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Past and recent anthropogenic pressures 
drive rapid changes in riverine fish 
communities

Alain Danet    1,4  , Xingli Giam    2, Julian D. Olden    3 & Lise Comte    1

Understanding how and why local communities change is a pressing task 
for conservation, especially in freshwater systems. It remains challenging 
because of the complexity of biodiversity changes, driven by the 
spatio-temporal heterogeneity of human pressures. Using a compilation 
of riverine fish community time series (93% between 1993 and 2019) across 
the Palaearctic, Nearctic and Australasia realms, we assessed how past 
and recent anthropogenic pressures drive community changes across 
both space and time. We found evidence of rapid changes in community 
composition of 30% per decade characterized by important changes in 
the dominant species, together with a 13% increase in total abundance 
per decade and a 7% increase in species richness per decade. The spatial 
heterogeneity in these trends could be traced back to the strength and 
timing of anthropogenic pressures and was mainly mediated by non-native 
species introductions. Specifically, we demonstrate that the negative 
effects of anthropogenic pressures on species richness and total abundance 
were compensated over time by the establishment of non-native species, a 
pattern consistent with previously reported biotic homogenization at the 
global scale. Overall, our study suggests that accounting for the complexity 
of community changes and its drivers is a crucial step to reach global 
conservation goals.

Biological communities are undergoing dramatic reassembly in 
response to an array of ever-growing human impacts1. Changes  
in species composition and not necessarily systematic reductions in 
local-scale species richness are becoming increasingly recognized2,3, 
often resulting in ecosystem consequences manifested across large 
spatial scales4,5. Repeated calls have been made for greater scientific 
clarity regarding how heterogeneous rates of species losses and gains 
across space may shift community structure over time6. Advancing this 
knowledge is particularly relevant for freshwater ecosystems, where 
vertebrate populations are declining substantially faster than those 
in terrestrial or marine systems7.

Land use conversion is a persistent and pervasive threat to fresh-
water ecosystems8 with striking repercussions for freshwater fish 
biodiversity9,10. Dense urban and cultivated areas are often associated 
with reduced species richness and abundance11,12, and shifts in local 
community composition towards more tolerant and ubiquitous spe-
cies that can cope with degraded conditions13,14. Non-native species 
can also play a disproportionate role in the reassembly of communi-
ties over time5,15–17, and have dramatic effects on native species when 
they become invasive18, including the widespread homogenization of 
faunas19. Hubs of human activities such as human settlements, trans-
port and trade are also responsible for major habitat alterations and 
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community abundance (average credible interval (CI) 95%: 13.2% (2.9%, 
23.8%) per decade; Fig. 1a) and in species richness (CI 95%: 6.9% (3.9%, 
9.9%) per decade; Fig. 1b) over time. By contrast, we found an average 
decline in the proportion of non-native species abundance (moderate 
evidence, CI 90%: −0.0047 (−0.0091, −0.0004) per decade; Fig. 1c), 
and no evidence for a temporal trend in the proportion of non-native 
species richness (CI 80%: 0.001 (−0.001, 0.004) per decade; Fig. 1d).

Changes in abundance and species richness were accompanied by 
rapid compositional reorganization, with an average decline in com-
munity similarity of about 30% per decade when considering either 
species abundances (Simpson dissimilarity, CI 95%: 0.33 (0.31, 0.34) 
per decade, hereafter ‘temporal dissimilarity’; Fig. 1e) or occurrences 
( Jaccard dissimilarity, CI 95%: 0.31 (0.30, 0.33) per decade; Extended 
Data Fig. 3a). The consistency in the Simpson and Jaccard dissimilarity 
metrics indicated that changes in temporal dissimilarity resulted from 
changes in the identity of the dominant rather than of the rare spe-
cies. The partitioning of the Jaccard dissimilarity index into turnover, 
describing composition changes arising from species replacement, 
and nestedness, describing changes arising from species gains or losses 
from a common species pool, further showed a comparable increase 
over time (CI 95%: 0.17 (0.16, 0.18) and 0.16 (0.15, 0.17) per decade 
respectively; Fig. 1f and Extended Data Fig. 3b). This suggests that 
changes in community composition were driven by species replace-
ment in the community, in addition to species losses or gains.

Beyond overall temporal trends, considerable spatial heterogene-
ity exists across sites, as illustrated by the spread of the histograms in 
Fig. 1. This heterogeneity is also apparent within the same river basin 
(Supplementary Software 1). For example, on average the Thames basin 
shows the same spatial patterns as at the global scale, but a variety of 
temporal trends were observed across the 139 sites within the basin, 
including decrease in species richness (18 sites), decrease in abun-
dance (20) and high turnover (17). The (random) slope of time in our 
hierarchical models varied much more (that is, up to more than twice 
as much) across sites within river basins than across different basins 
for all community metrics (Extended Data Table 1). This suggested that 
relatively finer-scale environmental variation within river basins has a 
greater effect on community changes than larger-scale environmental 
or biogeographical variation across river basins.

Typology of community temporal trends
We further assessed covariations among the temporal trends of differ-
ent community metrics to identify potential ‘types’ of community tem-
poral trajectory, using the temporal trends at the site level estimated 
from the hierarchical Bayesian model. There was a moderate level of 
association among the different community trajectory metrics; the 
first two axes of the principal component analysis (PCA) explained 69% 
of the total variability among fish communities (Fig. 2a–b). Temporal 
trends in community composition (that is, temporal dissimilarity and 
turnover) were positively associated with each other, as were temporal 
trends in total abundance and species richness; however, these two sets 
of trajectories appeared largely independent of each other (Fig. 2a). 
Using a k-mean trimmed clustering method on the temporal trends in 
the community metrics at the site level (Methods), we further detected 
six distinct types of community trajectory (Fig. 2c; non-assigned sites 
are displayed in Extended Data Fig. 4). The largest cluster was character-
ized by moderate changes along all biodiversity dimensions: medium 
temporal increases in total abundance and species richness, tempo-
ral dissimilarity, and turnover (‘medium change’; 42% of the sites). 
The second cluster was associated with communities showing strong 
turnover but moderate increases in total abundance, species richness 
and temporal dissimilarity (‘high turnover’; 16% of the sites). The third, 
fourth and fifth clusters were characterized by temporal community 
changes along a single dimension: a strong increase in species richness 
(‘increase in species richness’; 13% of the sites), a strong decline in total 
abundance (‘decrease in total abundance’; 12% of the sites) or a strong 

increased accessibility, resulting in more frequent non-native intro-
duction events and opportunities for spread20–22. Human activities 
may therefore have opposing effects on local diversity by decreasing 
the number and abundance of native species, while concurrently pro-
moting the establishment and spread of non-native species that can 
increase community total abundance and species richness4,6. Under-
standing community changes therefore requires going beyond analyses 
of changes in the number of species or individuals by considering 
concomitant changes in species identity2,3,23,24.

Temporal changes in community composition are influenced 
by past anthropogenic pressures that can generate transient eco-
logical dynamics and long-lasting biotic ‘legacies’25. Given the high 
spatio-temporal heterogeneity of anthropogenic pressures26, ignor-
ing the long-term antecedent effects of historical pressures and their 
recent changes can greatly impede our understanding of the drivers of 
community change, such as what has been demonstrated for the effects 
of invasive species27. Additionally, habitat structure and connectivity 
can enhance or dampen community responses to anthropogenic pres-
sures by mediating dispersal among habitats28. Accounting for past and 
recent anthropogenic pressures as well as spatial distribution of habi-
tats may therefore improve our understanding of community changes.

This study investigates the spatio-temporal changes of riverine 
fish communities in response to human pressures from local to conti-
nental extents. To do so, we leveraged a compilation of 4,476 riverine 
fish community time series29 that had been repeatedly sampled from 
1957 to 2019 using variable durations and frequencies (93% of the 
samplings between 1993 and 2019 with a minimum of 5 years of sam-
pling; Extended Data Fig. 1), mainly using electrofishing (98% of the 
samplings). The sites are located in various river basins, mainly across 
the Palaearctic, Nearctic and Australasia realms (99.9% of the sites). 
We used Bayesian hierarchical models to assess temporal changes in 
total abundance, species richness and community composition across 
local communities, including in the share of non-native species. We 
next characterized the typology of community temporal trends by 
examining the covariations among different community metrics, and 
identifying trajectories of community change across spatial scales. We 
finally assessed how fish community changes could be traced back to 
the spatio-temporal changes in anthropogenic pressures and longi-
tudinal stream position. Anthropogenic pressures were quantified 
with the human footprint index, which includes an array of pressures 
such as population density, land use and human-built infrastructure30 
(Methods), and has been previously related to species extinction and 
invasion risks31,32. Outcomes of this study further our understanding of 
the complexity of local community changes by addressing the effects 
of global change and advancing new knowledge that can inform actions 
seeking to curb the current freshwater biodiversity crisis.

Results
Community temporal trends
Riverine fish communities have demonstrated remarkable change 
over recent decades (Fig. 1; range first survey year: 1957–2010, median 
= 1997; time span: 10–60 years, median = 17; see Extended Data Fig. 1 for 
more details on the time series). We estimated temporal trends with 
a hierarchical Bayesian modelling approach that accounts for spatial 
variation at both hydrographic river basin and site levels (that is, by 
including random terms on the intercept and temporal trends; see 
Methods for a detailed description of the models), finding that com-
munities have increased in both total abundance and species richness, 
but decreased in the proportional abundance of non-native species. We 
further found that the estimated temporal trends were not influenced 
by the characteristics of the time series, such as the temporal span, 
survey completeness and starting year (Extended Data Fig. 2). From this 
model, we considered weak, medium and strong evidence for an effect 
when its credible interval at respectively 80, 90 and 95% did not overlap 
zero33,34. We found strong evidence for an average increase in total 
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decline in species richness (‘decrease in species richness’; 9% of the 
sites), respectively. The last and smallest cluster was associated with 
communities that remained relatively stable over time (‘low change’; 
7% of the sites). The relative frequency of the different community 
trajectories was broadly similar across the three main biogeographic 
realms (Fig. 2d).

Drivers of community temporal trends
We detected complex synergies between the legacy of past anthropo-
genic pressures and the effects of recent anthropogenic pressures on 
community temporal trends, by considering additional predictors 
associated with the human footprint index and longitudinal stream 
position (Fig. 3a; see model predictions in Extended Data Fig. 5). In 
addition, we found that these additional predictors were not related 
to the characteristics of the time series (Extended Data Fig. 6). Spe-
cifically, we found strong evidence that a higher degree of past anthro-
pogenic pressures (that is, human footprint index of 1993 
corresponding to the beginning of the time series) was associated with 
faster increases in total abundance and species richness (respective 

CI 95%: 0.02 (0.01, 0.04) in blue and 0.03 (0.01, 0.05) in green; Fig. 3a). 
We also uncovered evidence for an interaction with the longitudinal 
stream position (that is, represented by a synthetic PCA axis based on 
several hydromorphological characteristics where high values are 
associated with more downstream areas; Extended Data Fig. 7), such 
as the legacy effects of past anthropogenic pressures on total abun-
dance (strong evidence) and species richness (weak evidence) were 
buffered in more downstream areas (respective CI 95%:β′ =−0.021 
(−0.031, −0.011) and CI 80%: −0.0108 (−0.0191, −0.0025); Fig. 3a). 
Similar results were obtained using raw or coverage-based species 
richness (Methods and Extended Data Fig. 8).

Past anthropogenic pressures were also associated with changes in 
community composition. We found evidence (albeit weak) that a higher 
degree of past anthropogenic pressures was associated with an increase 
in the proportion of non-native richness over time (CI 80%: 0.02 (0.00, 
0.04) in orange; Fig. 3a), and that this effect was enhanced in more 
downstream areas (CI 90%: 0.023 (0.003, 0.043); Fig. 3a). Although we 
found no overall associations between past anthropogenic pressures 
and temporal trends in non-native species abundance (CI 80%: 0.00 
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Fig. 1 | Distribution of community temporal trends per decade across 
sites. a–f, Total abundance (a), species richness (b), proportion of non-native 
total abundance (c), proportion of non-native species richness (d), Simpson 
temporal dissimilarity (e) and Jaccard turnover (f). Temporal trends per decade 
were estimated from a hierarchical Bayesian model including time as sole fixed 

predictor and using a random slope to estimate temporal trends at each site 
(Methods). The histograms show the best linear unbiased predictor estimated 
at each site and the dots below the histograms represent the average posterior 
distribution with labels depicting the Bayesian CI at 95%. The dashed lines denote 
no temporal trend. N = 46,932 sampling events across 4,476 sites.
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(−0.02, 0.03) in yellow; Fig. 3a), we found moderate evidence that a 
higher degree of past anthropogenic pressures resulted in a higher rate 
of increase in non-native species abundance in the most downstream 
areas (CI 90%: 0.033 (0.003, 0.064); Fig. 3a). We also found that a higher 
degree of past anthropogenic pressures was associated with faster 
rates of increases in temporal dissimilarity and turnover (respective 
CI 95%: 0.23 (0.20, 0.27) in red and 0.25 (0.21, 0.29) in purple; Fig. 3a), 
 irrespective of the longitudinal stream position (respective CI 80%: 
−0.017 (−0.036, 0.002) and −0.016 (−0.037, 0.004); Fig. 3a). This 
result was consistent between Jaccard and Simpson-based dissimi-
larity (Extended Data Fig. 8), but the effects of past anthropogenic 

pressures were attenuated in most downstream areas for Jaccard’s 
dissimilarity, indicating that those changes involved more dominant 
species (Extended Data Fig. 8).

Recent increases in anthropogenic pressures (that is, ratio of the 
human footprint index between 2009 and 1993) were found to have 
a context-specific effect on total abundance and species richness, as 
well as to hasten community reorganization through increases in the 
share of non-native species and faster rates of temporal dissimilarity 
and turnover (Fig. 3a; see model predictions in Extended Data Fig. 5). 
More specifically, we found strong evidence of an antagonistic effect 
between past and recent anthropogenic pressures on total abundance 
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Fig. 2 | Covariation among the community temporal trends and 
characterization of community trajectories. a,b, PCA biplot of the community 
temporal trends and their cluster assignment where the sites are coloured 
according to their cluster assignment (a, first and second PCA axes; b, third and 
fourth PCA axes). c, Boxplots displaying the distribution of the temporal trends 
by cluster. The centre of the box depicts the median while the bounds depict 
the 25% and 75% percentiles. The whiskers depict the extreme values within 1.5× 
interquartile range beyond the bounds of the box. d, Cluster frequencies across 

the three main biogeographic realms. The ellipses in a and b display the 95% 
intervals around the clusters assuming a Student’s t distribution. The clusters 
were named according to the most noticeable characteristic of changes across all 
the biodiversity metrics (c). In particular, ‘medium change’ cluster was associated 
with sites presenting moderate changes along all the biodiversity metrics 
considered. Sites not assigned to a cluster because of affiliation uncertainty (N = 
641, 14%) are displayed in Extended Data Fig. 4. N = 46,932 sampling events across 
4,476 sites.
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(CI 95%: −0.018 (−0.034, −0.002); Fig. 3a), such as the rate of increase 
observed across the historically most degraded sites was lower when 
these sites experienced a recent increase in anthropogenic pressures, 
although recent anthropogenic pressures per se had no effect on the 
temporal trends in total abundance (CI 80%: −0.004 (−0.010, 0.002); 
Fig. 3a). Similarly, recent changes in anthropogenic pressures did not 
have an overall effect on the temporal trends in species richness (CI 
80%: −0.005 (−0.012, 0.003); Fig. 3a), but we found moderate evidence 
for a positive interaction with the longitudinal stream position (CI 90%: 
0.0063 (0.0004, 0.0121); Fig. 3a), indicating that recent increases in 
anthropogenic pressures were associated with faster increases in spe-
cies richness over time in more downstream areas.

Recent increases in anthropogenic pressures were also associated 
with more rapid increases in the proportion of non-native species 
abundance in more downstream areas (CI 90%: 0.015 (0.002, 0.029); 
Fig. 3a), although recent changes in anthropogenic pressures had no 
overall effect (CI 80%: −0.004 (−0.010, 0.002); Fig. 3a). When consid-
ering the share of non-native species richness, we found moderate 
evidence that a recent increase in anthropogenic pressures was associ-
ated with an increase in the proportion of non-native species (CI 90%: 
0.02 (0.00, 0.04); Fig. 3a). This effect was particularly pronounced in 
the historically most degraded sites and in the most downstream areas 
(respective CI 90%: 0.032 (0.000, 0.063) and 0.010 (0.001, 0.019); 

 Fig. 3a). In addition, we found strong evidence that a recent increase in 
anthropogenic pressures resulted in stronger temporal dissimilarity 
and turnover (respective CI 95%: 0.05 (0.03, 0.08) and 0.08 (0.06, 0.11); 
Fig. 3a). These effects were hastened in the most historically degraded 
sites (respective CI 95%: 0.06 (0.01, 0.10) and 0.11 (0.06, 0.16); Fig. 3a), 
but not affected by the longitudinal stream position (respective CI 80%: 
0.00 (−0.01, 0.01) and −0.01 (−0.02, 0.01)). By contrast, our results 
indicated that an increase in recent anthropogenic pressures in the 
historically most degraded sites was associated with slower rates of 
increase in total abundance and species richness, but faster rates of 
increase in non-native richness, temporal dissimilarity and turnover 
(see model predictions in Extended Data Fig. 5).

Drivers of community variation across space
Spatial variation in community structure was strongly associated with 
past and recent anthropogenic pressures and with longitudinal stream 
position (that is, single model effects independent of time; Fig. 3b). 
Using baseline model prediction (that is, at t = 0; Extended Data Fig. 5 
and Methods), we found that a higher degree of past anthropogenic 
pressures was associated with lower total abundance (strong evidence; 
Fig. 3b, blue), with the most ‘degraded’ sites (that is, with a human foot-
print index = 45.6) displaying a total abundance 30% lower than the most 
‘intact’ sites (that is, with a human footprint index = 2.5). By contrast, 
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Fig. 3 | Drivers of temporal change and spatial variation in fish community 
metrics. a,b, Effects of anthropogenic pressures and longitudinal (long.) 
stream position on temporal changes (a) and spatial variation (b) in fish 
community metrics. Community metrics include total abundance, species 
richness, proportional abundance and richness of non-native species, Simpson 

temporal dissimilarity and Jaccard turnover. Points depict the average posterior 
distributions. Large, medium and thin bars depict the Bayesian CI at 80, 90 and 
95%, respectively. Please note the broken abscissa scale in a. N = 46,932 sampling 
events across 4,476 sites.
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a higher degree of past anthropogenic pressures was associated with 
higher species richness (strong evidence; Fig. 3b, green), with the most 
degraded sites displaying 64% more species than the most intact sites.

Recent increases in anthropogenic pressures were strongly associ-
ated with lower total abundance and species richness (Fig. 3b). More 
specifically, sites that experienced a twofold increase in recent anthro-
pogenic pressures had 16% lower total abundance and 7% lower species 
richness than sites that had not undergone such pressures. Longitudi-
nal stream position was strongly associated with species richness—the 
most downstream sites displayed three times more species than the 
most upstream sites (Fig. 3b).

Anthropogenic pressures and longitudinal stream position were 
associated with spatial variation in the proportion of non-native fish 
species. Sites that had experienced a higher degree of past and recent 
anthropogenic pressures had a higher proportion of non-native indi-
viduals and species (strong evidence; Fig. 3b, yellow and orange). The 
proportion of non-native individuals and species was three times (9% 
versus 3%) and two times (10% versus 4%) higher in the most degraded 
sites than the most intact sites. Further, a twofold increase in recent 
anthropogenic pressures was associated with an increase in the propor-
tion of non-native individuals and species by 69% and 63%, respectively. 
The most downstream sites had 33% higher proportion of non-native 
abundance and 78% higher proportion of non-native richness than the 
most upstream sites (Fig. 3b). Noteworthy, a larger share of the vari-
ance in the community metrics was explained by site and basin identity 
rather than by the fixed effects alone (R2 conditional varying from 0.15 
for turnover to 0.80 for species richness versus R2 marginal varying 
from 0.02 for species richness to 0.07 for community turnover; Table 1). 
This indicates that context dependencies are well captured by our hier-
archical models but suggests that integrating fine-scale local drivers 
may further improve our ability to predict local community changes.

Discussion
Recent decades have witnessed substantial shifts in riverine fish com-
munities characterized by marked increases in species richness and 
total abundance over time, accompanied by a strong pattern of spe-
cies replacement. We found that fish species richness has increased at 
a rate of ~7% per decade, although no net change in species richness 
had been previously reported in terrestrial and in marine systems2,3,35. 
We also found an overall increase in total fish abundance of ~13% per 
decade, which is in line with the increase of 11% per decade reported 
for freshwater insects33. This is also consistent with several regional 
assessments of freshwater population trends in the Palaearctic, such 
as the reported increase in freshwater insect occupancy documented 
in the UK or the increase in freshwater animal Living Planet Index in 
the Netherlands since the 1990s36,37. However, this finding contrasts 
with dramatic Living Planet Index declines reported at the global scale 
for freshwater species and particularly fish megafauna, as well as with 

other regional assessments of fish assemblages8,38. We further found a 
faster average temporal trend in Jaccard dissimilarity (31% versus 10% 
per decade) but a slower average turnover (17% versus 28% per decade) 
than previously reported across a diversity of marine, freshwater and 
terrestrial assemblages2,3, indicating that riverine fish communities 
experienced both important richness and compositional changes in 
recent decades.

These recent biotic changes are linked to complex spatio-temporal 
processes involving past and recent human impacts on the environ-
ment and their interaction with stream network position. Higher past 
anthropogenic pressures were associated with faster rates of species 
richness and total abundance increases over time, suggesting a recov-
ery from the legacy of past disturbances. Previous studies suggested 
that the adoption of numerous legislations targeting improvements 
in water quality in the European Union and the United States since the 
1970s, as well as a decrease in the negative effects of agriculture, could 
be partly responsible for those increases despite the surrounding 
habitat changes33,39,40. The fact that most of the study sites (92%) were 
already highly degraded at the beginning of the study period, that is, 
they had a human footprint index > 4 in 199341, could lend support to 
the recovery hypothesis.

However, a higher degree of past anthropogenic pressures was 
also associated with a higher share of non-native species; this effect 
being stronger in downstream sites. This indicates that the introduction 
and establishment of non-native species contributed most substan-
tively to the fish community changes through time in the sites that 
suffered the greatest past (pre-1993) degradation, and particularly 
the most downstream ones. The increase in local species richness 
over time in degraded rivers could thus result from introduction of 
non-native species from ongoing spatial homogenization17, a pattern 
well-supported by metacommunity models42 and already documented 
across river basins in the Nearctic and Palaearctic realms17. This is in line 
with findings that higher densities of human population, urban areas 
and roads—all included in the human footprint index—can promote 
non-native species richness by increasing the number and frequency 
of introduction events15,16,31. Anthropogenic pressures can also alter the 
instream habitat to be more conducive for non-native species that are 
often ubiquitous and habitat generalists13,14, giving them a competitive 
advantage over native species that are less suited to the new condi-
tions16,43–45. A higher degree of past anthropogenic pressures was also 
associated with faster rates of species replacement and shift in species 
dominance over time. This suggests that the legacy effects of past 
habitat degradation are characterized by shifts towards species that 
are better adapted to degraded environments9, to which non-native 
species contribute disproportionately2,3.

This study uncovered important interaction effects between past 
and recent human pressures in driving the rate of change in several 
community metrics, highlighting the importance of considering both 
the degree and timing of anthropogenic pressures. For example, as 
discussed above, communities that experienced greater past deg-
radation had actually experienced an increase in richness in recent 
years. But an increase in recent human pressures at these sites was 
associated with an increase of non-native species and lower species 
richness. This suggests that any recovery of the native fish communi-
ties in previously degraded sites would be severely compromised if 
human impacts were allowed to continue. Conversely, these findings 
clearly illustrate opportunities to reduce human impacts in previously 
degraded habitats to benefit freshwater biodiversity7. In turn, the fact 
that non-native species were more abundant in both historically or 
recently degraded sites, but that no direct association was uncovered 
in terms of non-native temporal trends, can be explained, at least in 
part, by commonly reported time lags between the first recorded 
introductions and the establishment of self-sustaining populations, 
which includes time for biological acceptance and local adaptation16. 
Our results demonstrate that recent habitat degradation can result in 

Table 1 | Marginal and conditional R2 of the hierarchical 
Bayesian model for each community metric

Response variable Marginal R2 Conditional R2

Total abundance 0.03 (0.01, 0.07) 0.73 (0.72, 0.74)

Richness 0.02 (0.01, 0.05) 0.81 (0.80, 0.81)

Non-native richness 0.03 (0.01, 0.06) 0.75 (0.75, 0.76)

Non-native abundance 0.03 (0.01, 0.07) 0.76 (0.76, 0.77)

Dissimilarity 0.07 (0.02, 0.15) 0.33 (0.29, 0.38)

Turnover 0.07 (0.01, 0.16) 0.14 (0.08, 0.22)

The models included several predictors (fixed effects illustrated in Fig. 3) and accounted for 
spatial variations at the hydrographic river basin and site levels (random effects). Marginal 
R2 accounts for fixed effects and conditional R2 accounts for both fixed and random effects. 
Mean R2 (95% CI): CI computed using the highest posterior density method.
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simultaneous negative and positive effects on native and non-native 
species, respectively6,46, and highlights the conservation challenges 
associated with the identification and management of biodiversity 
changes in the context of transient community dynamics25.

Longitudinal position along the river network was found to medi-
ate temporal biodiversity trends, with the most downstream sites 
experiencing faster rates of community change over time. This finding 
may be explained by the higher connectivity of larger rivers with other 
tributaries, which in turn gives more opportunity for local coloniza-
tion28 and the establishment of metacommunity dynamics47. As such, 
it is not entirely surprising that community changes were found to be 
more heterogeneous at the local scale than at the basin or realm scales, 
and that the spatial structure of the model explained much more of the 
variance in the community metrics than the fixed effects. This prob-
ably reflects the characteristics of riverine habitats, and especially 
their dendritic structure and isolation within drainage basins, which 
determine environmental filtering and dispersal opportunities48,49. In 
addition, we focused chiefly on community reorganization arising from 
land use pressures, therefore disregarding the potential interactions 
with other global drivers of change such as climate change and more 
localized threats such as water withdrawals40,50.

Our results further confirm that temporal changes in species com-
position can be decoupled from changes in species richness in freshwa-
ter systems, similarly to what has been observed in mostly marine and 
terrestrial assemblages2,3. Various community trajectories can be linked 
to a complex mosaic of ecological drivers such as the degree and tim-
ing of anthropogenic pressures and position of the sites within water-
sheds. It follows that the similar frequencies in community trajectories 
detected across realms, together with the restricted number of sites 
displaying a low degree of change, probably reflects the spatially and 
temporally heterogeneous patterns in human pressures. We recognize 
that recent increases in anthropogenic pressures are most prevalent in 
tropical biodiversity hotspots30,51, while our study has a spatial coverage 
limited to historically industrialized countries and in mostly temper-
ate biomes. Noticeably, anthropogenic pressures decreased by 4% on 
average (based on differences in the human footprint index between 
1993 and 2009) across the sites included in our study, while it increased 
by 25% across the rivers globally52. Consequently, species richness 
and abundance increases as well as the decoupling of compositional 
changes from richness changes may not be universal phenomena, and 
more heterogeneous patterns of biotic change may manifest at the 
global scale once we consider tropical fish communities. Our study 
remains essentially correlative. Although aggregated anthropogenic 
threat indices have been shown to be useful to estimate the ecological 
integrity of freshwater ecosystems53, they do not replace the use of 
more targeted threat indices related to water quality and ecosystem 
functioning54,55. Nonetheless, our analyses were conducted on the best 
available temporal riverine fish dataset at this time, and they provide 
evidence linking the multidimensionality of community changes to the 
interplay between past and recent environmental challenges as well as 
habitat context. Our study also offers a framework for future research 
that merges multiple scales of both time and space4,6, which could be 
leveraged as more tropical data are collected and become available.

In conclusion, our study uncovered complex but consistent effects 
of past and recent changes in anthropogenic pressures and stream 
network position on riverine fish communities. We showed that the 
timing of anthropogenic pressures matters, because past and recent 
pressures can have contrasting and interactive effects on community 
trends, partly mediated by non-native species. Our study further shows 
that considering multiple biodiversity facets can shed light on the 
complex mechanisms by which communities change over time. Look-
ing forward, we emphasize the increasing need to investigate biotic 
changes across spatial scales to better reconcile reported local gains 
and global declines in biodiversity4,6,56. The increasing availability of 
community time series and environmental data across large areas is 

invaluable for understanding how human pressures impact biodiver-
sity across taxa and ecosystems, and for implementing conservation 
policies to mitigate these impacts.

Methods
Fish community time series
We used the RivFishTIME database29, a compilation of more than 12,000 
time series containing species abundances of riverine fish communi-
ties, which we completed with time series from Canada and the United 
States (Supplementary Table 2). The final database mainly covered 
western and northern Europe, northern America, and southeastern 
Australia. We selected time series having at least 5 years of data over a 
10-year period as well as a consistent sampling protocol and abundance 
unit. As several sites had been sampled using different sampling meth-
ods (for example, electrofishing, seining; Supplementary Table 2), we 
selected for each site only the sampling events that were performed 
using the most frequent sampling method. To minimize the influence 
of seasonal variation in community composition (for example, due 
to spawning or migration), we further only selected sampling events 
that were performed within 1.5 months of the most frequently sampled 
month (that is, 45 days before or after). When there were several sam-
pling events in a given year, we selected the one that took place at the 
closest date from the most frequently sampled date of the site. Finally, 
we excluded 1,340 sites that had been limed as part of the long-term 
Swedish liming programme (https://kalkdatabasen.lansstyrelsen.
se/)57 to avoid including sites whose environmental conditions had 
been experimentally manipulated. The data selection resulted in 4,476 
fish community time series, totalling 46,932 sampling events, 326,717 
species abundance records and 806 freshwater fish species. The 
median time span of the time series was of 17 (13, 23; 25th quantile, 75th 
quantile) years, the median completeness (that is, number of annual 
samplings/time span) was of 55% (38%, 78%) (Extended Data Fig. 1)  
and the median first study year was 1997 (1992, 2003). The sites were 
mostly located in the Palaearctic (75%), Nearctic (20%) and Australasia 
(5%), and distributed across 307 hydrographic basins. Four countries 
gathered 85% of the sites, namely Great Britain (29%), France (21%), 
Sweden (18%) and the United States (18%; Supplementary Table 2).

Community metrics
We assessed community changes in riverine fish communities using 
several biodiversity facets related to total abundance, species rich-
ness, the share of non-native species and community composition 
(Supplementary Table 2). Total abundance was reported in number 
of individuals (47.00% of the sampling events), density of individu-
als per 100 m2 (51.81%), catch per unit effort (CPUE; 1.05%) and Leslie 
index (0.14%; Supplementary Table 2). Although we selected for strict 
protocol consistency, 70% or more of the sampling events by unit of 
abundance did not report sampling effort, preventing us from harmo-
nizing count, abundance density and CPUE29.

As sampled species richness is a negatively biased estimator of 
the ‘true’ species richness, we corrected sampled species richness with 
the coverage-based rarefaction and extrapolation methodology58. The 
estimated coverage of a sample is positively related to the number of 
individuals and negatively related to the number of singletons. We 
fixed the coverage of all samples at 98.5% via rarefaction and extrapola-
tion using the R package iNEXT59 to make species richness comparable 
across samples. We did not always have a direct estimate of the number 
of individuals and number of singletons to compute the sampling 
coverage, as 51.81% of the abundances were measured as density values 
and 1.05% as CPUE. In this case, we first divided each species density 
(xi) by the minimum value in the community and rounded each value 
to the nearest integer (that is, x′i = round(1/min(xi)) , where x′i  is the 
estimated abundance of the ith species) to obtain at least one singleton 
species, that is, a species with one individual. However, we note that 
both covered-based and raw species richness estimates were highly 
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correlated (Spearman’s ρ = 0.97 for both raw variables and log- 
transformed ones), and the choice of the metric did not influence our 
interpretations regarding the patterns and drivers of species richness 
changes (Extended Data Fig. 7).

The biogeographic origin of the fish species describing whether 
species were native or introduced to a given drainage basin was 
retrieved using a global database documenting species status across 
drainage basins of the world60 (94.3% of the species occurrences; Sup-
plementary Table 2). For the sites falling outside the river basins pro-
vided in the global database, such as for the sites located close to the 
shore, we used the closest basin within the same country. For species 
not included in a given drainage basin, we determined the origin of the 
species at the country scale using FishBase61 (5.5% of species occur-
rences). Given the spatial extent of the United States, we completed 
the global database with the Nonindigenous Aquatic Species database 
developed by the US Geological Survey (https://nas.er.usgs.gov/) 
using US states as spatial grain (0.05% of the species occurrences). We 
completed the remaining species origins at the country scale, using 
national atlases and FishBase data in neighbouring countries, such as 
for Piaractus brachypomus and Rutilus rutilus in the United States (0.1% 
of the species occurrences; Supplementary Table 2). We then estimated 
the percentage of non-native species with respect to both abundance 
and species richness for each sampling event (Supplementary Table 3).

Dissimilarity metrics
We used the complement of the Jaccard similarity index (that is, Jac-
card dissimilarity, which we denote as J) to characterize temporal 
dissimilarity in community composition at each site, taking the first 
year of sampling of a community as the reference community. This 
index is based on presence/absence and is simply the sum of species 
gains and losses over the total number of species across two samples 
(equation (1)). It thus measures the proportion of species not shared 
between two samples.

J =
Sgain + Sloss

Stot
(1)

with Sgain, Sloss and Stot being the numbers of immigrant, extirpated and 
total species, respectively.

We further partitioned the Jaccard dissimilarity index into two 
complementary indices, turnover (Jt) and nestedness (Jn), respectively 
Jt = (2 × min(Sloss, Sgain))/(Scommon + (2 × min(Sloss, Sgain))) and Jn = 1 − Jt,  
Scommon being the number of species present in both communities62. 
High turnover values indicate that the changes in community com-
position result from species replacement, whereas high values of  
nestedness indicate species gains or losses from a nested community, 
that is, that a community is a subset of the other63.

We further characterized temporal dissimilarity with the 
Simpson-based dissimilarity index24 (Hd, equation (2)). This index is 
based on species relative abundances and their variation across two 
samples. Simpson-based dissimilarity index is based on the Simpson 
diversity index and thus gives higher weight to changes in the abundant 
species, whereas Jaccard dissimilarity index gives equal weight to each 
species. Simpson-based dissimilarity index thus quantifies the extent of 
changes in the identity of the dominant species24. Both high Jaccard and 
Simpson dissimilarity values indicate changes in composition resulting 
from changes in the abundant species, whereas conjointly high Jaccard 
and low Simpson dissimilarity values indicate composition changes 
resulting from changes in the species with low relative abundances.

Hd = 1 − H

Hd = 1 − ∑i(pi−p′i )
2

∑ip
2
i +∑ip

′2
i −∑ipip′i

(2)

where i is species i, p is relative abundance and ′ is the focal community.

Environmental drivers
We quantified the degree of anthropogenic pressures using the human 
footprint index26,30, extracted from the RiverATLAS database at the 
reach scale52,64 (stream segment length average of 450 m). We did so 
by snapping the sites to the closest stream segment using a 1 km buffer 
(99% of the sites). The human footprint index aggregates an array of 
human pressures, including population density and the extent of urban, 
forested, cropland and pastureland areas, but also transportation hubs 
such as roads, railways and navigable pathways. It does so by combining 
remote sensing data, systematic surveys and modelling from ground 
data, making it less prone to errors30. The human footprint index ranges 
from 0 to 50, with values superior to 4 being considered in a degraded 
state41. This index has been previously related to species extinction and 
risk of biological invasion32,41. To capture both the effects of the legacy 
of past anthropogenic pressures and of its recent changes, we consid-
ered the human footprint index computed in 1993 and 2009 (that is, a 
16-year span). Specifically, the human footprint index of 1993 was used 
as a measure of past anthropogenic pressures at the beginning of the 
study period, and the ratio between the human footprint of 2009 and 
1993 as a measure of the recent changes in anthropogenic pressures 
(only 7% of the samplings took place before 1993, while 58% took place 
between 1993 and 2009, and 34% after 2009; Extended Data Fig. 1). We 
chose the human footprint index developed in ref. 30 because it goes 
farther back in time than other related human footprint indices (for 
example, 1993 versus 2000 in ref. 51). Nevertheless, both indices are 
highly correlated (Spearman’s ρ = 0.81 for 2009) in overlapping years, 
suggesting that our results are robust to the choice of human footprint 
index. In order to obtain interpretable coefficients of recent changes 
in human footprint, we log-transformed the ratio of human footprint 
with a base 2, such as values of −1 and 1 represented a division by 2 and 
a multiplication by 2 of the human footprint between 1993 and 2009, 
respectively. In river networks, the environmental heterogeneity and 
connectivity along the longitudinal stream position (upstream–down-
stream) strongly shape species occurrences, immigration rates and 
community composition28. To capture this longitudinal gradient, we 
first described stream characteristics at each site by the altitude (m), 
slope (°), average annual discharge (m3 s−1), distance from source (km) 
and Strahler order (that is, downstream position based on stream/
tributary hierarchy) that we extracted from the RiverATLAS database 
at the stream segment scale52,64. We next performed a PCA over the site 
stream characteristics on the log-transformed (after adding absolute 
minimum values plus 1 to avoid few negative values in altitude) and 
standardized variables (that is, centred and scaled). We orthogonally 
rotated the two first principal components using the varimax cri-
terion65, to increase the quality of the variable representation (that 
is, their loadings) on the two first principal components. The first 
rotated component was positively related to average annual discharge, 
distance from source and Strahler order, and captured 56% of the vari-
ance (Extended Data Fig. 8), and was subsequently used as a composite 
variable describing the longitudinal stream position from upstream to 
downstream (from negative to positive values, respectively). The cor-
relation coefficients indicated little covariation among the predictors 
(maximum Spearman’s correlation of 0.09 found between past and 
recent pressures; Supplementary Fig. 1).

Statistical analysis
To estimate community temporal trends, we first modelled the dif-
ferent community metrics (Y) as dependent of time (β0Timet; equa-
tion (3)), measured as the number of years since the beginning of the 
sampling at each site. The statistical model (equation (3)) was adapted 
according to the nature of the response variable. For total abundance, 
we added the measurement unit of abundance as a categorical variable 
both as a main effect and in interaction with time33. We set the factor 
level ‘raw count’ as the reference level such that the temporal trends 
in total abundance in the main text and Supplementary Information 
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are expressed in raw count (that is, number of individuals). For dissimi-
larity metrics, we set the intercept fixed at 0 as dissimilarity metrics 
at each site was 0 at the beginning of the time series. We accounted 
for the hierarchical spatial structure in the data by assigning random 
effects on the intercept (α) and on the slope of the temporal trends (β0) 
conditional on basin identity (n) and on site identity (i) nested within 
basin (i∣n). The random effects and the error terms were modelled as 
a normal distribution of mean 0 and variance (σ2).

Yi|n,t = α + β0Timet + ϵi|n,t (3)

where α = α0 + an + ai∣n, β0 = μ + bn + bi∣n, α0 and μ being the fixed intercept 
and slope, a and b being the random intercept and slope, 𝜖i|n,t the  
residual error, and an,ai|n,bn,bi|n, ϵi|n,t ∼ 𝒩𝒩(0, σ2).

To assess the drivers of community change, we then built a second 
model incorporating additional covariates (Xk, k being the index of the 
covariate, equation (4)): the degree of past anthropogenic pressures 
measured by the human footprint index of 1993, the recent changes in 
anthropogenic pressures measured by the ratio between the human 
footprint index of 2009 and 1993, and the longitudinal stream posi-
tion estimated by the rotated PCA axis. We included two-way interac-
tions between time and the ecological drivers (∑k=1β0kTimetXk) to test 
how longitudinal stream position and anthropogenic pressures affect 
the temporal trends in community metrics. For instance, a positive 
interaction between time and past anthropogenic pressures would 
indicate that faster changes were happening in historically degraded 
areas. We further included the three-way interactions between time 
and the pairs of other ecological drivers (∑k=1,k≠lβ0klTimetXkXl, k and l 
being the indexes of the covariates) to examine the presence of syner-
gistic or antagonistic effects between anthropogenic pressures and 
longitudinal stream position on the temporal trends in community 
metrics (that is, the results in Fig. 3a). For instance, a positive interac-
tion between time, recent changes in anthropogenic pressures and 
longitudinal stream position would indicate that the effects of recent 
changes in anthropogenic pressures on temporal trends were more 
important in downstream areas. We included all the predictors as 
main effects (∑k=1βkXk) to capture the effects of the ecological drivers 
on the spatial variation in average community composition metrics 
through time, except when modelling the dissimilarity metrics (that 
is, we only included the effects of ecological drivers on the temporal 
trends, the results in Fig. 3b). We did so because dissimilarity metrics 
quantify community changes at a given time point (t = 0…N) at a given 
site from the first year (t = 0) and therefore bounded by 0 and 1 at each 
site; we thus did not expect average differences in dissimilarity related 
to any other factors than time. We did not include interactions among 
ecological drivers on the spatial part of the model as we restricted the 
core of the analysis to the drivers of temporal rather than spatial vari-
ation in freshwater fish community composition and tried to keep the 
model as parsimonious as possible. Finally, we derived the comparison 
in community metrics across space according to the ecological drivers 
by using the predictions of the model at the baseline (t = 0). The predic-
tions controlled for the values of other predictors (such as longitudinal 
stream position and past anthropogenic pressures) by setting them at 
their median values.

Yi|n,t = α + β0Timet + ∑
k=1

βkXk + ∑
k=1

β0kTimetXk

+ ∑
k=1,k≠l

β0klTimetXkXl + ϵi|n,t
(4)

where k, l and ∈ [1, 2, 3] are ecological drivers including stream gradi-
ent, legacy of past and recent changes in anthropogenic pressures.

All the response variables were modelled with a Gaussian distri-
bution following previous studies modelling temporal trends in total 
abundance, species richness and community composition at the global 
scale2,3,33. Other error structures might be more appropriate to model 

response variables bounded between 0 and 1 or ratio of discrete num-
bers such as the dissimilarity metrics and the proportion of non-native 
species. However, doing so allowed us to obtain easily interpretable 
coefficients across all community metrics (for example, temporal 
trends cannot be interpreted as rates of change when modelled using a 
logit scale such as when using a beta distribution). In addition, a previ-
ous study using similar models3 found that slope coefficients estimated 
with a Gaussian error and a beta error had a Spearman correlation 
superior to 0.90 and gave qualitatively similar results. We therefore 
believe that this choice is not likely to alter our conclusions.

We log-transformed the number of years as log(year + 1) as it 
improved the quality of the model fitting to the data, decreasing the 
Watanabe–Akaike information criterion66,67 by −733 on average (−11%) 
across community metrics facets (Supplementary Table 4). It sug-
gested the presence of nonlinearity in the temporal trends, which is 
particularly expected in the case of bounded variables such as the 
dissimilarity metrics. We log-transformed total abundance and species 
richness, so that their temporal trends are multiplicative and can be 
expressed in percentage change by unit of time. We then derived the 
percentage of change by decade in species richness and total abun-
dance by back transforming β0 using a time value of log(10 + 1) as  
follows: (eβ0×log(10+1) − 1) × 100.

In order to compare the strength of the effects among predictors 
across community metrics, we scaled both community metrics and 
the predictors by their standard deviation prior to model fitting. As 
our models contain interactions, the individual slope coefficients 
could be difficult to interpret without centring the predictors around 
ecological relevant values68. As an example, the average temporal 
trends estimated by β0 in equation (4) can only be interpreted when 
all the Xk = 0. Hence, we centred past anthropogenic pressures and 
longitudinal stream position around their average values. The variables 
quantifying time and recent changes in anthropogenic pressures were 
not centred, because then the main effects of the ecological predictors 
(∑k=1βk) would indicate their baseline effects (that is, when time is equal 
to 0 and without recent changes in anthropogenic pressures).

The models were evaluated in a Bayesian framework using inte-
grated nested Laplacian approximation69,70 (INLA), which approximates 
the posterior distribution of the parameters and does not rely on 
Markov chains and Monte Carlo simulations, and thus is a computation-
ally efficient method to evaluate Bayesian models. We computed the 
CI at 80%, 90% and 95% using the highest posterior density method71, 
which can respectively be interpreted as weak, moderate and strong 
evidence of an effect when the interval does not include 0 (refs. 33,34). 
The statistical models were implemented using the INLA R package69, 
with defaults uninformative priors. The prior distribution of fixed 
coefficients followed a flat zero centred normal distribution 
(𝒩𝒩(μ, σ2) = 𝒩𝒩(0, 1000)). The prior distribution of the random effects 
and the gaussian error (εit, eq. (3)) followed a log gamma distribution 
with shape (s) and inverse scale (τ) parameters (𝒢𝒢(s, τ) = 𝒢𝒢(1, 5.10−5)). 
We then back-transformed the estimated coefficients to the standard 
deviations attributed to the random effects and the gaussian error 
(σ = 1/√τ). We checked that the slope coefficients, random effects 
and the temporal trends by basin and site were similar to those 
obtained with an implementation in frequentist. Then, we concluded 
that the quality of parameter inference did not suffer from the unin-
formative priors.

We checked the overall quality of the model fit to the data by plot-
ting the fitted versus observed values (Supplementary Fig. 2). We 
visually inspected the posterior integral transform and conditional 
predictive ordinate distribution to assess both the quality of data 
representation and the frequency of outliers. There was very little 
multicollinearity in the model, as all variance inflation factors were 
around 1 (Supplementary Table 5).

We computed marginal (R2
m) and conditional (R2

c) R2 (equation (5)) 
to assess the quality of the fit of the Bayesian models, respectively 
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associated with the variance explained by the fixed effects and the 
variance explained by both the fixed and random effects72. We only 
included the random effects on the intercept in the R2 computation, 
that is, the basin effect (an) and the site effect (ai∣n), as the inclusion of 
the variance attributed to random slopes is much more complex and 
was shown to not change the results72,73. We computed the variance 
associated with each predicted value (Varfit) from their posterior dis-
tribution, following recommendations to take into account the variabil-
ity associated to the priors74. We then reported the mean marginal and 
conditional R2 associated their 95% CI computed using the highest 
posterior density method.

R2
m = Varfit

Varfit+Varres
= σ2( ̂yi)

σ2( ̂yi)+σ2( yi− ̂yi)

R2
c = Varfit+(an)

2+(ai|n)
2

Varfit+(an)
2+(ai|n)

2+Varres

(5)

with yi and ̂yi being respectively the observations and the predicted 
values, and Varfit and Varres being respectively the variance of the predic-
tive means and the variance of the residuals74. an and ai∣n are respectively 
the standard deviation on the random intercept associated with the 
hydrographic basin and the site within the basin.

Typology of temporal trends
To estimate the covariations among multiple dimensions of community 
change, we performed a PCA on the temporal trends in the community 
metrics estimated at each site with the models (equation (3)) having 
time as a sole fixed predictor (that is, using the predictions of the mod-
els in percentage per decade using the best linear unbiased prediction 
method). We used four variables in this analysis: temporal trends in 
total species richness, community abundance, temporal dissimilarity 
and turnover. We excluded the two variables describing the non-native 
species composition (proportion of non-native abundance and richness) 
because their predicted temporal trends at the site level displayed a heavy 
tailed distribution compared with the other variables (kurtosis of the 
distributions: 10 versus 21 and 8 versus 15 for total and non-native abun-
dance and species richness, respectively; Fig. 1), which in turn exerted a 
disproportionate constraint on the analysis. In addition, we performed 
a clustering analysis on the temporal trends in the community metrics 
at the site level to identify distinct types of community trajectory using 
the trimmed k-means method75, a robust clustering method because it 
avoids the identification of spurious clusters. The method consists of 
trimming the most outlying data in the multidimensional space, the num-
ber of dimensions being the number of community metrics. To choose a 
relevant number of clusters, we plotted the log-likelihood of the trimmed 
classification as a function of the proportion of the most outlying data 
trimmed (α) and the number of clusters (Supplementary Fig. 3). We thus 
selected a partition of temporal community changes in six clusters with 
α = 5% (see Supplementary Fig. 4 with four clusters). We did not constrain 
the algorithm for the relative size or shape of the clusters, as we had no 
a priori expectation about them. The clustering algorithm was run for 
a minimum of 100 iterations and up to a maximum of 125 iterations. To 
further control for the quality of the cluster assignment, we discarded 
any fish community for which the second-best cluster assignment was 
50% better than the first one by comparing the degree of affiliation to 
the clusters75. The clustering was performed using the tclust R package75.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in the study are open access, although we provide the 
raw data to facilitate the reproduction of the analysis (https://doi.
org/10.5281/zenodo.7817360).

Code availability
The manuscript and the Supplementary Information are written in 
R Markdown, that is, combining code and text, and are available on 
GitHub (https://github.com/alaindanet/RivFishTimeBiodiversity-
Facets). We further implemented a code pipeline using the targets R 
package to ensure that the code, data, figures, manuscript and results 
are up to date.
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Extended Data Fig. 1 | Characteristics of the fish community time series. 
a, Distribution of the year of all sampling events. b–d, Distribution of the (b) 
first year of sampling, (c) time span, and (d) completeness of the time series 
across sites. e, time series of yearly sampling events. Colours correspond to 

the biogeographic realms. In (a), (b), and (e), the lines display the year 1993 and 
2009. The years 1993 and 2009 correspond to the years of the human footprint 
index assessments, which were used to quantify past and recent changes in 
anthropogenic pressures (See Methods).
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Extended Data Fig. 2 | Covariations between temporal trends estimated 
at the site level and the characteristics of the time series. The year span is 
expressed in number of years, completeness in proportion of years over the 
entire study period and first year of sampling in year. The temporal trends were 

estimated with time as sole fixed predictor (See Methods, eq. (3)). The black lines 
display the regression lines fitted with a Generalized Additive Model (GAM) and 
the gray area the confidence interval.
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Extended Data Fig. 3 | Distribution of community temporal trends across 
sites. Temporal trends per decade in Jaccard dissimilarity (a) and nestedness 
(b). The temporal trends were estimated from a hierarchical Bayesian model 
including time as sole predictor (See Methods). The histograms show the Best 

Linear Unbiased Predictor (BLUP) estimated at each site. The points depict the 
average posterior distribution with bars depicting the Bayesian credible intervals 
at 95%. The dashed lines refer to no temporal trend. N = 46,932 sampling events 
across 4,476 sites.
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Extended Data Fig. 4 | Covariation among the community temporal trends 
and characterization of community trajectories. (a, b) PCA biplot of the 
community temporal trends and their cluster assignment where the sites are 
colored according to their cluster assignment. (c) Boxplots displaying the 
distribution of the temporal trends by cluster. The center of the box depicts the 
median while the bounds depicts the 25% and 75% percentile. The whiskers  
depict the extreme values within 1.5 interquartile range beyond the bounds  
of the box. (d) Cluster frequencies across the three main biogeographic realms.  

The ellipses in (a-b) display the 95% intervals around the clusters assuming 
a Student’s t distribution. The clusters were named according t o their main 
characteristics. Contrary to Fig. 2 (Main text), we included the sites whose 
cluster affiliation was uncertain (‘NA’, black color, (N = 641, 14%). NA clusters 
are well distributed over the PCA (a-b), which is confirmed by the distribution 
of community metric temporal trends (c). We observe a few more NAs in the 
Nearctic realm (+5%, that is around 40 sites over 897).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Predictions of community metric changes over time 
according to past human pressures and recent changes in human pressures 
using a hierarchical Bayesian model. Total abundance is expressed in count, 
species richness in number of species (raw), while non-native abundance, 
non-native richness, dissimilarity and turnover are expressed in proportion. No 
pressure, medium pressure, and highly degraded past pressure levels correspond 

respectively to values of human footprint index for the year 1993 of 2.5 (intact 
ecosystem), 16.8 (median value in our dataset), and 45.6 (maximum value in 
the dataset). Recent pressure levels represent change in human footprint index 
between the years 1993 and 2009 (see Methods for details). The central lines 
display the mean, while the lower and upper lines display the credible intervals at 
95% of the average posterior distribution.
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Extended Data Fig. 6 | Covariations between ecological drivers used in the 
hierarchical Bayesian model (longitudinal stream position, past and recent 
changes in anthropogenic pressures) and time series characteristics (time 
span in number of years and beginning of the time series in year). The blue 

lines display the regression lines fitted with a Generalized Additive Model (GAM) 
and the gray area the confidence interval. The ecological drivers were largely 
unrelated to the characteristics of the time series (N = 4,476 sites).
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Extended Data Fig. 7 | Rotated PCA over the physical and hydrological 
characteristics of the sites. PCA axes (Rotated Component, RC) were rotated 
using the varimax algorithm (See Methods). The first axis is related to the average 

discharge, Strahler order and the distance from source, and was subsequently 
used in the statistical modelling as a composite variable intended to summarise 
the longitudinal stream position from upstream to downstream.
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Extended Data Fig. 8 | Drivers of temporal change and spatial variation in fish 
community metrics. a,b, Effects of anthropogenic pressures and longitudinal 
(long.) stream position on temporal changes (a) and spatial variation (b) in fish 
community metrics. See Fig. 3 in the main text for details. We compare coverage 
corrected species richness (Richness) with raw species richness (Richness (raw)) 
and Simpson dissimilarity (Dissimilarity) with Jaccard dissimilarity ( Jaccard 
dissimilarity). We observe that using coverage based species richness or raw 

species richness does not affect the results. Similarly, we observe consistent 
effect sizes for Simpson and Jaccard dissimilarity indices, meaning that observed 
changes in community composition concerned abundant species and thus 
changes in the identity of dominant species (see Methods). The points depict the 
average posterior distribution. Large, medium and thin bars depict the Bayesian 
credible intervals at 80, 90 and 95%, respectively. Please note the broken abscissa 
scale in (a). N = 46,932 sampling events across 4,476 sites.
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Extended Data Table 1 | Random effects associated with the estimation of the temporal trends computed from the model 
containing only time as fixed predictor

[95% CI]: Credible Interval computed using the Highest Posterior Density method.
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