat to fresh-
water ecosystems® with striking repercussions for freshwater fish
biodiversity”'°. Dense urban and cultivated areas are often associated
with reduced species richness and abundance™", and shifts in local
community composition towards more tolerant and ubiquitous spe-
cies that can cope with degraded conditions™*. Non-native species
can also play a disproportionate role in the reassembly of communi-
ties over time>”, and have dramatic effects on native species when
theybecomeinvasive', including the widespread homogenization of
faunas®. Hubs of human activities such as human settlements, trans-
port and trade are also responsible for major habitat alterations and
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increased accessibility, resulting in more frequent non-native intro-
duction events and opportunities for spread®°?. Human activities
may therefore have opposing effects on local diversity by decreasing
the number and abundance of native species, while concurrently pro-
moting the establishment and spread of non-native species that can
increase community total abundance and species richness*®. Under-
standing community changes therefore requires going beyond analyses
of changes in the number of species or individuals by considering
concomitant changes in species identity>>*?,

Temporal changes in community composition are influenced
by past anthropogenic pressures that can generate transient eco-
logical dynamics and long-lasting biotic ‘legacies’. Given the high
spatio-temporal heterogeneity of anthropogenic pressures®, ignor-
ing the long-term antecedent effects of historical pressures and their
recent changes can greatly impede our understanding of the drivers of
community change, such aswhat has been demonstrated for the effects
of invasive species”. Additionally, habitat structure and connectivity
can enhance or dampen community responses to anthropogenic pres-
sures by mediating dispersal among habitats*. Accounting for past and
recentanthropogenic pressures as well as spatial distribution of habi-
tats may therefore improve our understanding of community changes.

This study investigates the spatio-temporal changes of riverine
fish communitiesin response to human pressures from local to conti-
nental extents. To do so, we leveraged a compilation of 4,476 riverine
fish community time series” that had been repeatedly sampled from
1957 to 2019 using variable durations and frequencies (93% of the
samplings between 1993 and 2019 with a minimum of 5 years of sam-
pling; Extended Data Fig. 1), mainly using electrofishing (98% of the
samplings). The sites arelocated in various river basins, mainly across
the Palaearctic, Nearctic and Australasia realms (99.9% of the sites).
We used Bayesian hierarchical models to assess temporal changes in
total abundance, species richness and community compositionacross
local communities, including in the share of non-native species. We
next characterized the typology of community temporal trends by
examining the covariations among different community metrics, and
identifyingtrajectories of community change across spatial scales. We
finally assessed how fish community changes could be traced back to
the spatio-temporal changes in anthropogenic pressures and longi-
tudinal stream position. Anthropogenic pressures were quantified
with the human footprint index, which includes an array of pressures
such as population density, land use and human-built infrastructure®
(Methods), and has been previously related to species extinction and
invasion risks®*2, Outcomes of this study further our understanding of
the complexity of local community changes by addressing the effects
of global change and advancing new knowledge that caninformactions
seeking to curb the current freshwater biodiversity crisis.

Results

Community temporal trends

Riverine fish communities have demonstrated remarkable change
overrecent decades (Fig.1; range first survey year:1957-2010, median
=1997; time span: 10-60 years, median=17; see Extended Data Fig.1for
more details on the time series). We estimated temporal trends with
a hierarchical Bayesian modelling approach that accounts for spatial
variation at both hydrographic river basin and site levels (that is, by
including random terms on the intercept and temporal trends; see
Methods for a detailed description of the models), finding that com-
munities haveincreased inboth total abundance and species richness,
butdecreasedinthe proportional abundance of non-native species. We
further found that the estimated temporal trends were not influenced
by the characteristics of the time series, such as the temporal span,
survey completeness and starting year (Extended DataFig. 2). From this
model, we considered weak, medium and strong evidence for an effect
whenits credibleinterval at respectively 80,90 and 95% did not overlap
zero®?*, We found strong evidence for an average increase in total

community abundance (average credible interval (CI) 95%:13.2% (2.9%,
23.8%) per decade; Fig. 1a) and in species richness (C1 95%: 6.9% (3.9%,
9.9%) per decade; Fig. 1b) over time. By contrast, we found an average
declineinthe proportion of non-native species abundance (moderate
evidence, C190%: —-0.0047 (-0.0091, -0.0004) per decade; Fig. 1c),
and no evidence for atemporal trend in the proportion of non-native
species richness (C1 80%: 0.001 (-0.001, 0.004) per decade; Fig. 1d).

Changesinabundance and species richness were accompanied by
rapid compositional reorganization, with an average decline in com-
munity similarity of about 30% per decade when considering either
species abundances (Simpson dissimilarity, CI 95%: 0.33 (0.31, 0.34)
per decade, hereafter ‘temporal dissimilarity’; Fig. 1e) or occurrences
(Jaccard dissimilarity, C1 95%: 0.31 (0.30, 0.33) per decade; Extended
DataFig.3a). The consistency in the Simpson and Jaccard dissimilarity
metricsindicated that changesin temporal dissimilarity resulted from
changes in the identity of the dominant rather than of the rare spe-
cies. The partitioning of the Jaccard dissimilarity index into turnover,
describing composition changes arising from species replacement,
and nestedness, describing changes arising from species gains or losses
from a common species pool, further showed a comparable increase
over time (Cl 95%: 0.17 (0.16, 0.18) and 0.16 (0.15, 0.17) per decade
respectively; Fig. 1f and Extended Data Fig. 3b). This suggests that
changes in community composition were driven by species replace-
ment in the community, in addition to species losses or gains.

Beyond overall temporal trends, considerable spatial heterogene-
ity exists across sites, as illustrated by the spread of the histograms in
Fig. 1. This heterogeneity is also apparent within the same river basin
(Supplementary Software1). For example, on average the Thames basin
shows the same spatial patterns as at the global scale, but a variety of
temporal trends were observed across the 139 sites within the basin,
including decrease in species richness (18 sites), decrease in abun-
dance (20) and high turnover (17). The (random) slope of time in our
hierarchical models varied much more (that is, up to more than twice
as much) across sites within river basins than across different basins
for allcommunity metrics (Extended Data Table 1). This suggested that
relatively finer-scale environmental variation within river basins has a
greater effect on community changes than larger-scale environmental
or biogeographical variation across river basins.

Typology of community temporal trends

We further assessed covariations among the temporal trends of differ-
ent community metrics toidentify potential ‘types’ of community tem-
poral trajectory, using the temporal trends at the site level estimated
from the hierarchical Bayesian model. There was a moderate level of
association among the different community trajectory metrics; the
first two axes of the principal component analysis (PCA) explained 69%
of the total variability among fish communities (Fig. 2a-b). Temporal
trends in community composition (thatis, temporal dissimilarity and
turnover) were positively associated with each other, as were temporal
trendsintotal abundance and species richness; however, these two sets
of trajectories appeared largely independent of each other (Fig. 2a).
Using a k-mean trimmed clustering method on the temporal trendsin
the community metrics at the site level (Methods), we further detected
sixdistinct types of community trajectory (Fig. 2c; non-assigned sites
aredisplayed in Extended DataFig.4). The largest cluster was character-
ized by moderate changes along all biodiversity dimensions: medium
temporal increases in total abundance and species richness, tempo-
ral dissimilarity, and turnover (‘medium change’; 42% of the sites).
The second cluster was associated with communities showing strong
turnover but moderate increases in total abundance, species richness
and temporal dissimilarity (‘high turnover’; 16% of the sites). The third,
fourth and fifth clusters were characterized by temporal community
changes along asingle dimension: astrong increase in species richness
(‘increaseinspeciesrichness’;13% of the sites), astrong declinein total
abundance (‘decreaseintotal abundance’; 12% of the sites) or a strong
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Fig.1| Distribution of community temporal trends per decade across

sites. a-f, Total abundance (a), species richness (b), proportion of non-native
total abundance (c), proportion of non-native species richness (d), Simpson
temporal dissimilarity (e) and Jaccard turnover (f). Temporal trends per decade
were estimated from a hierarchical Bayesian model including time as sole fixed

b 00 :
1
1
]
[%3 I
Q400 A I
£ |
“
° i
3 :
€ 200 - i
> I
=z i
I
01 i
106.9% (3.9%, 9.9%)
. } . . .
-50 0 50 100 150
Richness (%)
d 1
2,000 A !
I
I
I
% 1,500 |
=4 I
@ 1
el 1
— 1,000 + 1
[ I
Q I
g i
2 500 :
I
1
04 1
0.001 (-0.002, 0.005)
. . . f : . .
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Non-native richness (proportion)
400 A i
1
1
1
I
» 300 H
Q I
=4 I
. 1
S 200 | !
o] |
£ :
S 100 A I
= i
I
01 i
! 16.9% (15.6%, 18.2%)
. } : : . . .
-20 0 20 40 60 80 100

Turnover (%)

predictor and using arandom slope to estimate temporal trends at each site
(Methods). The histograms show the best linear unbiased predictor estimated
ateach site and the dots below the histograms represent the average posterior
distribution with labels depicting the Bayesian Cl at 95%. The dashed lines denote
no temporal trend. N=46,932 sampling events across 4,476 sites.

decline in species richness (‘decrease in species richness’; 9% of the
sites), respectively. The last and smallest cluster was associated with
communities that remained relatively stable over time (‘low change’;
7% of the sites). The relative frequency of the different community
trajectories was broadly similar across the three main biogeographic
realms (Fig. 2d).

Drivers of community temporal trends

We detected complex synergies between the legacy of past anthropo-
genic pressures and the effects of recent anthropogenic pressures on
community temporal trends, by considering additional predictors
associated with the human footprintindex and longitudinal stream
position (Fig. 3a; see model predictions in Extended Data Fig. 5). In
addition, we found that these additional predictors were not related
to the characteristics of the time series (Extended Data Fig. 6). Spe-
cifically, we found strong evidence that a higher degree of past anthro-
pogenic pressures (that is, human footprint index of 1993
corresponding to the beginning of the time series) was associated with
faster increases in total abundance and species richness (respective

C195%:0.02(0.01,0.04) inblueand 0.03 (0.01, 0.05) in green; Fig. 3a).
We also uncovered evidence for an interaction with the longitudinal
stream position (that s, represented by a synthetic PCA axis based on
several hydromorphological characteristics where high values are
associated with more downstream areas; Extended Data Fig. 7), such
as the legacy effects of past anthropogenic pressures on total abun-
dance (strong evidence) and species richness (weak evidence) were
buffered in more downstream areas (respective Cl1 95%: 8 =-0.021
(-0.031, -0.011) and CI 80%: —0.0108 (-0.0191, —0.0025); Fig. 3a).
Similar results were obtained using raw or coverage-based species
richness (Methods and Extended Data Fig. 8).

Past anthropogenic pressures were also associated with changesin
community composition. We found evidence (albeit weak) that a higher
degree of past anthropogenic pressures was associated withanincrease
inthe proportion of non-native richness over time (CI80%: 0.02 (0.00,
0.04) in orange; Fig. 3a), and that this effect was enhanced in more
downstream areas (C190%: 0.023 (0.003, 0.043); Fig. 3a). Although we
found no overall associations between past anthropogenic pressures
and temporal trends in non-native species abundance (CI 80%: 0.00
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Fig.2| Covariation among the community temporal trends and
characterization of community trajectories. a,b, PCA biplot of the community
temporal trends and their cluster assignment where the sites are coloured
according to their cluster assignment (a, first and second PCA axes; b, third and
fourth PCA axes). ¢, Boxplots displaying the distribution of the temporal trends
by cluster. The centre of the box depicts the median while the bounds depict

the 25% and 75% percentiles. The whiskers depict the extreme values within 1.5x
interquartile range beyond the bounds of the box. d, Cluster frequencies across

the three main biogeographic realms. The ellipses ina and b display the 95%
intervals around the clusters assuming a Student’s ¢ distribution. The clusters
were named according to the most noticeable characteristic of changes across all
the biodiversity metrics (c). In particular, ‘medium change’ cluster was associated
with sites presenting moderate changes along all the biodiversity metrics
considered. Sites not assigned to a cluster because of affiliation uncertainty (N=
641,14%) are displayed in Extended Data Fig. 4. N=46,932 sampling events across
4,476 sites.

(-0.02, 0.03) in yellow; Fig. 3a), we found moderate evidence that a
higher degree of past anthropogenic pressures resulted ina higher rate
ofincrease in non-native species abundance in the most downstream
areas (C190%:0.033 (0.003,0.064); Fig. 3a). We also found that a higher
degree of past anthropogenic pressures was associated with faster
rates of increases in temporal dissimilarity and turnover (respective
C195%:0.23(0.20,0.27) inred and 0.25 (0.21, 0.29) in purple; Fig. 3a),
irrespective of the longitudinal stream position (respective Cl 80%:
-0.017 (-0.036, 0.002) and —-0.016 (-0.037, 0.004); Fig. 3a). This
result was consistent between Jaccard and Simpson-based dissimi-
larity (Extended Data Fig. 8), but the effects of past anthropogenic

pressures were attenuated in most downstream areas for Jaccard’s
dissimilarity, indicating that those changes involved more dominant
species (Extended DataFig. 8).

Recentincreases in anthropogenic pressures (thatis, ratio of the
human footprint index between 2009 and 1993) were found to have
a context-specific effect on total abundance and species richness, as
well as to hasten community reorganization throughincreases in the
share of non-native species and faster rates of temporal dissimilarity
and turnover (Fig. 3a; see model predictions in Extended Data Fig. 5).
More specifically, we found strong evidence of an antagonistic effect
between past and recent anthropogenic pressures on total abundance
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Fig. 3 | Drivers of temporal change and spatial variation in fish community
metrics. a,b, Effects of anthropogenic pressures and longitudinal (long.)
stream position on temporal changes (a) and spatial variation (b) in fish
community metrics. Community metrics include total abundance, species
richness, proportional abundance and richness of non-native species, Simpson

temporal dissimilarity and Jaccard turnover. Points depict the average posterior
distributions. Large, medium and thin bars depict the Bayesian Cl at 80,90 and
95%, respectively. Please note the broken abscissa scale ina. N=46,932 sampling
events across 4,476 sites.

(CI195%:-0.018 (-0.034,-0.002); Fig. 3a), such as the rate of increase
observed across the historically most degraded sites was lower when
thesesites experienced arecentincrease inanthropogenic pressures,
although recent anthropogenic pressures per se had no effect on the
temporal trends in total abundance (CI 80%: -0.004 (-0.010, 0.002);
Fig.3a).Similarly, recent changes in anthropogenic pressures did not
have an overall effect on the temporal trends in species richness (CI
80%:-0.005(-0.012,0.003); Fig. 3a), but we found moderate evidence
forapositive interaction with the longitudinal stream position (C1 90%:
0.0063 (0.0004, 0.0121); Fig. 3a), indicating that recent increases in
anthropogenic pressures were associated with fasterincreasesin spe-
ciesrichness over time in more downstream areas.
Recentincreasesinanthropogenic pressures were also associated
with more rapid increases in the proportion of non-native species
abundance in more downstream areas (CI 90%: 0.015 (0.002, 0.029);
Fig. 3a), although recent changes in anthropogenic pressures had no
overall effect (C1 80%: —0.004 (-0.010, 0.002); Fig. 3a). When consid-
ering the share of non-native species richness, we found moderate
evidencethatarecentincrease inanthropogenic pressures was associ-
ated withanincrease in the proportion of non-native species (Cl1 90%:
0.02(0.00, 0.04); Fig. 3a). This effect was particularly pronounced in
the historically most degraded sites and in the most downstream areas
(respective C190%: 0.032 (0.000, 0.063) and 0.010 (0.001, 0.019);

Fig.3a).Inaddition, we found strong evidence thatarecentincreasein
anthropogenic pressures resulted in stronger temporal dissimilarity
and turnover (respective C195%: 0.05 (0.03,0.08) and 0.08 (0.06, 0.11);
Fig.3a). These effects were hastened in the most historically degraded
sites (respective C195%: 0.06 (0.01,0.10) and 0.11 (0.06, 0.16); Fig. 3a),
butnot affected by the longitudinal stream position (respective CI80%:
0.00 (-0.01, 0.01) and -0.01 (-0.02, 0.01)). By contrast, our results
indicated that an increase in recent anthropogenic pressures in the
historically most degraded sites was associated with slower rates of
increase in total abundance and species richness, but faster rates of
increase in non-native richness, temporal dissimilarity and turnover
(see model predictions in Extended Data Fig. 5).

Drivers of community variation across space

Spatial variation in community structure was strongly associated with
pastandrecentanthropogenic pressures and with longitudinal stream
position (that is, single model effects independent of time; Fig. 3b).
Using baseline model prediction (thatis, at t = O; Extended Data Fig. 5
and Methods), we found that a higher degree of past anthropogenic
pressures was associated with lower totalabundance (strong evidence;
Fig.3b, blue), with the most ‘degraded’sites (thatis, withahuman foot-
printindex=45.6) displaying a total abundance 30% lower than the most
‘intact’ sites (that is, with a human footprint index = 2.5). By contrast,
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Table 1| Marginal and conditional R? of the hierarchical
Bayesian model for each community metric

Marginal R? Conditional R?
0.03(0.01,0.07)
0.02 (0.01, 0.05)
0.03 (0.01, 0.06)
0.03 (0.01, 0.07)
0.07 (0.02, 0.15)
0.07(0.01, 0.16)

The models included several predictors (fixed effects illustrated in Fig. 3) and accounted for
spatial variations at the hydrographic river basin and site levels (random effects). Marginal
R*accounts for fixed effects and conditional R? accounts for both fixed and random effects.
Mean R? (95% Cl): Cl computed using the highest posterior density method.

Response variable

Total abundance 0.73(0.72,0.74)
0.81(0.80, 0.81)
0.75 (0.75, 0.76)
0.76 (0.76, 0.77)
0.33(0.29, 0.38)

0.14(0.08, 0.22)

Richness

Non-native richness

Non-native abundance

Dissimilarity

Turnover

ahigher degree of past anthropogenic pressures was associated with
higher speciesrichness (strong evidence; Fig. 3b, green), with the most
degradedsites displaying 64% more species than the mostintact sites.

Recentincreasesin anthropogenic pressures were strongly associ-
ated with lower total abundance and species richness (Fig. 3b). More
specifically, sites that experienced atwofold increase inrecent anthro-
pogenic pressures had 16% lower total abundance and 7% lower species
richness thansites that had not undergone such pressures. Longitudi-
nal stream position was strongly associated with species richness—the
most downstream sites displayed three times more species than the
most upstream sites (Fig. 3b).

Anthropogenic pressures and longitudinal stream position were
associated with spatial variation in the proportion of non-native fish
species. Sites that had experienced ahigher degree of past and recent
anthropogenic pressures had a higher proportion of non-native indi-
viduals and species (strong evidence; Fig. 3b, yellow and orange). The
proportion of non-native individuals and species was three times (9%
versus 3%) and two times (10% versus 4%) higher in the most degraded
sites than the most intact sites. Further, a twofold increase in recent
anthropogenic pressures was associated with anincreasein the propor-
tion of non-native individuals and species by 69% and 63%, respectively.
The most downstream sites had 33% higher proportion of non-native
abundance and 78% higher proportion of non-native richness than the
most upstream sites (Fig. 3b). Noteworthy, a larger share of the vari-
anceinthe community metrics was explained by site and basinidentity
rather than by the fixed effects alone (R? conditional varying from 0.15
for turnover to 0.80 for species richness versus R* marginal varying
from 0.02 for speciesrichness to 0.07 for community turnover; Table1).
Thisindicates that context dependencies are well captured by our hier-
archical models but suggests that integrating fine-scale local drivers
may further improve our ability to predict local community changes.

Discussion

Recent decades have witnessed substantial shiftsin riverine fish com-
munities characterized by marked increases in species richness and
total abundance over time, accompanied by a strong pattern of spe-
ciesreplacement. We found that fish species richness hasincreased at
arate of -7% per decade, although no net change in species richness
had been previously reported in terrestrial and in marine systems>**.
We also found an overall increase in total fish abundance of ~13% per
decade, whichis in line with the increase of 11% per decade reported
for freshwater insects®. This is also consistent with several regional
assessments of freshwater population trends in the Palaearctic, such
asthereportedincreasein freshwaterinsect occupancy documented
in the UK or the increase in freshwater animal Living Planet Index in
the Netherlands since the 1990s**. However, this finding contrasts
with dramatic Living Planet Index declines reported at the global scale
for freshwater species and particularly fish megafauna, as well as with

otherregional assessments of fish assemblages®*. We further found a
faster average temporal trend inJaccard dissimilarity (31% versus 10%
per decade) butaslower average turnover (17% versus 28% per decade)
than previously reported across a diversity of marine, freshwater and
terrestrial assemblages??, indicating that riverine fish communities
experienced both important richness and compositional changes in
recent decades.

Theserecentbiotic changes are linked to complex spatio-temporal
processes involving past and recent human impacts on the environ-
ment and their interaction with stream network position. Higher past
anthropogenic pressures were associated with faster rates of species
richness and total abundance increases over time, suggesting a recov-
ery from the legacy of past disturbances. Previous studies suggested
that the adoption of numerous legislations targeting improvements
inwater quality in the European Union and the United States since the
1970s, as well as adecrease in the negative effects of agriculture, could
be partly responsible for those increases despite the surrounding
habitat changes®****°, The fact that most of the study sites (92%) were
already highly degraded at the beginning of the study period, that s,
they had a human footprint index > 4 in1993*, could lend support to
the recovery hypothesis.

However, a higher degree of past anthropogenic pressures was
also associated with a higher share of non-native species; this effect
beingstrongerin downstreamsites. Thisindicates thattheintroduction
and establishment of non-native species contributed most substan-
tively to the fish community changes through time in the sites that
suffered the greatest past (pre-1993) degradation, and particularly
the most downstream ones. The increase in local species richness
over time in degraded rivers could thus result from introduction of
non-native species from ongoing spatial homogenization", a pattern
well-supported by metacommunity models**and already documented
acrossriver basins in the Nearctic and Palaearctic realms”. Thisisinline
with findings that higher densities of human population, urban areas
and roads—all included in the human footprint index—can promote
non-native species richness by increasing the number and frequency
of introduction events™'**', Anthropogenic pressures canalso alter the
instream habitat to be more conducive for non-native speciesthat are
often ubiquitous and habitat generalists™", giving them a competitive
advantage over native species that are less suited to the new condi-
tions'®*™*, A higher degree of past anthropogenic pressures was also
associated with faster rates of species replacement and shiftin species
dominance over time. This suggests that the legacy effects of past
habitat degradation are characterized by shifts towards species that
are better adapted to degraded environments’, to which non-native
species contribute disproportionately*>.

This study uncovered important interaction effects between past
and recent human pressures in driving the rate of change in several
community metrics, highlighting theimportance of considering both
the degree and timing of anthropogenic pressures. For example, as
discussed above, communities that experienced greater past deg-
radation had actually experienced an increase in richness in recent
years. But an increase in recent human pressures at these sites was
associated with an increase of non-native species and lower species
richness. This suggests that any recovery of the native fish communi-
ties in previously degraded sites would be severely compromised if
humanimpacts were allowed to continue. Conversely, these findings
clearlyillustrate opportunities to reduce humanimpactsin previously
degraded habitats to benefit freshwater biodiversity’. Inturn, the fact
that non-native species were more abundant in both historically or
recently degraded sites, but that no direct association was uncovered
in terms of non-native temporal trends, can be explained, at least in
part, by commonly reported time lags between the first recorded
introductions and the establishment of self-sustaining populations,
whichincludes time for biological acceptance and local adaptation™®.
Our results demonstrate that recent habitat degradation canresultin
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simultaneous negative and positive effects on native and non-native
species, respectively®*®, and highlights the conservation challenges
associated with the identification and management of biodiversity
changes in the context of transient community dynamics®.

Longitudinal position along the river network was found to medi-
ate temporal biodiversity trends, with the most downstream sites
experiencing faster rates of community change over time. This finding
may be explained by the higher connectivity of larger rivers with other
tributaries, which in turn gives more opportunity for local coloniza-
tion*® and the establishment of metacommunity dynamics*. As such,
itis not entirely surprising that community changes were found to be
more heterogeneous at the local scale than at the basin or realmscales,
and that the spatial structure of the model explained much more of the
variance in the community metrics than the fixed effects. This prob-
ably reflects the characteristics of riverine habitats, and especially
their dendritic structure and isolation within drainage basins, which
determine environmental filtering and dispersal opportunities*®*’.In
addition, we focused chiefly on community reorganization arising from
land use pressures, therefore disregarding the potential interactions
with other global drivers of change such as climate change and more
localized threats such as water withdrawals***°.

Our results further confirm that temporal changes in species com-
position canbe decoupled from changesin species richness in freshwa-
ter systems, similarly to what hasbeen observed in mostly marine and
terrestrial assemblages™*. Various community trajectories canbe linked
to acomplex mosaic of ecological drivers such as the degree and tim-
ing of anthropogenic pressures and position of the sites within water-
sheds. It follows that the similar frequenciesin community trajectories
detected across realms, together with the restricted number of sites
displaying alow degree of change, probably reflects the spatially and
temporally heterogeneous patterns in human pressures. We recognize
that recentincreasesinanthropogenic pressures are most prevalentin
tropical biodiversity hotspots®>*, while our study has a spatial coverage
limited to historically industrialized countries and in mostly temper-
ate biomes. Noticeably, anthropogenic pressures decreased by 4% on
average (based on differences in the human footprint index between
1993and 2009) across the sitesincluded in our study, whileitincreased
by 25% across the rivers globally*>. Consequently, species richness
and abundance increases as well as the decoupling of compositional
changes fromrichness changes may not be universal phenomena, and
more heterogeneous patterns of biotic change may manifest at the
global scale once we consider tropical fish communities. Our study
remains essentially correlative. Although aggregated anthropogenic
threatindices have been shown tobe useful to estimate the ecological
integrity of freshwater ecosystems™, they do not replace the use of
more targeted threat indices related to water quality and ecosystem
functioning>**°, Nonetheless, our analyses were conducted on the best
available temporal riverine fish dataset at this time, and they provide
evidence linking the multidimensionality of community changesto the
interplay between past and recent environmental challenges as well as
habitat context. Our study also offers aframework for future research
that merges multiple scales of both time and space*®, which could be
leveraged as more tropical data are collected and become available.

Inconclusion, our study uncovered complex but consistent effects
of past and recent changes in anthropogenic pressures and stream
network position on riverine fish communities. We showed that the
timing of anthropogenic pressures matters, because past and recent
pressures can have contrasting and interactive effects on community
trends, partly mediated by non-native species. Our study further shows
that considering multiple biodiversity facets can shed light on the
complex mechanisms by which communities change over time. Look-
ing forward, we emphasize the increasing need to investigate biotic
changes across spatial scales to better reconcile reported local gains
and global declines in biodiversity***°. The increasing availability of
community time series and environmental data across large areas is

invaluable for understanding how human pressures impact biodiver-
sity across taxa and ecosystems, and for implementing conservation
policies to mitigate these impacts.

Methods

Fish community time series

We used the RivFishTIME database”, a compilation of more than 12,000
time series containing species abundances of riverine fish communi-
ties, which we completed with time series from Canada and the United
States (Supplementary Table 2). The final database mainly covered
western and northern Europe, northern America, and southeastern
Australia. We selected time series having at least 5 years of data over a
10-year period as well as a consistent sampling protocol and abundance
unit. As several sites had been sampled using different sampling meth-
ods (for example, electrofishing, seining; Supplementary Table 2), we
selected for each site only the sampling events that were performed
using the most frequent sampling method. To minimize the influence
of seasonal variation in community composition (for example, due
to spawning or migration), we further only selected sampling events
thatwere performed within 1.5 months of the most frequently sampled
month (that is, 45 days before or after). When there were several sam-
pling eventsin agiven year, we selected the one that took place at the
closest date from the most frequently sampled date of the site. Finally,
we excluded 1,340 sites that had been limed as part of the long-term
Swedish liming programme (https://kalkdatabasen.lansstyrelsen.
se/)”’ to avoid including sites whose environmental conditions had
been experimentally manipulated. The dataselectionresultedin 4,476
fish community time series, totalling 46,932 sampling events, 326,717
species abundance records and 806 freshwater fish species. The
median time span of the time series was of 17 (13, 23; 25th quantile, 75th
quantile) years, the median completeness (that is, number of annual
samplings/time span) was of 55% (38%, 78%) (Extended Data Fig. 1)
and the median first study year was 1997 (1992, 2003). The sites were
mostly located in the Palaearctic (75%), Nearctic (20%) and Australasia
(5%), and distributed across 307 hydrographic basins. Four countries
gathered 85% of the sites, namely Great Britain (29%), France (21%),
Sweden (18%) and the United States (18%; Supplementary Table 2).

Community metrics

We assessed community changes in riverine fish communities using
several biodiversity facets related to total abundance, species rich-
ness, the share of non-native species and community composition
(Supplementary Table 2). Total abundance was reported in number
of individuals (47.00% of the sampling events), density of individu-
als per 100 m? (51.81%), catch per unit effort (CPUE; 1.05%) and Leslie
index (0.14%; Supplementary Table 2). Although we selected for strict
protocol consistency, 70% or more of the sampling events by unit of
abundance did not report sampling effort, preventing us from harmo-
nizing count, abundance density and CPUE”.

As sampled species richness is a negatively biased estimator of
the ‘true’ speciesrichness, we corrected sampled species richness with
the coverage-based rarefaction and extrapolation methodology®®. The
estimated coverage of asample is positively related to the number of
individuals and negatively related to the number of singletons. We
fixed the coverage of all samples at 98.5% via rarefaction and extrapola-
tionusing the R package iNEXT* to make species richness comparable
across samples. We did not always have a direct estimate of the number
of individuals and number of singletons to compute the sampling
coverage, as 51.81% of the abundances were measured as density values
and 1.05% as CPUE. In this case, we first divided each species density
(x;) by the minimum value in the community and rounded each value
to the nearest integer (that is, x; = round(1/min(x,)), where x; is the
estimated abundance of the ith species) to obtain atleast one singleton
species, that is, a species with one individual. However, we note that
both covered-based and raw species richness estimates were highly
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correlated (Spearman’s p = 0.97 for both raw variables and log-
transformed ones), and the choice of the metric did not influence our
interpretations regarding the patterns and drivers of species richness
changes (Extended Data Fig. 7).

The biogeographic origin of the fish species describing whether
species were native or introduced to a given drainage basin was
retrieved using a global database documenting species status across
drainage basins of the world®* (94.3% of the species occurrences; Sup-
plementary Table 2). For the sites falling outside the river basins pro-
vided in the global database, such as for the sites located close to the
shore, we used the closest basin within the same country. For species
notincludedinagivendrainage basin, we determined the origin of the
species at the country scale using FishBase® (5.5% of species occur-
rences). Given the spatial extent of the United States, we completed
the global database with the Nonindigenous Aquatic Species database
developed by the US Geological Survey (https://nas.er.usgs.gov/)
using US states as spatial grain (0.05% of the species occurrences). We
completed the remaining species origins at the country scale, using
national atlases and FishBase data in neighbouring countries, such as
for Piaractus brachypomus and Rutilus rutilusin the United States (0.1%
ofthespecies occurrences; Supplementary Table 2). We then estimated
the percentage of non-native species with respect to both abundance
and species richness for each sampling event (Supplementary Table 3).

Dissimilarity metrics

We used the complement of the Jaccard similarity index (that is, Jac-
card dissimilarity, which we denote as /) to characterize temporal
dissimilarity in community composition at each site, taking the first
year of sampling of a community as the reference community. This
index is based on presence/absence and is simply the sum of species
gains and losses over the total number of species across two samples
(equation (1)). It thus measures the proportion of species not shared
between two samples.

J= Sgains"' Sloss (1)
tot

With Sgiq, Siossand Sy, being the numbers of immigrant, extirpated and
total species, respectively.

We further partitioned the Jaccard dissimilarity index into two
complementary indices, turnover (/) and nestedness (/,), respectively
./t = (2 x min(slossr Sgain))/(scommon + (2 x min(slossr Sgain))) andjn =1 _ju
S.ommon D€INE the number of species present in both communities®.
High turnover values indicate that the changes in community com-
position result from species replacement, whereas high values of
nestednessindicate species gains or losses from a nested community,
that s, that acommunity is a subset of the other®,

We further characterized temporal dissimilarity with the
Simpson-based dissimilarity index* (H,, equation (2)). This index is
based on species relative abundances and their variation across two
samples. Simpson-based dissimilarity index is based on the Simpson
diversity index and thus gives higher weight to changes in the abundant
species, whereas Jaccard dissimilarity index gives equal weight to each
species. Simpson-based dissimilarity index thus quantifies the extent of
changesintheidentity of the dominant species*. Both highJaccard and
Simpson dissimilarity values indicate changes incomposition resulting
from changesin the abundant species, whereas conjointly high Jaccard
and low Simpson dissimilarity values indicate composition changes
resulting from changesin the species with low relative abundances.

Hy=1-H

Somp)’ @

Hy=1- —F2—"{____
¢ IS

whereiisspeciesi,pisrelative abundance and’is the focal community.

Environmental drivers

We quantified the degree of anthropogenic pressures using the human
footprint index***°, extracted from the RiverATLAS database at the
reach scale’>** (stream segment length average of 450 m). We did so
by snapping thesitesto the closest stream segment usingalkm buffer
(99% of the sites). The human footprint index aggregates an array of
humanpressures, including population density and the extent of urban,
forested, cropland and pastureland areas, but also transportation hubs
suchasroads, railways and navigable pathways. It does so by combining
remote sensing data, systematic surveys and modelling from ground
data, makingitless proneto errors®*. The human footprintindex ranges
from0to 50, with values superior to 4 being considered in adegraded
state*. Thisindex has been previously related to species extinction and
risk of biological invasion®**. To capture both the effects of the legacy
of pastanthropogenic pressures and of its recent changes, we consid-
ered the humanfootprintindex computedin1993and 2009 (thatis, a
16-year span). Specifically, the human footprintindex of 19993 was used
as ameasure of past anthropogenic pressures at the beginning of the
study period, and the ratio between the human footprint of 2009 and
1993 as a measure of the recent changes in anthropogenic pressures
(only 7% of the samplings took place before 1993, while 58% took place
between1993and 2009, and 34% after 2009; Extended Data Fig.1). We
chose the human footprintindex developed in ref. 30 because it goes
farther back in time than other related human footprint indices (for
example, 1993 versus 2000 in ref. 51). Nevertheless, both indices are
highly correlated (Spearman’s p=0.81for2009) in overlapping years,
suggesting that our results are robust to the choice of human footprint
index. In order to obtain interpretable coefficients of recent changes
inhuman footprint, we log-transformed the ratio of human footprint
withabase2, such asvalues of -1and 1represented a division by 2 and
amultiplication by 2 of the human footprint between 1993 and 2009,
respectively. Inriver networks, the environmental heterogeneity and
connectivity along the longitudinal stream position (upstream-down-
stream) strongly shape species occurrences, immigration rates and
community composition®®. To capture this longitudinal gradient, we
first described stream characteristics at each site by the altitude (m),
slope (°), average annual discharge (m*s™), distance from source (km)
and Strahler order (that is, downstream position based on stream/
tributary hierarchy) that we extracted from the RiverATLAS database
atthestreamsegmentscale’>*. We next performed a PCA over the site
stream characteristics onthe log-transformed (after adding absolute
minimum values plus 1to avoid few negative values in altitude) and
standardized variables (that is, centred and scaled). We orthogonally
rotated the two first principal components using the varimax cri-
terion®, to increase the quality of the variable representation (that
is, their loadings) on the two first principal components. The first
rotated component was positively related to average annual discharge,
distance fromsource and Strahler order, and captured 56% of the vari-
ance (Extended DataFig. 8), and was subsequently used as acomposite
variable describing the longitudinal stream position from upstream to
downstream (from negative to positive values, respectively). The cor-
relation coefficientsindicated little covariation among the predictors
(maximum Spearman’s correlation of 0.09 found between past and
recent pressures; Supplementary Fig.1).

Statistical analysis

To estimate community temporal trends, we first modelled the dif-
ferent community metrics (Y) as dependent of time (8,Time, equa-
tion (3)), measured as the number of years since the beginning of the
sampling at each site. The statistical model (equation (3)) was adapted
accordingtothe nature of the response variable. For total abundance,
we added the measurement unit of abundance as a categorical variable
both as a main effect and in interaction with time*. We set the factor
level ‘raw count’ as the reference level such that the temporal trends
in total abundance in the main text and Supplementary Information
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areexpressed in raw count (thatis, number of individuals). For dissimi-
larity metrics, we set the intercept fixed at O as dissimilarity metrics
at each site was O at the beginning of the time series. We accounted
for the hierarchical spatial structure in the data by assigning random
effectsontheintercept (a) and on the slope of the temporal trends (5,)
conditional on basin identity (n) and on site identity (i) nested within
basin (i|n). The random effects and the error terms were modelled as
anormal distribution of mean 0 and variance (¢°).

Yiie = o+ BoTime, + €, (3)

wherea=a,+a,+ay, fo=p+b,+b;, a,and pbeing thefixed intercept
and slope, a and b being the random intercept and slope, ¢;,,, the
residual error, and a,,, ;5. by, by, €4yn,c ~ N(0, 02).

To assess the drivers of community change, we thenbuiltasecond
modelincorporating additional covariates (X, kbeing theindex of the
covariate, equation (4)): the degree of past anthropogenic pressures
measured by the humanfootprintindex of1993, the recent changesin
anthropogenic pressures measured by the ratio between the human
footprint index of 2009 and 1993, and the longitudinal stream posi-
tion estimated by the rotated PCA axis. We included two-way interac-
tions between time and the ecological drivers (3 ,.;8,,Time.X,) to test
how longitudinal stream position and anthropogenic pressures affect
the temporal trends in community metrics. For instance, a positive
interaction between time and past anthropogenic pressures would
indicate that faster changes were happening in historically degraded
areas. We further included the three-way interactions between time
and the pairs of other ecological drivers (3 w-BouTime XX, kand [
being the indexes of the covariates) to examine the presence of syner-
gistic or antagonistic effects between anthropogenic pressures and
longitudinal stream position on the temporal trends in community
metrics (that is, the results in Fig. 3a). For instance, a positive interac-
tion between time, recent changes in anthropogenic pressures and
longitudinal stream position would indicate that the effects of recent
changes in anthropogenic pressures on temporal trends were more
important in downstream areas. We included all the predictors as
main effects (3 ,.,8:X) to capture the effects of the ecological drivers
on the spatial variation in average community composition metrics
through time, except when modelling the dissimilarity metrics (that
is, we only included the effects of ecological drivers on the temporal
trends, the results in Fig. 3b). We did so because dissimilarity metrics
quantify community changesatagiventime point (¢=0...N) atagiven
site fromthefirstyear (¢ = 0) and therefore bounded by O and 1ateach
site; we thus did not expect average differences in dissimilarity related
toany other factors than time. We did notinclude interactions among
ecological drivers onthe spatial part of the model aswerestricted the
core of the analysis to the drivers of temporal rather than spatial vari-
ationinfreshwater fish community composition and tried to keep the
model as parsimonious as possible. Finally, we derived the comparison
incommunity metrics across space according to the ecological drivers
by using the predictions of the model at the baseline (¢ = 0). The predic-
tions controlled for the values of other predictors (such as longitudinal
stream position and past anthropogenic pressures) by setting them at
their median values.

Yine = a+ BoTime, + kzlﬁkxk + kzlﬁo,(Timeth

. “4)
+ 2 BouTime XX + €,
k=Lkzl

wherek, [and €[], 2, 3] are ecological drivers including stream gradi-
ent, legacy of past and recent changes in anthropogenic pressures.
All the response variables were modelled with a Gaussian distri-
bution following previous studies modelling temporal trends in total
abundance, species richness and community composition at the global
scale>**, Other error structures might be more appropriate to model

response variables bounded between O and 1 or ratio of discrete num-
berssuchasthe dissimilarity metrics and the proportion of non-native
species. However, doing so allowed us to obtain easily interpretable
coefficients across all community metrics (for example, temporal
trends cannotbe interpreted as rates of change when modelled using a
logit scale such aswhen using abetadistribution). Inaddition, a previ-
ous study using similar models® found that slope coefficients estimated
with a Gaussian error and a beta error had a Spearman correlation
superior to 0.90 and gave qualitatively similar results. We therefore
believe that this choice is not likely to alter our conclusions.

We log-transformed the number of years as log(year + 1) as it
improved the quality of the model fitting to the data, decreasing the
Watanabe-Akaike information criterion®®®” by -733 on average (-11%)
across community metrics facets (Supplementary Table 4). It sug-
gested the presence of nonlinearity in the temporal trends, which is
particularly expected in the case of bounded variables such as the
dissimilarity metrics. We log-transformed total abundance and species
richness, so that their temporal trends are multiplicative and can be
expressed in percentage change by unit of time. We then derived the
percentage of change by decade in species richness and total abun-
dance by back transforming S, using a time value of log(10 + 1) as
follows: (efox10g0+1) _ 1) » 100.

Inorder to compare the strength of the effectsamong predictors
across community metrics, we scaled both community metrics and
the predictors by their standard deviation prior to model fitting. As
our models contain interactions, the individual slope coefficients
could bedifficult tointerpret without centring the predictors around
ecological relevant values®®. As an example, the average temporal
trends estimated by S, in equation (4) can only be interpreted when
all the X, = 0. Hence, we centred past anthropogenic pressures and
longitudinal stream position around their average values. The variables
quantifying time and recent changes in anthropogenic pressures were
notcentred, because then the main effects of the ecological predictors
(2«18 wouldindicate their baseline effects (thatis, when time is equal
to 0 and without recent changes in anthropogenic pressures).

The models were evaluated in a Bayesian framework using inte-
grated nested Laplacian approximation®*’° (INLA), which approximates
the posterior distribution of the parameters and does not rely on
Markov chains and Monte Carlo simulations, and thusisacomputation-
ally efficient method to evaluate Bayesian models. We computed the
Clat 80%, 90% and 95% using the highest posterior density method”’,
which can respectively be interpreted as weak, moderate and strong
evidence of an effectwhen theinterval does notinclude O (refs.33,34).
The statistical models were implemented using the INLA R package®’,
with defaults uninformative priors. The prior distribution of fixed
coefficients followed a flat zero centred normal distribution
(N, 6®) = N(0, 1000)). The prior distribution of the random effects
and the gaussian error (g, eq. (3)) followed a log gamma distribution
with shape (s) and inverse scale (T) parameters (9(s, 7) = (1, 5.1075)).
We then back-transformed the estimated coefficients to the standard
deviations attributed to the random effects and the gaussian error
(0 =1/4/1). We checked that the slope coefficients, random effects
and the temporal trends by basin and site were similar to those
obtained with animplementation in frequentist. Then, we concluded
that the quality of parameter inference did not suffer from the unin-
formative priors.

We checked the overall quality of the modelfit to the data by plot-
ting the fitted versus observed values (Supplementary Fig. 2). We
visually inspected the posterior integral transform and conditional
predictive ordinate distribution to assess both the quality of data
representation and the frequency of outliers. There was very little
multicollinearity in the model, as all variance inflation factors were
around1(Supplementary Table5).

We computed marginal (R2) and conditional (R?) R* (equation (5))
to assess the quality of the fit of the Bayesian models, respectively
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associated with the variance explained by the fixed effects and the
variance explained by both the fixed and random effects’. We only
included the random effects on the intercept in the R> computation,
thatis, the basin effect (a,) and the site effect (a,,,), as the inclusion of
the variance attributed to random slopes is much more complex and
was shown to not change the results’>”>. We computed the variance
associated with each predicted value (Vary,) from their posterior dis-
tribution, following recommendationsto takeinto account the variabil-
ity associated to the priors’. We then reported the mean marginal and
conditional R? associated their 95% Cl computed using the highest
posterior density method.

R = Varg  _ ()
M Varg+Vare,  02(9)+02(y-))
5 5 (5)
2 Varg+(a,)” +(a;,)

C 2 2
Varge+(a,)" +(ajjn)" +Vares

with y;and y; being respectively the observations and the predicted
values, and Varg, and Var, ., being respectively the variance of the predic-
tivemeansand the variance of the residuals™. a, and a,,, are respectively
the standard deviation on the random intercept associated with the
hydrographic basin and the site within the basin.

Typology of temporal trends

To estimate the covariations among multiple dimensions of community
change, we performed a PCA on the temporal trends in the community
metrics estimated at each site with the models (equation (3)) having
time as a sole fixed predictor (that is, using the predictions of the mod-
els in percentage per decade using the best linear unbiased prediction
method). We used four variables in this analysis: temporal trends in
total species richness, community abundance, temporal dissimilarity
and turnover. We excluded the two variables describing the non-native
species composition (proportion of non-native abundance and richness)
because their predicted temporal trends at the site level displayed aheavy
tailed distribution compared with the other variables (kurtosis of the
distributions: 10 versus 21and 8 versus 15 for total and non-native abun-
dance and species richness, respectively; Fig.1), whichinturnexerted a
disproportionate constraint on the analysis. In addition, we performed
aclustering analysis on the temporal trends in the community metrics
atthe site level to identify distinct types of community trajectory using
the trimmed k-means method”, a robust clustering method because it
avoids the identification of spurious clusters. The method consists of
trimming the most outlying datain the multidimensional space, the num-
ber of dimensions being the number of community metrics. Tochoosea
relevant number of clusters, we plotted the log-likelihood of the trimmed
classification as a function of the proportion of the most outlying data
trimmed (a) and the number of clusters (Supplementary Fig. 3). We thus
selected a partition of temporal community changes insix clusters with
a=5% (see Supplementary Fig. 4 with four clusters). We did not constrain
the algorithm for the relative size or shape of the clusters, as we had no
a priori expectation about them. The clustering algorithm was run for
aminimum of 100 iterations and up to a maximum of 125 iterations. To
further control for the quality of the cluster assignment, we discarded
any fish community for which the second-best cluster assignment was
50% better than the first one by comparing the degree of affiliation to
the clusters”™. The clustering was performed using the tclust R package™.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data used in the study are open access, although we provide the
raw data to facilitate the reproduction of the analysis (https://doi.
org/10.5281/zenodo0.7817360).

Code availability

The manuscript and the Supplementary Information are written in
R Markdown, that is, combining code and text, and are available on
GitHub (https://github.com/alaindanet/RivFishTimeBiodiversity-
Facets). We further implemented a code pipeline using the targets R
packageto ensure that the code, data, figures, manuscript and results
areuptodate.
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Extended DataFig. 5| Predictions of community metric changes over time respectively to values of human footprintindex for the year 1993 of 2.5 (intact
according to past human pressures and recent changes in human pressures ecosystem), 16.8 (median value in our dataset), and 45.6 (maximum value in
using a hierarchical Bayesian model. Total abundance is expressed in count, the dataset). Recent pressure levels represent change in human footprintindex
species richness in number of species (raw), while non-native abundance, between the years 1993 and 2009 (see Methods for details). The central lines
non-native richness, dissimilarity and turnover are expressed in proportion. No display the mean, while the lower and upper lines display the credible intervals at

pressure, medium pressure, and highly degraded past pressure levels correspond ~ 95% of the average posterior distribution.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-023-02271-x

# Year span First year

uonisod weass ‘Buo

Ecological drivers
salnssaid jsed

sainssaud Juadsay

20 40 60 1960 1970 1980 1990 2000 2010
Time series characteristics

Extended DataFig. 6 | Covariations between ecological drivers used in the lines display the regression lines fitted with a Generalized Additive Model (GAM)
hierarchical Bayesian model (longitudinal stream position, past and recent and the gray area the confidence interval. The ecological drivers were largely
changesin anthropogenic pressures) and time series characteristics (time unrelated to the characteristics of the time series (N =4,476 sites).

spanin number of years and beginning of the time series inyear). The blue

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-023-02271-x

1.0
Average elevation (m)

Average slope (degree)

0.5

(A
{ Annual average discharge (m3/s)

Strahler order

RC2 (32%)
o
o

-0.51
-1.0 T T
-1.0 -0.5 0.0 0.5 1.0

RC1 (56%)
discharge, Strahler order and the distance from source, and was subsequently
used in the statistical modelling as a composite variable intended to summarise
the longitudinal stream position from upstream to downstream.

Extended Data Fig. 7 | Rotated PCA over the physical and hydrological
characteristics of the sites. PCA axes (Rotated Component, RC) were rotated
using the varimax algorithm (See Methods). The first axis is related to the average
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species richness does not affect the results. Similarly, we observe consistent
effect sizes for Simpson and Jaccard dissimilarity indices, meaning that observed
changes in community composition concerned abundant species and thus
changes in theidentity of dominant species (see Methods). The points depict the
average posterior distribution. Large, medium and thin bars depict the Bayesian
credible intervals at 80, 90 and 95%, respectively. Please note the broken abscissa
scalein (a). N=46,932 sampling events across 4,476 sites.
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Extended Data Table 1| Random effects associated with the estimation of the temporal trends computed from the model

containing only time as fixed predictor

Response variable

Temporal trends s.d.

Time (basin)

Time (site nested in basin)

Abundance (total)

0.167 [0.149,0.195

0.225 [0.211,0.239]

Richness

0.082 [0.074,0.091

0.103 [0.098,0.11]

Non-native abundance

0.009 [0.006,0.013

0.027 [0.026,0.028]

Non-native richness

0.008 [0.007,0.009

0.021 [0.02,0.022]

Dissimilarity

P el (e PR i

0.038 [0.033,0.047

0.091 [0.088,0.094]

Turnover

0.031 [0.025,0.038

[

0.069 [0.065,0.074]

[95% ClI]: Credible Interval computed using the Highest Posterior Density method.
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< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

OO0l

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X OO
XX [

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The study did not use data collection

Data analysis The code pipeline to perform the data analysis is available on github: https://github.com/alaindanet/RivFishTimeBiodiversityFacets

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The origin of the dataset,and the links to retrieve them are available in Table S2. All the raw files used to conduct the analysis are available on Zenodo: https://
doi.org/10.5281/zenodo.7817360
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
(for example, race or ethnicity should not be used as a proxy for socioeconomic status).
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Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)

Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions | Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization | Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible,
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.




Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy
Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

We investigated how past and recent anthropogenic pressures shape spatial variation and temporal trends of riverine fish
communities in the last decades.

We used RIvFishTime (Comte et al. 2021), a dataset compiling more than 12,000 time series containing species abundances of
riverine fish communities.

N/A
N/A

The median first sampling year of the timeseries was 1997 (1992-2003, resp. 25% and 75% quartile (Fig. S1). The median time span
was 17 years (12-23) and the median completness of the timeseries was 58% (38% - 78%). The sites were mostly located in the
Palearctic (75%), Nearctic (20%) and Australasia (5%). Four countries gathered 85% of the sites, namely

Great Britain (29%), France (21%), Sweden (18%), and the USA (18%, Table S3).

We selected timeseries that had at least 5 datapoints and a minimum of 10 year time span (pre-established criteria). We also
selected sampling events that had a consistent sampling protocol. we excluded 1,340 sites that had been limed as part of the long-
term

Swedish liming program (available at https://kalkdatabasen.lansstyrelsen.se/)49 to avoid including sites

whose environmental conditions had been experimentally manipulated. The data selection resulted in 4,476

fish community time series, totalling 46,932 sampling events, 326,717 species abundance records.

We used the "targets" R package ro ensure that the analysis pipeline was up to date. The code is available at https://github.com/
alaindanet/RivFishTimeBiodiversityFacets.

N/A

N/A

Did the study involve field work? [ yes No

Field work, collection and transport

Field conditions

Location

Access & import/export

Disturbance

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Dual use research of concern

ninininlnininks
OoOoooogd

Plants

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.




Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

OO0oono s

Experiments of concern

Does the work involve any of these experiments of concern:

~<
[0}
»

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoods
Ooodoogo

Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based | | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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