
The University of Manchester Research

FuSeBMC AI

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Alshmrany, K. M., Aldughaim, M., Wei, C., Sweet, T., Allmendinger, R., & Cordeiro, L. C. (2024). FuSeBMC AI:
Acceleration of Hybrid Approach through Machine Learning.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. May. 2024

https://research.manchester.ac.uk/en/publications/1d98379c-a39b-4f66-9054-65fd837afd81


FuSeBMC AI: Acceleration of Hybrid Approach
through Machine Learning

(Competition Contribution)

Kaled M. Alshmrany(B)1,2[0000−0002−5822−5435], Mohannad
Aldughaim2,3[0000−0002−5822−5435], Chenfeng Wei2[0009−0008−0416−3006],

Tom Sweet4, Richard Allmendinger2, and Lucas C. Cordeiro2[0000−0002−6235−4272]

1 Institute of Public Administration, Jeddah, Saudi Arabia
2 University of Manchester, Manchester, UK
3 King Saud University, Riyadh, Saudi Arabia

4 SES Escrow, Handforth Cheshire, UK
shamranial@ipa.edu.sa

Abstract. We present FuSeBMC-AI, a test generation tool grounded in machine
learning techniques. FuSeBMC-AI extracts various features from the program
and employs support vector machine and neural network models to predict a
hybrid approach’s optimal configuration. FuSeBMC-AI utilizes Bounded Model
Checking and Fuzzing as back-end verification engines. FuSeBMC-AI outper-
forms the default configuration of the underlying verification engine in certain
cases while concurrently diminishing resource consumption.

1 Test-Generation Approach

The success of Machine Learning (ML) in automating diverse software engineering
tasks is noteworthy, given the escalating complexity of modern software systems [1].
A hybrid approach of multiple techniques, including fuzzing, bounded model check-
ing, and abstract interpretation, has proven effective in verifying software compliance
with specified requirements [2]. However, challenges arise, particularly in software with
intricate conditions or loops, where the primary obstacle lies in navigating the expo-
nentially expanding program state space and managing resource consumption. Various
efforts have been undertaken to enhance the hybrid approach, exemplified by initiatives
such as FuSeBMC Interval Analysis [3] and Tracer [2]. FuSeBMC [4, 5] works as a
test generator that synthesizes “smart seeds” with properties to enhance the efficiency
of its hybrid fuzzer, achieving extensive coverage of programs. To address challenges
related to program state explosion and resource usage, FuSeBMC provides the option
of execution with diverse parameters (flags). Unfortunately, determining the optimal
flags for a specific program requires expert knowledge, often leading to the execution
of hybrid tools with default settings and subsequent compromises in performance. This
paper presents the FuSeBMC-AI tool to predict the optimal configuration flags for a
given program. Specifically, FuSeBMC-AI employs ML models, support vector ma-
chines (SVMs), and neural network (NN) models to predict optimal settings. These
ML models undergo training to discern relevant features within the input C program.
FuSeBMC-AI exhibits enhancements in some subcategories in Test-Comp 2024 [6],
such as “ControlFlow”, “Hardware”, “Loops”, and “Software Systems BusyBox Mem-

ar
X

iv
:2

40
4.

06
03

1v
1 

 [
cs

.C
R

] 
 9

 A
pr

 2
02

4



2 K. Alshmrany et al.

Safety”, if compared to the default configuration of FuSeBMC, achieving a 3% reduc-
tion in resource utilization as reported in Test-Comp 2024. 1

2 Software Architecture

FuSeBMC-AI builds on top of FuSeBMCv4.2.1 [4, 5]. The initial step involves analyz-
ing the source code, extracting features that impact training and enhancing the capabili-
ties of FuSeBMC-AI’s engines. Subsequently, these features are stored for future appli-
cation in ML models. These models, in turn, forecast optimal scores for FuSeBMC-AI’s
engines. After that, FuSeBMC-AI executes the target program using the recommended
configuration. Fig.1 illustrates the FuSeBMC-AI framework.

Program 
Under Test

Property to 
Test

FuSeBMC
(version 4.2.1)

Code 
Analyzing

ML Models

Flag 
Producer

Features

Test Cases

Unreached 
Goals

FuSeBMC AI (Version 5.1.0)

Extract Features

Set Features Prediction
Optimal Flags

Fig. 1. The major components of the FuSeBMC-AI test generator and how they interact.

Setting Features. We focus on discerning the features whose values could impact the
efficacy and limitations of the engine’s performance. This emphasis arose from rec-
ognizing that certain programs need specific values for effective handling, particularly
those involving arrays and loops. We analyze the Program Under Test (PUT) and extract
the features that FuSeBMC-AI prioritized, which are based on determining the optimal
flags and values that could be supplied to the engines of FuSeBMC-AI (Tab. 1).

Dataset. The SV-Comp benchmarks were selected as the dataset for our training and
testing phases for ML models. Our emphasis was on diversity, considering various sce-
narios, and minimizing repetition to enhance the precision of our approach. We ad-
dressed multiple categories: “no-overflow”, “termination”, “unreach-call”, and “valid-
memsafety”2. However, for the Test-Comp 2024, our focus narrowed to “coverage-
error-call” and “coverage-branches” encompassing a total of 3352 benchmarks. In de-
tail, the training set contains 4% (111 benchmarks) of the coverage-branches bench-
marks and 11% (67 benchmarks) of the coverage-error benchmarks in Test-Comp 2024.
Training and Testing models. We focused on four models: Decision Tree Classifica-
tion (DTC) [7], Support Vector Classification (SVC) [8], Neural Network Regression

1https://test-comp.sosy-lab.org/2024/results/results-verified/
2https://doi.org/10.5281/zenodo.10458701

https://test-comp.sosy-lab.org/2024/results/results-verified/
https://doi.org/10.5281/zenodo.10458701


FuSeBMC-AI: Acceleration of Hybrid Approach through ML 3

Program
Features

Sub
Features Flags Values

For Loops For count, For max depth,
For depth avg

Strategy incr, kinducti
Solver boolector, z3
Encoding floatbv, fixedbv

While Loop
While count, While infinite count
While max depth, While depth avg,
While infinite with NonDetCall count

KStep [1,2,3]
ContextBound [2,4]
Unwind [10, -1] #-1 default

Do Loop Do Count, Do max depth,
Do depth avg, Do infinite count

Fuzz1Enabled [0,1]

Fuzz1Time [25,83,188] for 250 seconds,
(300 - 50) 75% ,33.3% ,10%If – Else

condition

If count, If max depth,
If depth avg, nested If count,
Else count, Else depth avg Total run 2*2*2*3*2*2*4 = 384

(for each program)

NonDetCall
Non DetCall count,
Non DetCall depth avg,
has Non DetCall in loop

Table 1. presents the features that FuSeBMC-AI prioritized, along with illustrative examples of
flags that could be supplied to the engines of FuSeBMC-AI.

(NNR) [9], and a multi-model (DTC then SVC then NNR). The training phase was
executed, followed by using the aforementioned benchmarks. The four models under-
went supervised and guided training, ensuring a balanced approach to mitigate rep-
etition during the training phase. The training process involved teaching the models
to predict optimal flags for FuSeBMC-AI’s engines, thereby assisting these engines in
determining the most suitable flag values for each category of programs. The classifica-
tion of outputs was dedicated to facilitating model training (Tab. 2). The classification
process involved categorizing “Cover-Error” and “Cover-Branches”. This categoriza-
tion was based on the extent of coverage or error detection and the corresponding time
duration. Comprehensive testing with 384 different combinations of flags (for each pro-
gram) was conducted. Consider the cover branches as an illustrative example to provide
a more comprehensive understanding of the scale of the conducted experiments. With
111 benchmarks within the Cover-Branches category, FuSeBMC is executed approxi-
mately 42, 624 times (111 multiplied by 384). Subsequently, we compile a summary
encompassing the verification time and verdict for each of the 55, 488 training samples,
categorized into “Cover Error” (12, 864 instances) and “Cover-Branches” (42, 624 in-
stances). These samples are assigned ordinal labels ranging from 0 to 5, as per the
classification outlined in Tab 2. Lower values within the output class are considered
more favorable, indicating swift and accurate verdicts.

Testing Result (Cover-Error) Coverage Result (Cover-Branches) Class
detect bug & IF restTimeRatio >= 0.8 score coverage >= 0.85 0
detect bug & ELSE IF restTimeRatio >= 0.6 score coverage >= 0.68 1
detect bug & ELSE IF restTimeRatio >= 0.4 score coverage >= 0.51 2
detect bug & ELSE IF restTimeRatio >= 0.2 score coverage >= 0.34 3
detect bug & ELSE IF restTimeRatio >= 0.0 score coverage >= 0.17 4
Unknown score coverage >= 0.0 5

Table 2. The classification process for “Cover-Error” and “Cover-Branches.”



4 K. Alshmrany et al.

Machine Learning Models. DTC, SVC, and NNR models undergo supervised training
using the Scikit-learn library [10]. Each sample is weighted based on class frequency
to address class imbalances within the training set. These ML models are trained to
predict the output class from 0 to 5, considering the features of the Program Under
Test (PUT) and a specific set of flags. The trained ML models are then employed to
predict the optimal set of flags for FuSeBMC-AI. Specifically, all 384 possible flag
combinations are tested, and the one resulting in the lowest output class is selected.
Due to the computational efficiency of these models, this process is executed rapidly,
typically concluding within a few seconds.

3 Strengths and Weaknesses
Our proposed hybrid approach demonstrates efficacy in identifying vulnerabilities and
attains optimization of computational resources through the AI-based optimisation of
fuzzer invocation. An AI model is trained on the classified database, generating optimal
flags for executing FuSeBMC-AI. For instance, the state system generated during the
BMC process can be minimized by correctly configuring the unwinding times guided by
the training models. This strategic adjustment results in a reduction of traversal spaces
and smart seeds generation time. The impact of these enhancements is discernible in
the benchmark sets of “ControlFlow,” “Hardware,” “Loops,” “Software Systems Busy-
Box MemSafety,” and “Termination-Main ControlFlow” when compared with the de-
fault FuSeBMC. In detail, FuSeBMC-AI successfully preserved the test case quality in
“ControlFlow” and “XCSP” within the Cover-Error category, achieving a reduction in
resource consumption of approximately 86% in “ControlFlow” and 41% in “XCSP”.
In the Cover-Branches category, FuSeBMC-AI demonstrated increased coverage by
4% in “Software Systems BusyBox MemSafety” and 1.2% in “Hardware”. Further-
more, it achieved an 84% reduction in resource consumption in “Termination-Main
ControlFlow” while maintaining the same coverage as the default FuSeBMC. However,
our approach still exhibits limitations. Due to the training process primarily relying on
the code sourced from SV-Comp 2023 and Test-Comp 2023, there is an insufficiency in
the number and program structures of the training samples. Our ongoing efforts are di-
rected towards addressing this limitation by enriching the training dataset and extending
the application of our methodology to open-source software projects.

4 Tool Setup and Configuration

FuSeBMC-AI can be used via the python wrapper fusebmc.py to simplify its us-
age for the competition. Please refer to its help message (-h) for usage instructions.
This wrapper runs the FuSeBMC-AI executable with command line options specific to
each supported property. Also, FuSeBMC-AI offers a graphical user interface (GUI) for
enhanced usability 1.

5 Software Project

FuSeBMC-AI is publicly available under the terms of the MIT License at GitHub.2
FuSeBMC-AI (version 5.1.0) dependencies and instructions for building from source
code are all listed in the README.md file.

1https://doi.org/10.5281/zenodo.10458701
2https://github.com/kaled-alshmrany/FuSeBMC/tree/FuSeBMC-AI

https://doi.org/10.5281/zenodo.10458701
https://github.com/kaled-alshmrany/FuSeBMC/tree/FuSeBMC-AI


FuSeBMC-AI: Acceleration of Hybrid Approach through ML 5

6 Data-Availability Statement

All files necessary to run the tool are available on Zenodo [11].

References
1. Rossi, B. & Pitner, T. Towards a Definition of Complex Software System. Position Papers

Of The 18thConference On Computer Science And Intelligence Systems. pp. 119 (2023)
2. Alshmrany, Kaled M., Mohannad Aldughaim, Ahmed Bhayat, Fedor Shmarov, Fatimah Al-

jaafari, and Lucas C. Cordeiro. “FuSeBMC v4: Improving code coverage with smart seeds
via fuzzing and static analysis.” arXiv preprint arXiv:2206.14068 (2022).

3. Aldughaim, M., Alshmrany, K., Gadelha, M., Freitas, R. & Cordeiro, L. FuSeBMC v.5: In-
terval Analysis and Methods for Test Case Generation. DOI:https://doi.org/10.5281/zenodo.
7473124 (Zenodo,2022,12)

4. Alshmrany, K., Aldughaim, M., Bhayat, A. & Cordeiro, L. FuSeBMC: An energy-efficient
test generator for finding security vulnerabilities in C programs. International Conference
On Tests And Proofs. pp. 85-105 (2021)

5. Alshmrany, K., Aldughaim, M., Bhayat, A. & Cordeiro, L. FuSeBMC v4: Smart Seed Gen-
eration for Hybrid Fuzzing. International Conference On Fundamental Approaches To Soft-
ware Engineering. pp. 336-340 (2022)

6. Beyer, Dirk. “Software testing: 5th comparative evaluation: Test-Comp 2023.” Fundamental
Approaches to Software Engineering LNCS 13991 (2023): 309.

7. Quinlan, J. Induction of decision trees. Machine Learning. 1 pp. 81-106 (1986)
8. Cortes, C. & Vapnik, V. Support-vector networks. Machine Learning. 20 pp. 273-297 (1995)
9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. DOI: 10.1038/323533a0.
10. Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel et al. “Scikit-learn: Machine learning in Python.” the Journal
of machine Learning research 12 (2011): 2825-2830.

11. Alshmrany, K., Aldughaim, M., Wei, C., Allmendinger, R., & Cordeiro, L. FuSeBMC AI:
Acceleration of Hybrid Approach through Machine Learning. DOI:https://doi.org/10.5281/
zenodo.10199336 (Zenodo,2023,11)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.7473124
https://doi.org/10.5281/zenodo.7473124
https://doi.org/10.5281/zenodo.10199336
https://doi.org/10.5281/zenodo.10199336
http://creativecommons.org/licenses/by/4.0/

	FuSeBMC AI: Acceleration of Hybrid Approach through Machine Learning

