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Abstract

In order to trust the predictions of a machine learning algorithm, it is neces-
sary to understand the factors that contribute to those predictions. In the case
of probabilistic and uncertainty-aware models, it is necessary to understand not
only the reasons for the predictions themselves, but also the model’s level of
confidence in those predictions. In this paper, we show how existing methods in
explainability can be extended to uncertainty-aware models and how such exten-
sions can be used to understand the sources of uncertainty in a model’s predictive
distribution. In particular, by adapting permutation feature importance, partial
dependence plots, and individual conditional expectation plots, we demonstrate
that novel insights into model behaviour may be obtained and that these meth-
ods can be used to measure the impact of features on both the entropy of the
predictive distribution and the log-likelihood of the ground truth labels under
that distribution. With experiments using both synthetic and real-world data, we
demonstrate the utility of these approaches in understanding both the sources of
uncertainty and their impact on model performance.
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1 Introduction

A common criticism leveled at models in modern machine learning is that their com-
plexity makes it difficult to understand the reasons for their decisions. This is especially
problematic when applying these models in domains where decisions must be care-
fully justified, such as healthcare and judiciary decision making (Kelly et al, 2020),
making explainability an important tool when developing trustworthy AI. Another
key factor in the development of trustworthy models is uncertainty quantification: the
ability of models to give accurate assessments of the uncertainty inherent in their pre-
dictions. While both explainability and uncertainty quantification are vital for the use
of machine learning in high-stakes applications, remarkably little work has been done
at their intersection.

Traditional explainable machine learning seeks to reveal the reasons for a model’s
output or the reasons for its level of accuracy. These remain important pieces of
information for understanding uncertainty-aware models, though equally important is
the ability to determine the sources of uncertainty: the features that cause the model
to be more or less confident in its prediction. Although there has been some recent
work exploring this area for Bayesian neural networks (Depeweg et al, 2017; Chai,
2018; Antoran et al, 2021), to the best of our knowledge, there has been only one
recent attempt at a truly model-agnostic approach (Watson et al, 2023).

In this paper, we demonstrate that a range of existing simple techniques for explain-
ing model output and performance can be modified to explain both the uncertainty
and likelihood of the predictive distributions of uncertainty-aware models. In particu-
lar, we introduce novel adaptations of permutation feature importance (PFI), partial
dependence plots (PDP) and individual conditional expectation (ICE) plots to explain
how each feature available to a model affects its predictive distribution. We explore two
complementary approaches: one looking at feature importance for the negative log-
likelihood (loss), the other looking at the predictive uncertainty. For the first approach,
we introduce Likelihood-PFI, Likelihood-PDP and Likelihood-ICE; likelihood-based
variants of the methods listed above, which allow feature importance to be mea-
sured in terms of the effect a feature has on the model’s negative log-likelihood. For
the second approach, we measure the uncertainty of the model’s predictive distribu-
tion through that distribution’s entropy, introducing Entropy-PFI, Entropy-PDP and
Entropy-ICE. We examine the properties of both sets of empirical measures through
the use of carefully constructed synthetic datasets, and demonstrate how they can be
used in a model-agnostic way to derive insights from models trained on real-world
datasets in both classification and regression settings.

In recent years, methods like the ones listed above have faced scrutiny due to the
potential for misleading results in the presence of statistical dependencies between
features (Hooker et al, 2021). These results are due to the fact that permutation-
based methods break dependencies, which can force the model to extrapolate. While
this extrapolation can be an issue for traditional permutation-based methods, we will
show that this is not the case for Entropy-PFI; instead, the effect that these depen-
dencies have on model confidence is a critical component of what is being measured.
From this interpretation, measuring Entropy-PFI alongside Likelihood-PFI can help
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to detect issues when dealing with feature dependencies, while not requiring training
of additional models.

The remainder of the paper is structured as follows. In Section 2, we briefly review
the fields of uncertainty quantification and feature importance, as well as give a more
in-depth introduction to the main feature importance methods of interest in this work.
In Section 3, we introduce our novel likelihood and entropy-based feature importance
methods, as well as demonstrate their properties through experiments on synthetic
datasets. In Section 4, we demonstrate how these techniques can be used to gain new
insights on real-world datasets. Finally, in Section 5, we summarise our findings and
give suggestions for future work.

2 Background

This section briefly reviews the fields of uncertainty quantification and feature impor-
tance, before introducing notation and describing some of the key methods in more
detail.

2.1 Uncertainty quantification

Accurate measures of uncertainty require that we are able to construct models that
output a distribution over possible outcomes, as opposed to a single value deemed
most likely by the model. To this end, several approaches have been proposed to cre-
ate uncertainty-aware models, such as Gaussian processes (Williams and Rasmussen,
2006) and Bayesian neural networks. For Bayesian neural networks, several approaches
have been developed, including fully Bayesian networks (Neal, 2012), approximations
such as Monte Carlo dropout (Gal and Ghahramani, 2016)), as well as a range of cal-
ibration methods (Guo et al, 2017). These uncertainty-aware models have their own
unique strengths and weaknesses, though they all raise a set of common questions:
Can we identify the sources of uncertainty for a model? And how do the features that
increase model confidence differ from those that increase model performance? That is,
how do we explain the uncertainty of a model?

Much previous work on explaining uncertainty revolves around decomposing the
uncertainty into two types: epistemic uncertainty, i.e., uncertainty due to the finite
amount of data available and limitations of the model; and aleatoric uncertainty, i.e.,
uncertainty that is inherent in the system that we are observing, which cannot be
reduced by collecting more data (Depeweg et al, 2018). Epistemic uncertainty can
be further decomposed into uncertainty about the suitability of the chosen model
(structural uncertainty) and uncertainty in the choice of parameters given the spec-
ification of the chosen model (Liu et al, 2019). Various efforts have been made to
identify how much uncertainty comes from each source: explicitly modelling aleatoric
uncertainty via a noise parameter, estimating the role of epistemic uncertainty by
modelling the density of the data in latent spaces (Mukhoti et al, 2023) and estimating
aleatoric uncertainty by reducing epistemic uncertainty via ensembling (Shaker and
Hüllermeier, 2020), while other work critically examines the validity of this approach
of decomposing uncertainty (Wimmer et al, 2023).
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However, we are interested in more fine-grained explanations for the sources of
uncertainty: explaining how the particular values of given features in an example affect
the uncertainty of the model output. Little work has been done in this area, although
there are notable exceptions. Depeweg et al (2017) examined the role of features in
the uncertainty of Bayesian neural networks via sensitivity analysis: examining the
gradient of the uncertainty with respect to each feature in turn. Antoran et al (2021)
look at how uncertainty estimates can be explained in Bayesian neural networks via
counterfactuals: identifying which constellations of features are responsible for uncer-
tainty by finding sets of minimal changes required to increase a model’s confidence in
its prediction. Similarly, Chai (2018) and Zhang et al (2022) look at the importance of
features through predictive difference, showing changes in the predictive distribution
of Bayesian neural networks when features are replaced with non-informative features
modelled from a conditional distribution. More recently, Watson et al (2023) have
considered how Shapley values could be used to explain both aleatoric and epistemic
uncertainty in a completely model-agnostic manner. This allowed for local explanations
of the behaviour of model uncertainty.

Our work shares the same motivation as these works: to explain not just the pre-
dictions of these models, but also the uncertainty associated with those predictions.
Unlike Depeweg et al (2017); Chai (2018); Zhang et al (2022) and Antoran et al
(2021), we do not assume a particular structure for our model and data. Although
similar in spirit to the work of Watson et al (2023), our work uses techniques that are
conceptually and computationally simpler, while still able to offer insight into model
behaviour.

2.2 Feature importance

Early feature importance methods were developed in an ad hoc way to describe models
of interest, rather than being the subjects of research in their own right. Permutation
feature importance (PFI) and partial dependence plots (PDPs) were first introduced
in articles on random forests (Breiman, 2001) and gradient boosting (Friedman, 2001),
respectively. Although in both cases, the advantages and disadvantages of the fea-
ture importance measures were discussed, such a discussion was secondary to the
main objectives of the article. Despite this, both methods have been widely adopted,
adapted, and extended in the literature. Most notably for our purposes, Moosbauer
et al (2021) introduced the idea of including confidence bands on PDPs to measure the
uncertainty associated with a cost function when applying PDPs to a cost function in
Bayesian optimisation.

Although PFI and PDPs were introduced independently, they share many common
features. Implicit in both is the assumption that we can break the dependence of the
target variable from the feature of interest by sampling from that feature’s marginal
distribution without generating an out-of-distribution sample. However, this is not a
reasonable assumption—as was indeed observed in different respects in the original
papers introducing the two measures (Breiman, 2001; Friedman, 2001).

These shortcomings have been addressed for PFI using conditional methods (Strobl
et al, 2008; Molnar et al, 2023). In Strobl et al (2008), the issue is resolved for random
forests by taking advantage of the tree structure to break the feature space into a grid,
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with permutations carried out only between features which share a common region,
allowing for an approximation of the conditional distribution. This issue is addressed
in a model-agnostic way in (Molnar et al, 2023): by splitting the test set into sub-
groups in which the features of interest are conditionally independent of the other
features using an additional model then performing PFI with permutations restricted
to only swap values for examples within the same sub-group. An alternative approach
is to compare the model of interest with a second model in which the feature of
interest has been completely removed, or the information in that feature has been
destroyed by permutation in the training set (Hooker et al, 2021). These approaches
are referred to as remove-and-relearn and permute-and-relearn, respectively. These
approaches resolve many of the issues that permutation-based methods face but do
so at greater computational cost, requiring at least one more model to be trained for
each feature of interest.

For PDP, the issue of extrapolation can be partially resolved through the use
of individual conditional expectation (ICE) plots (Goldstein et al, 2015). These de-
aggregate the effects of individual test examples on PDP, allowing users to see how
examples differ in their sensitivity to a particular feature. In this way, ICE plots can
be used to reveal heterogeneity in the model behaviour for a given feature.

Another popular approach for local explanations is local interpretable model-
agnostic explanations (LIME) (Ribeiro et al, 2016), in which a simple, easy-to-interpret
model is used to approximate the more complex model of interest within a small region
of interest. This local model is trained explicitly so that it is locally a good approxi-
mation of the target model, and therefore can be analysed to determine what factors
affected the model’s decision at that point.

The SHAP algorithm is a method to derive point-wise explanations for a model’s
output in a principled manner (Lundberg and Lee, 2017). SHAP is derived from the
game-theoretic notion of Shapley values, and is provably unique in satisfying a spe-
cific set of desirable properties (Lundberg and Lee, 2017). Although SHAP values are
theoretically sound, they suffer from problems in terms of tractability. Several approx-
imations are suggested by Lundberg and Lee (2017), and there are model-specific
variants that allow for more accurate calculation (Lundberg et al, 2020). A detailed
discussion on the ways in which Shapley values can be computed and estimated can
be found in (Chen et al, 2023). Like permutation-based methods, both LIME and
SHAP suffer when forced to extrapolate. For these methods, this difficulty comes in
the form of adversarial attacks, which have been shown to allow a malicious actor to
create false/misleading explanations by creating perturbed examples that are separate
from the true data distribution (Slack et al, 2020).

Recently, a common framework unifying many of the methods described above,
amongst others, was developed under the paradigm of “explaining by remov-
ing” (Covert et al, 2021). Using this framework, Covert et al (2021) conducted a
systematic exploration of the connections and differences between existing model
explanation methods.
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2.3 Permutation-based feature importance methods

In this section, we describe the key feature importance methods from the literature
in more detail. These methods provide a tool for explaining how much a particular
feature’s value is responsible for determining the performance of a model.

2.3.1 Permutation feature importance (PFI)

Define the random variables for the feature vector and the target as X and Y , respec-
tively, and let PXY denote the true joint distribution of the data, with (X,Y ) ∼
PXY . Additionally, let PX denote the marginal distribution of X. We write X =
(X1, . . . , Xd), with Xj being the random variable corresponding to the j-th feature,
and denote its marginal distribution PXj

. Furthermore, we define X−j as the vector of
features with the j -th element omitted, that is, X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xd),
similarly denoting its joint distribution as PX−j

. Throughout, we use the convention
that i indexes examples in a test set (with 1 ≤ i ≤ n) , j indexes features in a feature
vector (1 ≤ j ≤ d) and c indexes class labels (1 ≤ c ≤ k).

PFI works as follows: given a trained model and set of test examples
{(x(1), y(1)), . . . , (x(n), y(n))}, with each x(i), we construct the design matrix Xtest ∈
Rn×d, where the i-th row is the transpose of x(i). To get the PFI measurement for the
j-th feature, we randomly permute the j-th column and use the rows with that fea-
ture permuted as the feature vectors for our new test set. We refer to this new test set
with the notation {(x̃(1), y(1)), . . . , (x̃(n), y(n))}. With a cost function C, the empirical
PFI for this test set is given as

P̂FIC(j) =
1

n

n∑
i=1

C(y(i), f(x(i)
−j , x̃

(i)
j ))− C(y(i), f(x(i))). (1)

Here, we allow ourselves to use the convention adapted from Casalicchio et al (2019) of
writing f(x−j , x̃j) to mean the function f with an input vector where the j−th entry
is x̃j (i.e., the j-th entry of x̃) and the other entries are populated using the entries
of x−j . We may think of the PFI for the j-th feature as the difference in performance
when the dependence of the model on the j-th feature is broken by permuting the j-th
feature in the test examples.

The values obtained by PFI are specific to the test set considered. However, they
are Monte Carlo approximations of a quantity defined in terms of the data distribu-
tion (Casalicchio et al, 2019). Consider X,Y ∼ PXY , with X−j being a subset of the

features of X. Let X̃j have the same marginal distribution as Xj but independent of
X and Y . We have that

PFIC(j) = EX−j ,X̃j
[C(Y, f(X−j , X̃j))]− EX [C(y, f(X))] (2)

≈ 1

n

n∑
k=1

C(y(i), f(x(i)
−j , x̃

(i)
j ))− C(y(i), f(x(i)))

= P̂FIC(j).
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Permutation feature importance is most often considered for the case of regression,
where C is the squared loss. The classification case has not been thoroughly explored
in the literature. Molnar (2022) demonstrates the use of AUC as a metric for the
classification case, although this is easily applicable only in a binary classification
scenario.

A common modification of PFI is to condition the distribution of the feature of
interest on the observed values of the other features. This way, conditonal PFI (CPFI)
is defined as

CPFIC(j) = EX−j ,(X̃c
j |X−j)

[C(Y, f(X−j , X̃
c
j ))]− EX [C(y, f(X))],

where X̃j is constructed such that X̃c
j follows the conditional distribution of Xj |X−j

but X̃c
j |X−j is independent of Y (Strobl et al, 2008).

2.3.2 Partial dependence plots (PDPs)

While PFI is a measure of the effect of a given feature on the model’s performance,
given a ground-truth label, PDP gives a method of visualising a feature’s effect on the
model output itself. In PDP, a single feature is kept constant, while all other features
assume values from the test set. The average model output is then captured across

the test set. For feature j, the PDP is found by plotting P̂DP(x; j) for all values x,

where P̂DP is defined as

P̂DP(x; j) =
1

n

n∑
i=1

f(x
(i)
−j , x), (3)

where implicitly x is the value assumed by the j-th feature. This is a Monte-Carlo
approximation of the true value of interest, that being

PDP(x; j) = EX−j [f(X−j , x)].

2.3.3 Individual conditional expectations (ICEs)

A PDP is most effective when the features are independent; as shown by Goldstein
et al (2015), a PDP can hide the real effects of varying a feature by considering only the
average over the training distribution, rather than examining the effects on individual
examples. To this end, Goldstein et al (2015) have introduced individual conditional
expectation (ICE) plots, which show how the model outputs for individual examples
change as the feature of interest is varied. For feature of interest j, the ICE plot for
the test example i is given by plotting the function

ICE(i)(x; j) = f(x
(i)
−j , x). (4)

The PDP curve is simply the average of ICE curves over the test set, as can be trivially
observed from Equations 3 and 4.
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3 Explaining likelihood and uncertainty

In this section, we propose modifications to the feature importance methods described
in Sections 2.3.1 and 2.3.2 to capture explanations for the likelihood and uncertainty
of the predictive distribution of uncertainty-aware models.

3.1 Likelihood-PFI

We begin with PFI for negative log-likelihood, which we refer to as Likelihood-PFI:
this is a natural extension of the original PFI measure, with the only difference being
that we exchange the loss function used in the traditional PFI setting with the negative
log-likelihood of the target given the feature variables. Rather than defining a model
output f , we now think of the model as giving a predictive distribution q and use the
negative log-likelihood of the target given this distribution as our loss function.

Given a test set {(x(1), y(1)), . . . , (x(n), y(n))} of size n, the empirical Likelihood-
PFI is given by

P̂FIL(j) =
1

n

n∑
i=1

log q(y(i)|X = x(i))− log q(y(i)|X−j = x
(i)
−j , X̃j = x̃

(i)
j ). (5)

In order to obtain the exact value of which this is an approximation, we write

PFIL(j) = EX,Y [log q(Y |X)]− EX̃j ,X−j ,Y
[log q(Y |X−j , Xj = X̃j)], (6)

where the Xj = X̃j in q(Y |X−j , Xj = X̃j) denotes the fact that while under the model

distribution, Y is conditional on Xj , not X̃j , when we take the expectation, we treat
Xj as being distributed according to the marginal, rather than the joint distribution.
This is clarified further in Appendix A.

Note that the order of terms in Equations 5 and 6 are reversed in comparison to the
terms in the orignal PFI definitions (Equations 1 and 2). This is because the function
under consideration here is the negative log-likelihood, and reversing the order of terms
allows us to avoid a double negative. However, the quantity of interest is still the loss
given the permuted feature minus the loss given the original feature value.

3.2 Entropy-PFI

Likelihood-PFI gives a measure of how the model performance is affected by re-
sampling a feature from its marginal distribution. However, it is also useful to know
how the uncertainty of a model is affected by the value of each feature. To do this, we
will look at how PFI can be performed for the entropy of its prediction rather than
for its accuracy.

The Shannon entropy for a given categorical random variable Y , given a model
distribution q, is given by

Hq(Y ) = −
∑
y∈Y

q(y) log q(y),
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where the q subscript inHq emphasises that we consider the entropy under the model’s
predictive distribution (in contrast with the entropy of the true predictive posterior).
Similarly, for a continuous random variable, the entropy is written as

Hq(y) = −
∫

q(y) log q(y) dy.

With this, we define the entropy permutation feature importance (Entropy-PFI) as

PFIH(j) = EX,X̃j

[
Hq(Y |X−j , Xj = X̃j)−Hq(Y |X)

]
,

and we get the Monte-Carlo approximation using a test set as

P̂FIH(j) =
1

n

n∑
i=1

Hq(Y |X−j = x
(i)
−j , Xj = x̃j)−Hq(Y |X = x(i)).

We can think of Entropy-PFI as measuring how much uncertainty increases on average
when we replace the j-th feature of an example with a random sample from its marginal
distribution. Intuitively, we would expect for this value to be non-negative: by replacing
this feature, we will often be moving away from dense regions in the sample space,
where the model will have low epistemic uncertainty, to sparser ones, where the model
will have seen fewer examples and therefore exhibit lower confidence in its predictions.
So, a high PFI score means that the value of a feature is helping to increase the
confidence of the model in its prediction. Note that, unlike the Likelihood-PFI, the
Entropy-PFI is independent of the ground-truth label.

3.3 PDP and ICE for entropy and likelihood

We can additionally adapt PDP to look at the effect that varying a feature value has
on the uncertainty of a model. To this end, we define entropy partial dependence plots
(Entropy-PDPs) as

PDPH(x; j) = EX−j [Hq(Y |X−j , Xj = x)], (7)

and we approximate this value using a test set in the following way:

P̂DPH(x; j) =
1

n

n∑
i=1

Hq(Y |X−j = x
(i)
−j , Xj = x). (8)

We similarly define Entropy-ICE plots with

ICEH
(i)(x; j) = Hq(Y |X−j = x

(i)
−j , Xj = x). (9)

PDPs and ICE plots tend to be used on the model output itself. Entropy-PDPs
and Entropy-ICEs can be seen as extensions of this idea, but using a statistic derived
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from the model output distribution, as opposed to using the model output directly.
We now further extend this notion, looking at the likelihood of the true label given
the features. In this way we define the PDP for likelihood as

PDPL(x; j) = −EY,X−j
[log q(Y |X−j , Xj = x)].

Note that this is defined in terms of the negative log-likelihood. The PDP for likelihood
is approximated on a test set via averaging:

P̂DPL(x; j) = − 1

n

n∑
i=1

log q(y(i)|X−j = x
(i)
−j , Xj = x).

3.4 Properties of Entropy-PFI

In interpreting Entropy-PFI, it is important to understand exactly what the quantity
measures. For a given feature, it gives a measure of how much the value of that feature
supports the model’s conclusion derived from the other features. If the feature shares
task-relevant information with other features, the model will be more confident when
the feature under consideration agrees with those features and less confident when
the relationship between the feature values is destroyed. Entropy-PFI establishes the
difference between these two levels of confidence by comparing the level of confidence
under the true distribution against the level of confidence when the feature of interest
follows the same marginal distribution, but is independent of the other features.

In Figure 1, we see a mock-up of how permuting features affects the entropy of a
test set by moving examples from low-entropy regions to high-entropy ones. In the left
panel, the contour plot shows the values of the entropy over the feature space, and
each dot represents a member of the test set. We see that the test examples all occur
in low-entropy areas: the combined information of the two features allows the model
to be certain in its prediction. In the centre panel, we perform PFI on the second
feature. Here, we see that there are test points which are in high-entropy areas: we
can think of this as the model being surprised by the combination of features, and
increasing its level of uncertainty as a result. On the right, we see the histogram of
the entropies. We see that when permuted, there are now more high-entropy points,
and the average have increased.

Intuitively, we can think of Entropy-PFI as answering the question “How much
does the true value of this feature support the prediction given on the basis of the
evidence provided by the other features?”. A consequence of this interpretation is that
we would expect that if a feature did not share any information with other features,
the Entropy-PFI would be zero. In the following proposition, we verify that this is the
case.
Proposition 1. If X−j is independent of Xj, then the entropy-PFI is zero.

Proof. Starting from the definition of PFIH, we use the fact that Xj is independent

of X−j to swap it with X̃j :

PFIH(j) = EX

[
EX̃j

[Hq(Y |X−j , Xj = X̃j)]−Hq(Y |X)
]

10
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Fig. 1 Visualisation of effects of PFI. The colour of each point shows the cluster to which the original
(unpermuted) test example belonged. In the left panel, the original test set is shown, along with the
contour lines for the entropy of a (hypothetical) model’s predictive distribution. In the centre panel,
the test set is shown after permuting feature 2. In the right panel, histograms of the entropy before
and after permuting the second feature are shown.

= EX

[
EXj

[Hq(Y |X−j , Xj)]−Hq(Y |X)
]

= EX [Hq(Y |X)−Hq(Y |X)] = 0.

We note that this is not the case for the Likelihood-PFI, or the PFI of any target-
dependent measure in general, where dependencies between Xj and Y prevent the
substitution used in the proof above. The above proposition means that when a feature
is independent of the others, it does not globally affect the model confidence. However,
this does not mean that the feature does not affect the model’s confidence locally, only
that local effects cancel out in aggregate.

A feature being independent of the complementary set is not the only way that
Entropy-PFI can be zero. It can also be zero if the predictive distribution does not
depend on the feature of interest. This is analogous to how traditional PFI will be
zero if a feature is not used in determining the model output.
Proposition 2. If the predictive distribution is not dependent on feature j, i.e.,
q(Y |X) = q(Y |X−j), then PFIH(j) = 0 and PFIL(j) = 0 .

Proof. By assumption and definition of Hq, we have that Hq(Y |X−j , Xj) =
Hq(Y |X−j). By definition of PFIH, we therefore have

PFIH(j) = EX

[
EX̃j

[Hq(Y |X−j , Xj = X̃j)]−Hq(Y |X)
]

= EX [[Hq(Y |X−j)−Hq(Y |X−j)] = 0.

Similar reasoning gives the result for PFIL(j):

PFIH(j) = EX,Y

[
q(Y |X) ln q(Y |X)− EX̃j

[q(Y |X−j , Xj = X̃j) ln q(Y |X−j , Xj = X̃j)]
]

= EX,Y [[q(Y |X−j) ln q(Y |X−j)− q(Y |X−j) ln q(Y |X−j)] = 0.
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By considering the Entropy-PFI and Likelihood-PFI jointly, we can distinguish
between when a feature is informative but independent of others and when it is not
informative to the predictive distribution. In the latter case, the Likelihood-PFI will
also be zero (or at least very small in empirical approximations), whereas in the former
case, the Likelihood-PFI can be large even when the Entropy-PFI is zero.

3.4.1 Examples of joint usage of Entropy-PFI and Likelihood-PFI

We now present two examples of synthetic datasets in which Entropy-PFI and
Likelihood-PFI together can enhance interpretability in terms of feature importance
and predictive uncertainty. In particular, one classification and one regression example
are presented.

Classification experiment on synthetic data

In order to examine the interpretation of Entropy-PFI and Likelihood-PFI in a clas-
sification setting, we consider a toy binary classification dataset simulated according
to the model

P (Y = 1|x) = ϵ+ (1− 2ϵ)1

(
J∑

j=1

xj >
J

2

)
,

where x is sampled uniformly from the unit hypercube [0, 1]d (Mease and Wyner,
2008). Here, ϵ is the amount of label noise, d is the total number of features, and J
is the number of relevant features. For our experiments, we set d = 10, J = 4 and
ϵ = 0.1. This means that there are four features all with equal importance (features 1,
2, 3 and 4) and six features which are irrelevant in determining the target class. We
consider three versions of this data: one that is exactly as described above, a second
in which feature 10 is replaced with a copy of feature 1, and a third in which feature
10 is replaced with a copy of feature 5.

In Figure 2, we see how the Likelihood-PFI and Entropy-PFI are affected by adding
redundancy to the dataset for a random forest with calibration (see Appendix B for
details). We use 5000 examples with a train/test split of 3750/1250. In the original
dataset, all four task-relevant features have similarly high Likelihood-PFI values. How-
ever, when feature 10 is replaced with a copy of feature 1, the first feature is now
ranked as less important; this is because there is now an alternate source from which
the model can get the same information.

In contrast, features 1 and 10 are the features that Entropy-PFI identifies as most
important in making the model confident in its output, as shown in the right panel
of the figure. This makes sense: in all the training data, these features have been
strongly correlated (identical, in fact), and therefore examples where this relationship
is broken should be treated as out-of-distribution, which should be reflected in greater
predictive uncertainty.

We also see a small increase in Entropy-PFI for the redundant features in the third
dataset. This is likely due to the fact that, despite features 5 and 10 not containing any
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Fig. 2 Comparison of Likelihood-PFI and Entropy-PFI for three datasets, the second and third of
which contain redundant features. When feature 10 is a copy of feature 1 (an informative feature),
we see PFI-likelihood of feature 1 drop and PFI-entropy increase, and both PFI-likelihood and PFI-
entropy increase for feature 10. When feature 10 is a copy of feature 5 (an uninformative feature),
there is no effect on PFI-likelihood for either feature, and a small increase in PFI-entropy for both.

information about the target, spurious correlations in the training set may cause the
model to use these features, and therefore the model is able to identify when it goes
out-of-distribution due to disagreement between the two values, resulting in changes
in entropy. However, we note that this effect is small in comparison to the effect in
features that are informative and therefore are actually useful to the model. Indeed,
as shown in Proposition 2, if the model (correctly) learns to disregard both features,
the Entropy-PFI should be zero.

Regression example on synthetic data

A synthetic dataset is simulated from the regression model

Y = X1 +X2 + 0.9X2
3 +X4 +X5 + ε,

where Y is a random variable dependent on feature variables X1, . . . , X5. We sample
the features from the following Gaussian distributions:

(X1, X2), (X3, X4) ∼ N
((

0
0

)(
1 0.8
0.8 1

))
, X5 ∼ N (0, 1), ε ∼ N (0, 2).

Apart from the stated relationships, the features are otherwise all independent of each
other. We train a Gaussian process regression model on 500 examples drawn from this
distribution and generate an additional 500 test samples to be used for the importance
measures. In Figure 3, we show the Entropy-PFI and Likelihood-PFI.

In Figure 3, we display the importance of each feature as measured by Likelihood-
PFI and Entropy-PFI. For Likelihood-PFI, we observe many of the known properties of
PFI under typical loss functions: having the same information shared between multiple
features (e.g., having a large covariance between features X1 and X2) diminishes their
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Fig. 3 Likelihood-PFI and Entropy-PFI for features in a synthetic dataset using a Gaussian process
model. Since features 1-4 share information with each other, their Likelihood-PFI is reduced relative
to the independent feature 5. In contrast, their shared information means that they have higher
Entropy-PFI, where feature 5’s Entropy-PFI is negligible.

importance to the model relative to features that contain no shared information (e.g.,
feature X5). In contrast, because features X1 and X2 contain shared information,
their Entropy-PFI is high: when the connection between these features is broken by
permuting one of their values in the test set, the model is forced to extrapolate,
resulting in higher predictive uncertainty. We see similar behaviour in the measures
for X3 and X4, despite their non-linear relationship. Additionally, while we see that
feature X5 is considered important in determining the negative log-likelihood (i.e., the
model uses information from feature X5 in order to make an accurate prediction), it
is not considered important in determining the uncertainty (i.e., on average, knowing
feature X5 neither increases nor decreases the model’s confidence in its prediction);
again, this is due to the feature being independent from the others.

3.4.2 Why conditional PFI is not useful in the context of entropy

At their core, permutation-based feature importance methods rely on resampling fea-
tures based on their marginal distribution, breaking the relationship between the
feature and the set of all other variables. However, doing this leads to undesirable
outcomes: by ignoring correlations and other relationships between feature variables,
we can find ourselves evaluating the model on points outside the true data distribu-
tion. As discussed in depth by Hooker et al (2021), this can be problematic in that
feature importances rely on the extrapolating behaviour of the model, giving impor-
tance measures that are dependent on the model’s behaviour in regions far from the
training data, where the model’s behaviour is unlikely to reflect the true distribution
of the data.

One of the proposed methods for dealing with this is through conditional
approaches, where a variable X̃c

j is constructed so that it retains the same condi-
tional relationship with X−j as Xj , but is independent of Y given the information
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contained in Xj . However, such approaches are at odds with what Entropy-PFI mea-
sures: Entropy-PFI is non-zero only when features share task-dependent information
and permuting one of the features breaks the dependency between one feature and
the set of other features.

Say we have access to a random variable X̃c
j such that (X̃c

j , X−j) has the same

joint distribution as (Xj , X−j) but X̃
c
j is independent of Y (either completely or when

conditioned on X−j). We can define Likelihood-PFI in the same way that conventional
PFI is defined for this approach. However, if we attempt to define conditional Entropy-
PFI in the same way, e.g.,

CPFIH(j) = EX,X̂j
[Hq(Y |X−j , Xj = X̃c

j )−Hq(Y |X)]. (10)

we cannot use it to get estimates of the uncertainty caused by feature Xj , since this
will always be zero, as shown in the following proposition.
Proposition 3. The entropy version of conditional PFI, as defined in Equation (10),
is zero for all features.

Proof. Considering an arbitrary feature indexed by j, we look at the first term in more
detail, finding

EX,X̃c
j
[Hq(Y |X−j , Xj = X̃c

j )] = EX,X̃c
j

[∫
u(y|X−j , Xj = X̃c

j )dy

]
,

where u(·) = q(·) log q(·) for the sake of brevity. Using the fact that (X̃c
j , X−j) has the

same joint distribution as (Xj , X−j) by definition, we can expand the expectations to
give

EX,X̃c
j
[Hq(Y |X−j , Xj = X̃c

j )]

=−
∫ ∫ ∫

u(y|X−j = x−j , Xj = x̃j)PX−j ,X̃c
j
(x−j , x̃j) dydx−jdxj

=−
∫ ∫ ∫

u(y|X−j = x−j , Xj = x̃j)PX−j ,Xj (x−j , x̃j) dydx−jdxj

=−
∫ ∫ ∫

u(y|X = x) dy PX(x)dx

=EX [Hq(Y |X)] .

Plugging this into Equation (10) gives that the conditional Entropy-PFI is zero.

Therefore, we see that, by definition, conditional approaches for PFI are ineffective
in measuring the importance of features in determining entropy. However, we make
two arguments as to why this is not problematic. Firstly, one of the ways in which
Entropy-PFI has utility is in identifying when shared information between features
has the effect of boosting model confidence; in attempting to preserve shared infor-
mation between the feature of interest and the other features via conditioning, we
eliminate the very discrepancy that we aim to measure. Secondly, while relying on
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the extrapolation behaviour of a model is in general undesirable, especially when the
underlying data generating process is of interest, for an uncertainty-aware model, its
ability to display increased (epistemic) uncertainty when extrapolating is one of the
key desirable characteristics of the model.

3.5 A toy example for Entropy-PDP and Entropy-ICE

To offer an interpretation of Entropy-PDP plots, we consider a synthetic dataset, the
distribution of (training) points for which is shown on the left of Figure 4. We observe
that the data is distributed around the border of the feature space, with no examples
lying on the interior. This means that an uncertainty-aware model should exhibit
high epistemic uncertainty when both features are in the middle of their range (i.e.,
−1.5 < X1, X2 < 1.5), and lower uncertainty when either feature takes on a more
extreme value (i.e., either |X1| > 1.5 or |X2| > 1.5). The target variable (not shown)
is of the form Y = (X1 + X2)

2 + 0.1ϵ, where ϵ ∼ N (0, 1). Note that by symmetry
of the features in the data-generating process, both features should appear equally
important to any reasonable model and importance measure; therefore, little insight
is to be gained from PFI or similar methods. However, we can still gain understanding
of our model’s uncertainty by looking at Entropy-PDP.
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Fig. 4 Visualisation of the distribution of synthetic dataset (left) and Entropy-PDP plots for each
feature (right). The vertical dotted lines on the Entropy-PDP plot show where the “interior” of the
distribution begins.

In the right-hand plot of Figure 4, we see the Entropy-PDP plot for a Gaussian
process model on a test set drawn from the same distribution as the training set.
We observe high uncertainty both in the interior values and at the extremes. We
can hypothesise that the uncertainty in the interior is caused by examples where the
feature not under consideration is also mid-range, causing the model input to be out-
of-distribution and, therefore, for the model to exhibit high epistemic uncertainty.
Similarly, at the most extreme values, uncertainty may be higher, as there are fewer
proximal training examples than in the centre of the bands.
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This is a case where PDP fails to capture the heterogeneity of the data: we see
that uncertainty increases for interior values, but have no information about whether
this is true for all possible values of the other feature or just some values.
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Fig. 5 Entropy-ICE plots for randomly sampled test points for each feature. The PDP curve is
shown in black. All other lines are ICE plots, with the colour of the line showing the value of the

constant features (i.e., x
(i)
−j).

In order to better understand the model behaviour, we therefore additionally look
at Entropy-ICE plots (Figure 5). In these plots, we can see two distinct behaviours:
if we consider the Entropy-ICE plot for the first feature, for examples where fea-
ture X2 has small magnitude, we observe higher uncertainty when the feature under
consideration (X1) is also small. As hypothesised, this is due to the example being out-
of-distribution and, therefore, having high associated uncertainty. On the other hand,
when the complementary feature takes a more extreme value, the example generated
will be in-distribution and, therefore, have lower associated uncertainty.

We also observe that the behaviour of the ICE curves at extreme values is homoge-
neous: the model uniformly becomes more uncertain as the feature value approaches
the edge of the distribution, in contrast with the heterogeneous behaviour for central
values.

4 Experiments using real-world datasets

In this section, we examine how Entropy-PFI and Likelihood-PFI can be used in
practice to gain insights into how various probabilistic models make their predictions.
We consider a variety of models in both classification and regression settings.

4.1 Regression example: concrete dataset

In this example, we show how the proposed methods can be used to gain insight into
the behaviour of models on a real-world regression dataset. Here, we demonstrate how
Likelihood-PFI and Entropy-PFI give complementary explanations for the behaviour
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of uncertainty-aware regression models. As an example, we consider the UCI concrete
dataset (Yeh, 2007). We use two uncertainty-aware models: a Gaussian process with
a radial basis function (RBF) kernel and a neural network using Monte-Carlo (MC)
dropout (Gal and Ghahramani, 2016). Details of the configurations for both models
can be found in Appendix B. We use 75% of the dataset for training and the other
25% for testing.

In Figure 6, we see the relative importance of each feature in terms of both
Likelihood-PFI and Entropy-PFI. We observe that although age is the most impor-
tant feature in terms of the likelihood, its (global) affect on the entropy is small. This
suggests that age is important in accurately predicting the target variable (i.e., the
value of the feature will often have a significant effect on the likelihood), but that it
is not strongly related to any of the other features.
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Fig. 6 Comparison of Entropy-PFI and Likelihood-PFI for neural networks with Monte-Carlo
dropout and Gaussian processes fitted to the UCI concrete dataset.

We can verify this by examining how effectively we can train regression models
to learn each feature in the dataset given the others. In Figure 7, the coefficient of
determination when a random forest regression model model is trained to predict
one feature given that we observe all the other features (on the right, this includes
the target). We see that indeed age appears to be independent of the other features:
knowing all the other features does not give reliable information about age. However,
the target variable contains information about age, and prediction of the age variable
improves significantly when we have access to it, suggesting that the target and age
share information.

Note that in concluding that age is independent of the other features, we draw
on several observations. The fact that the Likelihood-PFI is high for the feature dis-
counts the possibility that the Entropy-PFI being zero is simply a result of the model
discarding the feature, not making use of it in determining the predictive distribution.
Additionally, the fact that the Entropy-PFI is non-zero for other features means that
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Fig. 7 Comparison of coefficients of determination for models predicting one feature’s value given
the others (UCI concrete dataset).

the model is indeed uncertainty-aware, and is not just using the same distribution
with shifted mean for each point.

However, as previously noted, just because the Entropy-PFI is small/zero, it does
not mean that the entropy is not affected locally by the specific value of the feature.
To better understand this, in Figure 8 we plot the Entropy-PDP curve for age for both
models, along with a few randomly chosen ICE curves. This figure highlights the fact
that Entropy-PFI is a global property: despite Entropy-PFI being near zero, we see
that entropy varies not only as we change the feature value (shown by how the PDP
curve changes as the value for age does), but is also affected by the values that other
features take (shown by the variation in characteristics of the ICE curves).
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Fig. 8 Entropy-ICE and Entropy-PDP plots for age feature (UCI concrete dataset). The thicker
blue curves are the PDP curves, with ICE curves for examples in the test set shown in grey. The
original values for the feature for each ICE curve are shown as grey dots lying on each grey curve.
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4.2 Classification example: diabetes dataset

To demonstrate the utility of our approach for uncertainty-aware models in a clas-
sification setting, we examine the importance of various features for models trained
on the UCI diabetes dataset Smith et al (1988). In particular, we examine two mod-
els: calibrated random forests and deep neural networks with weight uncertainty, also
referred to as Bayes by backprop (BBB) (Blundell et al, 2015). Further details of the
configurations of both models are given in Appendix B. The UCI diabetes dataset was
also used by Breiman (2001) as one of the first applications of PFI to explain model
behaviour; for this example, we first review the findings of Breiman (2001), before
examining what additional insights might be gleaned from our new approach.

In Breiman (2001), it is observed that the second feature (plas) is the most
important, followed by age (feature 8) andmass (feature 6). Through additional exper-
iments, Breiman have also showed that while feature 8 contains useful information
about the target label, the predictive information that it contains is redundant with
the information contained in feature 2; hence, training a model either with or without
this feature has little effect on the model’s predictive power.

Where Breiman (2001) measured the percentage increase in classification accuracy,
we measure the difference in likelihood as defined in Equations 5 and 6. Doing so, we
observe in Figure 9 the same phenomena occur for the likelihood in our random forest
model as occurred for classification accuracy in Breiman’s: plas (feature 2) is the most
important, with age (feature 8) and mass (feature 6) also having signficant effects on
the model’s predictive power. We observe similar results for an MLP using BBB.
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Fig. 9 Entropy-PFI and Likelihood-PFI values for calibrated random forests and Bayes by backprop
neural networks fitted to the UCI diabetes dataset.

In Figure 10, we display the Entropy-PDP and Entropy-ICE plots for plas (feature
2). We see that for lower values of the feature, there is relatively low entropy for
both models. We also observe a significant increase in uncertainty for higher values,
peaking between 150-175. Examining the distribution of the feature in the training set,
separated by class, we see that at extreme values, the feature is strongly informative
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of class label, but at values in the region 100-170, both classes are present with high
frequency, leading the feature to be less informative, and therefore rendering models
less confident in their predictions based on information from this feature for values in
this range.

We can also see the effect of this change in the confidence level of the models on
the negative log likelihood in Figure 11. For examples in the positive class, the model
becomes more confident in its correct prediction (given the other features) as the plas
value increases, leading to a decrease in the loss for those examples. For the negative
class, the opposite is true: The model becomes more confident in its prediction as
the feature value decreases. Again, we can interpret this in terms of the confidence
increasing as the feature of interest adds evidence to support the conclusion inferred
from the other features.
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Fig. 10 Entropy-PDP and Entropy-ICE curves for the UCI diabetes dataset for plas (feature 2).
Left: curves for a calibrated random forest. Middle: curves for Bayes by backprop. Right: distribution
of feature value in training set for both classes. In the left and middle figures, the bars along the
values of the feature for examples in the training set of the positive (red) and negative (blue) classes.
The red and blue lines are ICE curves for test examples of the two classes, and the orange curves are
the Entropy-PDP curves.

We observe a similar phenomenon for mass (feature 6) in Figure 12. In particular,
we see that, for members of the positive class, ICE curves show a great amount of
uncertainty for low feature values. This could be due to the fact that examples with low
values for this feature while other features having characteristics of the positive class
are not found in the UCI diabetes dataset, and therefore the examples constructed for
the ICE curve are out-of-distribution, and exhibit high epistemic uncertainty. Note
that this is not picked up in the Entropy-PDP, and can only be observed using Entropy-
ICE.

In Figure 13, we again see a difference in behaviour of the Likelihood-ICE curves
for the different classes, with the loss being lower for the positive class at higher values
for the feature, and for the negative class at lower values.
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Fig. 11 Likelihood-PDP and Likelihood-ICE curves for the UCI diabetes dataset for plas (feature 2).
Left: curves for calibrated random forest. Middle: curves for Bayes by backprop. Right: distribution
of feature value in training set for both classes.
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Fig. 12 Entropy-PDP and Entropy-ICE curves for the UCI diabetes dataset for mass (feature 6).
Left: curves for a calibrated random forest. Middle: curves for Bayes by backprop. Right: distribution
of feature value in training set for both positive and negative classes.

5 Conclusions

In this paper, we have proposed modifications of PFI, PDP and ICE that can be
used to gain insights into the importance of features in uncertainty-aware models, both
in terms of likelihood and uncertainty (as measured by the entropy of the predictive
distribution).

Permutation feature importance, amongst other methods, has come under criti-
cism for their shortcomings in forcing the model to extrapolate to unexplored regions
in developing explanations. While the suggested solution is to avoid PFI in favour
of methods which explicitly address this issue, the simplicity of PFI and related
approaches mean that they nonetheless remain popular. Using Entropy-PFI can miti-
gate some of these issues, giving additional information about the level of uncertainty
in a model that is attributable to a given feature. In particular, Entropy-PFI can be
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Fig. 13 Likelihood-PDP and Likelihood-ICE curves for the UCI diabetes dataset for mass (feature
6). Left: curves for a calibrated random forest. Middle: curves for Bayes by backprop. Right: distri-
bution of feature value in training set for both positive and negative classes.

used to identify when a feature is likely to be independent from other informative
features, and therefore its feature importance can be trusted.

We note that Entropy-PFI does not completely mitigate the issues raised
in (Hooker et al, 2021), and careful interpretation and understanding of the strengths
and weaknesses of each method are required. However, given the prevalence of permu-
tation and extrapolation-based importance methods, even in light of recent criticism,
having these additional tools serves to mitigate some of the shortcomings of these
approaches.

With regard to PDP, we have shown examples of how aleatoric and epistemic
uncertainty affect these values. However, we did not attempt to separate them. The
utility of explaining these two sources of uncertainty, as well as the best methodology
for doing so, remain questions for future research. Similarly, there are a wealth of other
methods that could be used for explainable uncertainty, such as LIME (Ribeiro et al,
2016), and adaptations of the ones used in this paper (such as showing derivatives
using ICE rather than the original values). We point out these issues as future work.

Funding. The authors acknowledge financial support from The University of
Manchester’s Centre for Digital Trust and Society and Simon Industrial Fund.

Code availability. The code will be released upon acceptance.

Appendix A A note on notation

In this appendix, we further clarify the notation used in defining expectations in
Likelihood-PFI and Entropy-PFI. In conventional PFI with loss function C, and model
output f(X) = f(Xj , X−j), we would write

PFI(j) = EY,X,X̃ [C(Y, f(X̃j , X−j))− C(Y, f(X))].

However, for the models we are interested in, the output of the model is not a scalar
(or vector)-valued function, but a density q(Y |X). For a given test point, we can
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write q(Y = y|X = x) as the probability assigned to the label y given the features x.
Additionally, we can define the Likelihood-PFI for a single point (x, y) as

PFIH(x; j) = −
∫

log q(Y = y|Xj = x̃j , X−j = x−j)PX̃j
(x̃j) dx̃j + log p(Y = y|X = x),

remembering that X = (Xj , X−j) and that X̃j is an independent random variable
whose distribution is the same as the marginal distribution of Xj .

This quantity depends on the particular test point (x, y) and on the distribution
PX̃j

. Now say that we want to find the expectation of this quantity over the true data

distribution, whose density is denoted as PX,Y . For the second term, we may simply
write

EX,Y [log q(Y |X)] =

∫
log q(Y = y|X = x)PX,Y (x, y) dx.

The notation is natural because the density function used is the true density of X.
However, note that in the above definition for PFI at a single point, we have integrated
out Xj already, but rather than using its true distribution, we have integrated it out

acting as though its distribution is that of X̃j . This is what we reflect in our notation

with Xj = X̃j , which serves as shorthand for integrals of the following form

EX−j ,X̃j ,Y
[− log q(Y |X−j , Xj = X̃j)]

def
= −

∫ ∫ ∫
log q(Y = y|Xj = x̃j , X−j = x−j)PX̃j ,X−j ,Y

(x̃j , x−j , y) dx̃j dx−j dy

= −
∫ ∫ ∫

log q(Y = y|Xj = x̃j , X−j = x−j)PX̃j
(x̃j)PX−j ,Y (x−j , y) dx̃j dx−j dy.

Appendix B Model and hyperparameter setup

B.1 Gaussian processes

We use an exact Gaussian process (using GPyTorch Gardner et al (2018)) with a
constant mean function and covariance kernel of an RBF kernel composed with a scale
kernel. For hyperparameter optimisation, we use Adam on the hyperparameters with
a learning rate of 0.1. For the experiment in Section 3 we train for 1000 epochs, for
the experiment in Section 4, we train for 200 epochs.

B.2 Calibrated random forests

We use the scikit-learn (Pedregosa et al, 2011) implementation of random forests
with 500 trees with maximum depth 8. 80% of training data is used to train the
forest itself, with the remaining 20% used for calibration based on scikit-learn’s
CalibratedClassifierCV with the “sigmoid” method.
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B.3 MLP with Bayes by backprop

We use an MLP with two hidden layers with 100 units each. Weights are given a
Gaussian prior with mean zero and standard deviation 0.5. The MLP is trained for
100 epochs with a learning rate of 0.01.

B.4 MLP with MC dropout

We use an MLP with two hidden layers with 100 units each and a dropout rate of
0.1. All features and targets are scaled so that the training set has zero mean and
unit variance, and outputs are re-scaled to their original values for model evaluation
metrics. The MLP is trained using SGD with learning rate 0.1 for 5000 epochs with a
batch size of 200. Furthermore, the reserved 10% of the training data is used to tune
the precision parameter τ by gradient descent.

B.5 Random forest regression model

The random forest regression model used in Section 4.1 is a random forest of 100 trees
with no maximum depth. The scikit-learn RandomForestRegressor model is used
with default arguments.
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