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Abstract

This paper proposes a new parametric risk-neutral density (RND) estimator based on a finite

lognormal-Weibull mixture (LWM) density. We establish the consistency and asymptotic normal-

ity of the LWM method in a general misspecified parametric framework. Based on the theoretical

results, we propose a sequential test procedure to evaluate the goodness-of-fit of the LWM model,

which leads to an adaptive choice for the number and type of mixture components. Our simulation

results show that, in finite samples with various observation error specifications, the LWM method

can approximate complex RNDs generated by state-of-the-art multi-factor stochastic volatility mod-

els with a few (typically less than 4) mixtures. Application of the LWM model on index options

confirms its reliability in recovering empirical RNDs with a heavy left tail or bimodality, which can

be incorrectly identified as bimodality or a heavy left tail by existing (semi)-nonparametric methods

if the goodness-of-fit to the observed data is ignored.

JEL classification: C13, C52, C58, G13

Keywords: risk-neutral density, parametric modelling, mixture-of-distribution method.

∗We are grateful to the co-editor (Torben Andersen), the associate editor, and two anonymous referees for their

insightful comments and suggestions, which greatly improved the quality of this paper. We thank Olivier Scaillet,

Eric Renault, Yang Zhang, and all participants in the Vienna Workshop on Econometrics of Option Markets and the

Liverpool Econometrics Workshop 2022 for their helpful comments. We would like to acknowledge the financial support

from the ESRC-FWF bilateral grant titled “Bilateral Austria: Order Book Foundations of Price Risks and Liquidity:

An Integrated Equity and Derivatives Markets Perspective”, Grant Ref: ES/N014588/1 and the Austrian Science Fund

(FWF): Research project: I-2762-G27. The usual disclaimer applies.
†Corresponding author: Alliance Manchester Business School, Booth Street W, Manchester, M13 9SS, UK. Phone +44

16130 66402, e-mail: yifan.li@manchester.ac.uk.
‡Lancaster University Management School Bailrigg, Lancaster LA1 4YX, UK. Phone +44 15245 92644, email:

I.Nolte@lancaster.ac.uk
§Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, UK. Phone +44 15245 94816, e-mail:

m.c.pham@lancaster.ac.uk.



1 Introduction

The risk-neutral density (RND), also termed the state price density, summarizes the distribution of

asset prices at a fixed point of time in the future under the risk-neutral probability measure. The

RND is believed to contain rich forward-looking information about the risk preference and market

expectations of the underlying asset. Applications of the RND can be found in Aı̈t-Sahalia and Lo

(2000), Bliss and Panigirtzoglou (2004), Liu et al. (2007), Shackleton et al. (2010), Birru and Figlewski

(2012), Christoffersen et al. (2013), Ghysels and Wang (2014), Cuesdeanu and Jackwerth (2018) among

many others.

Since the seminal works of Breeden and Litzenberger (1978) and Banz and Miller (1978) which

show that the RND can be expressed as the second-order derivative of option prices as a function

of the strike, numerous methods1 have been proposed to extract RNDs from the observed option

prices. Popular RND extraction methods can be classified into three classes: (1) parametric spec-

ification of the RND, such as the mixture-of-lognormal (MLN) approach of Ritchey (1990), Melick

and Thomas (1997), the normal inverse Gaussian of Eriksson et al. (2009), the generalized extreme

value distribution of Markose and Alentorn (2011); (2) semi-nonparametric (SNP) approximations of

the RND, including the Edgeworth expansion or Gram-Charlier series of Jarrow and Rudd (1982),

Longstaff (1995), Jondeau and Rockinger (2001), the confluent hypergeometric functions of Abadir

and Rockinger (2003), Bu and Hadri (2007), the mixture-based density approximation of Bondarenko

(2003), Yuan (2009) and the recent sieve estimator of Lu and Qu (2021) based on the Gauss-Hermite

expansion; (3) nonparametric (NP) methods, for example, the kernel or curve-fitting approach of

Aı̈t-Sahalia and Duarte (2003), Bliss and Panigirtzoglou (2004), Yatchew and Härdle (2006), Härdle

and Hlávka (2009), Figlewski (2010), Birru and Figlewski (2012) and the implied binomial tree of

Rubinstein (1994).

The dense literature on RND estimation reflects the difficulty of the estimation problem. In

detail, one needs to extract a complex empirical RND from a relatively small cross-section of option

prices. For some recent examples, Song and Xiu (2016), Andersen et al. (2017, 2021a) suggest that

an empirical RND is typically unimodal with a heavy left tail, while Clark and Amen (2018), Ferreira

et al. (2022), Kostakis et al. (2023) show that the RND can become bimodal in the presence of major

binary event risk, such as the US presidential election or the Brexit referendum. This explains the wide

implementation of (S)NP methods in recent empirical studies which are designed to approximate an

arbitrary unknown density function. Meanwhile, the parametric approach receives much less attention,

as it is believed that existing parametric RND models may not be flexible enough to fit the diverse

1Comprehensive surveys of various methods can be found in Jackwerth (1999, 2004), Taylor (2005), Figlewski (2018). See
also Fengler and Hin (2015), Ludwig (2015), Orosi (2015), Feng and Dang (2016), Kundu et al. (2019), Dalderop (2020),
Monteiro and Santos (2020) for some recent developments.
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empirical RND shapes.

Motivated by the relatively less developed literature on the parametric RND extraction ap-

proaches, this paper proposes a novel parametric method by modelling RNDs with a finite lognormal-

Weibull mixture (LWM) density. The proposed method has three main features: (a) it extends the

parametric MLN method by adding Weibull mixture components, which is designed to approximate

the heavy left tail and the potential multi-modality of the empirical RND; (b) the LWM-implied option

prices are available in closed-form, and non-arbitrage conditions for the RND estimates are guaran-

teed to hold by simple parameter constraints; (c) the number and type of mixtures are chosen by an

adaptive algorithm based on residual diagnostics, which produce a parsimonious model that balances

misspecification and overfitting.

We make three core contributions to the RND estimation literature. First, we develop asymptotic

theory for the parametric RND estimator under an infill asymptotic setting with a fixed strike range. To

the best of our knowledge, we are among the first to formalize a parametric RND estimation framework

which simultaneously accounts for potential model misspecification and a general observation error.

This allows us to construct asymptotic confidence bounds for the RND estimates and conduct post-

estimation diagnostic tests, which further provides rigorous econometric tools to examine the goodness-

of-fit of the LWM method.

Second, our comprehensive simulation results suggest that, with only a small number of mixtures,

the LWM density can reliably approximate complex RNDs generated by affine jump-diffusive models

featuring heavy tails or bimodality. Under various settings of samples sizes and observation errors, the

LMW approach is comparable to popular optimally tuned (S)NP methods in Aı̈t-Sahalia and Duarte

(2003), Bondarenko (2003), Bliss and Panigirtzoglou (2004), Lu and Qu (2021), and sizeable gains in

precision are expected if one only adopts ‘recommended’ tuning parameters in the existing literature.

This ensures that the LWM approach can generate reliable RND estimates under rapidly changing

market conditions that are more robust to tuning than popular (S)NP methods.

Third, we highlight the practical importance of post-estimation residual diagnostic tests. In our

empirical study, we re-examine a bimodal RND estimate from S&P index options in Lu and Qu

(2021) and a unimodal RND estimate from FTSE100 index options in Kostakis et al. (2023). Our

findings convincingly show that the (S)NP-based empirical RND estimates with recommended tuning

parameters can produce spurious bimodality or fail to detect genuine bimodality. This is due to

insufficient flexibility of the (S)NP-based RND model caused by poor choices of tuning parameters.

By contrast, the LWM method provides more reliable RND estimates in both cases with a significantly

better fit to the observed data.

The remainder of the paper is structured as follows. Section 2 lays down the econometric setting
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for the parametric LWM approach. Section 3 presents the main theoretical results of the paper. The

simulation study and empirical illustrations can be found in Sections 4 and 5, respectively. Section 6

concludes.

2 Econometric Settings

2.1 Risk-Neutral Density Estimation

Let St denote the price of a stock at time t. We are interested in estimating the risk-neutral density2

(RND) of ST for some T > t, denoted as f∗t (x), based on observations of option prices. Throughout

the paper, let Ft denote the price of a forward contract of the stock expiring at time T , and we have

ST = FT by design. As St is observed and Ft can be computed from St using observed quantities (e.g.,

risk-free rates and dividend yields), we shall assume that Ft is also observed.

Breeden and Litzenberger (1978) show that f∗t (x) is closely related to the price function of Euro-

pean options. Let O∗(K) denote the theoretical (put or call) price of an European option at time t

with time-to-maturity τ := T − t and constant risk-free rate rf , then f∗t (x) can be derived from O∗(K)

as:

f∗t (x)|x=K = e−rf τ
∂2O∗(K)

∂K2
. (1)

Although the option price depends on additional state variables such as spot volatility factors or jumps

at time t, we shall suppress these inputs and assume them to be identical for all options in a cross-

section observed at time t with the same time-to-maturity. Consequently, we consider option prices as

a univariate function of the strikes in this paper.

To ensure that f∗t (x) exists so that the estimation problem is well-defined, we firstly state an

assumption about the theoretical option pricing function. For illustrative purpose, we formulate our

assumption in terms of a call option. Similar conditions can easily be derived for a put option using

the put-call parity, and are thus omitted in the paper.

Assumption 1. We assume that there exists a true latent European call option pricing function

C∗(K) which is at least twice differentiable on R+ and satisfies the following conditions: (1) ∂C∗(K)
∂K ∈

[−erf τ , 0]; (2) ∂2C∗(K)
∂2K

= erf τf∗t (K) ≥ 0; (3)
∫∞

0 f∗t (x)dx = 1; (4)
∫∞

0 xf∗t (x)dx = Ft. The function

f∗t (x) is called the true latent RND of the underlying price at expiry FT .

Remark 1. Conditions (1)-(4) can be found in Aı̈t-Sahalia and Duarte (2003), which are non-

arbitrage conditions for the cross-section of option prices. Specifically, conditions (2) and (3) ensure

2In detail, the risk-neutral density of the stock at time t with a horizon T > t is the probability density function of ST

conditional on the information set at time t, Ft, under the risk-neutral probability measure.
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that f∗t (x) is a well-defined density function on R+. Condition (4) implies that EQ[FT |Ft] = Ft to

eliminate arbitrage opportunities using a forward contract, where EQ[·] denotes the expectation under

the risk-neutral probability measure.

We will also denote O∗(K) as the general true option pricing function (put or call) implied by

Assumption 1. In practice, we do not observe O∗(K) for a continuum of K, but rather on a discrete

strike grid with observation errors. We impose the following assumption on the strike grid and the

asymptotic setting of this paper:

Assumption 2. The observed strike prices are contained in a fixed and compact interval K = [K,K]

for some finite 0 < K < K, and denote m(K) := K − K as the length of the strike range. With a

sample size of N , the strike grid is:

K = K1,N < K2,N < . . . < KN,N = K,

which is a (sequence of) non-random and strictly increasing partition of K. We assume that there

exists a deterministic, Lipschitz and strictly increasing function κ : K 7→ [0, 1] such that as N →∞:

sup
1≤n≤N

∣∣∣κ(Kn,N )− n

N

∣∣∣ = o(N−1). (2)

Our asymptotic setting is of the infill type similar to Andersen et al. (2021b), in which we observe

an increasing amount of strike prices on a fixed range. This is a reasonable assumption in practice as

equity options are only actively traded on an economically meaningful range of moneyness3. Eq. (2)

assumes an eventually equidistant strike grid up to an invertible transformation κ(x), which is designed

to capture the empirical observation that the traded strike grid gets sparser as the moneyness becomes

more extreme. For the ease of notation, we will omit the subscript N whenever no confusion is caused.

The following assumption characterizes the option pricing errors:

Assumption 3. On a probability space (Ω,F ,P), let Z = (Zt)t∈Z define a strictly stationary and

exponentially α-mixing time series satisfying: (1) E[Zt] = 0; (2) Var[Zt] = 1; (3) E[Z4
t ] < ∞; (4)

Denote σ2
Z :=

∑∞
j=−∞ E[ZtZt−j ] as the long run variance of Zt, which satisfies σ2

Z <∞.

For each N ∈ N, the observed option prices {On}n=1:N are generated by:

On = O∗(Kn) + un, (3)

where un = γ(Kn)Zn,N is the pricing error at the nth strike grid. The triangular array {Zn,N}n=1:N

3Equity options with an absolute moneyness of >10 are seldomly traded. See e.g., Figure 7 of Andersen et al. (2021a) for
some recent empirical evidence.
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is a realization of N observations of Z. The function γ(x) is a bounded and strictly positive Hölder

continuous function on K.

Remark 2. It is worth pointing out that Assumption 3 implies a conditional exogeneity-type assump-

tion for the pricing errors E[un|Kn] = 0,∀n, so that the pricing errors are centred and independent

from the strike prices. This serves as our identification assumption of both the parametric model es-

timation and the post-estimation diagnostics. Importantly, this assumption precludes strike-dependent

deviations from the efficient option prices, such as a ‘clientele effect’ when large investors trade at

certain strike ranges, which jointly affects all observed prices in this range and can induce a strong

dependence between Kn and un. In this paper, we shall exclude this possibility to avoid ambiguities in

the definition of efficient option prices.

Assumption 3 is similar to those used in Andersen et al. (2021b), which provides a very flexible

structure to account for heteroscedastic and spatial correlated observation errors in option prices. The

function γ(x) captures possible heteroscedasticity of pricing errors related to the strike grid. The

Hölder continuity of γ(x) is a technical assumption used to prove the convergence of the variance-

covariance matrix, which can be further weakened to allow for finitely many discontinuities on K. The

Zn,N process allows spatial correlation across the strike grid. Although the assumptions on Zt can

be further weakened (e.g. α-mixing with a polynomial mixing rate), from the empirical findings in

Andersen et al. (2021b) we believe that these assumptions are sufficient to capture the dynamics in

the empirical option pricing errors.

Note that Assumption 3 does not cover the case where more than one observation (e.g., both a

put and a call, or multiple cross-sections of option prices) is observed at the same strike price. This

requires a panel-type assumption for the observation errors, which is beyond the scope of this paper.

To simplify the discussion, we shall stick with Assumption 3 and focus on a single cross-section of

out-of-the-money (OTM) puts and calls due to their relatively higher liquidity than the in-the-money

(ITM) options.

2.2 The Lognormal-Weibull Mixture Model

The true RND f∗t (x) can take arbitrary forms as long as Assumption 1 is satisfied. In this paper, we

consider a parametric approach by approximating f∗t (x) with a Lognormal-Weibull-Mixture (LWM)

density. The density takes the following form:

Definition 1. For non-negative integers M1 and M such that (M1 ∨ 1) ≤ M , an M -LWM density

with M1 lognormal components (and M2 = M −M1 Weibull components) is defined as the following
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discrete mixture density:

fM (x; θ) =
M∑

i=1

w(i)
(
fLN (x;F (i), σ(i)2τ)1l {i≤M1} + fWB(x;F (i), k(i))1l {i>M1}

)
,

s.t. w(i), F (i), σ(i), k(i) > 0,

M∑

i=1

w(i) = 1,

M∑

i=1

w(i)F (i) = Ft.

(4)

where fLN (x;µ, σ2) and fWB(x;µ, k) are the density function of a lognormal and a Weibull distribution

with the following parametrization, respectively:

fLN (x;µ, σ2) =
1

xσ
√

2π
exp

(
− 1

2σ2
(lnx− lnµ+ 0.5σ2)2

)
, µ, σ2 > 0 (5)

fWB(x;µ, k) =
g(x;µ, k)e−g(x;µ,k)

kx
, g(x;µ, k) =

(
xΓ(1 + k)

µ

)1/k

, µ, k > 0, (6)

in which Γ(z) =
∫∞

0 tz−1e−tdt is the Gamma function. We collect all the parameters in the 3M -by-

1 parameter vector θ = ((w(i))i=1:M , (F
(i))i=1:M , (σ

(i))i=1:M1 , (k
(i))i=1:M2)ᵀ such that for each type of

parameters, the lognormal parameters always precede the Weibull ones.

Remark 3. Definition 1 suggests that there are 3M − 2 free parameters in an M -LWM density due

to the two equality constraints. For theoretical analysis purposes, it is more convenient to drop w(M)

and F (M) and consider ϑ = ((w(i))i=1:M−1, (F
(i))i=1:M−1, (σ

(i))i=1:M1 , (k
(i))i=1:M2)ᵀ. Clearly, each θ

uniquely defines a ϑ and vice versa. We will refer to θ (resp. ϑ) as the full (resp. free) parameter

vector in the remainder of the paper.

We summarize some important properties of the M -LWM density. First, for XLN and XWB

having the densities as in Eq. (5) and Eq. (6) respectively, we have:

E[XLN ] = E[XWB] = µ,Var[XLN ] = eσ
2−1µ2,Var[XWB] = v(k)µ2,

E[lnXLN ] = lnµ− σ2

2
,E[lnXWB] = lnµ− ln Γ(1 + k)− kγ,

Var[lnXLN ] = σ2,Var[lnXWB] = k2π2/6.

(7)

with v(k) = Γ(1+2k)
Γ(1+k)2−1. Note that v(k) is monotonically increasing on [0, 1] with v(0) = 0 and v(1) = 1.

The parametrization of the Weibull distribution ensures that (µ, k) has the same interpretation as

(µ, σ) for the Lognormal distribution. Specifically, the condition
∑M

i=1w
(i)F (i) = Ft ensures that

Assumption 1.(3)-(4) hold by construction. Also, σ and k can be interpreted as the scale parameters

of the corresponding log-transformed distributions, as the variance of the normal (resp. Gumbel)

distribution is proportional to σ2 (resp. k2). By setting M = M1, the M -LWM density reduces to

a mixture-of-lognormal (MLN) density as in Ritchey (1990), Melick and Thomas (1997). Similarly,
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setting M1 = 0 gives a pure mixture-of-Weibull density.

The M -LWM density implies the following option pricing formula:

O(K; θ) =
M∑

i=1

w(i)
(
OLN (K;F (i), σ(i))1l {i≤M1} +OWB(K;F (i), k(i))1l {i>M1}

)
, (8)

where OLN (·) is the Black’s (1976) option pricing formula for options on forward contracts, and

additional inputs such as τ and rf are omitted for brevity. For example, the Black (1976) model for

call options is:

CLN (K;F, σ) = e−rf τ [FΦ(d1)−KΦ(d2)], (9)

where d1 = ln(F/K)+σ2τ/2
σ
√
τ

, d2 = d1−σ
√
τ , and Φ(·) is the CDF of a standard normal distribution. The

Weibull-implied option price, OWB(·), can be computed by direct integration (e.g., Eqs. (1) and (2) in

Lu and Qu (2021)). For instance, the Weibull-implied call option price takes the following closed-form:

CWB(K;F, k) = e−rf τ [FΥ1+k(g(K;µ, k))−Ke−g(K;µ,k)], (10)

where Υk(z) = Γ(k)−1
∫∞
z tk−1e−tdt is the (normalized) upper incomplete Gamma function.

Given the observed option prices (On)n=1:N , the number of mixtures M and the number of

lognormal components M1, one can estimate the parameter vector ϑ by minimizing the weighted

squared pricing error:

θ̂N = argmin
θ

QN (θ) :=
1

2N

N∑

n=1

ωnεn(θ)2

s.t. w(i), F (i), σ(i), k(i) > 0,
M∑

i=1

w(i) = 1,
M∑

i=1

w(i)F (i) = Ft.

(11)

where εn(θ) := On − O(Kn; θ) is the pricing error of the M -LWM model at the nth strike grid, and

{ωn}n=1:N is a set of positive regression weights. The optimization problem in Eq. (11) is a constrained

weighted nonlinear least square (WNLS) problem, which is typically solved numerically by standard

optimization algorithms. The estimated parameter vector θ̂N directly provides an estimate of the

RND, i.e., fM (x; θ̂N ).

As to the regression weights in Eq. (11), different weighting schemes are proposed in the literature.

The simplest choice is ωn = 1,∀n, which corresponds to an equal weighting scheme. Aı̈t-Sahalia and

Duarte (2003) assign higher weights for options traded more liquidly and propose to choose ωn based

on open interests or the bid-ask spreads. Christoffersen et al. (2018) set ωn based on the implied Vega,

so that Qn(θ) approximates the mean squared error in the implied volatility domain.4

4Christoffersen et al. (2018) suggest to set ωn = 1/υ(Kn)2, where υ(Kn) is the option Vega computed from the implied
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Before deriving asymptotic properties for θ̂N , we provide some motivations for adding Weibull

mixtures to the classic MLN density, which is a key innovation of this paper. The use of the Weibull

distribution to model option prices can be traced back to Savickas (2002), who noticed that the

empirical RND can be better captured by a negatively skewed5 Weibull distribution, while a lognormal

density is always positively skewed. More recent evidence in Andersen et al. (2017, 2021a), Lu and

Qu (2021) also suggest that the empirical RND typically has a heavy negative left tail, generating a

negative skewness. As a result, the Weibull components in the LWM density can fit the left tail of

the empirical RND much more efficiently than a pure MLN density. In fact, one can easily show6

that fWB(x) has the same left tail behaviour as a type III extreme value distribution, which is used

in Figlewski (2010) to fit the left tail of the empirical RND.

A graphical illustration of Weibull RNDs, the associated call prices and implied volatilities are

presented in Fig. 2.1. The choices of the scaling parameter k ∈ {0.15, 0.2776, 0.4} represent a nega-

tive, neutral, or positive skewness, respectively. Interestingly, the implied volatility (IV) curves slope

downwards for all choices of k. This provides a better fit to the empirical volatility smile or smirk

pattern than a flat IV curve implied by the lognormal RND, which is consistent with Savickas (2002).
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Figure 2.1: Examples of Weibull densities fWB(x), the associated call prices CWB(K;F, k) and the corresponding Black model
implied volatility. The parameters used to generate the call prices and the implied volatilities are: F = 100, rf = 0, τ = 22/252.

To demonstrate the importance of the Weibull components in the LWM mixture for empirical

RND extraction, we simulate two RNDs with opposite skewness coefficients from a 3-factor stochastic

volatility (3FSV) model and their corresponding true option prices (see DGP I and DGP III in Section

4 and Online Appendix C for details). We fit a 3-LWM density by solving Eq. (11) with all possible

choices of M1 and present the fitted densities in Fig. 2.2. The left panel of the figure reveals that the

3-MLN density has a poor fit to the heavy left tail of the RND, which is generated by a slow-decaying

volatility at strike grid Kn. We thank a referee for pointing this out.
5The skewness coefficient of the Weibull distribution in Eq. (6) takes the explicit form 2Γ(1+k)3−3Γ(1+k)Γ(2+k)+Γ(1+3k)

(Γ(1+2k)−Γ(1+k)2)3/2
,

which is independent from F and is negative whenever k < 0.2775975.
6Note that with the linear change of variable −ky = xΓ(1 + k), fWB(x) is proportional to a generalized extreme value
distribution fGEV (y) with scale parameter µ, shape parameter −k, and location parameter −µ/k.
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jump process. Replacing more lognormal components by Weibull components progressively improves

the RND fit, and in this case the pure mixture-of-Weibull density has the best overall fit. The right

panel of the figure tells the opposite story: a pure mixture-of-Weibull density can hardly fit the heavy

right-tail of the RND, while a 3-LWM density with M1 = 2 provides the overall smallest squared error.
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Figure 2.2: Examples of RND estimates based on the 3-LWM density. The left-skewed (resp. right-skewed) true RND is generated
from DGP I (resp. DGP III) of a 3FSV model in Section 4 and Online Appendix C. For each choice of M1 ∈ {0, 1, 2, 3}, we estimate
the 3-LWM parameters by solving Eq. (11) based on the true option prices with an equal weighting scheme. The option prices are

computed on an equidistant strike grid with 100 observations. The L2 loss is defined as
√∫
K |f̂(x)− f∗(x)|2dx× 102, where f̂(x)

is the fitted 3-LWM density and f∗(x) is the true RND, respectively.

Fig. 2.2 clearly shows the superior flexibility of the 3-LWM density over a pure 3-MLN density,

as vast mean square improvements can be achieved by appropriate mixing of Weibull and lognormal

components. Changing the number of lognormal and Weibull mixtures of the 3-LWM density adjusts

adaptively to the tail shapes of the RND, but importantly, without introducing additional parameters.

By increasing the number of mixtures, a general M -LWM density is expected to provide more accurate

approximations to highly complex RNDs. It is worth mentioning that the number of parameters

involved in the finite LWM density is usually much less than a (semi)-nonparametric RND estimator

for a comparable approximation quality. This leads to a significant gain in precision for the parametric

LWM method, on which we elaborate in our simulation and empirical analyses.

3 Main Results

Our main results can be divided into three parts: First, we establish consistency and asymptotic

normality of the estimator θ̂N in Eq. (11) as N → ∞ under the assumption of a misspecified model.

Second, we propose a method to choose the number of lognormal mixtures M1 and the number of

mixtures M empirically. Last, we explain computational details and conclude with some further

discussions of the LWM method.
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3.1 Asymptotic Properties of the LWM-Based RND Estimates

The econometric problem in Eq. (11) belongs to the general class of constrained WNLS regressions

with dependent and heterogeneous innovations, which is a very well-studied problem in the literature.

Asymptotic results have been established in much more general settings than ours, e.g. Jennrich (1969),

White (1980), Wu (1981), Domowitz and White (1982), White and Domowitz (1984), Andrews (1987),

Pötscher and Prucha (1991a,b) for the unconstrained case, and Geyer (1994), Wang (1996), Andrews

(1999), Wang (2000, 2004) for the constrained case. By applying these asymptotic results to our

specific setting, we derive asymptotic properties for the parameter estimates θ̂N in Eq. (11). However,

such application is not entirely trivial as the convergence of θ̂N cannot be established in the usual

sense.

We begin with a series of assumptions and definitions that clarify the asymptotic setting of our

results.

Assumption 4. For any fixed integers 1 ≤ M , we assume that θ ∈ ΘM , where ΘM is a compact

subset of R3M which satisfies ∀i, w(i) ∈ [0, 1],
∑M

i=1w
(i) = 1,

∑M
i=1w

(i)F (i) = Ft, and there exist

universal constants 0 < S < S such that σ(i), k(i), F (i) ∈ [S, S], ∀i.

Remark 4. The compactness of ΘM is a common requirement to ensure the consistency of parameter

estimates. In our case, since S (resp. S) can be set to be arbitrarily small (resp. large), in practice we

only need to set it to cover reasonable parameter choices and the compactness of ΘM is guaranteed.

This also insures that FM only contains smooth density functions on K × ΘM , as all σ(i)s and k(i)s

are bounded away from 0. We do not specify M1 here, as the parameter bounds are common for both

the lognormal and the Weibull mixtures.

Remark 5. In view of Remark 3, we have ϑ ∈ ΘM , where ΘM is a compact subset of ΘM , understood

as the space of the free parameter vector. It is also clear that there exists a bijection T : ΘM 7→ ΘM

such that T (ϑ) = θ with the inverse function T−1(θ) = ϑ that generates a unique free parameter vector

from a full parameter vector. As a result, it suffices to prove the consistency and asymptotic normality

of the WNLS estimator ϑ̂N = T−1(θ̂N ) in the free parameter space, which is the objective of this

section.

The main challenge of establishing the desired convergence is that O(K; θ) is only uniquely define

on ΘM up to a permutation of the parameters that belong to mixtures of the same type. In particular,

one can easily construct a sequence of θ̂N that does not converge to any element in ΘM but still

minimizes QN (θ) as N → ∞, since the minimizer is not unique in general. To resolve this issue, we

introduce the notion of a quotient space of the equivalence class of parameters:
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Definition 2. For some natural number N , let PN denote a N -by-N permutation matrix such that for

any v ∈ RN×1, PNv is a permuted version of v. Let PN collects all N ! unique permutation matrices.

With M1 + M2 = M , pick PM1 ∈ PM1 and PM2 ∈ PM2 and construct the 3M -by-3M block-diagonal

matrix ΠM = diag(PM1 , PM2 , PM1 , PM2 , PM1 , PM2). Let ΠM collects all M1! ·M2! unique ΠM formed

by exhausting different choices of PM1 and PM2. For all θ ∈ ΘM , define an equivalence relation ∼p on

ΘM such that θ ∼p θp iff:

θp = ΠMθ ∈ ΘM , ∃ΠM ∈ ΠM . (12)

The equivalence class [θ] is defined as: [θ] = {θp ∈ ΘM : θ ∼p θp}.

Denote the set ΘM\ ∼p as the collection of all equivalence classes on ΘM , and let π : ΘM 7→
ΘM\ ∼p denote the quotient map which maps θ into [θ]. The quotient space Θ̃M is defined by the set

ΘM\ ∼p with the topology {U ⊂ Θ̃M : π−1(U) is open in ΘM}.

A function g : ΘM 7→ Y is called permutation invariant if for every θ ∈ ΘM , it holds that

g(θ) = g(θp) for all θp ∈ [θ]. We denote G as the set of all permutation invariant functions. Every

g ∈ G has a well-defined dual function g̃ : Θ̃M 7→ Y on the quotient space, defined by g̃([θ]) = g(θ).

Remark 6. In view of Remark 3, for the free parameter vector ϑ = T−1(θ), we shall define the

equivalent class [ϑ] := {ϑ ∈ ΘM : T−1(θ) ∼p θ}, and the corresponding quotient parameter space Θ̃M

is defined analogously. Note that T−1 /∈ G, as different elements of θ are removed after a permutation.

Therefore, functions g and g̃ defined on ΘM and Θ̃M can also be generalized to take value in ΘM and

Θ̃M by a composition of g and T without loss of generality. We shall also abuse the notation and write

g(ϑ) := g(T (ϑ)) and g̃([ϑ]) := g̃([T (ϑ)]) to avoid notational clutter whenever no confusion is caused.

Remark 7. Intuitively, [θ] contains all parameter vectors formed by permuting the orders of the

parameters that belong to the same distribution type in θ. Clearly, all elements in [θ] define the same

M -LWM density fM (K; ·), which also implies the same pricing function O(K; ·) and the weighted

squared loss QN (·), i.e., they belong to G by construction. The case with M1M2 = 0 can be constructed

analogously by removing the corresponding permutation matrix from ΠM . Importantly, the minimizer

of QN (ϑ) on ΘM is not unique due to permutation, but one can construct a unique minimizer [ϑ] of

Q̃N ([ϑ]) on Θ̃M , which allows for the identification of the true parameter vector. Therefore, we establish

consistency and asymptotic normality of parameter estimates in the sense of equivalence classes, such

that [ϑ̂N ] converges to [ϑ∗] on Θ̃M for some ϑ∗ ∈ ΘM . Note that this sense of convergence is also

applicable to models possessing a label switching problems, e.g. mixture models or regime-switching

models.

We impose the following regularity assumption on the regression weights:
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Assumption 5. The weights {ωn}n=1:N are generated by a strictly positive, bounded and Hölder

continuous function ω(x) such that ωn = ω(Kn).

The above assumption allows arbitrary positive bounded and fixed weights in finite sample, which

covers the aforementioned choices of weights considered in the literature by a conditioning argument.

The Hölder continuity of ω(x) plays the same role as that of γ(x). Stochastic and exogenous weights

can be accommodated by generalizing Assumption 5 in view of White (1980, 1981), Domowitz and

White (1982), which does not fundamentally change the asymptotic analysis of this paper and is thus

not considered here.

We impose an identification assumption about the (pseudo) true parameter vector ϑ∗ in the setting

that the M -LWM model is in general misspecified:

Assumption 6. Suppose Assumptions 1-5 hold true. Consider an M -LWM density with M1 lognormal

components for some fixed M and M1. Choose a weighting function ω and define Q̃([ϑ]) as the following

definite integral, understood as the limiting integrated squared weighted pricing error of the M -LWM

model on K:

Q̃([ϑ]) :=

∫

K
(O∗(K)− Õ(K; [ϑ]))2ω(K)dκ(K). (13)

We assume that Q̃([ϑ]) has a unique minimizer [ϑ∗] in the interior of Θ̃M .

Remark 8. Assumption 6 rules out the ill-behaved case where two (or more) mixtures of the same

type have identical scale and shape parameters, in which case the weight parameters are not uniquely

identified. Also, the interior requirement of [ϑ∗] and Eq. (11) eliminates the boundary solutions to the

optimization problem, e.g., w(i) = {0, 1}, or F (i), σ(i), k(i) ∈ {S, S}. This ensures that we can transform

the constrained WNLS problem in Eq. (11) into an unconstrained problem as the inequalities for the

true free parameter vector are not binding. It is worth noting that such an identification assumption

is not required for the sieve method of Lu and Qu (2021), which is replaced by a diverging (instead of

a fixed) strike range K to allow for the identification of the entire RND function. In our fixed strike

range setting, Assumption 6 only allows for parameter identification of RND on K, and the RND tails

outside K are unidentified. Please see Remark 12 for further details.

Remark 9. Eq. (13) states that Õ(K; [ϑ∗]) can be interpreted as the best WNLS approximation

of the observed option prices based on the M -LWM model with M1 lognormal components and M2

Weibull components. In the general misspecified case, the value of [ϑ∗] depends on the choice of ω(x).

However, in the special case where the M -LWM model correctly specifies the DGP with O∗(K) ≡
Õ(K; [ϑ∗]),∀K ∈ K, then it is clear that different choices of ω(x) do not alter [ϑ∗].

We present the consistency and asymptotic normality of ϑ̂N in the results below:
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Theorem 1. Under Assumptions 1-6, it holds as N →∞ that [ϑ̂N ]
a.s.→ [ϑ∗].

Theorem 2. Under the same condition as in Theorem 1, as N →∞ we have:

[ϑ̂N ]
d→ [ϑ∗ +N−1/2(A∗)−1ξ], (14)

where ξ ∼ N (0,B∗) is a (3M − 2)-by-1 dimensional multivariate normal vector, and the expressions

for the (3M − 2)-dimensional positive definite matrices A∗ and B∗ can be found in the proof.

Intuitively, the results in Theorems 1 and 2 suggest that, as N → ∞, ϑ̂N may fail to converge

towards a particular ϑ∗, since the optimizer of Eq. (11) is not unique in ΘM . However, ϑ̂N must belong

to a sequence which converges to one of the elements in [ϑ∗], say ϑ∗0 (see Lemma A.1). Theorem 2

then ensures that asymptotically we must have:

√
N(ϑ̂N − ϑ∗0)

d→ N (0,C∗), C∗ := (A∗)−1B∗(A∗)−1. (15)

The sandwich form of C∗ is standard in the literature of unconstrained WNLS problems (see, e.g.,

White (1980), White and Domowitz (1984)). The above result is not feasible as both A∗ and B∗ are

limiting quantities that need to be estimated. Following Domowitz and White (1982), the following

estimator of A∗ is consistent:

Â =
1

N

N∑

n=1

ωn

(
∇O(Kn; ϑ̂N )∇O(Kn; ϑ̂N )ᵀ −∇2O(Kn; ϑ̂N )ε̂n

)
, (16)

where ∇O(Kn; ϑ̂N ) and ∇2O(Kn; ϑ̂N ) are the (3M−2)-by-1 gradient vector and the Hessian matrix of

O(Kn;ϑ) w.r.t. ϑ evaluated at ϑ̂N , and ε̂n := εn(ϑ̂N ) is the nth fitted residual of Eq. (11). A positive

semi-definite estimator of B∗ can be constructed can be constructed using the simple Newey and West

(1987) estimator with the Bartlett kernel:

B̂ = Ω̂0 +
h∑

j=1

(
1− j

h

)
(Ω̂j + Ω̂

ᵀ
j ), (17)

in which Ω̂j :=
∑N

n=j+1 ωnωn−j ε̂nε̂n−j∇O(Kn; ϑ̂N )∇O(Kn−j ; ϑ̂N )ᵀ/N , and h is a suitably chosen7

truncation lag. As discussed in Domowitz and White (1982), B̂ consistently estimates B∗ when the

M -LWM model correctly specifies the DGP on the strike range, i.e., O∗(K) ≡ O(K;ϑ∗),∀K ∈ K, but

is in general inconsistent in the misspecified case. However, this does not prevent us from conducting

valid statistical inference, as the correctness of the model is usually assumed in the null hypothesis of

statistical tests.

7In simulation and empirical applications, we use h = b0.75N1/3c following Andrews (1991).
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The asymptotic normality established in Theorem 2 allows us to construct confidence bounds for

any continuous and permutation invariant function of ϑN via the Delta method:

Corollary 1. Let g : ΘM 7→ Rk be an element in G with continuous and non-zero first-order derivative.

Under the same condition as in Theorem 1, it holds that:

g(ϑ̂N )
a.s.→ g(ϑ∗),

√
N(g(ϑ̂N )− g(ϑ∗)) d→ N (0,Jg(ϑ

∗)C∗Jg(ϑ∗)ᵀ),
(18)

where Jg(ϑ
∗) is the k-by-(3M − 2) Jacobian matrix of g w.r.t. ϑ evaluated at ϑ∗.

Remark 10. The requirement that g ∈ G eliminates the permutation dependence of the limiting distri-

bution (as in Theorem 2) by construction. Similar to the asymptotic variance of ϑ̂N , one can estimate

the asymptotic variance of g(ϑ̂N ) consistently via the plug-in method when the M -LWM model is cor-

rectly specified. This allows us to estimate the confidence bounds of the LWM-based RND estimate

pointwise for each x ∈ R+ by setting g(ϑ) = fM (x;ϑ). However, as C∗ can only be consistently esti-

mated under the correct model specification which is unlikely to hold in practice, one should interpret

the estimated confidence bounds with caution (further discussions are provided in the simulation sec-

tion). More importantly, it allows us to construct specification tests to evaluate the goodness-of-fit of

the M -LWM model which implicitly assumes a correct model specification. We shall elaborate on this

point in the following section.

3.2 Choosing the Number of Mixtures

To implement the LWM approach in practice, one needs to choose both the number of mixtures M and

the number of lognormal components M1. The two choices are fundamentally quite different problems,

which we shall elaborate on in this section.

Given a fixed M , choosing M1 is relatively straightforward. As depicted in Figure 2.2, different

choices of M1 alter the tail shapes of the M -LWM density, but do not increase its overall flexibility since

the number of parameters does not change. As a result, one can simply perform an exhaustive search

and minimize Eq. (11) across all different choices of M1 ∈ {0, . . . ,M}. This method is computationally

costly as it requiresM+1 numerical solutions of the WNLS problem. A computation-wise more efficient

approach is presented at the end of this section, which chooses both M and M1 simultaneously based

on a sequential testing procedure. Note that in finite samples, the choice of M1 computed from noisy

option prices is not necessarily the same as the limiting optimal choice, i.e., M∗1 that minimizes the

weighted integrated squared pricing error in Eq. (13) over all different M -LWM densities. This scenario

can be considered as a specific form of model misspecification, which is covered by our asymptotic

results in Theorems 1 and 2.
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The choice of M , on the other hand, requires more elaboration. Heuristically, a larger M always

improves the flexibility of the candidate RND, however, with the risk of overfitting the empirical

data. In this paper, we take a conventional parametric view and choose M as the most parsimonious

M -LWM model that provides a good fit to the observed data without any obvious patterns in the

residuals. To this end, we propose a sequential testing procedure to check for misspecification of an

existing M -LWM model. We add mixtures to the model sequentially until the specification test is no

longer rejected, which gives the desired choice of M .

Given some choices of M and M1, we propose a simple lack-of-fit test in the spirit of Gallant (1977)

to determine whether this M -LWM model is the correct DGP that generates the efficient option prices

on the strike range, i.e., O∗(K) ≡ O(K;ϑ∗), ∀K ∈ K, which is our null hypothesis. In detail, we test

whether there are any unexplained structures in the WNLS regression residuals. To this end, suppose

that we have estimated this M -LWM model using some weights {ωn}n=1:N . We obtained the estimated

parameter vector ϑ̂N and the weighted WNLS residuals ε̂ = {ε̂n}n=1:N with ε̂n :=
√
ωnε̂n. Consider

the following auxiliary fast Fourier regression with some fixed p, q ∈ N:

ε̂n =

p∑

i=0

βiK̃
i
n +

q∑

j=1

(
γs,j sin(2πK̃n) + γc,j cos(2πK̃n)

)
+ en, (19)

where K̃n := (Kn − Ft)/m(K) is the moneyness normalized to a unit subinterval of [−1, 1], and p, q

are the corresponding degrees for the polynomial and the Fourier series. We consider a HAC-robust

Wald test for the overall explanatory power of the auxiliary regression. In detail, write the auxiliary

regression in Eq. (19) in matrix form ε̂ = Xβ+e, where X is the N -by-(p+ 2q+ 1) matrix of Fourier

polynomials, β is the (p+2q+1)-by-1 vector of regression coefficients, and e = {en}n=1:N is the vector

of regression residuals. Let β̂ denote the least square estimator of β. The HAC-robust Wald statistic

is defined as:

Waldp,q := N β̂
ᵀ
V̂
−1
β̂, (20)

where V̂ is the following consistent and positive semi-definite estimator of avar(
√
N β̂):

V̂ = V̂ 0 +
h∑

j=1

(
1− j

h

)
(V̂ j + V̂

ᵀ
j ), (21)

in which V̂ j :=
∑N

n=j+1 ε̂nε̂n−jX̃nX̃
ᵀ
n−j/N with h = b0.75N1/3c, and X̃n is the nth column of the

(p+ 2q + 1)-by-N matrix:

(XᵀX)−1Xᵀ(N · IN −W 1/2
N JO(ϑ̂N )Â

−1
JO(ϑ̂N )ᵀW 1/2

N ),

where JO(ϑ̂N ) = [∇O(K1; ϑ̂N ), . . . ,∇O(KN ; ϑ̂N )]ᵀ is the N -by-(3M −2) Jacobian matrix (see Propo-

16



sition B.2), andWN is the N -by-N diagonal matrix formed by the weights {ωn}n=1:N . The asymptotic

distribution of Waldp,q is established by the following result:

Proposition 1. Under the null hypothesis that the M -LWM model is correct on K, it holds as N →∞
that Waldp,q

d→ χ2
p+2q+1.

Remark 11. Under the null hypothesis and from Assumption 3, ε̂n is asymptotically a linear transfor-

mation of un, thus asymptotically E[ε̂n|Kn] = 0,∀n and the fast Fourier regression in Eq. (19) should

have no explanatory power. Therefore, a rejection of the Wald test suggests that there are still cer-

tain patterns in the residuals left unexplained by the M -LWM implied option pricing function, which

indicates that we should increase M and consider a more flexible family of RNDs. To perform the

test in practice, one needs to decide the orders of p and q for the auxiliary regression. As the Fourier

regression can approximate any function with a sufficiently large order, we need to choose small p and

q relative to N to avoid over-fitting (and hence spurious rejection of the test). We provide guidance

on the choices of p and q via simulation in Section 4.

Remark 12. It is worth pointing out that the null hypothesis of the test does not rule out any mis-

specification of the M -LWM model outside the strike range. Because, under Assumption 2 with a fixed

strike range, the shape of the RND tails outside K cannot be uniquely identified based on the observed

option prices in K. To see this, we note that two arbitrary well-defined RNDs f1(x) and f2(x) with

f1(x) ≡ f2(x), ∀x ∈ K imply identical option prices on K iff the following equalities hold for k ∈ {0, 1}:

∫K
0 xkf1(x)dx =

∫K
0 xkf2(x)dx,

∫∞
K xkf1(x)dx =

∫∞
K xkf2(x)dx, (22)

which can be derived from the option pricing functions given the RND (see for example, Eqs.(1) and

(2) in Lu and Qu (2021)). Eq. (22) allows us to replace the fitted M -LWM tails with arbitrary tails

from other distributions (such as the GEV tails proposed by Figlewski (2018)) outside the strike range

without changing the fitted option prices.

With the proposed specification test, we suggest the following scheme to iteratively choose an

appropriate M and the associate choice of M1 (denote by M
(M)
1 ) simultaneously. To this end, we shall

fix the regression weights {ωn}n=1:N and denote Q
(M)
N (ϑN ;M1) as the weighted squared regression

error evaluated at ϑ with M mixtures and M1 lognormal components.

The upper bound M sets the maximum number of mixtures for the M -LWM model. In our simu-

lation and empirical analysis, we set M = 5, although we find that M = 4 is usually sufficiently flexible

for unimodal RNDs. The sequential test is only intended to eliminate severe form of misspecification

caused by a small M , but the overall flexibility of the model is still capped by M . Importantly, we do

not allow M to diverge to infinity and only consider a finite number of mixtures.
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A sequential testing procedure to choose M and M1

Step 1: (initialization) Set M = 1. Choose M
(1)
1 = argminM1∈{0,1}Q

(1)
N (ϑ̂N ;M1).

Step 2: (branching) Set M = M + 1 and choose (ϑ̂N ,M
(M)
1 ) as:

(ϑ̂N ,M
(M)
1 ) = argmin

M1∈{M(M−1)
1 ,M

(M−1)
1 +1},ϑ∈ΘM

Q
(M)
N (ϑ;M1). (23)

Step 3: (testing) For the estimated M -LWM model with M
(M)
1 lognormal mixtures, choose some p, q

and a significance level α%. Perform the auxiliary regression test in Proposition 1.
Step 4: (iteration) If the test in Step 3 is rejected at α% and M < M , go to Step 2. Otherwise,

terminate the algorithm with the current M and M
(M)
1 .

Note that the initialization step is simply the exhaustive search method discussed in the beginning

of the section for M = 1. One also can replace the branching step by an exhaustive search, i.e., take

the argmin in Eq. (23) over the set {0, . . . ,M}. The current branching step is computationally more

appealing as only two WNLS regressions are solved for each M . Intuitively, the branching step adds

a lognormal or a Weibull component to the existing M -LWM density depending on the value of the

objective function. Although the chosen M
(M)
1 here may not be the optimal over all M + 1 possible

values, this procedure is guaranteed to produce a nesting sequence of M -LWM models. This allows us

to exploit the estimation results in previous steps and solve the WNLS regressions in an evolutionary

manner, which is detailed in the following section.

3.3 Computational Concerns

In practice, one cannot implement the LWM method if Eq. (11) cannot be optimized reliably. Indeed,

Bondarenko (2003) points out that, even for the pure MLN model, the optimization problem in Eq. (11)

is non-trivial to solve. Standard gradient-based local optimizers may converge to different local minima,

and the resulting RND estimates may have large spurious spikes due to overfitting. As a result, the

existing literature only considers the MLN model with M ≤ 3 due to the difficulty in estimating the

parameter vector.

To solve the computation issues of implementing the LWM method, we develop several important

features in optimising Eq. (11), allowing us to estimate the LWM model with a relatively larger M in

a computationally efficient manner. First, to alleviate the problem of starting point dependency, in

Online Appendix B.1 we develop a global search algorithm which escapes from a local minimum by re-

solving Eq. (11) using multiple random draws of starting points. It incorporates an ‘evolutional’ feature

similar to the implementation of the 3-MLN approach in Bondarenko (2003), which fits the M -LWM

density using the optimal (M − 1)-LWM density parameters as initial values. As the M -LWM density

nests the (M − 1)-LWM density, we use the optimized objective function value Q
(M−1)
N (ϑ̂N ;M

(M−1)
1 )
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as an upper bound for the objective function value in the branching step. This ensures that adding

one mixture to the (M − 1)-LWM density always improves its fit due to the nesting feature, which

further stabilizes the estimation procedure.

Inevitably, the global search algorithm requires multiple local searches which is computationally

expensive. To improve the efficiency of the local search algorithms, we derive analytical gradient and

Hessian for Eq. (11) in Online Appendix B.2, which can be expressed as a weighted average of option

Greeks for each mixture component. To the best of our knowledge, we are among the first to document

such analytical expressions.8 We also acknowledge that the LWM approach is in general much slower

than (semi)-nonparametric approaches that solve convex optimization problems (e.g., Aı̈t-Sahalia and

Duarte (2003), Bondarenko (2003), Bliss and Panigirtzoglou (2004), Lu and Qu (2021)) in exchange

for a precise parsimonious parametric RND estimator.

Finally, the estimated M -LWM density can contain spurious spikes when M is relatively large

(e.g., M ≥ 4) due to very small scale parameter estimates for some mixtures, which can be caused by

a small N and large observation errors. A simple way to eliminate the spurious spikes is to reduce M

until the spurious spike disappears. However, the resulting LWM model may not be flexible enough

due to a reduction in M , which is undesirable in practice. To resolve this issue, we introduce a variance

constraint in the spirit of Hathaway (1985) to effectively remove spurious spikes while preserving most

of the flexibility of a M -LWM model. This is achieved by solving Eq. (11) with the following additional

linear parameter constraint:

min
i=1:M

k̃(i) ≥ c max
i=1:M

k̃(i), k̃(i) =




σ(i)
√

6τ/π, 1 ≤ i ≤M1

k(i), M1 + 1 ≤ i ≤M
. (24)

From Eq. (7) it is not hard to see that k̃(i) translates σ(i) to the corresponding k(i) parameter for a

Weibull distribution with the same variance of the log-transformed density. The constant c takes a

value in the interval [0, 1] and is the ratio of the smallest component standard deviation to the largest

one. Larger (resp. smaller) c imply a more (resp. less) stringent constraint, as Eq. (24) is inactive

when c = 0, while c = 1 forces all the components to have equal variance. In essence, the constraint in

Eq. (24) restricts the parameter space of the M -LWM model, which rules out local maximizers whose

component variances (captured by k̃(i)) are vastly different, hence removing the spurious spikes due

to a very small k̃(i).

As a general principle for the choice of c in practice, an ideal c should be large enough so that

the spurious spikes are removed, while small enough so that Eq. (7) does not substantially restrict

8Melick and Thomas (1997) claim to have used the analytical gradient for the lognormal-implied option prices in their op-
timization procedures without revealing the detailed expressions. The Weibull-implied option Greeks are not documented
in the literature.
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the flexibility of the M -LWM density. In our simulation, we consider up to 5 mixtures which may

overfit the noisy prices, and some c in the range of [0.05, 0.15] can very effectively remove the spurious

spikes. Our simulation results show that the performance of the RND estimates is fairly robust to

different choices of c in this range, as it only removes the very small k̃(i) that causes a spurious spike,

but otherwise has very little impact to the overall flexibility of the LWM density. We recommend the

choice of c = 0.1 in empirical applications, but we find that Eq. (24) is often not binding in practice.

3.4 Further Discussions

We conclude this section by making several remarks about the parametric LWM approach and dis-

cussing the various similarities and differences compared to the popular (S)NP approaches.

First, we point out that our theoretical results can be generalized to cover a mixture of arbitrary

parametric densities defined on the positive real line9 (e.g., Gamma distribution, F-distribution, log-t

distribution) to further enrich the shape of the RND. However, for each mixture component, one needs

to ensure that: (1) the implied option price is analytically tractable and numerically fast to compute,

so that the parameters can be reliably estimated; (2) Assumption 1 holds for the mixture density,

which implies the existence of moments for each component; (3) the flexibility to accommodate heavy

tails of the RND. The Weibull and the lognormal densities appear to be the simplest ones which satisfy

all three criteria. A more sophisticated mixture density may potentially further improve the results of

this paper, which is left for future research.

Second, comparing with the (S)NP framework, our parametric mixture approach takes a dras-

tically different strategy to balance under- and over-fitting. In detail, the (S)NP methods typically

assume or imply an arbitrarily flexible candidate density that can asymptotically converge to any

RND in practice, i.e., the model is asymptotically correctly specified. Therefore, the (S)NP approach

should in theory be preferred in the limit due to this universal approximation property. However, in

practice the sample size is typically small with noisy observations, and an infinitely flexible density can

easily overfit the data with unrealistic RND estimates. Therefore, a central task for the (S)NP method

is to guard against overfitting by carefully restricting the flexibility of the RND candidates. This is

typically done by choosing some tuning parameters using ‘rule of thumbs’ based on previous works

(Bondarenko, 2003, Bliss and Panigirtzoglou, 2004) or by asymptotic and cross-validation arguments

(Yuan, 2009, Lu and Qu, 2021). Nevertheless, as we shall show in the simulation section, the finite

sample optimal choices of the tuning parameters can depend heavily on the unknown true RND. As

a result, asymptotically valid tuning parameter choices, which are the recommended options in the

9Alternatively, one can model the RND for the log-return and choose parametric densities defined on the entire real line.
Nevertheless, as the option prices implied by the log-returns (e.g., a normal distribution) and its corresponding simple
returns (e.g., a log-normal distribution) coincide, the estimation problem remains unchanged.
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literature, may be very different from the finite sample optimal ones. Therefore, although a properly

tuned (S)NP method can have good finite sample performance, blindly adopting recommended tuning

parameter choices can lead to undesirable performance deterioration, as it is not informative enough

about the goodness-of-fit of the (S)NP model.

Distinct from the (S)NP framework which builds a finite-sample RND from restricting an asymp-

totically correct model, we acknowledge the misspecification of our parametric model and prioritizing

on eliminating severe form of misspecification with a parsimonious model. The parsimony originates

from two sources: (1) the M -LWM density is highly flexible and adaptive to different tail shapes in

the empirical RNDs; (2) the sequential test procedure gradually increases the simplest misspecified

model until there are no clear patterns remaining in the residuals. As a result, our approach usually

provides a mildly misspecified fit to the observed data with typically less parameters than a correctly

tuned (S)NP method, which translates into a better finite sample performance.

4 Simulation Study

In this section, we conduct a comprehensive simulation study to (1) evaluate the performance of

the LWM-based RND estimates under different RND and noise specifications and (2) examine the

effectiveness of the sequential test on choosing the number of mixtures.

We consider four data generating process (DGP) specifications for the true RND f∗t (x) generated

by the start-of-the-art three-factor stochastic volatility (3FSV) model of Andersen et al. (2015a,b),

which has been shown to explain the risk-neutral price and volatility dynamics of empirical assets very

well. The four densities are plotted in Figure 4.1. In detail, the density corresponding to the “Mid

Volatility” DGP II in Figure 4.1 shows a negatively skewed RND function that is adapted from an

empirically estimated RND by Andersen et al. (2015a) using S&P 500 equity-index options sampled

every Wednesday between January 1996 and July 2010. The “Low Volatility” DGP I and “High

Volatility” DGP III are modified versions of the “Mid Volatility” case, offering alternative RNDs with

different symmetrical and dispersion properties, as depicted in Figure 4.1. Inspired by the observation

in Lu and Qu (2021), Kostakis et al. (2023), we also consider a bimodal RND, which is formed by

linearly combining the RNDs in DGP II and III, with the respective weights of 0.2 and 0.8. Choices

of parameters and the technical details of extracting the above four RNDs and the associated option

prices are presented in Online Appendix C.

For each of the four DGPs, we compute the theoretical prices of call options with time-to-maturity

(τ) of one month on a DGP-specific strike range K, shown in Table 4.1, such that theoretical call and

put prices on this range are no less than 0.01. This is motivated by an empirical fact that options
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Figure 4.1: Plot of the true RND functions for the four three-factor double exponential stochastic volatility DGPs in our simulation.
Details of these DGPs and the choice of parameters can be found in Online Appendix C. Ft denotes the true forward price.

are traded at a minimum of 1 cent in practice. For each DGP, we consider different sample sizes

N ∈ {25, 100} equidistantly spaced on the strike range to examine the behaviour of our method

under small or large sample sizes, which are typical for empirical cross-sections of option prices. For

simplicity, the risk-free rate is assumed to be zero.

DGP I DGP II DGP III DGP IV

Low Volatility Mid Volatility High Volatility Bimodal

Ft 300 300 500 460
K [43, 563] [113, 401] [307, 948] [143, 933]

Table 4.1: Forward price (Ft) and strike range (K) for the four DGPs in our simulation.

4.1 Baseline Option Error Specification

We begin with a simple setting for the observed option prices with homoscedastic10 additive observation

errors defined on the price domain. On the observed strike grid (Kn)n=1:N , we generate observed option

prices based on the formula Cn = max(C∗n +un, 0), where C∗n and Cn are the theoretical and observed

call price implied by the 3FSV model at Kn, respectively. The observation errors un = γu×Zn, where

{Zn}n=1:N is a sequence of i.i.d uniform U(−1, 1) random variables. Alternative option error designs

allowing for heteroskedastic and/or autocorrelated errors are also considered and will be summarized

in the next subsection, with details presented in Online Appendix F.3. We consider three different

values for the proportionality factor γu, namely 0.1212 (the small error variance case), 0.1715 (the

medium error variance case) and 0.2425 (the large error variance case), so that the variance of un is

respectively about the same as, twice, and four times the estimated SPX options’ error variance in our

empirical application.

For each DGP, sample size N and error variance size, we draw 1000 random cross-sections of

observed call option prices. For each path, we follow the standard practice in the empirical option

literature to remove options with zero prices and then estimate the RND using the LWM-based method

10This is motivated by an observation that the option errors estimated for the SPX options traded on 20 June 2013
considered in our empirical application appear roughly homoskedastic (see Fig. 5.3).
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with M ranging from 2 to 5, using an equal weighting (EW) scheme for our NLS estimation, which

is appropriate given the homoskedasticity of the option errors. The M = 1 case produces heavily

biased RND estimates under all DGPs considered here, and is thus not reported for brevity. The

LWM parameters are estimated based on the computational details in Online Appendix B with the

maximum number of mixtures M = 5 and c = 0.1 for the variance constraint in Eq. (24). Online

Appendix F.1 presents a sensitivity analysis for the choice of c.

We also consider five competing estimators as benchmarks: (1) the positive convolution approxi-

mation (PCA) of Bondarenko (2003), denoted by PCA(h∗) and PCA(h̃), where h∗ is the bandwidth

parameter that fixes the number of normal densities at 23 as recommended by Bondarenko (2003),11

and h̃ is an optimal bandwidth obtained by a grid search to minimize the root mean integrated squared

error (RMISE) of the fitted RND defined in Eq. (26); (2) the local linear regression (LLR) of Aı̈t-

Sahalia and Duarte (2003) with RMISE-optimal bandwidth; (3) the sieve estimator of Lu and Qu

(2021), denoted by Sieve(J∗) and Sieve(J̃), where J∗ is the adaptive order of the Hermite expansion

as recommended by Lu and Qu (2021), and J̃ is the Hermite expansion order that minimizes the

RMISE; (4) the smoothing implied volatility method of Bliss and Panigirtzoglou (2004), denoted by

IV spline(λ∗) and IV spline(λ̃), where λ∗ and λ̃ are respectively the tuning parameters chosen by

a 10-fold cross validation and the RMISE-optimal choice; (5) the 4-parameter Hermite Expansion

(HE) method of Jarrow and Rudd (1982).12 Implementation details of the competing estimators are

described in Online Appendix D. We note that PCA(h̃), Sieve(J̃), LLR, and IV spline(λ̃) are using

infeasible optimal tuning parameters that minimizes the RMISE based on all simulated prices. There-

fore, simulation results of these benchmarks should be interpreted as upper bounds of the performance

of the corresponding estimators in practice.

We highlight that the LWM method always produces RND estimates that satisfy Assumption 1.

This property is shared by only the PCA method among the competitors. The sieve estimator, the IV

spline and the HE method may produce negative RND estimates. The LLR and the IV spline only

estimate the RND on the strike range, so that Assumption 1.(3) is not guaranteed. The LLR and the

sieve method produce RND estimates without ensuring Assumption 1.(4), so that the expected value

of the RND is not necessarily the spot forward price.

In order to examine the quality of an RND estimate, denoted by f̂t(x), we consider both the

mean total variation distance (MTVD) and the RMISE to measure its overall performance, defined as

11Bondarenko (2003) (p.110) reported using between 21 and 25 normal densities in his simulation study to achieve good
performance, so we use the average number of normal densities in our study.

12We thank the reviewers for recommending the last two methods.

23



follows:

MTVD = 100× E[sup
x∈K
|f̂t(x)− f∗t (x)|], (25)

RMISE = 100×
√

E[
∫
K(f̂t(x)− f∗t (x))2dx]. (26)

Note that we compute the above statistics on the strike range K to facilitate comparison among all

competing estimators. The RMISE can be further decomposed into the root integrated squared bias

(RISB) and the root integrated variance (RIV) as RMISE2 = RISB2 + RIV2, where:

RISB = 100×
√∫
K(E[f̂t(x)]− f∗t (x))2dx, RIV = 100×

√∫
K E[(f̂t(x)− E[f̂t(x)])2]dx. (27)

Intuitively, MTVD measures the largest deviation of the RND estimate from the true density, RMISE

measures the overall quality of the RND estimate in the (pointwise) mean squared error sense, RISB

is a measure of the accuracy, and RIV is a measure of the stability.

We present the simulation results for these evaluation metrics of all RND estimators under the

large error variance case in Table 4.2. Results for the small and medium error variance cases are

qualitatively similar and are reported in Online Appendix F.2. Graphical illustrations of the RND

estimates for selected models are shown in Figures 4.2-4.5. Focusing first on the performance of the

LWM-based RND estimates, our findings clearly show that the LWM model can accurately recover

various RNDs with different shapes implied by the highly flexible 3FSV models. For different choices

of N and DGP, the best performing LWM models only use 2 to 3 (resp. 3 to 4) mixtures for unimodal

(resp. bimodal) RNDs. In general, choosing a larger M tends to increase the RIV but decrease the

RISB, as the LWM model becomes less misspecified with more parameters, except for DGP II where

the 2-LWM fit is already highly accurate. Consistent with the motivation discussed earlier in Section

2.2, more Weibull components (smaller M1) are needed to fit RNDs with heavier left tails (DGPs I

and II), and vice versa for DGP III. For a bimodal RND in DGP IV formed by a linear combination

of left- and right-skewed RNDs, the two components play a more balanced role.

As to the performance of the competing estimators, the infeasible PCA(h̃), Sieve(J̃), and IV

spline(λ̃) estimators have overall good and comparable performance in terms of MTVD and RMISE to

the best LWM estimator for all DGPs. However, their feasible versions, namely PCA(h∗), Sieve(J∗)

and IV spline(λ∗), are considerably less precise (except for Sieve(J∗) in DGP III when the recommended

and the optimal tuning parameters coincide) and are all outperformed by the best LWM estimator,

which shows the sensitivity to tuning for the (S)NP methods.

The PCA(h∗), Sieve(J∗) and HE estimators are amongst the most biased RND estimators for all

DGPs except DGP III due to their insufficient flexibility to capture the various RND shapes. The 4
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parameter HE estimator is by construction restrictive and may produce negative density estimates, as

observed in Figure 4.2. The recommended tuning parameter choices h∗ and J∗ are too conservative

for the PCA and the sieve methods, resulting in highly biased RND estimates, especially for DGPs

I and IV. Also, even the optimally tuned LLS method has a non-trivial RISB, which is likely caused

by its optimal global bandwidth selection13 for the kernel function. It is worth noting that Sieve(J∗)

suggests bimodal RND estimates for DGPs I and II that are unimodal RNDs with heavy left tails,

which will also appear in our empirical application.

It can be seen that the performances of both the PCA and the sieve estimators improve substan-

tially by increasing their flexibility, i.e., the number of parameters involved. In particular, using 2 to

3 times the recommended number of mixtures in Bondarenko (2000, 2003) for the PCA method for

DGPs I and IV and 2 to 4 times the recommended Hermite expansion order in Lu and Qu (2021) for

the sieve method for DGPs I, II and IV, both PCA(h̃) and Sieve(J̃) estimators perform substantially

better and can to a good extent recover the features of the true RNDs.

Summarizing our discussions above, we show that the LWM method has comparable perfor-

mances to the competing (S)NP RND estimators with infeasibly optimized tuning parameters but

significantly outperforms the latter when adaptive/recommended tuning parameters are used. This

not only demonstrates the statistical advantage of the LWM method over its (S)NP rivals but also

highlights the strong reliance of the latter on the choice of the tuning parameters. The empirically

optimal choice is likely to depend strongly on the underlying data, which raises questions about the

reliability and generality of the recommended choices in the existing literature for (S)NP methods.

We continue with an analysis of the sequential test procedure to choose the number of mixtures

for the LWM method as discussed in Section 3.2. For each sample path, we firstly select the number

of mixtures M and the number of lognormal densities M1 based on our sequential test procedure with

p and q ranging from 0 to 3 and α = 0.05. For each test specification, we report the average choice

of M (M1) and the RMISE of the RND estimates based on the chosen M (M1). For brevity, we only

present results for simulation scenarios under a large error variance (4×) in Table 4.3, but note that

results for other scenarios tell a qualitatively similar story.

Table 4.3 presents convincing evidence supporting the effectiveness of the sequential test proce-

dure. For example, when N = 100, we on average choose M = 3 for DGP I and M = 2 for DGPs II

and III for various combinations of (p,q), both of which give the smallest RMISE according to Table

4.2. Results for DGP IV — a bimodal RND — seem to suggest M = 3 should be chosen on average

for N = 100, which produces the second smallest RMISE that is only slightly larger than the smallest,

13We note that an adaptive local bandwidth parameter choice for the kernel regression should deliver optimal results here.
However, here we follow Aı̈t-Sahalia and Duarte (2003) to implement a global bandwidth parameter for the LLR method.
We thank a referee for pointing this out.

25



Large error variance (4×)

N = 25 N = 100

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.180 0.912 0.747 0.524 0.00 0.157 0.786 0.744 0.252 0.00
3-LWM (EW) 0.393 1.475 0.394 1.422 0.50 0.178 0.717 0.484 0.529 0.11
4-LWM (EW) 0.654 2.478 0.289 2.461 1.10 0.255 0.962 0.455 0.847 0.59
5-LWM (EW) 0.865 2.927 0.254 2.916 1.67 0.486 1.531 0.265 1.508 1.26

PCA(h∗) 1.558 7.512 7.503 0.373 23.00 1.576 7.604 7.603 0.072 23.00
Sieve(J∗) 0.710 3.514 3.512 0.116 4.00 0.770 3.753 3.752 0.091 4.00
IV spline(λ∗) 0.461 3.430 1.513 3.078 - 0.388 3.689 1.102 3.520 -
HE 0.858 5.018 5.013 0.230 - 0.860 5.018 5.017 0.101 -

PCA(h̃) 0.187 1.069 0.648 0.850 79.17 0.134 0.769 0.454 0.621 85.08

Sieve(J̃) 0.257 1.495 0.845 1.234 15.00 0.187 1.137 0.641 0.939 19.00

IV spline(λ̃) 0.300 1.615 1.311 0.944 - 0.122 0.694 0.434 0.542 -
LLS 1.497 8.003 7.105 3.682 - 0.423 1.974 1.800 0.811 -

Panel 2: DGP II
2-LWM (EW) 0.054 0.334 0.068 0.327 0.16 0.030 0.179 0.093 0.153 0.04
3-LWM (EW) 0.387 1.118 0.130 1.110 0.68 0.120 0.428 0.129 0.408 0.37
4-LWM (EW) 0.768 2.091 0.221 2.079 1.32 0.320 0.860 0.147 0.847 1.05
5-LWM (EW) 1.413 3.533 0.255 3.524 1.95 0.688 1.575 0.197 1.562 1.73

PCA(h∗) 0.090 0.606 0.523 0.307 23.00 0.099 0.654 0.641 0.131 23.00
Sieve(J∗) 0.166 1.049 0.995 0.332 4.00 0.164 1.091 1.075 0.191 4.00
IV spline(λ∗) 0.151 1.450 0.125 1.444 - 0.130 1.303 0.140 1.296 -
HE 0.195 1.521 1.515 0.137 - 0.195 1.570 1.516 0.408 -

PCA(h̃) 0.059 0.411 0.280 0.300 26.16 0.040 0.279 0.159 0.229 28.94

Sieve(J̃) 0.084 0.586 0.473 0.346 7.00 0.048 0.348 0.188 0.293 10.00

IV spline(λ̃) 0.055 0.355 0.217 0.281 - 0.039 0.255 0.205 0.151 -
LLS 0.309 1.578 1.077 1.153 - 0.128 0.718 0.526 0.489 -

Panel 3: DGP III
2-LWM (EW) 0.011 0.108 0.064 0.087 1.88 0.008 0.075 0.063 0.042 1.99
3-LWM (EW) 0.042 0.298 0.046 0.294 2.57 0.012 0.113 0.038 0.106 2.82
4-LWM (EW) 0.101 0.602 0.042 0.600 3.26 0.029 0.216 0.029 0.214 3.58
5-LWM (EW) 0.210 1.148 0.060 1.146 3.91 0.066 0.402 0.026 0.401 4.24

PCA(h∗) 0.019 0.200 0.156 0.125 23.00 0.023 0.226 0.219 0.053 23.00
Sieve(J∗) 0.013 0.132 0.086 0.101 4.00 0.010 0.103 0.087 0.054 4.00
IV spline(λ∗) 0.087 1.914 0.164 1.907 - 0.051 0.716 0.081 0.712 -
HE 0.011 0.106 0.088 0.060 - 0.010 0.094 0.088 0.031 -

PCA(h̃) 0.009 0.100 0.042 0.091 26.09 0.006 0.060 0.029 0.052 26.50

Sieve(J̃) 0.013 0.132 0.086 0.101 4.00 0.010 0.103 0.087 0.054 4.00

IV spline(λ̃) 0.018 0.167 0.097 0.136 - 0.014 0.124 0.090 0.085 -
LLS 0.085 0.719 0.689 0.207 - 0.040 0.323 0.239 0.217 -

Panel 4: DGP IV
2-LWM (EW) 0.067 0.711 0.555 0.444 0.99 0.065 0.693 0.551 0.420 1.00
3-LWM (EW) 0.037 0.296 0.172 0.241 1.41 0.029 0.229 0.163 0.161 1.24
4-LWM (EW) 0.076 0.513 0.126 0.498 1.66 0.029 0.223 0.129 0.182 1.37
5-LWM (EW) 0.172 0.883 0.078 0.880 2.18 0.069 0.376 0.051 0.373 1.87

PCA(h∗) 0.117 1.166 1.153 0.173 23.00 0.120 1.212 1.211 0.054 23.00
Sieve(J∗) 0.118 0.945 0.944 0.038 4.00 0.131 1.109 1.109 0.016 4.00
IV spline(λ∗) 0.125 2.523 0.520 2.469 - 0.127 2.379 0.349 2.353 -
HE 0.184 1.897 1.896 0.025 - 0.184 1.896 1.896 0.013 -

PCA(h̃) 0.046 0.414 0.302 0.283 42.52 0.033 0.297 0.214 0.207 47.72

Sieve(J̃) 0.037 0.276 0.234 0.148 8.00 0.032 0.253 0.223 0.121 10.00

IV spline(λ̃) 0.080 0.646 0.548 0.343 - 0.040 0.330 0.252 0.212 -
LLS 0.092 0.978 0.918 0.337 - 0.049 0.432 0.330 0.279 -

Table 4.2: Simulation results of the RND estimates based on the M -LWM model with equal weighting (EW) and five competing
estimators under a large error variance (4× the estimated error variance of SPX options). The specification and choice of tuning
parameters of the competing estimators are detailed in Appendix D. MTVD, RMISE, RISB and RIV respectively stands for mean
total variation distance, root mean integrated squared error, root integrated squared bias, root integrated variance, and are defined
in Eq. (25)-(27). M1 reports (i) for LWM method, the average number of log normal densities chosen in each M -LWM model, (ii)
for PCA method, the average number of normal mixtures, and (iii) for Sieve method, the average order of Hermite expansion (i.e.

J∗ or J̃). For each simulation scenario, the statistics in the table are computed based on 1,000 simulated paths. The best and the
top three statistics among all estimators are highlighted in bold and underlined, respectively.
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Figure 4.2: Comparison of RND estimates from selected models based on DGP I with a large error variance (4× the estimated
error variance of SPX options) and N = 100. The median RND estimates and the 5% and 95% quantiles are computed pointwise
based on 1,000 simulated paths.
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Figure 4.3: Comparison of RND estimates from selected models based on DGP II with a large error variance (4× the
estimated error variance of SPX options) and N = 100. The median RND estimates and the 5% and 95% quantiles are
computed pointwise based on 1,000 simulated paths.
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Figure 4.4: Comparison of RND estimates from selected models based on DGP III with a large error variance (4× the
estimated error variance of SPX options) and N = 100. The median RND estimates and the 5% and 95% quantiles are
computed pointwise based on 1,000 simulated paths.
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Figure 4.5: Comparison of RND estimates from selected models based on DGP IV with a large error variance (4× the
estimated error variance of SPX options) and N = 100. The median RND estimates and the 5% and 95% quantiles are
computed pointwise based on 1,000 simulated paths.
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Mean M (M1) chosen RMISE with chosen M (M1)

p =
q =

0 1 2 3 0 1 2 3

Panel 1: DGP I, N = 25
0 2.50 (0.24) 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 1.144 0.912 0.912 0.912
1 2.03 (0.02) 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 0.936 0.912 0.912 0.912
2 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 0.912 0.912 0.912 0.912
3 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 0.912 0.912 0.912 0.912

Panel 2: DGP I, N = 100
0 3.26 (0.23) 3.14 (0.21) 2.86 (0.12) 2.40 (0.05) 0.804 0.785 0.745 0.764
1 3.17 (0.20) 3.04 (0.14) 2.65 (0.08) 2.16 (0.03) 0.818 0.736 0.753 0.778
2 2.99 (0.13) 2.88 (0.10) 2.31 (0.03) 2.03 (0.00) 0.751 0.723 0.756 0.783
3 2.99 (0.12) 2.67 (0.08) 2.09 (0.01) 2.01 (0.00) 0.716 0.744 0.776 0.787

Panel 3: DGP II, N = 25
0 2.02 (0.16) 2.03 (0.17) 2.06 (0.18) 2.07 (0.18) 0.349 0.340 0.366 0.370
1 2.01 (0.16) 2.04 (0.17) 2.07 (0.18) 2.07 (0.18) 0.336 0.348 0.374 0.366
2 2.02 (0.16) 2.04 (0.17) 2.07 (0.18) 2.08 (0.18) 0.339 0.347 0.380 0.378
3 2.02 (0.17) 2.06 (0.18) 2.07 (0.18) 2.08 (0.19) 0.343 0.362 0.378 0.395

Panel 4: DGP II, N = 100
0 2.14 (0.08) 2.05 (0.05) 2.04 (0.05) 2.04 (0.05) 0.221 0.189 0.187 0.186
1 2.04 (0.05) 2.04 (0.05) 2.04 (0.05) 2.04 (0.05) 0.189 0.187 0.187 0.187
2 2.04 (0.05) 2.04 (0.05) 2.04 (0.05) 2.04 (0.05) 0.183 0.187 0.187 0.186
3 2.03 (0.04) 2.04 (0.05) 2.04 (0.05) 2.04 (0.05) 0.184 0.187 0.187 0.188

Panel 5: DGP III, N = 25
0 2.02 (1.89) 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 0.111 0.108 0.108 0.109
1 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 0.108 0.108 0.108 0.109
2 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 0.108 0.108 0.108 0.109
3 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 2.00 (1.88) 0.108 0.108 0.108 0.109

Panel 6: DGP III, N = 100
0 2.18 (2.13) 2.05 (2.03) 2.00 (2.00) 2.00 (1.99) 0.079 0.079 0.076 0.076
1 2.22 (2.17) 2.02 (2.01) 2.01 (2.00) 2.00 (1.99) 0.099 0.082 0.078 0.075
2 2.07 (2.05) 2.02 (2.00) 2.00 (2.00) 2.00 (1.99) 0.084 0.078 0.077 0.075
3 2.04 (2.02) 2.01 (2.00) 2.00 (1.99) 2.00 (1.99) 0.081 0.078 0.075 0.075

Panel 7: DGP IV, N = 25
0 2.68 (1.24) 2.05 (1.02) 2.15 (1.05) 2.15 (1.05) 0.623 0.659 0.528 0.528
1 2.05 (1.01) 2.13 (1.04) 2.15 (1.05) 2.15 (1.05) 0.705 0.550 0.528 0.528
2 2.01 (1.00) 2.13 (1.04) 2.15 (1.05) 2.15 (1.05) 0.704 0.545 0.528 0.528
3 2.10 (1.03) 2.15 (1.05) 2.15 (1.05) 2.15 (1.05) 0.595 0.528 0.528 0.528

Panel 8: DGP IV, N = 100
0 2.98 (1.18) 3.12 (1.24) 3.21 (1.26) 3.18 (1.26) 0.556 0.367 0.210 0.242
1 2.98 (1.19) 3.20 (1.26) 3.21 (1.26) 3.16 (1.25) 0.538 0.210 0.212 0.231
2 2.92 (1.19) 3.22 (1.26) 3.18 (1.26) 2.97 (1.20) 0.538 0.210 0.250 0.306
3 3.16 (1.26) 3.21 (1.26) 3.15 (1.25) 2.54 (1.12) 0.225 0.219 0.237 0.421

Table 4.3: Mean choice of M (M1) by the sequential test procedure and the performance of the RND estimates based on the
chosen M (M1) under large error variance (4×) scenarios. All statistics are computed based on 1,000 simulated paths. Columns
2-5 reports the mean M (M1) selected based on the Waldp,q statistic with α = 0.05. Columns 6-9 reports the RMISE, defined
in Eq (26), of the RND estimates based on the LWM model with M chosen by the sequential test. The best and top three test
specifications are highlighted in bold and underlined, respectively. If more than one statistic are bold and underlined, they are of
the same value.
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as shown in Table 4.2. With a small sample size (N = 25), the test tends to pick a smaller M than

the optimal M = 3, which is possibly caused by a lack of power of our testing procedure in small

sample. Nevertheless, the resulting RMISEs based on the chosen M are still better than most of the

competing RND estimators.

The above findings provide useful guidance for the choice of p and q in practice. As the LWM

model is more likely to be misspecified with real data, we recommend choosing at least p = q = 1

to better detect this unknown form of misspecification. For M (M1) chosen based on p, q ∈ {1, 2},
the RMISE is quite robust to different DGPs and sample sizes and is close to the optimal RMISE

presented in Table 4.2. Also, the conventional 5% significance level works well in rejecting misspecified

cases for the N = 100 case. We thus use p = q = 1 with α = 5% in our empirical analysis.

Last, we comment on the validity of the estimated confidence bounds for the LWM-based methods,

with the relevant results presented in Online Appendix F.4. As the confidence bounds constructed

based on Corollary 1 only hold in large samples with the correct model specification, we in general do

not expect the feasible confidence bounds to have correct coverage rates in finite sample. However,

our results show that, when N = 100 with a mild model misspecification, the estimated confidence

bounds are conservative, i.e., the RND are more likely to be included in the confidence bounds than

the nominal confidence level. We therefore believe that, although the estimated confidence bounds are

likely invalid in theory, they can still provide some empirical guidance to the location of the true RND

in practice.

4.2 Alternative Option Error Specifications

In addition to the baseline i.i.d. option error design discussed above, we consider three alternative

error specifications that allow for heteroskedastic and/or strong autoregressive correlation in option

errors. We re-examine the performance of RND estimators based on the LWM method and five other

competitors. To save space, we summarize the main findings here, while relegating the details of the

alternative error designs and key results to Online Appendix F.3.

Consistent with the baseline results, the LWM method works well in extracting different underlying

RNDs with a small number of mixtures (2 or 3) even under heteroskedasticity and/or strong serial

correlation. In detail, the LWM method provides accurate RND estimates with the smallest MTVD

and RMISE amongst all feasible competitors and are comparable to the infeasibly optimal (S)NP

methods. It is worth noting that when the error terms are homoscedastic on the implied volatility

domain, a WNLS approach with inverse squared vega weights, which is approximately optimal in

view of Christoffersen et al. (2018), can yield more precise RND estimates for relatively large M .

This suggests that one can potentially improve the RND estimate by adopting a generalized nonlinear
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least square (GNLS) to solve Eq. (11). However, the performance of the RND estimates with the

approximate optimal weighting scheme still does not convincingly beat the performance with equal

weighting. This is possibly due to the fact that the efficiency gain can only be achieved in the

asymptotic limit when the model is correctly specified, which does not necessarily hold true in finite

samples under a possibly misspecified model. As the equally weighted model provides more robust

finite sample results and is easier to implement than a GNLS design which requires the knowledge

of the dynamic structure of the option errors, we recommend equal weights for the task of RND

estimation. Alternative weighting schemes can serve as robustness checks for the RND estimates,

which is considered in our empirical analysis.

5 Empirical Illustrations

We use two examples to showcase the usefulness of our LWM approach in practice, which also point

outs some caveats of implementing semi-nonparametric methods with real data. In the first example,

we examine the one-month RND estimate of the S&P500 index on 20-Jun-2013. Lu and Qu (2021) show

that this RND is bimodal based on their sieve estimator with the recommended tuning parameters. To

replicate this result, we obtain the closing option quotes written on SPX with one month to expiration

and the risk-free rate from OptionMetrics14. The dataset is then cleaned according to Online Appendix

E to obtain a single cross-section of call option prices based on OTM options. It is worth noting that,

different from Lu and Qu (2021), we only use the mid-quotes from OTM options as they are more

liquidly traded with smaller spreads, and hence less noisy than the ITM options (Aı̈t-sahalia and Lo,

1998). However, our findings based on the sieve estimator does not change qualitatively when using

all puts and calls. The cross-section of call option prices is presented in Fig. 5.1.
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Figure 5.1: Call option prices written on SPX expiring in one month on 20-Jun-2013. The data is obtained from OptionMetrics
which is cleaned according to the procedure in Online Appendix E. The dataset has N = 119 observations.

We consider several estimators in Section 4 to extract the RND from the option prices in Fig. 5.1.

First, we estimate the equally weighted (EW) LWM-based RND with a maximum of 5 mixtures. We

use the sequential test procedure with p = q = 1 and α = 5% to choose the optimal number of mixtures.

14https://optionmetrics.com/
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This gives a 3-LWM RND estimate with M1 = 0, i.e., a pure mixture-of-Weibull density. To replicate

the findings in Fig. 12 of Lu and Qu (2021), we estimate the Sieve(J∗) density without regularization15,

where J∗ = 5 is the truncation order used in Fig. 12 of Lu and Qu (2021). We also consider the PCA

estimator with h∗ = 70 which produces 23 mixtures as recommended by Bondarenko (2003). As a

fully non-parametric benchmark, we estimate RND by the IV spline of Bliss and Panigirtzoglou (2004)

with the smoothing parameter λ selected by a ten-fold cross-validation. Due to the overall inferior

performance of the LLS and the HE method in the simulation, we exclude them from the empirical

analysis for conciseness. We present the RND estimates of different methods and the associated fitted

residuals in Fig. 5.2.
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Panel B: Fitted residuals I - SPX 20-Jun-2013
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Figure 5.2: One-month-ahead RND estimates and the corresponding fitted residuals for the S&P500 index based on the sieve
estimator, PCA, IV spline and the equally weighted M(M1)-LWM method. C.B. stands for confidence bounds. The recommended
tuning parameters used for the semi-nonparametric methods are: J∗ = 5 and ξ = 0 for the Sieve estimator, and h∗ = 70 (23
parameters) for PCA. For the IV spline method, we determine the smoothing parameter λ by a 10-fold cross-validation.

Panel A of Fig. 5.2 reveals a substantial discrepancy between the RND estimates based on different

methods. Sieve(J∗) produces a bimodal RND estimate, which is consistent with the findings in Fig. 12

of Lu and Qu (2021) but different from PCA(h∗) which suggests a thick left tail. The sieve-based RND

estimate produced has a thin left tail which does not agree with the other RND estimates. The IV

spline and the 3-LWM produce very close RND estimates for the majority of the strike range, while

some noisiness in the left tail of the estimated RND is observed for the IV spline method. The heavy

left tail also explains the dominating Weibull component in the 3-LWM density, which is consistent

with the intuition conveyed in Fig. 2.2.

Panel B of Fig. 5.2 presents further details on the goodness-of-fit of the various method to the

observed option process. In detail, both Sieve(J∗) and PCA(h∗) underfit the observed option prices

with evident and distinct sinusoidal patterns in the fitted residuals, which are much larger in magnitude

15This is achieved by setting ξ = 0, which is motivated by our simulation and the findings in Fig. 5.2 that the choice J∗ = 5
is too restrictive, so regularization is not needed. Tuning ξ via a 10-fold cross-validation produces virtually identical
RND estimates.
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than those from the other two methods. The fitted residuals for the IV spline and the 3-LWM method

are of similar scales and without obvious patterns. This indicates that the IV spline and the 3-

LWM method fit the observed option prices substantially better than the two SNP methods with

recommended tuning parameters, while the 3-LWM method produces a smoother RND estimate than

the IV spline method.

In Fig. 5.3 we provide more details on the sequential test procedure and validate that M = 3 is the

appropriate choice of the LWM model in Fig. 5.2. The figure shows that, with M = 2, the LWM model

slightly underfits the observed options with a U-shaped pattern captured by our Fourier regression,

which results in a strong rejection of the Wald test. This pattern vanishes after we increase M to 3

with a flat Fourier regression fit, accompanied by a sharp decrease in the SSE and an insignificant

Wald test. Increasing M further only reduces the SSE slightly but does not seem to improve the

goodness-of-fit further. This is in line with the intended outcome of the sequential testing procedure,

which attempts to choose the smallest M that eliminates severe forms of misspecification. It is worth

noting that the residuals for M ≥ 3 do not appear heteroscedastic in the strike domain, so equal

weights appear to be the appropriate weighting scheme here.
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Figure 5.3: Fitted residual plots and the corresponding Fourier regression fit of the equally weighted LWM model with M ∈ {2, 3, 4}.
The title of each plot state the choice of M and M1, the Wald statistic constructed from Proposition 1 with p = q = 1, and the
sum of squared errors (SSE). *, ** and *** represent significance at 10%, 5% and 1% significance level, respectively.

The above discussion reveals the tuning parameter choice problem for the (S)NP methods dis-

cussed in our simulation, as blindly adopting the recommended choices can lead to heavily biased

RND estimates due to insufficient flexibility. To confirm this point, we adaptively choose the tuning

parameters for the PCA and the sieve method by benchmarking on a smooth RND estimate, which is

taken to be the 3(0)-LWM RND estimate in Fig. 5.2. Specifically, we first compute the fitted option

prices {Ôn}n=1:N from the estimated 3(0)-LWM model. We then fit the (non-penalized) sieve and

the PCA models on {Ôn}n=1:N with various choices16 of J and h, and select J̃ and h̃ that minimize

the total variation distance between the model-fitted RND and the 3(0)-LWM RND by a simple grid

search. Following Lu and Qu (2021), we set the regularization parameter ξ of the sieve estimator by

a 10-fold validation. Importantly, as J̃ and h̃ are computed from fitted instead of the original option

16We consider J ≤ 50 and h ∈ [20, 42], which is sufficiently large to contain the optimal choices.
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prices, it only ensures that the PCA and the sieve model have a similar degree of smoothness as the

3(0)-LWM RND estimate, but it does not necessarily guarantee the convergence of the RND estimates

based on the original data. We find J̃ = 19 and h̃ = 28.1 that corresponds to 53 mixtures for the

PCA method, both of which suggest that the flexibility of the two models needs to be substantially

increased to fit the benchmark RND.

Finally, we also consider an inverse Vega weighted LWM estimator (see footnote 4), where the

option Vegas are computed from a smoothing cubic spline of observed IVs with a smoothing parameter

of 10−4. The sequential test suggests M = 4 with M1 = 2. The RND estimates and the fitted residuals

of these estimators are shown in Fig. 5.4.
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Figure 5.4: One-month-ahead RND estimates and the corresponding fitted residuals for the S&P500 index based on the sieve
estimator, PCA, and the M(M1)-LWM method with inverse Vega weights (VW) or equal weights (EW). C.B. stands for confidence

bounds. The tuning parameters used for the semi-nonparametric methods are: J̃ = 19 and ξ = 3.14× 10−4 for the Sieve estimator
and h̃ = 28.1 (53 parameters) for PCA.

Panel A of Fig. 5.4 shows that, after increasing the flexibility of the SNP methods, the RND

estimates of both Sieve(J̃) and PCA(h̃) are much closer to our 3-LWM estimates in Fig. 5.2. However,

the left tails of the SNP-based RND estimates are less smooth than the LWM methods, which can be

attributed to a potentially excessive flexibility of the SNP-based density. Although the Vega weighted

LWM method suggests an additional lognormal component in the mixture, the estimated RND largely

coincides with the equally weighted one. It is thus not surprising to see that all models have comparable

goodness-of-fit to the observed option prices, as demonstrate in Panel B of the figure.

Our previous example demonstrates that the bimodality of the sieve-based RND estimate is likely

spurious. The unimodal RND with a heavy left tail as suggested by the LWM method is more

parsimonious with a satisfactory fit to the observed option prices, which leads to a smoother RND

estimate than the fine-tuned (semi)-nonparametric contenders considered here. In our second example,

we demonstrate that the LWM method allows us to detect genuine bimodality in the empirical RND
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driven by binary outcomes in political events which might have been overlooked in the literature.

Following Ferreira et al. (2022) and Kostakis et al. (2023), we examine the RNDs around the

release of the Brexit referendum result on 24 June, 2016. In detail, we replicate Panel B of Fig. 3 and

Panel C-D of Fig. 4 in Kostakis et al. (2023) by estimating the RND of the FTSE100 index on 15th

July 2016 using end-of-day option midquotes traded on 23 and 24 June, 2016.17 We present the two

cross-sections of option prices and the corresponding IV curves in Fig. 5.5. The figure shows a 2.7%

drop of the forward price of the FTSE100 index after the Brexit referendum, which is likely caused

by the ‘leave’ outcome. It is also worth noting that, unlike the usual volatility smirk observed on 24

June, the IV curve on 23 June has an unusual locally concave curvature in the ATM region, which

motivates our analysis below.
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Figure 5.5: Call option prices written on FTSE100 index expiring on 15th July 2016. The original data is sourced from CME
Datamine which is cleaned according to the procedure in Online Appendix E. The 23-Jun (resp. 24-Jun) dataset has N = 95
(resp. N = 94) observations. Ft in the plots are the corresponding forward prices of the FTSE100 index.

The local concavity of the IV curve requires some further investigation. In fact, Fig. 4 of Kostakis

et al. (2023) shows that the IV curves of both the GBP/USD options and the FTSE100 options are

locally concave on 23th June. The authors fit a quintic IV spline to the observed IV curve to extract

the RND on the strike range, following Bliss and Panigirtzoglou (2004). Interestingly, in their Fig. 3,

the authors only show a bimodal RND for the GBP/RND exchange rates while the FTSE100 RND is

found to be unimodal with a heavy left tail. An inspection of Panel C of their Fig. 4 reveals that the

fitted IV curve completely ignores the concavity in the IV curve, which may be due to underfitting.

Using our LWM approach, we shall verify this argument and show that the RND of the FTSE100

index prior to the Brexit referendum is also likely to be bimodal, which reflects the binary political

event risk in the market.

To this end, we extract the RNDs using our LWM approach and the cubic IV spline method with

the same implementation details as in our first example. As a benchmark, we also replicate the quintic

smoothing IV spline implemented in Kostakis et al. (2023), whose flexibility depends on the tick size

of the options contract. Findings on the sieve and the PCA methods are qualitatively similar to our

17Detailed description of the data can be found in Kostakis et al. (2023). We thank the authors for sharing an excerpt of
their option data with us.
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first example, which we present in Online Appendix F.5. We present the RND estimates before and

after the Brexit referendum in Fig. 5.6.
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Figure 5.6: RND estimates before and after the Brexit referendum based on the option prices in Fig. 5.5. In each figure, the black
and blue dotted lines are the 95% confidence bands of the equally weighted LWM-based RND estimates. The LWM and the cubic
IV spline methods are implemented in the same way as in Fig. 5.2 and Fig. 5.4, and the quintic IV spline method on the strike
range is implemented according to Kostakis et al. (2023).

Panel A of Fig. 5.6 shows that the LWM method produces very similar RND estimates before

and after the referendum under different weighting schemes. The RND estimates on 23-Jun is clearly

bimodal, while the bimodality collapses on 24-Jun after the referendum. It is also intuitive that one

needs more mixtures (M = 5) to fit a bimodal density than a unimodal one (M = 3). This is further

confirmed by the cubic IV spline-based RND estimates in Panel B of the figure. However, the quintic

IV spline-based RND estimates suggest unimodal RND estimates on both dates, which is identical to

Panel B of Fig. 3 in Kostakis et al. (2023).

To evaluate the goodness-of-fit of the RND estimates in Fig. 5.6, in Fig. 5.7 we plot the corre-

sponding model residuals in both the price and the IV domains. Further diagnostic information about

the residuals are presented in Table 5.1. Fig. 5.7 shows that both price and IV residuals from the

quintic IV spline method are large in magnitude with evident sinusoidal patterns, which clearly differs

from the three competing estimators. Table 5.1 further confirms the poor fit of the quintic IV spline to

the observed data, as its SSEs are hundreds of times larger than those of the other methods. It is also

worth noting that the cubic IV spline has the smallest SSEs which results from the cross-validation,

but the RND estimates can be quite noisy in the tails, as is shown in Fig. 5.6. As a sanity check, one

can verify that the LWM (VW) model has better SSE in the IV domain than the LWM (EW) model

and vice versa, as the inverse Vega weights allow us to approximately minimize the SSE in the IV

domain as intended.

The above empirical findings suggest that the unimodal RND estimate on 23-June prior to the

36



4500 5000 5500 6000 6500

Strike

-10

-5

0

5

10
Panel A: Price residuals, 23-Jun

4500 5000 5500 6000 6500

Strike

-0.02

-0.01

0

0.01

0.02
Panel B: IV residuals, 23-Jun

4500 5000 5500 6000 6500

Strike

-4

-3

-2

-1

0

1

2
Panel C: Price residuals, 24-Jun

4500 5000 5500 6000 6500

Strike

-0.01

-0.005

0

0.005

0.01

0.015

R
e

s
id

u
a

ls
: 

IV

Panel D: IV residuals, 24-Jun

Quintic IV Spline

Cubic IV Spline

LWM (VW)

LWM (EW)

Figure 5.7: Option price and IV residuals associated with the RND estimates in Figure 5.6. For each estimator, the price residuals

(resp. IV residuals) are defined as On − Ôn (resp. IVn − ÎV n), where On and Ôn (resp. IVn and ÎV n) denote the observed and
the model-implied option prices (resp. implied volatilities) at strike Kn, respectively.

23-Jun-2016 24-Jun-2016

Estimators M M1 SSE(O) SSE(IV)×103 Wald1,1 M M1 SSE(O) SSE(IV)×103 Wald1,1

LWM (EW) 2 0 181.943 4.514 16.781*** 2 0 7.285 0.699 6.879
3 1 24.192 2.175 15.028*** 3 1 2.324 0.339 7.150
4 2 19.363 0.798 10.220** 4 1 2.284 0.356 8.665*
5 3 4.569 0.411 8.018*

LWM (VW) 2 0 261.985 1.458 10.261** 2 0 17.088 0.414 11.849**
3 1 59.912 0.887 11.104** 3 0 9.054 0.330 7.482
4 2 39.166 0.377 10.351** 4 1 11.639 0.314 21.514***
5 2 7.777 0.208 8.637*

Cubic IV spline 3.473 0.140 2.101 0.244
Quintic IV spline 702.134 3.450 174.485 1.548

Table 5.1: Residual Diagnostics for the RND estimates in Figure 5.6. SSE(O) and SSE(IV) stands for sum of squared errors based
on prices and IVs, respectively. For the LWM models, the chosen M based on the sequential test procedure is highlighted in bold.

Brexit referendum in Kostakis et al. (2023) is likely due to an over-smoothed quintic IV spline. Instead,

a bimodal RND as shown in Fig. 5.6 provides a much better fit to the empirically observed data, which

can also be naturally explained by the market’s anticipation of binary political event risk as pointed

out by Hanke et al. (2018), Ferreira et al. (2022), Kostakis et al. (2023). Importantly, the LWM

approach produces smooth RND estimates that also provide a reasonably good fit to the observed

data, which strike a desirable balance between the misspecified or over-fitting spline-based methods.

To sum up, the two examples demonstrate the flexibility and parsimony of the LMW method,

as it can reliably recover complex empirical RNDs with heavy left tails or bimodality using up to 5

mixtures. The number of free parameters is typically much less than those of the SNP alternatives that

achieve a comparable fit (see e.g., Fig. 5.2) after some careful tuning. We stress that the LWM method

requires minimal tuning — one simply chooses the smallest M that eliminates obvious misspecification

by our sequential test procedure. The additional confidence bounds for the LWM method also allow

us to conservatively evaluate the precision of the RND estimates. Based on the above discussions, we

argue that the LWM method provides a reliable parametric RND extraction technique which should

be considered in practice. Our results also reveal that some recommended tuning parameters for the

SNP methods can produce highly unreliable RND estimates due to a lack of flexibility, which can
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potentially be avoided by examining the fitted residuals. This highlights the importance of diagnostic

testing for (semi)-nonparametric RND extraction tools which is largely overlooked in literature.

6 Concluding Remarks

This paper proposes a parametric RND extraction method based on a finite lognormal-Weibull mix-

ture (LWM) density. We develop formal asymptotic theory for the estimator in a general misspecified

framework. Based on the theoretical results, we propose a simple sequential test procedure to choose

the number of mixtures M iteratively, which consequently determines the number of lognormal mix-

tures M1. Both simulation and empirical analyses confirm that our LWM approach provides more

reliable RND estimates that better fit the observed data and are more robust to tuning than popular

(S)NP competitors. We argue that the precision gain mainly comes from the flexibility of the novel

LWM density, which can approximate typical empirical RNDs with a much smaller number of param-

eters than the (S)NP approach. Therefore, despite its relatively higher computation costs, we believe

that our LWM method provides a valuable parametric tool for practical RND extraction tasks.

Supplementary Material

The supplementary material of this paper contains: (1) the Online Appendix containing proofs and

further results; (2) a MATLAB toolbox to implement the LWM method proposed in this paper, and

the data used in our empirical analysis. It can be accessed from the publishers website.
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Abstract

In the online appendix, we present all the proofs of the paper in Online Appendix A. Computation

and implementation details of the LWM method are described in Online Appendix B. Online Ap-

pendix C explains how we simulate option prices from the three-factor stochastic volatility model.

Implementation of the competing RND estimators is discussed in Online Appendix D. Data clean-

ing procedures for our empirical application can be found in Online Appendix E. Finally, Online

Appendix F contains additional simulation and empirical results.

A Proofs

Proof to Theorem 1. We start with a useful lemma which characterizes some important properties of

the space Θ̃M :

Lemma A.1. The following results hold:

(a) The quotient map π is a continuous function. For every g ∈ G and its dual g̃, it holds that g = g̃◦π.

In addition, if g is continuous, then so is g̃.

(b) If ΘM is compact, then so is Θ̃M .

(c) If ΘM is a metric space equipped with some metric d, then Θ̃M is also a metric space equipped

with the metric d̃ defined as:

d̃([θ1], [θ2]) := inf
θ1∈[θ1],θ2∈[θ2]

d(θ1, θ2). (A.1)

(d) If a sequence of random variables θn satisfies θn → θ on ΘM , then [θn]→ [θ] on Θ̃M with the same

mode of convergence. Conversely, if [θn]→ [θ] on Θ̃M , then for an arbitrary element θ∗ ∈ [θ], there



exists a sequence θ∗n → θ∗ on ΘM with the same mode of convergence, and each θ∗n is a permutation

of θn. The modes of convergence are either almost surely, in probability or in distribution.

Proof to Lemma A.1. Claim (a) is a well-known result in topology (see e.g. Singh (2019) Ch. 6.1).

Claim (b) is immediate from (a) as the image of a continuous function on a compact set is also

compact.

For claim (c), we need to verify that d̃ is indeed a metric. The following properties are trivial:

d̃([θ1], [θ2]) = 0⇔ [θ1] = [θ2], d̃([θ1], [θ2]) = d̃([θ2], [θ1]). We now prove the triangle inequality, that is:

d̃([θ1], [θ3]) ≤ d̃([θ1], [θ2]) + d̃([θ2], [θ3]). To this end, we note that by construction we can always find

some (not necessarily unique) θ∗1 ∈ [θ1] and θ∗2 ∈ [θ2] such that d̃([θ1], [θ2]) = d(θ∗1, θ
∗
2). The triangle

inequality thus follows from:

d̃([θ1], [θ3]) = d(θ∗1, θ
∗
3) ≤ d(θ∗1, θ

∗
2) + d(θ∗2, θ

∗
3) = d̃([θ1], [θ2]) + d̃([θ2], [θ3]). (A.2)

This proves that d̃ is a metric and thus claim (c) follows.

The first part of claim (d) is a direct result of the continuous mapping theorem. For the second

part, define the function ϕ([θ]; θ∗) = argminθ∈[θ] d(θ, θ∗), which is clearly continuous in the first argu-

ment and satisfies ϕ([θ]; θ) = θ. The desired result then follows from the continuous mapping theorem

by setting θ∗n = ϕ([θn]; θ∗), and note that θ∗n is by construction a permutation of θn. This completes

the proof.

It is easy to see that the corresponding free parameter space and the associated quotient space,

namely ΘM and Θ̃M , also satisfy Lemma A.1. Now back to the proof of Theorem 1, which largely

follows from Lemmas 2.2 of White (1980) and Theorem 2.3 of White and Domowitz (1984). We firstly

show that a version of the uniform law of large numbers (ULLN) holds for the function QN (ϑ) on ΘM .

Consider the function:

qn(ϑ) := ωn(un +O∗(Kn)−O(Kn;ϑ))2/2. (A.3)

Since the space ΘM is compact and O(K,ϑ), ωn are bounded by assumption, we clearly have:

|qn(ϑ)| ≤M(O∗(Kn)−O(Kn;ϑ))2 +Mu2
n, ∀n ∈ {1, . . . , N}, (A.4)

where M is an upper bound of ω(x), thus E[|qn(ϑ)|2] <∞ by Assumptions 3 and 5. By the exponential

mixing rate of un, the conditions of Theorem 2.3 of White and Domowitz (1984) are satisfied, which
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leads to the following ULLN:

∣∣∣N−1
N∑

n=1

(qn(ϑ)− E[qn(ϑ)])
∣∣∣ =

∣∣∣QN (ϑ)− E[QN (ϑ)]
∣∣∣ a.s.→ 0, (A.5)

uniformly on ΘM as N → ∞. As uniform convergence is preserved under a uniform continuous

mapping, the ULLN holds also on the quotient space in the following sense:

|Q̃N ([ϑ])− E[Q̃N ([ϑ])]| a.s.→ 0, (A.6)

uniformly on Θ̃M as N →∞. To use Lemma 2.2 of White (1980), we now prove that E[Q̃N ([ϑ])] has

an identifiably unique minimum at [ϑ∗]. To see this, note that:

E[Q̃N ([ϑ])] = (2N)−1
N∑

n=1

ωn(Õ(Kn; [ϑ])−O∗(Kn))2 + (2N)−1
N∑

n=1

ωnγ
2
n. (A.7)

Both terms are Riemann sums which converge to a definite integral over K. We can derive the following

result from Assumption 2:

sup
1≤n≤N

|Kn −Kn−1| = sup
1≤n≤N

|κ−1
( n
N

)
− κ−1

(n− 1

N

)
+ o(N−1)|

= sup
1≤n≤N

|κ−1(c)/N + o(N−1)| = O(N−1),
(A.8)

where c ∈ [(n− 1)/N, n/N ] which exists due to the mean value theorem, and note that κ−1(x) is the

inverse function of κ(x) which is bounded by assumption. This result shows that the mesh of the strike

grid approaches zero uniformly on K, and similarly: sup1≤n≤N |κ(Kn) − κ(Kn−1)| = 1/N + o(N−1).

As a result, the first sum in Eq. (A.7) converges pointwise to:

1

2

N∑

n=1

ωn(Õ(Kn; [ϑ])−O∗(Kn))2(κ(Kn)− κ(Kn−1) + o(N−1))→ Q̃([ϑ])/2, (A.9)

which is uniform on Θ̃M by a standard subsequence argument. Similarly, the second sum in Eq. (A.7)

converges to a constant which is irrelevant for optimization purposes. By the discussion below Lemma

2.2 of White (1980), [ϑ∗] is the identifiably unique minimum of E[Q̃N ([ϑ])] by Assumption 6. As Θ̃M

is a metric space due to Lemma A.1(c), Lemma 2 of Jennrich (1969) is applicable. Then, Lemma 2.2

of White (1980) readily applies, which shows that a sequence [ϑ̂N ] that minimizes Q̃N ([ϑ]) exists, and

[ϑ̂N ]
a.s.→ [ϑ∗]. This completes the proof.

Proof of Theorem 2. Theorem 1 and Lemma A.1(d) ensure that, for the sequence of estimators [ϑ̂N ]

which converges a.s. to [ϑ∗], ϑ̂N must belong to a sequence which converges a.s. to an element in
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[ϑ∗]. With some abuse of notation we write ϑ̂N
a.s.→ ϑ∗ noting that the sequence ϑ̂N may be permuted

accordingly for each N to facilitate the convergence. It suffices to study the asymptotic distribution

of the permuted sequence ϑ̂N . We start with the following lemma, which plays a central role in the

asymptotic normality result.

Lemma A.2. Let ψ : K 7→ Rk denote a k-dimensional bounded and element-wise Hölder continuous

function and write ψn := ψ(Kn). As N →∞, for arbitrary sequence of weights {ωn}n=1:N that satisfy

Assumption 5, the following results hold:

1. (Law of Large Numbers) N−1
∑N

n=1 ωnψnun
p→ 0k×1.

2. We have:

Var[N−1/2
N∑

n=1

ωnψnun]→ Σ := σ2
Z

∫

K
ω2(x)γ2(x)ψ(x)ψ(x)ᵀdκ(x). (A.10)

3. (Central Limit Theorem) N−1/2
∑N

n=1 ωnψnun
d→ N (0,Σ).

Proof. To prove the first claim, we can take {Fn,N} with Fn,N = σ(u1,N , u2,N , . . . , un,N ) as the filtra-

tion of the triangular array (un,N ), then (ωnψnun,N ,Fn,N ) is an uniformly integrable L1-mixingale in

view of Andrews (1988), and claim 1 follows element-wise from Theorem 1 of Andrews (1988).

For the second claim, note that:

Var[N−1/2
N∑

n=1

ωnψnun]

=
1

N

( N∑

n=1

ω2
nE[u2

n]ψnψ
ᵀ
n +

N−1∑

j=1

N∑

n=j+1

ωnωn−jE[unun−j ](ψnψ
ᵀ
n−j + ψn−jψᵀ

n)
)

=
1

N

( N∑

n=1

ω2
nγ

2
nψnψ

ᵀ
n +

N−1∑

j=1

ρj

N∑

n=j+1

ωnωn−jγnγn−j(ψnψ
ᵀ
n−j + ψn−jψᵀ

n)
)
,

(A.11)

where we use the notation ρj := E[ZtZt−j ]. The following result follows from a Riemann sum approx-

imation similar to Eq. (A.9):

1

N

N∑

n=1

γ2
nψnψ

ᵀ
n →

∫

K
γ2(x)ψ(x)ψ(x)ᵀdκ(x). (A.12)

For the second term in Eq. (A.11), we note that the Hölder continuity of γ(x) implies that, there exists

some α ∈ (0, 1] and some finite constant C such that:

|γn−j − γn| ≤ C|Kn −Kn−j |α = O((j/N)α), (A.13)

where the last estimate follows from Eq. (A.8). This implies that γn−j = γn +O((j/N)α). The same
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result holds for ωn and ψn with possibly different C and α due to the Hölder continuity assumption,

and we shall take the largest C and the smallest α of all functions henceforward. We thus have:

ωnωn−jγnγn−j(ψnψ
ᵀ
n−j + ψn−jψᵀ

n) = 2ω2
nγ

2
nψnψ

ᵀ
n +O((j/N)α) + o((j/N)α). (A.14)

We therefore see that:

N−1∑

j=1

ρj

N∑

n=j+1

ωnωn−jγnγn−j(ψnψ
ᵀ
n−j + ψn−jψᵀ

n)

=
N−1∑

j=1

ρj

(
2

N∑

n=1

ω2
nγ

2
nψnψ

ᵀ
n − 2

j∑

n=1

ω2
nγ

2
nψnψ

ᵀ
n + (N − j − 1)O((j/N)α)

)

=

N−1∑

j=1

ρj

(
2

N∑

n=1

ω2
nγ

2
nψnψ

ᵀ
n +O(j) + (N − j − 1)O((j/N)α)

)
.

(A.15)

As a result, with N →∞ we find that:

1

N

N−1∑

j=1

ρj

N∑

n=j+1

ωnωn−jγnγn−j(ψnψ
ᵀ
n−j + ψn−jψᵀ

n)

=

N−1∑

j=1

ρj

( 2

N

N∑

n=1

ω2
nγ

2
nψnψ

ᵀ
n +O(j/N) +O((j/N)α)

)

→2

∫

K
ω2(x)γ2(x)ψ(x)ψ(x)ᵀdκ(x)

∞∑

j=1

ρj + o(1).

(A.16)

The last convergence follows from the fact that
∑N

j=1 j
αρj → O(1) for any α > 0 due to the exponential

mixing rate of Zt. The second claim therefore follows directly from Eqs. (A.12) and (A.16).

For claim 3, it suffices to notice that un is near-epoch dependent on Zn with an arbitrarily small

size due to its exponential mixing rate.1 Then by claim 2 of the lemma, the exponential mixing rate

and the finite fourth moment of Zt, the central limit result follows from Theorem 4.2(b) of Pötscher

and Prucha (1991). This completes the proof.

The theorem now follows by an application of Theorem 2.4 of Domowitz and White (1982). We do

so by verifying the conditions of the theorem. First, one should realize that the conditions in Theorem

2.2 of Domowitz and White (1982) is implied by the proof of Theorem 1, where the equicontinuity of the

limiting quantity Q(ϑ) holds trivially as it is unique. Second, QN (ϑ) is at least twice differentiable with

bounded derivatives on the compact parameter space ΘM by the functional forms of CLN and CWB.

Third, Eq. (11) and Assumption 6 ensure that ϑ̂N ∈ int(ΘM ) for all N . Write ∇QN (ϑ) := ∂QN (ϑ)/∂ϑ

1For a definition of near-epoch dependence and its size, see e.g. Wooldridge and White (1988).

5



as the (3M − 2)-by-1 gradient vector of QN (ϑ), which has the following explicit form:

∇QN (ϑ) = −N−1
( N∑

n=1

ωn∇O(Kn;ϑ)un +
N∑

n=1

ωn∇O(Kn;ϑ)(O∗(Kn)−O(Kn;ϑ))
)
, (A.17)

where ∇O(K;ϑ) := ∂O(K;ϑ)/∂ϑ. Let us denote ϑ∗N as the minimizer of E[QN (ϑ)] (which is tail

equivalent to ϑ̂N ), then the second term in Eq. (A.17) vanishes when we evaluate ∇QN (ϑ) at ϑ∗N by

construction. A direct application of Lemma A.2 to ∇QN (ϑ∗N ) yields:

√
N∇QN (ϑ∗N )

d→ N (0,B∗), (A.18)

where:

B∗ := σ2
Z

∫

K
ω2(x)γ2(x)∇O(x;ϑ∗)∇O(x;ϑ∗)ᵀdκ(x), (A.19)

which is clearly positive definite. Finally, let ∇2QN (ϑ) denote the Hessian of QN (ϑ), which has the

following expression:

∇2QN (ϑ) = N−1
( N∑

n=1

ωn∇O(Kn;ϑ)∇O(Kn;ϑ)ᵀ −
N∑

n=1

ωn∇2O(Kn;ϑ)εn(ϑ)
)
. (A.20)

By the ULLN used in the proof of Theorem 1 and a Riemann sum argument, we see that |∇2QN (ϑ)−
∇2Q(ϑ)/2| a.s.→ 0 uniformly for all ϑ ∈ ΘM , where Q(ϑ) is the counterpart of Q̃([ϑ]) defined on the

original free parameter space with the following integral form:

∇2Q(ϑ) := 2

∫

K

(
∇O(x;ϑ)∇O(x;ϑ)ᵀ −∇2O(x;ϑ)(O∗(x)−O(x;ϑ))

)
ω(x)dκ(x), (A.21)

which is trivially equicontinuous. Thus all the conditions of Theorem 2.4 are now verified. Writing

A∗ = ∇2Q(ϑ∗)/2 which is positive definite in a neighbourhood of ϑ∗ by Assumption 6, Theorem 2.4

of Domowitz and White (1982) deduces the following central limit result:

√
NA∗(ϑ̂N − ϑ∗) d→ N (0,B∗) = ξ, (A.22)

or equivalently, ϑ̂N
d→ ϑ∗ + N−1/2(A∗)−1ξ, up to a suitable permutation of the LHS. Then [ϑ̂N ]

d→
[ϑ∗ +N−1/2(A∗)−1ξ] follows directly by Lemma A.1(d) , and the proof is complete.

Proof of Corollary 1. Take the dual of g which is denoted by g̃. The almost sure convergence follows

directly by applying g̃ to both side of the results in Theorem 1 using g̃([ϑ]) = g(ϑ). For the asymptotic
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normality, Theorem 2 and the continuous mapping theorem implies that:

g(ϑ̂N ) = g̃([ϑ̂N ])
d→ g̃([ϑ∗ +N−1/2(A∗)−1ξ]) = g(ϑ∗ +N−1/2(A∗)−1ξ). (A.23)

The corollary thus follows in the same spirit as a multivariate delta method. This completes the

proof.

Proof of Proposition 1. Notice that ε̂ = W
1/2
N ε̂, where WN is the N -by-N dimensional matrix of

regression weights, and ε̂ is the N -by-1 vector of the fitted WNLS residuals. Starting with the standard

expression of β̂ under the null:

β̂ = (XᵀX)−1XᵀW 1/2
N ε̂ = (XᵀX)−1XᵀW 1/2

N (u+O(ϑ∗)−O(ϑ̂N )),

where u := {un}ᵀn=1:N and O(ϑ) := {O(Kn;ϑ)}ᵀn=1:N are the vectorized versions of the option errors

and option prices, respectively. We use the following canonical asymptotic representation of the WNLS

residuals:

ε̂ = (IN − JO(ϑ∗)(JO(ϑ∗)ᵀWNJO(ϑ∗))−1JO(ϑ∗)ᵀWN )u+ op(N
−1/2), (A.24)

which follows by a mean value expansion of O(ϑ∗) −O(x) around ϑ∗, and the op(N
−1/2) estimate is

due to the
√
N consistency of ϑ̂N . To see this, we note that, under the null hypothesis, by a Taylor

expansion of the first order condition of Eq. (11) similar to the proof of Theorem 2.4 in Domowitz and

White (1982), we have:

√
N(ϑ̂N − ϑ∗) = −

√
N(A∗)−1∇QN (ϑ∗) + op(1)

= N−1/2(A∗)−1JO(ϑ∗)ᵀWNu+ op(1),
(A.25)

due to the relation ∇QN (ϑ∗) = −N−1JO(ϑ∗)ᵀWNu. Also, under the null hypothesis of correct

model specification, we have limN→∞ JO(ϑ∗)ᵀWNJO(ϑ∗)/N → A∗ which follows from Eq. (A.21) by

a Riemann sum argument.

We proceed to derive the asymptotic distribution for β̂. Write Xn as the nth row of X, which

satisfies Xn ≡ X(Kn), where X : K 7→ Rp+2q+1 is simply the Fourier polynomial defined in Eq. (19)

(up to a change of variable). One should verify that X(K) is bounded and smooth on K. Then the

following (uniform) convergence holds by a Riemann sum argument:

N−1XᵀX →
∫

K
X(x)ᵀX(x)dκ(x) := L1,

N−1XᵀW 1/2
N JO(ϑ)(A∗)−1 →

∫

K

√
ω(x)X(x)ᵀ∇O(x;ϑ)(A∗)−1dκ(x) := L2(ϑ),

(A.26)
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where JO(ϑ) is the N -by-(3M − 2) Jacobian matrix of O(ϑ), L1 and L2(ϑ) are a finite matrix and a

smooth matrix-valued function, respectively. Then by a standard Delta method argument and in view

of Eq. (A.26):

(XᵀX)−1XᵀW 1/2
N (O(ϑ∗)−O(ϑ̂N )) = −N−1L−1

1 L2(ϑ∗)JO(ϑ∗)ᵀWNu+ op(N−1/2). (A.27)

Substituting these into the expression of β̂, we arrive at:

β̂ = N−1L−1
1 (XᵀW 1/2

N −L2(ϑ∗)JO(ϑ∗)ᵀWN )u+ op(N
−1/2). (A.28)

From here it should be clear that E[β̂]→ 0 and β̂ is asymptotically equivalent to a weighted average

of {un}n=1:N . A direct application of Lemma A.2.2 thus gives:

lim
N→∞

Var[
√
N β̂]→ V ∗ = σ2

ZL
−1
1

(∫

K
γ(x)2l(x;ϑ∗)l(x;ϑ∗)ᵀdκ(x)

)
L−1

1 , (A.29)

where l(x;ϑ) is the following smooth vector-valued function:

l(x;ϑ) = X(x)ᵀ
√
ω(x)−L2(ϑ)∇O(x;ϑ)ω(x). (A.30)

Clearly, V ∗ is positive definite by construction. Lemma A.2.3 thus concludes that
√
N β̂

d→ N (0,V ∗),

and hence N β̂
ᵀ
(V ∗)−1β̂

d→ χ2
p+2q+1. Finally, it suffices to notice that V̂ is simply the Newey-West es-

timator of V ∗ with the limiting quantities L1 and l(x;ϑ) replaced by their sample counterparts, whose

consistency and positive semi-definiteness follows from Newey and West (1987) under the exponential

mixing of u assumed in Assumption 3. This completes the proof.

B Computational Details of the LWM Method

This section documents the computational details of the M -LWM method used in our simulation

and empirical analyses, including (1) a global search algorithm to estimate the model parameters; (2)

various closed-form expressions for the derivatives of the WNLS regression.

B.1 The Global Search Algorithm

The global search algorithm is designed to solve the problem Eq. (11) for the branching step in our

sequential testing procedure. We present the details of this algorithm below.

Step 1: Initialization. Here we present some details of the initialization step in our sequential
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test procedure. We solve Eq. (11) with both M1 = 0 and M1 = 1 to obtain the estimated scale

parameters k̂(0) and σ̂(0), and the optimized objective function values Q
(1)
N (k̂(0); 0) and Q

(1)
N (σ̂(0); 1).

As this is a univariate optimization problem, obtaining parameter estimates is fairly straightforward.

For example, one can set the initial guess of σ̂(0) to be σATM , where σATM is the at-the-money Black-

implied volatility. This can be conveniently computed using the following closed-form expression (see

Orlando and Taglialatela (2017)):

σATM =

√
8

τ
erf−1

(
O(Ft)

Ft

)
, (B.1)

where erf−1(x) is the inverse error function, and O(Ft) is the at-the-money call option price, which

can be computed from the observed option prices by interpolation. Let us denote Q = Q
(1)
N (k̂(0); 0) ∧

Q
(1)
N (σ̂(0); 1), which serves as an upper bound for the optimization problem when we add more mixtures.

Step 2: Branching. In this step, we detail the branching step in our sequential test procedure. To

this end, we shall assume that we obtained the (M − 1)-LWM parameter estimate θ̂
M

(M−1)
1

, where the

subscript indicates both the number of mixtures and the number of lognormal components, and the

dependence on N is suppressed for convenience. We shall also assume that the sequential test rejects

the M − 1 mixture case with M < M , so it is necessary to estimate an M -LWM model.

In the branching step, we build a M -LWM model by adding either a lognormal or a Weibull

component to the estimated (M − 1)-LWM model. As both models nest the estimated (M − 1)-LWM

model, the minimized objective function value Q = QN (θ̂
M

(M−1)
1

) serves as a natural upper bound for

the M -mixture objective function. We discuss how to estimate this M -LWM model in the following

substeps.

Substep 2.1: Generating Initial Guesses. We estimate the M -LWM model using a standard non-

linear constrained programme minimizer (e.g., fmincon in MATLAB2). To this end, we need to provide

an initial guess of the solution. Based on the evolutionary estimation of the MLN model discussed in

Bondarenko (2003), we shall use the parameter estimates θ̂
M

(M−1)
1

from the previous (M − 1)-mixture

as the starting values for the first M − 1 mixtures. We thus only need to provide an initial guess to

the parameters of the additional Mth density, which we denote as F (M), σ(M) (or k(M) for the Weibull

case). We draw these uniformly from the following intervals:

F (M) ∈ [e−3
√
τσATMFt, e

√
τσATMFt], σ(M) ∈ [

σ̂(0)

2
,
3σ̂(0)

2
], k(M) ∈ [

k̂(0)

2
,
3k̂(0)

2
]. (B.2)

Intuitively, F (M) is drawn from the range that corresponds to a log-moneyness between −3 and 1,

2Further computational details of the implementation of our LWM method can be found in the supplementary material
of the paper.
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while σ(M) and k(M) are proportional to the parameter estimates in the M = 1 case, which serves as

benchmarks to determine the relative sizes of the initial guesses. The constants in the ranges above

are only chosen to ensure that the additional density is not too ill-behaved, and different reasonable

choices do not affect the optimization performance.

To obtain initial guesses for w(i) given the initial guesses for F (i), σ(i) and k(i), we simply opti-

mize Eq. (11) by holding F (i), σ(i) and k(i) constant. In this case, Eq. (11) reduces to a quadratic

programming problem, which can be efficiently solved by standard quadratic programming packages

(e.g., quadprog in MATLAB). Combining the initial guesses for w(i) with F (i), σ(i) and k(i), we arrive

at a random starting point denoted by θig. To avoid a bad random draw of the additional density, we

repeatedly draw θig 100 times and choose the starting point as the best θig with the smallest objective

function of Eq. (11). Notice that θig always improves over θ̂
M

(M−1)
1

in the sense that Q > Q
(M)
N (θig)

by construction.

Substep 2.2: Local Optimization. Using θig obtained from the previous step as starting points, we

solve Eq. (11) twice to obtain a set of candidate solutions θ̂
M

(M−)
1

and θ̂
M

(M+)
1

, where M
(M−)
1 = M

(M−1)
1

(so that the additional density is Weibull), while M
(M+)
1 = M

(M−)
1 +1. We use the analytical gradient

and Hessian in this procedure to improve the computational efficiency and stability, whose expressions

can be found in Section B.2. Note that we discard the solution θ̂
M

(M±)
1

if Q
(M)
N (θ̂

M
(M±)
1

) > Q, or if the

constraints on the parameters are not satisfied. These are infeasible solutions to Eq. (11) that should

be avoided.

Substep 2.3: Initial Value Perturbation. We repeat substeps 2.1 and 2.2 to generate multiple

solutions of θ̂
M

(M±)
1

which may be different due to the randomness in θig, and we retain the solution

with the smallest objective function value. In our simulation and empirical analysis, we pick the best

solutions θ̂
M

(M±)
1

out of five candidate solutions to Eq. (11).

Substep 2.4: Choosing the LWM mixture. In view of Eq. (23), θ̂
M

(M±)
1

solves the optimization

problem for ϑN for the given choice of M1 ∈ {M (M−)
1 ,M

(M+)
1 }. The choice of M

(M)
1 that solves

Eq. (23) is now obvious:

M
(M)
1 = argmin

M1∈{M(M−)
1 ,M

(M+)
1 }

QN (θ̂M1 ;M1), (B.3)

and the pair (θ̂
M

(M)
1

,M
(M)
1 ) is understood as the solution to Eq. (23).

Step 3: Testing and Iteration. With (θ̂
M

(M)
1

,M
(M)
1 ), we can proceed to the testing step in the

sequential test procedure and check whether the current model is misspecified. If the test is rejected

and M < M , we go back to Step 2 and use θ̂
M

(M)
1

as the prior parameter estimate which serves as the

starting point of the (M + 1)-mixture case. We also update Q = QN (θ̂
M

(M)
1

;M
(M)
1 ) as the new upper

bound for the numerical optimization. Otherwise, we terminate the sequential test procedure with the

10



solution (θ̂
M

(M)
1

,M
(M)
1 ).

B.2 Analytical Expressions for the Gradients and Hessians

This section gives the analytical formulas for the gradients and Hessians of the optimization problem

in Eq. (11), which are also used in the construction of the diagnostic tests. Before we state our results,

we introduce some notation for the extended option Greeks based on a lognormal RND:

∆LN :=
∂CLN
∂F

= e−rf τΦ(d1), υLN :=
∂CLN
∂σ

= e−rf τFφ(d1)
√
τ ,

ΓLN :=
∂2CLN
∂F 2

=
e−rf τφ(d1)

σF
√
τ

, ςLN :=
∂2CLN
∂σ2

= υd1d2/σ,

ηLN :=
∂2CLN
∂σ∂F

= −e
−rf τφ(d1)d2

σ
,

(B.4)

where CLN corresponds to the Black (1976) model for call option in Eq. (9) and φ(·) is the PDF of a

standard normal distribution. The put option counterparts of the above Greeks can also be derived

analogously, which is omitted for brevity.

We also present some option Greeks based on a Weibull RND, and for notational convenience, we

shall also denote the scale parameter of the Weibull density using σ instead of k:

∆WB :=
∂CWB

∂F
= e−rf τΥ1+σ(g(K;F, σ)),

ΓWB :=
∂2CWB

∂F 2
= e−rf τ

K2

F 2
fWB(K;F, σ).

(B.5)

where CWB corresponds to the call option pricing function in Eq. (6). The derivatives w.r.t. σ are

denoted as υWB, ςWB and ηWB, defined similar to those in Eq. (B.4). However, the expressions of

these derivatives involve Meijer’s G function, which is a special non-elementary function that is slow

to compute in MATLAB. We therefore compute them numerically and do not report the analytical

expressions here.

Let us fix some M and M1. Consider the following N -by-M matrices, understood as the matrix

of component-wise option prices and the elementwise derivatives:

O = [O(i)
n ]n=1:N,i=1:M ,∆ = [∆(i)

n ]n=1:N,i=1:M ,υ = [υ(i)
n ]n=1:N,i=1:M ,

Γ = [Γ(i)
n ]n=1:N,i=1:M , ς = [ς(i)

n ]n=1:N,i=1:M ,η = [η(i)
n ]n=1:N,i=1:M ,

(B.6)

where n is the row index and i is the column index. All the elements in the matrix depend on the

type of mixture implicitly. For example, O
(i)
n is the option price for the ith mixture with a strike price

Kn, thus O
(i)
n = OLN (Kn;F (i), σ(i)) if i ≤ M1 and O

(i)
n = OWB(Kn;F (i), σ(i)) otherwise. Elements in

υ, Γ, ς and η are defined analogously.
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We list the gradient vector and the Hessian matrix of QN (θ) in terms of the option Greeks in the

result below:

Proposition B.1. It holds that:

∂QN (θ)

∂θ
= − 1

N
JO(θ)ᵀWNε(θ),

∂2QN (θ)

∂θ∂θᵀ
=

1

N

[
JO(θ)ᵀWNJO(θ)−

N∑

n=1

∇2
θO(Kn; θ)ωnεn(θ)

]
,

(B.7)

where WN is the N -by-N diagonal matrix of regression weights, JO(θ) = [O,∆w,υw] is the N -

by-3M Jacobian matrix, in which w is the M -by-M diagonal matrix with entries {w(i)}i=1:M . The

3M -by-3M Hessian matrix ∇2
θO(Kn; θ) := ∂2O(Kn;θ)

∂θ∂θᵀ has the following non-zero elements:

∂2O(Kn; θ)

∂σ(i)2
= w(i)ς(i)

n ,
∂2O(Kn; θ)

∂σ(i)∂w(i)
= υ(i)

n ,
∂2O(Kn;ϑ)

∂σ(i)∂F (i)
= w(i)η(i)

n ,

∂2O(Kn; θ)

∂F (i)2
= w(i)Γ(i)

n ,
∂2O(Kn; θ)

∂F (i)∂w(i)
= ∆(i)

n .

(B.8)

Proof. The proposition follows from straightforward matrix calculus.

The (partially) analytical derivatives can be used in solving the WNLS problem in Eq. (11)

with two equality constraints. As a result, one also need to include two Lagrange functions in the

optimization procedure, which is used in our local optimizer in the next section.

Alternatively, one can also optimize Eq. (11) in the free parameter space and consider the following

ϑ̂N = argmin
ϑ∈ΘM

QN (ϑ) :=
1

2N

N∑

n=1

ωnεn(ϑ)2

s.t. w(i), F (i), σ(i), k(i) > 0,
M−1∑

i=1

w(i) < 1,
M−1∑

i=1

w(i)F (i) < Ft.

(B.9)

The numerical solution to this problem is less stable that that of Eq. (11), but the analytical derivatives

of QN (ϑ) can be used to construct confidence bands for various RND-related quantities (e.g., in

Theorem 2 and Proposition 1), which are presented below:

Proposition B.2. It holds that:

∂QN (ϑ)

∂ϑ
= − 1

N
JO(ϑ)ᵀWNε(ϑ),

∂2QN (ϑ)

∂ϑ∂ϑᵀ
=

1

N

[
JO(ϑ)ᵀWNJO(ϑ)−

N∑

n=1

∇2
ϑO(Kn;ϑ)ωnεn(ϑ)

]
,

(B.10)
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where JO(ϑ) is the following N -by-(3M − 2) Jacobian matrix:

JO(ϑ) = [Õ −∆(M)F̃ , (∆̃−∆(M))w̃,υw], (B.11)

in which Õ and O(M) (resp. ∆̃ and ∆(M)) are the first M−1 and the last M columns of O (resp. ∆),

F̃ is the M−1 dimensional diagonal matrix whose entries are given by {F (i)−F (M)}i=1:M−1, and w̃ is

the M−1 dimensional submatrix of w by dropping the last column and row. ∇2
ϑO(Kn;ϑ) := ∂2O(Kn;ϑ)

∂ϑ∂ϑᵀ

is the (3M − 2)-by-(3M − 2) Hessian matrix with non-zero entries given by:

∂2O(Kn;ϑ)

∂σ(i)2
= w(i)ς

(i)
n ,

∂2O(Kn;ϑ)

∂σ(i)∂w(i)
= υ

(i)
n ,

∂2O(Kn;ϑ)

∂σ(i)∂F (i)
= w(i)η

(i)
n ,

∂2O(Kn;ϑ)

∂σ(i)∂w(i′) = −υ(M)
n ,

∂2O(Kn;ϑ)

∂σ(M)∂w(i)
= η

(M)
n (F (M) − F (i))− υ(M)

n ,

∂2O(Kn;ϑ)

∂σ(M)∂F (i)
= −η(M)

n w(i),

∂2O(Kn;ϑ)

∂w(i)∂w(i′) = Γ
(M)
n

(F (M) − F (i))(F (M) − F (i′))

w(M)
,

∂2O(Kn;ϑ)

∂w(i)∂F (i)
= ∆

(i)
n −∆

(M)
n − w(i)

w(M)
(F (M) − F (i))Γ

(M)
n ,

∂2O(Kn;ϑ)

∂w(i)∂F (i′) = − w
(i′)

w(M)
(F (M) − F (i))Γ

(M)
n ,

∂2O(Kn;ϑ)

∂F (i)2
= w(i)

(
Γ
(i)
n +

w(i)

w(M)
Γ
(M)
n

)
,

∂2O(Kn;ϑ)

∂F (i)∂F (i′) =
w(i)w(i′)

w(M)
Γ
(M)
n .

(B.12)

where i′ 6= i ∈ {1, . . . ,M − 1}.

Proof. The proposition follows from straightforward matrix calculus.

The slightly more complicated forms are due to the dimension reduction for the parameter vector,

which absorbs the two equality constraints and thus introduces dependence between the option price

of the last mixture and the parameters in the first M − 1 mixtures.
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C Simulation of RND and Option Prices From Three-Factor Double Expo-

nential Stochastic Volatility Models

We consider the three-factor double exponential stochastic volatility model of Andersen et al. (2015a,b)

for the forward price Ft in the risk-neutral measure, which is specified as follows3:

dFt
Ft−

=
√
V1,tdW

Q
1,t +

√
V2,tdW

Q
2,t + η

√
UtdW

Q
3,t +

∫

R2

(ex − 1)µ̃Q(dt, dx, dy),

dV1,t = κ1(v̄1 − V1,t)dt+ σ1

√
V1,tdB

Q
1,t + µv

∫

R2

x21{x<0}µ(dt, dx, dy),

dV2,t = κ2(v̄2 − V2,t)dt+ σ2

√
V2,tdB

Q
2,t,

dUt = −κuUtdt+ µu

∫

R2

[(1− ρu)x21{x<0} + ρuy
2]µ(dt, dx, dy),

(C.1)

where (WQ
1,t,W

Q
2,t,W

Q
3,t, B

Q
1,t, B

Q
2,t) is a five-dimensional Brownian motion with corr(WQ

1,t, B
Q
1,t) = ρ1,

corr(WQ
2,t, B

Q
2,t) = ρ2, and the remaining Brownian motions are mutually independent. Jumps in the

forward price F and the state vector (V1, V2, U) are captured by an integer-valued counting measure µ.

The corresponding (instantaneous) jump intensity, under the risk-neutral measure, is dt⊗ vQt (dx, dy).

The difference µ̃Q(dt, dx, dy) = µ(dt, dx, dy)−dtvQt (dx, dy) constitutes the associated martingale jump

measure.

The jump specification includes two separate components, x and y. The former captures co-jumps

that occur simultaneously in the forward price Ft, the first volatility factor V1,t and potentially in the

third volatility factor Ut (if ρu < 1), while the latter represents independent shocks to the Ut factor,

and potentially a jump in return volatility if η > 0. The jump compensator is given by

vQt (dx, dy)

dxdy
=




c−(t) · 1{x<0}λ−e−λ−|x| + c+(t) · 1{x>0}λ+e

−λ+x if y = 0,

c−(t)λ−e−λ−|y| if x = 0 and y < 0.

(C.2)

The first term on the right-hand side, corresponding to the case x 6= 0 and y = 0, indicates co-

jumps in both the forward price and volatility, while the second term, x = 0 and y < 0, represents

the independent shocks to the U factor. The individual (strictly positive) jumps in U are either

independent from V1 (when ρu = 1) or proportional to the (instantaneous) jumps in V1 (when ρu = 0).

The jumps in the forward price are modelled as exponentially distributed with separate tail decay

parameters λ− and λ+ for negative and positive jumps. For parsimony, the independent shocks to the

U factor are distributed identically to the negative price jumps. The time-varying jump intensities are

3As the model is specified in the forward price, it is assumed that both risk-free rate and dividend yield are 0.
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governed by the c−(t) and c+(t) coefficients, which evolve as affine functions of the state vector,

c−(t) = c−0 + c−1 V1,t,− + c−2 V2,t,− + c−uUt,−,

c+(t) = c+
0 + c+

1 V1,t,− + c+
2 V2,t,− + c+

uUt,−.
(C.3)

Under the three-factor double exponential stochastic volatility model in Eq. (C.1), the spot dif-

fusive variance of the forward return is given by

Vt = V1,t + V2,t + η2Ut. (C.4)

In our simulation, we consider three scenarios, namely “Low Volatility”, “Mid Volatility” and “High

Volatility”, whose common parameters are

ρ1 = −0.9818, v̄1 = 0.0084, κ1 = 9.7196, σ1 = 0.3924, ρ2 = −0.8707,

v̄2 = 0.0391, κ2 = 0.1680, σ2 = 0.1078, µu = 0.9238, κu = 0.5967,

ρu = 0.0005, c−0 = 0, c+
0 = 1.5713, c−1 = 25.3536, c+

1 = 92.4094,

c−2 = 0.8802, c+
2 = 72.5628, c−u = 41.4017, c+

u = 0, µv = 13.4143, η = 0,

(C.5)

and other scenario-specific parameters are listed in Table C.1. Parameters corresponding to the “Mid

Volatility”case, excluding the futures and spot volatility values, follow from Table VI of Andersen et al.

(2015a), which generates a negatively skewed RND function shown in Fig. 4.1. The parameters for the

“Low Volatility” and “High Volatility” cases are slightly modified from the “Mid Volatility” parameters

to produce alternative RNDs with different symmetrical and dispersion properties, as depicted in

Fig. 4.1. We also consider a bimodal RND, which is formed by linearly combining the RNDs in DGP

II and III, with the respective weights of 0.2 and 0.8.

DGP I DGP II DGP III

Parameter “Low Volatility” “Mid Volatility” “High Volatility”

Jump parameters
λ− 8.7455 18.7455 58.7455
λ+ 58.2399 58.2399 18.2399

Futures and Spot Volatility values
Ft 300 300 450
V1,t 0.01 0.01 0.01
V2,t 0.01 0.03 0.1
Ut 0.1 0.5 2

Table C.1: Parameters of three-factor double exponential stochastic volatility models. All other parameters are
taken from Table VI of Andersen et al. (2015a) and detailed in Eq. (C.5).
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Let φ(ω;Vt, Ft, T ) = E[eiω lnFT |Ft] denote the conditional characteristic function of the three-

factor double exponential stochastic volatility model specified in Eq. (C.1),4 the RND of lnFT , denoted

by f̆t, can be derived from the inverse Fourier transform of the characteristic function:

f̆t(x) =
1

2π

∫ ∞

0
φ(ω;Vt, Ft, T )e−iωxdω. (C.6)

Consequently, the RND of FT is given by ft(x) = f̆t(lnx)/x, and the price of an European call option

with strike K which matures at time T is:

C(K) = e−rf (T−t)
∫ ∞

0
(FT −K)+ft(x)dx. (C.7)

We evaluate C(K) and f̆t(x) using the Fourier cosine approximation of Fang and Oosterlee (2008). In

detail, for some interval [a, b] and a truncation of N terms of an infinite sum, f̆t(x) can be approximated

by:

f̆t(x) ≈
N∑

k=0

2−1{k=0} 2

b− a<
{
φ
( kπ

b− a ;Vt, Ft, T
)

exp
(
− i kπ

b− a
)}

cos
(
kπ
x− a
b− a

)
, (C.8)

where <{x} returns the real part of a complex number x. Here [a, b] should cover most of the probability

masses of lnFT , and a larger N always improves the precision of the approximation. In our result

we use a = 0, b = 10 and N = 2000. The call option prices are generated using the following set of

equations:

C(K) ≈ e−rf (T−t)
N∑

k=0

2−1{k=0}<
{
φ

(
kπ

b− a ;Vt, Ft, T

)
exp

(
ikπ

ln Ft
K − a
b− a

)}
Uk

Uk =
2

b− aK(χk − ψk)

χk =
1

1 + ( kπ
b−a)2

[
cos(kπ)eb − cos

(−akπ
b− a

)
+

kπ

b− a

(
sin(kπ)eb − sin

(−akπ
b− a

))]

ψk =




b, k = 0

b−a
kπ

(
sin(kπ)− sin

(
−akπ
b−a

))
, k > 0

(C.9)

Different from Eq. (C.8), the interval [a, b] above should be chosen to cover the probability masses of

ln Ft
K . In our implementation we use a = −3, b = 3, N = 2000. We note that the above method is

applicable to any affine stochastic volatility model with known characteristic function.

4See Appendix C of Andersen et al. (2015b) for more details.
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D Implementation of the Competing RND Estimators

D.1 Positive Convolution Approximation

We follow Bondarenko (2000) and Bondarenko (2003) closely to implement the PCA method. For a

given bandwidth parameter h, we firstly set the grid size ∆z = 0.5h as recommended by Bondarenko

(2003), which determines the number of normal mixtures M as M = dm(K)/∆z + 1e. The centres of

the normal mixtures are therefore given by {zj}j=1:M which is equidistantly placed on the strike range

K. The PCA method assumes that the true RND f∗t (x) can be approximated by a discrete mixture

of normal densities gt(x;h) on K which takes the following form:

gt(x;h) =

M∑

j=1

aj
h
φ
(x− zj

h

)
, aj ≥ 0, x ∈ K, (D.1)

where the parameters to be estimated are {aj}j=1:M . Note that the left tail of gt(x;h) for x < K

and the right tail of gt(x;h) for x > K are left unspecified in the above expression. Only the left tail

plays a significant role in the estimation procedure, which is summarized as two additional parameters

b =
∫K

0 gt(x;h)dx and B =
∫K

0 xgt(x;h)dx. The following two linear constraints are imposed for

gt(x;h) to satisfy Assumption 1:

b+

M∑

j=1

aj ≤ 1, B +

M∑

j=1

ajzj ≤ Ft. (D.2)

At the n-th strike on the strike grid {Kn}n=1:N , the PCA-implied put option price takes the following

form:

Pn(θ;h) = −B + bKn +

M∑

j=1

ajZj(Kn, h), (D.3)

where Zj(Kn, h) = hφ(
Kn−zj
h ) + (Kn − zj)Φ(

Kn−zj
h ) is the second-order integral of the j-th normal

mixture with a bandwidth of h evaluated at Kn, and θ = {a1, . . . , aM , b, B} denotes the parameter

vector to be estimated. Denote the observed put option prices as {Pn}n=1:N , we estimate θ by solving

the following quadratic programming problem:

argmin
θ∈[0,∞)M+2

N∑

n=1

(Pn − Pn(θ;h))2,

s.t. b+
M∑

j=1

aj ≤ 1, B +
M∑

j=1

ajzj ≤ Ft,

B − b(K − 2.5h) ≤ 0, C − c(K + 2.5h) ≤ 0,

(D.4)
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where c = 1 − b −∑M
j=1 aj , C = Ft − B −

∑M
j=1 ajzj and the latter two constraints follow from the

smoothness constraints as in footnote 22 of Bondarenko (2000). The above problem is implemented

in MATLAB R2019a using the Gurobi optimizer5, which is highly efficient in solving quadratic pro-

gramming problems.

For each simulation scenario, we optimize the bandwidth h based on a grid search in the range

[3,70] to minimize the simulated RMISE defined in Eq. (26) of the estimated RND. Figure D.1 presents

the grid search result and the choice of h for each simulation scenario under the baseline i.i.d. option

error design and a large error variance (4×), zooming in the local range of h that contains the optimal

h̃. The figure clearly shows the bias-variance trade-off for the choice of h, and the optimal bandwidth

h̃ is chosen to minimize the simulated RMISE, which is infeasible in practice.
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Figure D.1: Plot of the grid search of the optimal bandwidth parameter h of the PCA method for the four DGPs in our simulation.
The vertical dashed line shows the optimal h̃ which minimizes the simulated RMISE of the fitted PCA density against the true
RND, and the minimized RMISE at h̃ is reported.

D.2 Local Linear Regression

The local linear regression method is implemented based on Aı̈t-Sahalia and Duarte (2003). Given

a sample of observed call option prices (Cn,Kn)n=1:N , the estimation consists of two steps. In the

first step, we fit a constrained least square regression to obtain the smoothed option prices C̃n based

on Eqs. (3.1) and (3.3) of Aı̈t-Sahalia and Duarte (2003). This is a standard constrained quadratic

programming problem which we implement using the Gurobi optimizer.

In the second step, we fit a local linear regression for the smoothed option prices at some point

x ∈ K and extract the RND at x by differentiating the regression coefficient. In detail, we choose

a Gaussian kernel φ(x) = (2π)−0.5e−x
2/2 and let φh(x) = φ(x/h)/h. Choose some x ∈ K at which

5The optimizer is available at gurobi.com.
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the RND is to be estimated, the weights applied to the observations on n-th strike grid is defined as

wn = φh(C̃n−x). Then according to Section 3.3 of Aı̈t-Sahalia and Duarte (2003), the RND estimate

at point x is given by

f̂t(x) = e−rf τ
dβ̂1

dx
,

where β̂1 is the slope coefficient of the local linear regression at point x which can be computed in

closed form:

β̂1 =
SN,0TN,1 − SN,1TN,0
SN,2SN,0 − S2

N,1

, (D.5)

where SN,j =
∑N

n=1(C̃n−x)jwn and TN,j =
∑N

n=1(C̃n−x)jC̃nwn. The above expression can be found

in Eq. (3.15) of Aı̈t-Sahalia and Duarte (2003). In our simulation, we compute dβ̂1
dx numerically using

the central difference method.6

For each simulation scenario, we estimate f̂t(x) for x in the corresponding grid of N equidistant

strikes and evaluate f̂t(x) with a general x ∈ K, where K is specified in Table 4.1, by linear interpo-

lation. The tuning parameter h is chosen based on a grid search in the range [5, 45] which minimizes

the simulated RMISE defined in Eq. (26) of f̂t(x). Figure D.2 presents the grid search result and the

choice of h for each simulation scenario under the basic i.i.d. option error design and a large error

variance (4×), zooming in the local range of h that contains the optimal h∗. The figure clearly shows

the bias-variance trade-off for the choice of h, and the optimal bandwidth h∗ is chosen to minimize

the simulated RMISE, which is infeasible in practice.
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Figure D.2: Plot of the grid search of the optimal bandwidth parameter h∗ of the LLS method for the four DGPs and two sample
sizes under the basic i.i.d. option error design and a large error variance (4×) in our simulation. The vertical dashed line shows
the optimal bandwidth h∗ which minimizes the simulated RMISE of the RND estimates, based on 1,000 random draws of option
prices. RMISE∗ denotes that minimized RMISE at h∗.

6Although a closed-form derivative of β̂1 can be derived based on Eq. (3.15) of Aı̈t-Sahalia and Duarte (2003), we note
that it requires the evaluation of two double sums with O(N2) terms, which is much slower than the central difference
method that only requires several evaluation of a single sum of O(N) terms.
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D.3 Sieve Estimator

The sieve estimator of Lu and Qu (2021) approximates the RND by a Jth order Hermite expansion.

To implement their estimator, we firstly introduce two changes of variables:

sT =
ln(FT /Ft)

σATM
√
τ
, zn =

ln(Kn/Ft)

σATM
√
τ
, (D.6)

where σATM is the at-the-money Black-model implied volatility. Note that these are slightly different

from Eqs. (3) and (4) in Lu and Qu (2021) as we work with forward prices. Consider the RND of sT

defined as f̆t(x) which is related to the RND of FT through ft(FT ) = 1
σATM

√
τFT

f̆t
( ln(FT /Ft)
σATM

√
τ

)
, Lu and

Qu (2021) approximate f̆t(x) by truncating its Gauss-Hermite expansion at the Jth term:

f̆t(x|β) ≈
J∑

j=0

βjhj(x), (D.7)

where β = {βj}′j=0:J are the J+1 free parameters to be estimated, and hj(x) is the jth order Hermite

function (see Eqs. (8) and (9) of Lu and Qu (2021)). Consequently, the approximated RND of FT is

denoted by ft(x|β).

For a particular choice of J and β, the price of a call option at the strike grid Kn can be

approximated by:

Cn ≈
J∑

j=0

βjxn,j , (D.8)

where:

xn,j :=

∫ ∞

−∞
e−rf τFt

(
e
√
τσATMx − e

√
τσATMzn

)
hj(x)dx. (D.9)

The quantities xn,j are independent of β which need to be evaluated prior to the estimation. To

compute each xn,j , we evaluate the integral numerically on the interval [−m,m] with m = 10 ∨ lnN

following (I6) of Lu and Qu (2021). Denoting xn = (xn,0, . . . , xn,J)′, we estimate the parameters by

solving the following constrained quadratic problem:

min
β

N∑

n=1

(Cn − x′nβ)2 + β′Qαβ,

s.t. β ∈ HJ := {β ∈ RJ+1 : inf
x∈R

J∑

j=0

βjhj(x) ≥ η}.
(D.10)

The matrix Qα is a regularization matrix which can have different specifications, and α is the tuning

parameter that controls the strength of the regularization. We set Qα according to Eqs. (22) and

(23) of Lu and Qu (2021). We set η = −10−3 in the constraint of β following (I1) of Lu and Qu

(2021). Note that when implementing the constraint, we simply take 10,000 equidistant points on K
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and evaluate f̆t(x) on these points, and β ∈ HJ reduces to 10,000 linear constraints on β which is

standard in quadratic programming problems. The problem is then solved using the Gurobi optimizer.

For the choice of J , we first consider J∗ = d2(N/ lnN)1/5e as recommended by Lu and Qu (2021)

so that J∗ = 4 when N = 25 and 100. For the choice of α, we firstly specify it as α = ξĉN1/3

according to (I4) of Lu and Qu (2021), where ĉ is the top left element in the (J + 1)-by-(J + 1)

matrix N−1
∑N

n=1 xnx
′
n. For each simulation scenario and choice of J , we choose ξ ∈ [0, 0.1] which

minimizes the simulated RMISE of ft(x|β). We find that the optimal ξ’s are zero for the majority

of simulation scenarios, which suggests that the regularization is often not needed. Examples of grid

search results for ξ with J = J∗ = 4 for each simulation scenario under the baseline i.i.d. option

error design and a large error variance (4×) are presented in Figure D.3, which shows that five out

of eight considered scenarios do not require any regularization. Nevertheless, given the large number

of simulation scenarios considered in our study, several of which can benefit from some regularization,

we still use optimally tuned ξ’s via grid search for J∗ to be consistent.

For each simulation scenario, we also consider a grid-search-based Hermite expansion order J̃ over

the range [1,30] that minimizes the simulated RMISE of the estimated RND. In our grid search, we

first fix the regularization parameter α (or effectively ξ) at 0 to tune J . Then for the chosen J = J̃ , we

perform another grid search for ξ ∈ [0, 0.1] to minimize RMISE. Although this sequential grid-search

procedure is not as comprehensive as a full double grid search, it provides some optimal tuning for

both J and ξ dimensions while avoiding the huge computational cost associated with the double grid

search. Figures D.4 and D.5 respectively reveal the first and second-stage grid search results to find J

and ξ for each simulation scenario under the basic i.i.d. option error design and a large error variance

(4×). While there is a clear bias-variance trade-off for the choice of J , the optimal value for ξ is 0 for

most considered scenarios, suggesting that regularization is often not needed..

D.4 Smoothing Implied Volatility

A popular method to estimate RND is by smoothing the implied volatility computed from the observed

option prices (see e.g., Jackwerth (2000), Bliss and Panigirtzoglou (2004) and Kostakis et al. (2023)).

To implement this method, we first convert the observed option price {On}n=1:N into the corresponding

Black model implied volatilities {σn}n=1:N . This is performed using the blkimpv function in MATLAB.

We then fit a local cubic smoothing spline to {σn}n=1:N using csaps in MATLAB. Essentially, we find

a local spline function σ̂(x) that minimizes the following target function:

λ

N∑

n=1

ωn(σn − σ(Kn))2 + (1− λ)

∫

K
(σ(k)′′)2dk, (D.11)
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Figure D.3: Plot of the grid search of the optimal tuning parameter ξ∗ of the Sieve method with J = J∗ = 4 for the four DGPs
and two sample sizes under the baseline i.i.d. option error design and a large error variance (4×) in our simulation. The vertical
dashed line shows the optimal tuning parameter ξ∗ which minimizes the simulated RMISE of the RND estimates, based on 1,000
random draws of option prices. RMISE∗ denotes that minimized RMISE at ξ∗.
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Figure D.4: Plot of the grid search of the optimal Hermite expansion order J̃ of the Sieve method for the four DGPs and two
sample sizes under the baseline i.i.d. option error design and a large error variance (4×) in our simulation. The vertical dashed line

shows the optimal J̃ which minimizes the simulated RMISE of the RND estimates, based on 1,000 random draws of option prices.
RMISE denotes that minimized RMISE at J̃ .
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Figure D.5: Plot of the grid search of the optimal tuning parameter ξ∗ of the Sieve method with first-stage RMISE-optimal Hermite
expansion order J̃ for the four DGPs and two sample sizes under the baseline i.i.d. option error design and a large error variance
(4×) in our simulation. The vertical dashed line shows the optimal tuning parameter ξ∗ which minimizes the simulated RMISE of
the RND estimates, based on 1,000 random draws of option prices. RMISE∗ denotes that minimized RMISE at ξ∗.

where σ(x) is a local cubic spline function defined on K, and λ is a tuning parameter that penalizes the

roughness of the function on K, which is captured by the integrated squared second-order derivative

of σ(x) in the second term above. A smaller λ induces a more stringent penalty to the roughness of

the cubic spline which results in a smoother fit, and vice versa.

From the estimated cubic spline function σ̂(x), we can compute the fitted RND f̂(x) as the

numerical second derivative of the price function. For example, to compute the value of f̂(K0) at some

K0 ∈ K, we choose a small value δ and compute the option prices Ô(K0), Ô(K0 − h) and Ô(K0 + h),

where Ô(K) ≡ OLN (K; σ̂(K)) is the Black model option price with the strike price K and the volatility

parameter σ̂(K) given by the cubic spline. From Assumption 1, we can approximate f̂(K0) as the

following central-different second-order numerical derivative:

f̂(K0) ≈ erf τ (Ô(K0 − h) + Ô(K0 + h)− 2Ô(K0))

h2
. (D.12)

In our simulation and empirical analysis, we compute f̂(x) on an grid of K with 10,000 equidistant

points to obtain an approximated RND estimate over the strike range.

Similar to the PCA, LLS and sieve methods, we optimally tune the penalty parameter λ based on

a grid search in the range [0, 0.1] which minimizes the RMISE (see Eq. (26)). Figure D.6 presents the

grid search result and the choice of λ for each simulation scenario under the basic i.i.d. option error

design and a large error variance (4×), zooming in the local range of λ that contains the optimal λ̃.

The figure shows there is clear bias-variance trade-off for the choice of λ for the majority of scenarios,

and the optimal tuning parameter λ̃ is chosen to minimize the simulated RMISE, which is infeasible
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in practice.
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Figure D.6: Plot of the grid search of the optimal tuning parameter λ of the SIV method for the four DGPs and two sample sizes
under the basic i.i.d. option error design and a large error variance (4×) in our simulation. The vertical dashed line shows the

optimal bandwidth λ̃ which minimizes the simulated RMISE of the RND estimates, based on 1,000 random draws of option prices.
RMISE denotes the minimized RMISE at λ̃.

Besides implement the IV spline estimator with the infeasible optimally chosen tuning parameter

λ̃, we also consider a feasible version of the IV spline estimator where the tuning parameter λ is

chosen by a 10-fold cross validation to minimize the objective function in Eq. (D.11), which can be

implemented in practice.

D.5 Hermite Expansion Method

We implement the 4-parameter Hermite Expansion method of Jarrow and Rudd (1982) as a parametric

benchmark RND estimator, which is also considered in Aı̈t-Sahalia and Duarte (2003), Bondarenko

(2003), Lu and Qu (2021). The RND takes the following form:

f(x;η) =
1√

2πσx
e−z

2/2
(

1 +
η3

3!
(z3 − 3z) +

η4

4!
(z4 − 6z2 + 3)

)
, z =

ln(x/η1) + η2
2/2

η2
, (D.13)

where η = (ηi)
ᵀ
i=1:4 is the parameter vector. One should verify that

∫∞
0 f(x;η) = 1 and

∫∞
0 xf(x;η) =

η1(1+η3η
3
2/3!+η4η

4
2/4!), where the second equality is used as a constraint in the optimization procedure

to ensure that Assumption 1.(4) is satisfied. Note that f(x;η) is not necessarily a well-defined density

function as it can be negative for some x ∈ K under certain negative choices of η3 and η4.

This density implies the following pricing function for a call option written on a forward contract
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with strike price K:

O(K;η) = e−rf τ (η1Φ(d1)−KΦ(d2) + η1η3F3/3! + η1η4F4/4!),

F3 = η3
2Φ(d1)− φ(d1)η2(d2 − η2),

F4 = η4
2Φ(d1) + φ(d1)(η2(d2

1 − 1)− 3η2
2d2),

(D.14)

where the quantities d1 and d2 are defined under Eq. (9) with η2 = σ
√
τ . The parameter vector η can

be estimated by solving the following constrained nonlinear least square problem:

η̂ = argmin
η

N∑

n=1

(On −O(Kn;η))2,

s.t. η1, η2 > 0, η1(1 + η3η
3
2/3! + η4η

4
2/4!) = Ft.

(D.15)

We solve the above problem using fmincon in MATLAB with the vector (Ft, σATM
√
τ , 0, 0)ᵀ as the

initial guess for η̂.

E Data Cleaning Procedures

In this section, we document the data cleaning procedures used in our empirical analysis. For both

examples, we firstly extract option quotes (best ask and bid) for both calls and puts with the same

time-to-maturity (closest to one month in our examples) at the same point in time. For the first

example, we take the closing quotes on 20-Jun-2013 from OptionMetrics, while for the second example,

we extract the quotes prevailing at 13:30 and 14:30 ET on 18-Dec-2013 from the minute-by-minute

LiveVol dataset. The risk-free rate rf is obtained from OptionMetrics by a cubic spline interpolation

of the zero coupon yield curve of the day, which is assumed to be constant throughout the trading day.

As a preliminary filter, we first remove all entries with a zero bid price to alleviate the problem

caused by rounding for deep OTM options. The remainining entries are denoted by {C(KC
n )}n=1:NC

and {P (KP
n )}n=1:NP , where C(KC

n ) and P (KP
n ) are the midquotes of calls and puts at strike price

KC
n and KP

n , respectively, and NC and NP denotes the number of observations for the calls and puts.

Note that NC and NP are in general not the same, and for a given strike price Ki
C , its put counterpart

on the same strike price is not necessarily quoted.

We proceed to match the calls with the puts by only keeping the strikes with both calls and puts

quoted, denoted by {C(KM
n ), P (KM

n )}n=1:NM , where the superscript stands for ‘Matched’. The main

purpose of this step is to compute the put-call parity implied forward price Ft, on which we elaborate
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as follows: For a given strike price K, the put-call parity implied forward price can be computed as:

Ft(K) = eτrf (C(K)− P (K)) +K. (E.1)

As there are M matched quotes, we obtain {Ft(KM
n )}n=1:NM implied forward prices. We then set

Ft = median{Ft(K(1)), Ft(K
(2)), Ft(K

(3))}, where {K(n)}n=1:NM is a sorted version of {KM
n }n=1:NM

based on:

|C(K(1))− P (K(1))| ≤ |C(K(2))− P (K(2))| ≤ · · · ≤ |C(K(NM ))− P (K(NM ))|.

Intuitively, we compute the implied Ft from put-call parities around at-the-money options. This allows

us to align the OTM call options with the ITM call options implied by the OTM put options and

construct a smooth cross-section of option prices as a function of the strike.

As the last step, we collect the OTM calls and puts from the unmatched datasets {C(KC
n )}n=1:NC

and {P (KP
n )}n=1:NP , then convert the OTM puts to ITM calls using Eq. (E.1) to obtain the cross-

section of call options {Cn,Kn}n=1:N used in our empirical analysis. Intuitively, for Kn ≥ Ft, C(Kn)

coincides with C(KC
n ), while for Kn ≤ Ft, P (Kn) coincides with {P (KP

n )}.
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F Additional results

F.1 Simulation results for different values of c

Table F.1 presents the impact of different choices of c for DGP I (RND with a small volatility and a

long left tail) under difference sizes of error variances. The table clearly shows that, both the RISB

and the RIV explode as M increases when the variance constraint is not imposed with c = 0. In

this case, the RND estimates contain spurious spikes that inflate both the RISB and the RIV of the

RND estimates. Unsurprisingly, the issue becomes more severe as the error variance increases. The

introduction of the variance constraint for c ∈ [0.05, 0.15] evidently stabilizes the RND estimates for

M up to 5 under both error variance sizes. The performances of the LWM-based RND estimates for

different choices of c in this range are qualitatively unchanged, which shows the robustness of the LWM

approach to the choices of c. These findings are also consistent across different DGPs and observation

error specifications. To conserve space, we do not report these results here, which are available upon

request.
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N = 25 N = 100

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: Large Error Variance (4×)
Panel 1A: c = 0
2-LWM (EW) 0.181 0.916 0.751 0.525 0.01 0.157 0.786 0.744 0.252 0.00
3-LWM (EW) 0.900 2.024 0.413 1.981 0.71 192.601 968.900 30.788 968.410 0.28
4-LWM (EW) 1011.969 4728.096 228.081 4722.592 1.33 8027.451 20187.547 1023.667 20161.576 0.83
5-LWM (EW) 310.101 1516.495 69.132 1514.918 1.95 16872.675 28353.891 1262.107 28325.787 1.49

Panel 1B: c = 0.05
2-LWM (EW) 0.180 0.912 0.747 0.524 0.00 0.157 0.786 0.744 0.252 0.00
3-LWM (EW) 0.565 1.728 0.410 1.679 0.48 0.324 0.942 0.502 0.797 0.19
4-LWM (EW) 0.800 3.009 0.351 2.988 1.08 0.258 0.975 0.506 0.834 0.65
5-LWM (EW) 1.019 3.533 0.272 3.522 1.72 0.576 1.711 0.239 1.694 1.35

Panel 1C: c = 0.1
2-LWM (EW) 0.180 0.912 0.747 0.524 0.00 0.157 0.786 0.744 0.252 0.00
3-LWM (EW) 0.393 1.475 0.394 1.422 0.50 0.178 0.717 0.484 0.529 0.11
4-LWM (EW) 0.654 2.478 0.289 2.461 1.10 0.255 0.962 0.455 0.847 0.59
5-LWM (EW) 0.865 2.927 0.254 2.916 1.67 0.486 1.531 0.265 1.508 1.26

Panel 1D: c = 0.15
2-LWM (EW) 0.180 0.912 0.747 0.524 0.00 0.157 0.786 0.744 0.252 0.00
3-LWM (EW) 0.367 1.420 0.440 1.350 0.74 0.195 0.767 0.487 0.592 0.54
4-LWM (EW) 0.568 2.226 0.268 2.210 1.26 0.256 1.024 0.279 0.985 1.04
5-LWM (EW) 0.873 3.288 0.291 3.275 1.82 0.408 1.452 0.194 1.439 1.62

Panel 2: Medium Error Variance (2×)
Panel 2A: c = 0
2-LWM (EW) 0.180 0.898 0.819 0.369 0.00 0.164 0.802 0.781 0.184 0.00
3-LWM (EW) 0.612 1.378 0.515 1.278 0.51 2.659 16.856 0.749 16.840 0.09
4-LWM (EW) 646.286 4245.303 147.006 4242.757 1.13 1442.103 3380.572 175.944 3375.990 0.65
5-LWM (EW) 321.305 1271.044 72.558 1268.972 1.72 8434.418 23009.729 789.800 22996.170 1.28

Panel 2B: c = 0.05
2-LWM (EW) 0.180 0.898 0.819 0.369 0.00 0.164 0.802 0.781 0.184 0.00
3-LWM (EW) 0.356 1.106 0.520 0.976 0.36 0.190 0.712 0.529 0.476 0.08
4-LWM (EW) 0.596 2.404 0.373 2.375 0.93 0.194 0.784 0.470 0.627 0.58
5-LWM (EW) 0.716 2.754 0.234 2.744 1.57 0.413 1.353 0.172 1.342 1.31

Panel 2C: c = 0.1
2-LWM (EW) 0.180 0.898 0.819 0.369 0.00 0.164 0.802 0.781 0.184 0.00
3-LWM (EW) 0.264 0.996 0.510 0.856 0.36 0.144 0.623 0.525 0.334 0.05
4-LWM (EW) 0.488 1.967 0.326 1.940 0.98 0.207 0.827 0.399 0.725 0.61
5-LWM (EW) 0.608 2.391 0.218 2.381 1.57 0.331 1.177 0.185 1.163 1.29

Panel 2D: c = 0.15
2-LWM (EW) 0.180 0.898 0.819 0.369 0.00 0.164 0.802 0.781 0.184 0.00
3-LWM (EW) 0.268 0.993 0.559 0.820 0.66 0.140 0.647 0.522 0.383 0.44
4-LWM (EW) 0.419 1.806 0.235 1.791 1.25 0.194 0.827 0.243 0.791 0.99
5-LWM (EW) 0.555 2.352 0.254 2.338 1.81 0.271 1.090 0.164 1.078 1.61

Panel 3: Small Error Variance (1×)
Panel 3A: c = 0
2-LWM (EW) 0.182 0.886 0.845 0.266 0.00 0.167 0.807 0.797 0.126 0.00
3-LWM (EW) 0.358 1.051 0.556 0.891 0.31 0.135 0.590 0.533 0.252 0.07
4-LWM (EW) 92.239 655.097 20.753 654.768 0.91 359.081 1461.803 61.758 1460.498 0.59
5-LWM (EW) 218.713 875.504 49.411 874.109 1.49 2171.104 5764.977 276.838 5758.326 1.15

Panel 3B: c = 0.05
2-LWM (EW) 0.182 0.886 0.845 0.266 0.00 0.167 0.807 0.797 0.126 0.00
3-LWM (EW) 0.209 0.812 0.566 0.582 0.23 0.131 0.579 0.523 0.249 0.07
4-LWM (EW) 0.462 2.083 0.311 2.060 0.87 0.167 0.702 0.362 0.602 0.54
5-LWM (EW) 0.550 2.400 0.252 2.387 1.51 0.247 0.941 0.121 0.933 1.22

Panel 3C: c = 0.1
2-LWM (EW) 0.182 0.886 0.845 0.266 0.00 0.167 0.807 0.797 0.126 0.00
3-LWM (EW) 0.184 0.774 0.565 0.529 0.21 0.134 0.588 0.537 0.239 0.02
4-LWM (EW) 0.409 1.869 0.289 1.847 0.89 0.174 0.730 0.262 0.681 0.66
5-LWM (EW) 0.469 2.093 0.234 2.080 1.50 0.226 0.894 0.118 0.886 1.37

Panel 3D: c = 0.15
2-LWM (EW) 0.182 0.886 0.845 0.266 0.00 0.167 0.807 0.797 0.126 0.00
3-LWM (EW) 0.189 0.809 0.597 0.547 0.50 0.115 0.580 0.535 0.223 0.35
4-LWM (EW) 0.339 1.576 0.284 1.550 1.17 0.157 0.714 0.200 0.686 0.93
5-LWM (EW) 0.451 2.125 0.315 2.102 1.78 0.176 0.777 0.129 0.767 1.60

Table F.1: Simulation results of the RND estimates based on the M -LWM model with equal weighting (EW) under DGP I with a
large error variance (4× the estimated error variance of SPX options), medium error variance (2×) and small error variance (1×), for
different values of c, which is the lower bound for the ratio of the smallest component standard deviation to the largest one in an
M -LWM mixture, defined in Eq. (24). M1 reports the average number of log normal densities chosen in each M -LWM model. For
each simulation scenario, the statistics in the table are computed based on 1,000 simulated paths.
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F.2 Additional Simulation Results for the Baseline Option Error Specification

Small error variance (1×)

N = 25 N = 100

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.182 0.886 0.845 0.266 0.00 0.167 0.807 0.797 0.126 0.00
3-LWM (EW) 0.184 0.774 0.565 0.529 0.21 0.134 0.588 0.537 0.239 0.02
4-LWM (EW) 0.409 1.869 0.289 1.847 0.89 0.174 0.730 0.262 0.681 0.66
5-LWM (EW) 0.469 2.093 0.234 2.080 1.50 0.226 0.894 0.118 0.886 1.37

PCA(h∗) 1.560 7.522 7.514 0.359 23.00 1.577 7.606 7.606 0.071 23.00
Sieve(J∗) 0.709 3.510 3.509 0.057 4.00 0.769 3.755 3.755 0.034 4.00
IV spline(λ∗) 0.415 2.388 1.520 1.843 - 0.328 3.616 0.987 3.479 -
HE 0.861 5.001 5.000 0.117 - 0.861 5.000 5.000 0.052 -

PCA(h̃) 0.144 0.811 0.591 0.555 79.42 0.099 0.569 0.328 0.465 87.17

Sieve(J̃) 0.187 1.149 0.805 0.819 15.00 0.131 0.843 0.592 0.599 19.00

IV spline(λ̃) 0.221 1.283 0.962 0.849 - 0.155 0.727 0.656 0.313 -
LLS 1.308 6.451 5.988 2.401 - 0.347 1.555 1.442 0.583 -

Panel 2: DGP II
2-LWM (EW) 0.031 0.186 0.094 0.160 0.05 0.022 0.128 0.100 0.080 0.01
3-LWM (EW) 0.194 0.542 0.089 0.535 0.58 0.095 0.285 0.107 0.265 0.44
4-LWM (EW) 0.373 0.999 0.089 0.995 1.24 0.179 0.480 0.086 0.472 1.11
5-LWM (EW) 0.645 1.720 0.120 1.715 1.88 0.297 0.745 0.080 0.741 1.78

PCA(h∗) 0.087 0.589 0.535 0.246 23.00 0.097 0.644 0.637 0.092 23.00
Sieve(J∗) 0.160 1.008 0.977 0.247 4.00 0.172 1.081 1.071 0.143 4.00
IV spline(λ∗) 0.091 0.644 0.101 0.636 - 0.065 0.581 0.067 0.578 -
HE 0.193 1.516 1.515 0.075 - 0.191 1.514 1.513 0.036 -

PCA(h̃) 0.038 0.269 0.140 0.230 28.35 0.025 0.172 0.093 0.145 29.57

Sieve(J̃) 0.073 0.487 0.458 0.167 7.00 0.032 0.241 0.187 0.153 10.00

IV spline(λ̃) 0.035 0.226 0.095 0.205 - 0.023 0.144 0.108 0.096 -
LLS 0.230 1.070 0.673 0.832 - 0.092 0.512 0.376 0.347 -

Panel 3: DGP III
2-LWM (EW) 0.008 0.071 0.058 0.041 1.98 0.007 0.061 0.058 0.020 2.00
3-LWM (EW) 0.022 0.156 0.024 0.154 2.66 0.008 0.071 0.019 0.068 2.74
4-LWM (EW) 0.043 0.275 0.018 0.274 3.31 0.013 0.098 0.012 0.097 3.34
5-LWM (EW) 0.080 0.501 0.026 0.500 3.97 0.026 0.173 0.009 0.172 3.96

PCA(h∗) 0.019 0.200 0.166 0.112 23.00 0.023 0.230 0.224 0.052 23.00
Sieve(J∗) 0.009 0.098 0.083 0.051 4.00 0.009 0.088 0.085 0.025 4.00
IV spline(λ∗) 0.039 0.617 0.070 0.613 - 0.036 0.521 0.056 0.518 -
HE 0.010 0.092 0.087 0.030 - 0.009 0.089 0.087 0.015 -

PCA(h̃) 0.006 0.059 0.025 0.054 26.20 0.004 0.037 0.020 0.030 26.53

Sieve(J̃) 0.009 0.098 0.083 0.051 4.00 0.007 0.068 0.049 0.047 7.00

IV spline(λ̃) 0.011 0.106 0.056 0.090 - 0.008 0.070 0.048 0.052 -
LLS 0.066 0.545 0.515 0.180 - 0.031 0.246 0.181 0.166 -

Panel 4: DGP IV
2-LWM (EW) 0.064 0.676 0.542 0.403 1.00 0.064 0.689 0.552 0.411 1.00
3-LWM (EW) 0.029 0.228 0.167 0.156 1.21 0.026 0.201 0.155 0.127 1.11
4-LWM (EW) 0.039 0.281 0.101 0.262 1.41 0.020 0.145 0.108 0.098 1.26
5-LWM (EW) 0.076 0.440 0.049 0.438 1.85 0.034 0.181 0.040 0.177 1.68

PCA(h∗) 0.117 1.173 1.162 0.155 23.00 0.120 1.214 1.213 0.052 23.00
Sieve(J∗) 0.118 0.946 0.945 0.020 4.00 0.131 1.111 1.111 0.008 4.00
IV spline(λ∗) 0.117 2.309 0.495 2.255 - 0.075 0.754 0.302 0.691 -
HE 0.184 1.896 1.896 0.012 - 0.184 1.896 1.896 0.006 -

PCA(h̃) 0.034 0.303 0.214 0.215 46.92 0.023 0.215 0.143 0.160 52.44

Sieve(J̃) 0.033 0.243 0.231 0.074 8.00 0.026 0.218 0.157 0.152 16.00

IV spline(λ̃) 0.061 0.417 0.391 0.145 - 0.033 0.242 0.200 0.137 -
LLS 0.076 0.734 0.708 0.195 - 0.038 0.330 0.248 0.217 -

Table F.2: Simulation results of the RND estimates based on the M -LWM model with equal weighting (EW) and five competing
estimators under a small error variance (same as (1×) the estimated error variance of SPX options). The specification and choice
of tuning parameters of the competing estimators are detailed in Online Appendix D. MTVD, RMISE, RISB and RIV respectively
stands for mean total variation distance, root mean integrated squared error, root integrated squared bias, root integrated variance,
and are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average number of log normal densities chosen in each
M -LWM model, (ii) for PCA method, the average number of normal mixtures, and (iii) for Sieve method, the average order of

Hermite expansion (i.e. J∗ or J̃). For each simulation scenario, the statistics in the table are computed based on 1,000 simulated
paths. The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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Medium error variance (2×)

N = 25 N = 100

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.180 0.898 0.819 0.369 0.00 0.164 0.802 0.781 0.184 0.00
3-LWM (EW) 0.264 0.996 0.510 0.856 0.36 0.144 0.623 0.525 0.334 0.05
4-LWM (EW) 0.488 1.967 0.326 1.940 0.98 0.207 0.827 0.399 0.725 0.61
5-LWM (EW) 0.608 2.391 0.218 2.381 1.57 0.331 1.177 0.185 1.163 1.29

PCA(h∗) 1.559 7.520 7.511 0.367 23.00 1.577 7.605 7.604 0.075 23.00
Sieve(J∗) 0.710 3.512 3.511 0.082 4.00 0.769 3.754 3.753 0.059 4.00
IV spline(λ∗) 0.433 2.901 1.487 2.491 - 0.283 1.494 1.037 1.076 -
HE 0.860 5.010 5.008 0.148 - 0.861 5.009 5.008 0.071 -

PCA(h̃) 0.164 0.930 0.605 0.707 79.35 0.113 0.660 0.341 0.565 87.13

Sieve(J̃) 0.220 1.317 0.813 1.037 15.00 0.155 0.972 0.597 0.767 19.00

IV spline(λ̃) 0.289 1.745 1.271 1.197 - 0.122 0.630 0.471 0.419 -
LLS 1.245 7.243 5.467 4.750 - 0.399 1.810 1.694 0.636 -

Panel 2: DGP II
2-LWM (EW) 0.040 0.253 0.073 0.242 0.12 0.025 0.144 0.097 0.106 0.01
3-LWM (EW) 0.253 0.748 0.089 0.742 0.61 0.116 0.353 0.121 0.332 0.42
4-LWM (EW) 0.533 1.497 0.124 1.492 1.29 0.228 0.610 0.117 0.599 1.08
5-LWM (EW) 0.904 2.370 0.186 2.363 1.92 0.449 1.056 0.122 1.049 1.75

PCA(h∗) 0.088 0.592 0.525 0.273 23.00 0.097 0.645 0.636 0.107 23.00
Sieve(J∗) 0.163 1.026 0.985 0.287 4.00 0.174 1.084 1.073 0.155 4.00
IV spline(λ∗) 0.114 0.798 0.103 0.792 - 0.087 0.825 0.097 0.819 -
HE 0.194 1.517 1.514 0.101 - 0.191 1.514 1.513 0.049 -

PCA(h̃) 0.049 0.344 0.204 0.277 27.23 0.031 0.218 0.111 0.187 29.47

Sieve(J̃) 0.077 0.530 0.465 0.253 7.00 0.039 0.290 0.193 0.217 10.00

IV spline(λ̃) 0.044 0.289 0.175 0.230 - 0.030 0.192 0.143 0.128 -
LLS 0.277 1.311 0.843 1.004 - 0.108 0.607 0.442 0.417 -

Panel 3: DGP III
2-LWM (EW) 0.009 0.084 0.060 0.059 1.95 0.007 0.066 0.060 0.027 2.00
3-LWM (EW) 0.028 0.205 0.034 0.202 2.67 0.010 0.088 0.027 0.084 2.78
4-LWM (EW) 0.064 0.407 0.029 0.405 3.33 0.019 0.140 0.017 0.139 3.43
5-LWM (EW) 0.127 0.753 0.037 0.752 4.00 0.040 0.257 0.015 0.256 4.07

PCA(h∗) 0.019 0.201 0.164 0.116 23.00 0.023 0.228 0.222 0.052 23.00
Sieve(J∗) 0.011 0.110 0.083 0.071 4.00 0.009 0.094 0.087 0.037 4.00
IV spline(λ∗) 0.077 3.239 0.194 3.233 - 0.043 0.720 0.069 0.717 -
HE 0.010 0.098 0.088 0.043 - 0.010 0.090 0.088 0.020 -

PCA(h̃) 0.007 0.077 0.032 0.070 26.20 0.004 0.044 0.023 0.038 26.51

Sieve(J̃) 0.011 0.110 0.083 0.071 4.00 0.008 0.089 0.071 0.054 5.00

IV spline(λ̃) 0.014 0.133 0.077 0.109 - 0.010 0.092 0.066 0.065 -
LLS 0.086 0.732 0.695 0.230 - 0.035 0.281 0.208 0.188 -

Panel 4: DGP IV
2-LWM (EW) 0.066 0.696 0.552 0.423 1.00 0.064 0.686 0.552 0.407 1.00
3-LWM (EW) 0.032 0.250 0.166 0.187 1.31 0.027 0.213 0.160 0.141 1.16
4-LWM (EW) 0.053 0.368 0.108 0.352 1.53 0.023 0.179 0.117 0.135 1.28
5-LWM (EW) 0.120 0.684 0.065 0.681 2.00 0.051 0.273 0.042 0.270 1.73

PCA(h∗) 0.117 1.165 1.154 0.163 23.00 0.120 1.213 1.211 0.055 23.00
Sieve(J∗) 0.118 0.945 0.945 0.027 4.00 0.131 1.111 1.111 0.012 4.00
IV spline(λ∗) 0.117 1.956 0.512 1.888 - 0.137 2.099 0.332 2.072 -
HE 0.184 1.896 1.896 0.018 - 0.184 1.896 1.896 0.009 -

PCA(h̃) 0.038 0.355 0.237 0.265 46.29 0.027 0.259 0.163 0.201 51.72

Sieve(J̃) 0.034 0.256 0.232 0.106 8.00 0.031 0.241 0.223 0.092 10.00

IV spline(λ̃) 0.063 0.452 0.390 0.228 - 0.035 0.281 0.205 0.192 -
LLS 0.086 0.902 0.858 0.278 - 0.043 0.378 0.285 0.248 -

Table F.3: Simulation results of the RND estimates based on the M -LWM model with equal weighting (EW) and five competing
estimators under a medium error variance (2× the estimated error variance of SPX options). The specification and choice of tuning
parameters of the competing estimators are detailed in Online Appendix D. MTVD, RMISE, RISB and RIV respectively stands
for mean total variation distance, root mean integrated squared error, root integrated squared bias, root integrated variance, and
are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average number of log normal densities chosen in each M -LWM
model, (ii) for PCA method, the average number of normal mixtures, and (iii) for Sieve method, the average order of Hermite

expansion (i.e. J∗ or J̃). For each simulation scenario, the statistics in the table are computed based on 1,000 simulated paths.
The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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F.3 Alternative Option Error Specifications

In this section, we consider three alternative error designs that allow for heteroskedastic and/or serially

correlated option errors. In the first ‘Alternative error design I’, option errors are added to the

Black model implied volatility of the theoretical option prices, as inspired by Christoffersen et al.

(2012). In particular, for each strike Kn, we transform the theoretical call option price C∗n to the

Black model implied volatility IV∗n, and add errors to the latter equal to uIV,n = γIV × ZIV,n, where

ZIV,n ∼ i.i.d. U(−1, 1). The observed call price Cn is then computed by transforming back the observed

IVn (=max(IV∗n+uIV,n,0)) to option prices using the Black model. Due to the nonlinear tranformation

of the Black model, the option errors un = Cn − C∗n are heteroskedastic, despite being independent.

In our ‘Alternative error design II’, we allow for strong autogressive serial correlations in the

option errors un, while still assuming that they are homoskedastic. In particular, un has the following

structure:

un = γu × Zn, Zn = 2Φ(ηn)− 1, ηn = 0.8ηn−1 + en, en ∼ i.i.d.N (0, 0.36),

in which Φ(x) is the cumulative density function of a standard normal distribution, and consequently

{Zn}n=1:N is an AR(1) dependent time series which is unconditionally and uniformly distributed on

[−1, 1]. The first order autocorrelation of Zn, and also un, is about 0.8, allowing for potentially much

stronger serial correlation in option errors than documented empirically in Andersen et al. (2021).

Our final ‘Alternative error design III’ modifies the design I above to allow for strong autore-

gressive but homoskedastic errors in the IV domain, which translate into strong autoregressive and

heteroskedastic errors in the price domain. In particular, we consider the following structure for uIV,n,

while keeping other transformations unchanged.

uIV,n = γIV × ZIV,n, ZIV,n = 2Φ(ηIV,n)− 1, ηIV,n = 0.8ηIV,n−1 + eIV,n, eIV,n ∼ i.i.d.N (0, 0.36).

Similar to the basic i.i.d. option error specification discussed earlier, the proportionality factors

of the alternative error designs (i.e. γIV in designs I and III, and γu in design II) are chosen such that

the variance of un is approximately the same as, twice and four times the estimated SPX options’

error variance in our empirical application. Table F.4 tabulates the values of these factors used in our

simulation, and we note that while γu is the same for all four DGPs for each error variance size, γIV

is different for different DGPs.

Simulation results for alternative option error designs are presented in Tables F.5 to F.10. For

the LWM method, in addition to the equal weighting scheme, we also consider an alternative Vega
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Error Variance DGP I DGP II DGP III DGP IV

factor factor Low Volatility Mid Volatility High Volatility Bimodal

γIV

1× 0.0099 0.0071 0.0046 0.0048
2× 0.0142 0.0100 0.0066 0.0067
4× 0.0198 0.0142 0.0093 0.0094

γu

1× 0.1212
2× 0.1715
4× 0.2425

Table F.4: Error proportionality factors (γIV in alternative error designs I and III, and γu in design II) under
small and large error variance cases (2× and 4× the estimated SPX options’ error variance, respectively) for
the four DGPs in our simulation.

weighting (VW) scheme suggested by Christoffersen et al. (2018) that sets ωn = 1/v(Kn)2, where

v(Kn) is the true option Vega at strike Kn, to examine if it improves the performance of the LWM

estimator under heteroskedastic errors.

Similar to previous results, the LWM method works well in recovering different RNDs with just

a small number of mixtures (i.e. 2 or 3) even when option errors are heteroskedastic (designs I &

III) and/or strongly serially correlated (designs II & III). In the majority of cases, the best LWM-

based RND estimator are amongst the top three candidates in terms of MTVD and RMISE, having

comparable performance to infeasibly optimally tuned SNP estimators, namely PCA(h̃), Sieve(J̃), and

IV spline(λ̃). However, the best LWM estimator significantly outperforms the SNP rivals that employ

feasible adaptive/recommended tuning parameters.

While the Vega-weighted LWM-based RND estimates are consistently outperformed by the equally-

weighted ones under autocorrelated but homoskedastic option errors (design II), the former, surpris-

ingly, do not perform as well as the latter even when option errors are heteroskedastic (designs I

and III), except under DGP II and when 4 or 5 mixtures are considered, potentially due to model

misspecification. When the LWM model is misspecified, the inverse Vega weights, which are low near-

the-money, heavily distort the model fit of the near-the-money option prices, resulting in more biased

RND estimates than those based on a simple equal weighting scheme. This suggests that the equal

weight scheme provides a more robust choice for RND estimation in practice, which we recommend in

empirical applications.
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N = 100 & Small error variance (1×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.171 0.840 0.800 0.256 0.00 0.167 0.823 0.789 0.236 0.00 0.173 0.864 0.758 0.415 0.00
2-LWM (VW) 0.612 2.832 2.829 0.122 0.00 0.749 4.117 3.216 2.571 0.25 0.609 2.820 2.814 0.191 0.00
3-LWM (EW) 0.152 0.689 0.506 0.467 0.03 0.135 0.616 0.521 0.329 0.16 0.166 0.784 0.491 0.611 0.07
3-LWM (VW) 0.441 1.990 1.985 0.138 0.00 0.568 2.987 2.176 2.046 0.85 0.438 1.988 1.972 0.246 0.00
4-LWM (EW) 0.523 1.888 0.318 1.862 0.87 0.153 0.683 0.244 0.638 0.73 0.358 1.401 0.212 1.385 0.86
4-LWM (VW) 0.250 1.156 0.996 0.587 0.05 0.491 2.602 1.750 1.926 1.50 0.267 1.265 0.847 0.940 0.17
5-LWM (EW) 0.780 2.610 0.326 2.589 1.61 0.174 0.734 0.084 0.729 1.34 0.474 1.767 0.199 1.756 1.57
5-LWM (VW) 0.174 0.810 0.631 0.509 0.41 0.481 2.605 1.694 1.979 2.05 0.197 0.930 0.451 0.813 0.58

PCA(h∗) 1.583 7.641 7.641 0.000 23.00 1.565 7.549 7.543 0.311 23.00 1.583 7.641 7.641 0.001 23.00
Sieve(J∗) 0.769 3.754 3.753 0.067 4.00 0.770 3.754 3.753 0.095 4.00 0.770 3.757 3.754 0.152 4.00
IV spline(λ∗) 0.155 0.786 0.303 0.726 - 1.135 17.256 2.155 17.121 - 0.323 1.449 0.149 1.441 -
HE 0.861 4.962 4.962 0.074 - 0.861 5.003 5.002 0.122 - 0.860 4.964 4.961 0.173 -

PCA(h̃) 0.150 0.823 0.487 0.663 83.00 0.103 0.586 0.335 0.481 84.72 0.170 0.912 0.451 0.793 85.00

Sieve(J̃) 0.210 1.188 0.931 0.738 15.00 0.128 0.823 0.501 0.654 22.00 0.221 1.228 0.635 1.051 19.00

IV spline(λ̃) 0.127 0.620 0.447 0.430 - 0.282 1.387 1.207 0.684 - 0.132 0.690 0.416 0.551 -
LLS 0.358 1.589 1.199 1.043 - 1.341 6.633 6.288 2.113 - 0.308 1.433 0.976 1.050 -

Panel 2: DGP II
2-LWM (EW) 0.024 0.139 0.103 0.093 0.00 0.035 0.213 0.089 0.193 0.09 0.042 0.268 0.076 0.257 0.06
2-LWM (VW) 0.036 0.217 0.204 0.075 0.00 0.124 0.765 0.575 0.504 0.43 0.037 0.229 0.196 0.119 0.00
3-LWM (EW) 0.246 0.581 0.076 0.576 0.63 0.134 0.422 0.086 0.413 0.65 0.321 0.886 0.070 0.883 0.58
3-LWM (VW) 0.032 0.182 0.170 0.066 0.51 0.106 0.626 0.308 0.545 1.18 0.043 0.228 0.160 0.163 0.47
4-LWM (EW) 0.613 1.331 0.108 1.326 1.30 0.232 0.674 0.066 0.671 1.31 0.577 1.460 0.103 1.456 1.19
4-LWM (VW) 0.065 0.313 0.069 0.306 1.23 0.122 0.647 0.170 0.624 1.87 0.112 0.494 0.074 0.488 1.19
5-LWM (EW) 1.038 2.309 0.152 2.304 1.99 0.331 0.950 0.066 0.948 1.97 0.817 2.103 0.128 2.099 1.82
5-LWM (VW) 0.101 0.449 0.065 0.444 1.90 0.155 0.744 0.096 0.737 2.52 0.167 0.696 0.079 0.692 1.82

PCA(h∗) 0.102 0.672 0.670 0.053 23.00 0.091 0.605 0.563 0.222 23.00 0.106 0.686 0.674 0.126 23.00
Sieve(J∗) 0.173 1.087 1.086 0.043 4.00 0.174 1.114 1.067 0.319 4.00 0.173 1.091 1.085 0.106 4.00
IV spline(λ∗) 0.077 0.472 0.020 0.471 - 1.141 12.496 1.517 12.404 - 0.361 1.637 0.063 1.636 -
HE 0.194 1.530 1.530 0.034 - 0.212 1.948 1.507 1.234 - 0.197 1.533 1.531 0.085 -

PCA(h̃) 0.032 0.211 0.119 0.175 28.00 0.040 0.280 0.137 0.244 27.49 0.053 0.350 0.181 0.300 27.00

Sieve(J̃) 0.032 0.244 0.168 0.178 10.00 0.049 0.352 0.178 0.304 10.00 0.056 0.403 0.172 0.364 10.00
IV spline(λ̃) 0.017 0.103 0.054 0.087 - 0.034 0.232 0.086 0.215 - 0.028 0.183 0.111 0.146 -
LLS 0.104 0.535 0.404 0.351 - 0.167 0.831 0.577 0.598 - 0.120 0.649 0.459 0.458 -

Panel 3: DGP III
2-LWM (EW) 0.007 0.062 0.056 0.027 2.00 0.008 0.075 0.057 0.049 1.98 0.009 0.082 0.055 0.060 2.00
2-LWM (VW) 0.017 0.148 0.148 0.011 2.00 0.036 0.339 0.314 0.129 1.62 0.017 0.150 0.147 0.027 2.00
3-LWM (EW) 0.024 0.157 0.041 0.152 2.75 0.014 0.118 0.013 0.117 2.60 0.038 0.239 0.032 0.237 2.73
3-LWM (VW) 0.008 0.070 0.052 0.047 3.00 0.029 0.266 0.141 0.226 2.35 0.012 0.107 0.042 0.099 2.94
4-LWM (EW) 0.051 0.312 0.019 0.311 3.38 0.023 0.169 0.015 0.168 3.22 0.065 0.394 0.013 0.394 3.33
4-LWM (VW) 0.008 0.067 0.009 0.066 3.56 0.036 0.302 0.072 0.294 3.16 0.014 0.123 0.011 0.122 3.60
5-LWM (EW) 0.083 0.524 0.021 0.524 3.95 0.035 0.237 0.012 0.236 3.84 0.091 0.550 0.024 0.550 3.91
5-LWM (VW) 0.011 0.094 0.005 0.094 4.34 0.045 0.366 0.050 0.363 3.80 0.021 0.178 0.010 0.178 4.37

PCA(h∗) 0.025 0.251 0.251 0.013 23.00 0.021 0.215 0.192 0.098 23.00 0.026 0.253 0.251 0.031 23.00
Sieve(J∗) 0.009 0.091 0.085 0.031 4.00 0.010 0.104 0.087 0.056 4.00 0.011 0.112 0.084 0.073 4.00
IV spline(λ∗) 0.019 0.280 0.011 0.280 - 1.500 26.839 3.024 26.668 - 0.223 1.202 0.035 1.202 -
HE 0.009 0.090 0.088 0.021 - 0.010 0.096 0.088 0.037 - 0.011 0.102 0.088 0.051 -

PCA(h̃) 0.005 0.048 0.023 0.042 26.00 0.006 0.063 0.027 0.057 25.25 0.009 0.086 0.045 0.073 25.00

Sieve(J̃) 0.008 0.074 0.048 0.056 7.00 0.009 0.103 0.069 0.077 5.00 0.011 0.112 0.084 0.073 4.00

IV spline(λ̃) 0.005 0.041 0.014 0.038 - 0.011 0.103 0.028 0.099 - 0.010 0.080 0.016 0.079 -
LLS 0.040 0.275 0.208 0.180 - 0.048 0.422 0.397 0.144 - 0.043 0.306 0.212 0.220 -

Panel 4: DGP IV
2-LWM (EW) 0.065 0.691 0.555 0.412 1.00 0.066 0.706 0.556 0.435 1.00 0.065 0.698 0.551 0.428 1.00
2-LWM (VW) 0.155 1.574 1.562 0.199 1.00 0.157 1.545 1.473 0.464 0.75 0.154 1.571 1.557 0.206 1.00
3-LWM (EW) 0.026 0.203 0.154 0.131 1.10 0.030 0.229 0.170 0.154 1.21 0.028 0.224 0.157 0.159 1.11
3-LWM (VW) 0.126 1.148 1.105 0.310 1.85 0.139 1.426 1.306 0.572 1.45 0.125 1.141 1.096 0.317 1.85
4-LWM (EW) 0.027 0.191 0.093 0.167 1.43 0.027 0.194 0.108 0.161 1.40 0.033 0.247 0.094 0.229 1.45
4-LWM (VW) 0.061 0.485 0.422 0.238 2.74 0.106 1.015 0.827 0.589 2.19 0.061 0.480 0.417 0.239 2.72
5-LWM (EW) 0.045 0.316 0.045 0.312 1.85 0.038 0.235 0.042 0.231 1.86 0.051 0.362 0.057 0.358 1.85
5-LWM (VW) 0.047 0.345 0.272 0.211 3.12 0.091 0.815 0.597 0.555 2.96 0.047 0.354 0.270 0.230 3.14

PCA(h∗) 0.121 1.239 1.239 0.006 23.00 0.118 1.191 1.183 0.132 23.00 0.121 1.239 1.239 0.015 23.00
Sieve(J∗) 0.131 1.114 1.114 0.009 4.00 0.131 1.112 1.111 0.020 4.00 0.131 1.114 1.114 0.023 4.00
IV spline(λ∗) 0.052 0.414 0.090 0.404 - 1.445 25.105 2.747 24.954 - 0.190 1.126 0.048 1.125 -
HE 0.184 1.896 1.896 0.007 - 0.184 1.896 1.896 0.016 - 0.184 1.897 1.896 0.018 -

PCA(h̃) 0.030 0.268 0.189 0.190 48.00 0.027 0.247 0.148 0.197 50.78 0.035 0.315 0.206 0.238 47.00

Sieve(J̃) 0.024 0.213 0.156 0.145 16.00 0.031 0.247 0.223 0.107 10.00 0.033 0.253 0.223 0.120 10.00

IV spline(λ̃) 0.033 0.246 0.193 0.153 - 0.062 0.459 0.420 0.185 - 0.034 0.272 0.193 0.192 -
LLS 0.045 0.370 0.283 0.238 - 0.051 0.468 0.430 0.184 - 0.045 0.378 0.268 0.267 -

Table F.5: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 100 and
small error variance (1×) under alternative option error designs. The specification and choice of tuning parameters of the competing
estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting scheme.
MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared error, root
integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average
number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal mixtures, and

(iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed based on 1,000
simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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N = 100 & Medium error variance (2×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.173 0.858 0.783 0.350 0.00 0.168 0.844 0.779 0.326 0.00 0.189 0.948 0.736 0.598 0.00
2-LWM (VW) 0.611 2.829 2.826 0.121 0.00 0.838 4.513 3.570 2.761 0.37 0.610 2.832 2.817 0.292 0.00
3-LWM (EW) 0.222 0.916 0.496 0.770 0.12 0.161 0.695 0.502 0.480 0.27 0.249 1.084 0.486 0.969 0.23
3-LWM (VW) 0.440 1.988 1.981 0.157 0.00 0.620 3.273 2.347 2.281 0.96 0.434 1.984 1.949 0.373 0.00
4-LWM (EW) 0.744 2.534 0.418 2.500 0.93 0.214 0.873 0.361 0.795 0.79 0.514 1.940 0.270 1.921 1.01
4-LWM (VW) 0.270 1.261 0.848 0.934 0.12 0.556 2.930 1.955 2.183 1.53 0.311 1.469 0.762 1.256 0.34
5-LWM (EW) 1.162 3.675 0.423 3.650 1.68 0.259 1.009 0.174 0.994 1.39 0.727 2.561 0.237 2.550 1.76
5-LWM (VW) 0.201 0.952 0.479 0.823 0.51 0.526 2.822 1.877 2.108 2.07 0.255 1.201 0.322 1.157 0.86

PCA(h∗) 1.583 7.641 7.641 0.001 23.00 1.563 7.541 7.532 0.372 23.00 1.583 7.641 7.641 0.002 23.00
Sieve(J∗) 0.769 3.753 3.752 0.094 4.00 0.772 3.753 3.750 0.158 4.00 0.770 3.756 3.750 0.214 4.00
IV spline(λ∗) 0.174 0.903 0.375 0.821 - 1.333 20.958 2.857 20.763 - 0.451 1.992 0.150 1.986 -
HE 0.861 4.964 4.963 0.105 - 0.860 5.008 5.005 0.173 - 0.861 4.969 4.962 0.250 -

PCA(h̃) 0.177 0.981 0.551 0.812 83.00 0.124 0.709 0.360 0.610 84.64 0.211 1.138 0.573 0.984 83.00

Sieve(J̃) 0.238 1.373 0.941 0.999 15.00 0.161 0.981 0.601 0.775 19.00 0.266 1.479 0.954 1.131 15.00

IV spline(λ̃) 0.146 0.732 0.490 0.545 - 0.309 1.609 1.322 0.916 - 0.164 0.866 0.497 0.709 -
LLS 0.399 1.798 1.332 1.208 - 1.548 7.639 7.465 1.623 - 0.358 1.701 1.150 1.253 -

Panel 2: DGP II
2-LWM (EW) 0.029 0.171 0.099 0.139 0.01 0.043 0.274 0.077 0.263 0.15 0.059 0.379 0.049 0.376 0.15
2-LWM (VW) 0.036 0.218 0.202 0.083 0.00 0.129 0.781 0.596 0.505 0.44 0.041 0.260 0.200 0.166 0.01
3-LWM (EW) 0.369 0.844 0.077 0.841 0.64 0.182 0.585 0.082 0.579 0.70 0.483 1.292 0.085 1.289 0.68
3-LWM (VW) 0.033 0.190 0.167 0.090 0.47 0.114 0.683 0.311 0.609 1.24 0.063 0.293 0.153 0.250 0.50
4-LWM (EW) 0.851 1.841 0.141 1.836 1.32 0.305 0.921 0.089 0.917 1.36 0.840 2.114 0.120 2.111 1.29
4-LWM (VW) 0.092 0.413 0.072 0.406 1.18 0.158 0.785 0.198 0.760 1.93 0.176 0.712 0.090 0.707 1.21
5-LWM (EW) 1.474 3.164 0.184 3.159 1.96 0.449 1.300 0.106 1.295 1.96 1.228 3.052 0.170 3.047 1.91
5-LWM (VW) 0.161 0.635 0.067 0.631 1.83 0.198 0.913 0.138 0.903 2.58 0.265 1.043 0.094 1.039 1.82

PCA(h∗) 0.103 0.676 0.672 0.072 23.00 0.095 0.628 0.580 0.240 23.00 0.108 0.696 0.670 0.188 23.00
Sieve(J∗) 0.173 1.087 1.086 0.059 4.00 0.175 1.127 1.067 0.361 4.00 0.174 1.096 1.085 0.155 4.00
IV spline(λ∗) 0.083 0.527 0.028 0.526 - 1.170 13.994 1.717 13.888 - 0.502 2.278 0.100 2.276 -
HE 0.195 1.532 1.531 0.045 - 0.223 2.127 1.515 1.493 - 0.199 1.534 1.529 0.126 -

PCA(h̃) 0.040 0.264 0.166 0.205 27.00 0.051 0.352 0.191 0.296 26.65 0.064 0.430 0.252 0.348 26.00

Sieve(J̃) 0.041 0.302 0.171 0.248 10.00 0.082 0.551 0.476 0.277 7.00 0.088 0.569 0.462 0.333 7.00
IV spline(λ̃) 0.021 0.130 0.083 0.100 - 0.042 0.286 0.128 0.256 - 0.036 0.236 0.106 0.210 -
LLS 0.118 0.617 0.468 0.402 - 0.194 1.004 0.682 0.737 - 0.136 0.765 0.551 0.530 -

Panel 3: DGP III
2-LWM (EW) 0.007 0.067 0.056 0.037 2.00 0.010 0.094 0.060 0.072 1.91 0.011 0.105 0.054 0.090 1.97
2-LWM (VW) 0.017 0.149 0.148 0.015 2.00 0.034 0.327 0.295 0.139 1.60 0.017 0.151 0.146 0.038 2.00
3-LWM (EW) 0.036 0.217 0.044 0.213 2.76 0.021 0.162 0.020 0.161 2.57 0.058 0.346 0.041 0.343 2.72
3-LWM (VW) 0.009 0.082 0.047 0.067 2.97 0.032 0.296 0.148 0.256 2.38 0.017 0.157 0.041 0.151 2.89
4-LWM (EW) 0.083 0.480 0.039 0.478 3.43 0.037 0.256 0.017 0.255 3.22 0.100 0.593 0.024 0.592 3.35
4-LWM (VW) 0.010 0.089 0.007 0.089 3.57 0.047 0.405 0.086 0.396 3.18 0.021 0.182 0.023 0.180 3.55
5-LWM (EW) 0.145 0.857 0.026 0.857 4.01 0.059 0.369 0.020 0.369 3.83 0.144 0.849 0.033 0.848 3.90
5-LWM (VW) 0.017 0.148 0.006 0.147 4.33 0.063 0.516 0.065 0.512 3.81 0.033 0.272 0.013 0.271 4.32

PCA(h∗) 0.025 0.251 0.250 0.018 23.00 0.021 0.213 0.184 0.106 23.00 0.026 0.256 0.252 0.044 23.00
Sieve(J∗) 0.009 0.096 0.085 0.046 4.00 0.011 0.114 0.083 0.078 4.00 0.013 0.135 0.087 0.103 4.00
IV spline(λ∗) 0.019 0.284 0.012 0.283 - 2.392 37.466 5.701 37.030 - 0.320 1.721 0.061 1.720 -
HE 0.010 0.092 0.087 0.030 - 0.011 0.103 0.088 0.054 - 0.012 0.115 0.089 0.073 -

PCA(h̃) 0.006 0.062 0.037 0.050 25.00 0.008 0.083 0.037 0.074 25.17 0.011 0.112 0.062 0.094 25.00

Sieve(J̃) 0.008 0.095 0.071 0.064 5.00 0.011 0.114 0.083 0.078 4.00 0.013 0.135 0.087 0.103 4.00
IV spline(λ̃) 0.007 0.057 0.014 0.055 - 0.015 0.139 0.044 0.132 - 0.014 0.114 0.014 0.113 -
LLS 0.047 0.324 0.244 0.214 - 0.043 0.382 0.310 0.224 - 0.050 0.368 0.258 0.263 -

Panel 4: DGP IV
2-LWM (EW) 0.064 0.684 0.545 0.414 1.00 0.067 0.714 0.551 0.454 0.99 0.067 0.715 0.546 0.461 0.99
2-LWM (VW) 0.154 1.568 1.553 0.216 1.00 0.158 1.533 1.441 0.523 0.75 0.154 1.567 1.552 0.217 1.00
3-LWM (EW) 0.027 0.211 0.156 0.142 1.11 0.032 0.251 0.172 0.182 1.31 0.031 0.257 0.160 0.201 1.16
3-LWM (VW) 0.125 1.144 1.093 0.337 1.81 0.143 1.451 1.335 0.571 1.51 0.125 1.150 1.095 0.351 1.81
4-LWM (EW) 0.034 0.244 0.095 0.225 1.44 0.034 0.247 0.117 0.217 1.52 0.048 0.352 0.097 0.338 1.49
4-LWM (VW) 0.061 0.487 0.420 0.246 2.66 0.108 1.036 0.842 0.603 2.24 0.062 0.504 0.420 0.279 2.66
5-LWM (EW) 0.080 0.510 0.061 0.507 1.83 0.057 0.335 0.051 0.331 1.96 0.085 0.549 0.067 0.545 1.91
5-LWM (VW) 0.049 0.362 0.267 0.245 3.09 0.094 0.828 0.618 0.551 2.95 0.050 0.379 0.264 0.273 3.10

PCA(h∗) 0.121 1.239 1.239 0.008 23.00 0.118 1.185 1.175 0.150 23.00 0.121 1.239 1.239 0.022 23.00
Sieve(J∗) 0.131 1.113 1.113 0.012 4.00 0.131 1.111 1.110 0.028 4.00 0.131 1.114 1.114 0.032 4.00
IV spline(λ∗) 0.059 0.499 0.112 0.486 - 2.262 34.118 3.886 33.896 - 0.247 1.479 0.057 1.478 -
HE 0.184 1.896 1.896 0.010 - 0.184 1.896 1.896 0.024 - 0.184 1.896 1.896 0.026 -

PCA(h̃) 0.034 0.307 0.211 0.223 47.00 0.032 0.308 0.167 0.258 49.88 0.040 0.371 0.226 0.295 47.00

Sieve(J̃) 0.031 0.241 0.223 0.093 10.00 0.036 0.264 0.245 0.099 8.00 0.036 0.270 0.243 0.118 8.00

IV spline(λ̃) 0.037 0.285 0.205 0.197 - 0.075 0.569 0.548 0.153 - 0.039 0.321 0.215 0.238 -
LLS 0.051 0.421 0.325 0.267 - 0.055 0.512 0.418 0.295 - 0.051 0.437 0.309 0.308 -

Table F.6: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 100
and medium error variance (2×) under alternative option error designs. The specification and choice of tuning parameters of the
competing estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting
scheme. MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared
error, root integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method,
the average number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal

mixtures, and (iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed
based on 1,000 simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined,
respectively. 34



N = 100 & Large error variance (4×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.181 0.911 0.760 0.502 0.00 0.174 0.886 0.752 0.470 0.00 0.227 1.149 0.727 0.890 0.01
2-LWM (VW) 0.613 2.837 2.833 0.154 0.00 0.946 4.963 4.050 2.869 0.49 0.611 2.849 2.823 0.381 0.00
3-LWM (EW) 0.353 1.293 0.476 1.203 0.31 0.209 0.852 0.463 0.715 0.39 0.412 1.632 0.478 1.561 0.40
3-LWM (VW) 0.442 2.003 1.992 0.211 0.00 0.706 3.731 2.722 2.552 1.08 0.435 2.020 1.953 0.515 0.00
4-LWM (EW) 1.057 3.454 0.452 3.425 1.10 0.277 1.083 0.397 1.008 0.88 0.786 2.825 0.418 2.794 1.18
4-LWM (VW) 0.311 1.464 0.726 1.271 0.23 0.637 3.385 2.285 2.497 1.60 0.374 1.746 0.699 1.600 0.48
5-LWM (EW) 1.539 4.690 0.402 4.673 1.88 0.386 1.340 0.240 1.318 1.43 1.075 3.603 0.342 3.587 1.95
5-LWM (VW) 0.252 1.212 0.355 1.159 0.68 0.643 3.449 2.148 2.699 2.09 0.338 1.572 0.333 1.536 1.06

PCA(h∗) 1.583 7.641 7.641 0.001 23.00 1.566 7.551 7.545 0.293 23.00 1.583 7.641 7.641 0.002 23.00
Sieve(J∗) 0.770 3.755 3.752 0.131 4.00 0.775 3.755 3.749 0.211 4.00 0.772 3.761 3.749 0.305 4.00
IV spline(λ∗) 0.203 1.057 0.488 0.938 - 1.550 23.635 2.798 23.468 - 0.612 2.708 0.218 2.699 -
HE 0.861 4.966 4.963 0.145 - 0.859 5.016 5.010 0.246 - 0.862 4.970 4.957 0.356 -

PCA(h̃) 0.221 1.175 0.839 0.822 78.00 0.152 0.869 0.408 0.768 84.80 0.254 1.372 0.855 1.073 78.00

Sieve(J̃) 0.276 1.591 0.985 1.249 15.00 0.201 1.182 0.637 0.996 19.00 0.319 1.765 0.975 1.471 15.00

IV spline(λ̃) 0.174 0.885 0.567 0.679 - 0.287 1.426 1.231 0.720 - 0.203 1.075 0.663 0.846 -
LLS 0.440 2.010 1.498 1.340 - 1.346 6.753 6.403 2.145 - 0.413 2.011 1.360 1.481 -

Panel 2: DGP II
2-LWM (EW) 0.039 0.249 0.074 0.238 0.06 0.067 0.390 0.077 0.382 0.22 0.082 0.535 0.051 0.532 0.23
2-LWM (VW) 0.036 0.225 0.199 0.106 0.00 0.144 0.947 0.564 0.760 0.50 0.045 0.294 0.192 0.223 0.01
3-LWM (EW) 0.633 1.407 0.090 1.404 0.70 0.265 0.820 0.084 0.816 0.76 0.755 1.920 0.124 1.916 0.82
3-LWM (VW) 0.044 0.214 0.161 0.141 0.47 0.167 0.955 0.309 0.904 1.26 0.106 0.499 0.141 0.479 0.53
4-LWM (EW) 1.314 2.821 0.189 2.815 1.35 0.482 1.347 0.125 1.342 1.41 1.315 3.172 0.140 3.169 1.41
4-LWM (VW) 0.150 0.620 0.081 0.614 1.20 0.237 1.165 0.276 1.132 1.96 0.268 1.029 0.094 1.025 1.22
5-LWM (EW) 2.160 4.551 0.257 4.544 2.00 0.783 2.003 0.161 1.997 2.02 1.861 4.444 0.206 4.439 2.04
5-LWM (VW) 0.285 1.023 0.100 1.018 1.86 0.278 1.285 0.215 1.267 2.60 0.386 1.474 0.083 1.472 1.82

PCA(h∗) 0.104 0.682 0.674 0.101 23.00 0.098 0.649 0.578 0.295 23.00 0.112 0.718 0.668 0.264 23.00
Sieve(J∗) 0.173 1.089 1.086 0.084 4.00 0.178 1.150 1.071 0.419 4.00 0.175 1.110 1.090 0.210 4.00
IV spline(λ∗) 0.104 0.738 0.026 0.738 - 1.526 15.625 1.933 15.505 - 0.714 3.214 0.096 3.213 -
HE 0.196 1.533 1.532 0.064 - 0.233 2.243 1.525 1.644 - 0.202 1.539 1.529 0.173 -

PCA(h̃) 0.049 0.336 0.184 0.281 27.00 0.063 0.442 0.228 0.379 26.56 0.077 0.518 0.334 0.396 25.00

Sieve(J̃) 0.078 0.509 0.464 0.210 7.00 0.092 0.629 0.493 0.391 7.00 0.100 0.656 0.464 0.463 7.00
IV spline(λ̃) 0.028 0.166 0.085 0.142 - 0.054 0.362 0.194 0.306 - 0.046 0.298 0.160 0.251 -
LLS 0.133 0.715 0.541 0.467 - 0.218 1.155 0.786 0.846 - 0.159 0.901 0.661 0.611 -

Panel 3: DGP III
2-LWM (EW) 0.008 0.077 0.055 0.054 2.00 0.012 0.118 0.065 0.098 1.84 0.015 0.156 0.053 0.147 1.92
2-LWM (VW) 0.017 0.149 0.148 0.020 2.00 0.033 0.334 0.269 0.198 1.56 0.017 0.153 0.144 0.052 2.00
3-LWM (EW) 0.053 0.313 0.044 0.310 2.77 0.030 0.230 0.027 0.228 2.49 0.081 0.491 0.028 0.490 2.66
3-LWM (VW) 0.013 0.127 0.045 0.119 2.95 0.038 0.343 0.161 0.303 2.35 0.026 0.235 0.051 0.229 2.88
4-LWM (EW) 0.129 0.718 0.027 0.717 3.43 0.056 0.375 0.026 0.374 3.15 0.153 0.878 0.030 0.877 3.25
4-LWM (VW) 0.015 0.137 0.015 0.136 3.59 0.067 0.566 0.119 0.553 3.13 0.034 0.285 0.027 0.284 3.55
5-LWM (EW) 0.254 1.335 0.056 1.334 3.97 0.096 0.568 0.027 0.567 3.77 0.231 1.287 0.037 1.287 3.75
5-LWM (VW) 0.027 0.229 0.013 0.228 4.37 0.078 0.639 0.083 0.633 3.74 0.054 0.424 0.013 0.424 4.28

PCA(h∗) 0.026 0.252 0.251 0.023 23.00 0.021 0.213 0.180 0.114 23.00 0.027 0.259 0.251 0.062 23.00
Sieve(J∗) 0.010 0.107 0.086 0.064 4.00 0.014 0.141 0.088 0.110 4.00 0.016 0.172 0.093 0.145 4.00
IV spline(λ∗) 0.025 0.423 0.016 0.422 - 2.393 35.597 5.077 35.233 - 0.439 2.401 0.088 2.400 -
HE 0.010 0.097 0.088 0.042 - 0.012 0.117 0.090 0.075 - 0.014 0.139 0.090 0.106 -

PCA(h̃) 0.008 0.080 0.042 0.067 25.00 0.010 0.108 0.049 0.096 25.07 0.015 0.147 0.081 0.124 25.00

Sieve(J̃) 0.010 0.107 0.086 0.064 4.00 0.014 0.141 0.088 0.110 4.00 0.016 0.172 0.093 0.145 4.00
IV spline(λ̃) 0.010 0.078 0.013 0.077 - 0.019 0.179 0.058 0.170 - 0.019 0.165 0.017 0.164 -
LLS 0.052 0.371 0.282 0.242 - 0.059 0.548 0.459 0.300 - 0.058 0.436 0.306 0.311 -

Panel 4: DGP IV
2-LWM (EW) 0.066 0.704 0.551 0.437 0.99 0.068 0.717 0.538 0.474 0.99 0.067 0.695 0.534 0.446 0.99
2-LWM (VW) 0.154 1.569 1.555 0.213 1.00 0.162 1.576 1.463 0.586 0.75 0.154 1.566 1.549 0.229 1.00
3-LWM (EW) 0.029 0.234 0.158 0.173 1.15 0.034 0.275 0.157 0.226 1.34 0.036 0.317 0.175 0.264 1.29
3-LWM (VW) 0.125 1.136 1.090 0.320 1.84 0.145 1.461 1.337 0.589 1.59 0.125 1.154 1.091 0.374 1.81
4-LWM (EW) 0.060 0.415 0.095 0.404 1.48 0.043 0.318 0.116 0.296 1.55 0.075 0.533 0.118 0.519 1.63
4-LWM (VW) 0.061 0.481 0.416 0.241 2.72 0.114 1.092 0.880 0.647 2.33 0.064 0.534 0.426 0.323 2.62
5-LWM (EW) 0.160 0.871 0.066 0.869 1.91 0.076 0.447 0.049 0.444 2.04 0.150 0.864 0.088 0.860 2.06
5-LWM (VW) 0.054 0.389 0.261 0.289 3.18 0.102 0.894 0.656 0.608 2.99 0.054 0.418 0.271 0.319 3.11

PCA(h∗) 0.121 1.239 1.239 0.011 23.00 0.118 1.187 1.177 0.149 23.00 0.121 1.240 1.239 0.032 23.00
Sieve(J∗) 0.131 1.114 1.114 0.017 4.00 0.131 1.110 1.110 0.038 4.00 0.131 1.115 1.114 0.044 4.00
IV spline(λ∗) 0.066 0.600 0.139 0.583 - 2.028 32.757 4.070 32.503 - 0.338 2.053 0.115 2.049 -
HE 0.184 1.897 1.897 0.013 - 0.184 1.896 1.895 0.034 - 0.184 1.897 1.897 0.035 -

PCA(h̃) 0.040 0.358 0.273 0.232 43.00 0.040 0.369 0.232 0.288 45.96 0.047 0.439 0.298 0.323 43.00

Sieve(J̃) 0.035 0.256 0.243 0.079 8.00 0.038 0.285 0.250 0.137 8.00 0.038 0.293 0.245 0.160 8.00

IV spline(λ̃) 0.042 0.329 0.246 0.218 - 0.066 0.553 0.414 0.367 - 0.046 0.387 0.251 0.295 -
LLS 0.057 0.478 0.367 0.307 - 0.078 0.806 0.772 0.231 - 0.059 0.516 0.368 0.361 -

Table F.7: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 100 and
large error variance (4×) under alternative option error designs. The specification and choice of tuning parameters of the competing
estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting scheme.
MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared error, root
integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average
number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal mixtures, and

(iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed based on 1,000
simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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N = 25 & Small error variance (1×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.189 0.948 0.805 0.502 0.00 0.186 0.892 0.866 0.210 0.00 0.187 0.916 0.849 0.344 0.00
2-LWM (VW) 0.607 2.844 2.791 0.544 0.03 0.814 4.468 3.138 3.181 0.39 0.606 2.842 2.788 0.549 0.02
3-LWM (EW) 0.314 1.156 0.514 1.035 0.29 0.136 0.652 0.601 0.253 0.05 0.145 0.702 0.574 0.405 0.00
3-LWM (VW) 0.349 1.575 1.461 0.588 0.07 0.587 3.134 1.996 2.416 1.07 0.346 1.569 1.457 0.581 0.06
4-LWM (EW) 1.113 4.081 1.058 3.941 1.09 0.351 1.790 0.382 1.749 0.63 0.506 2.338 0.711 2.228 0.85
4-LWM (VW) 0.606 2.515 1.151 2.236 0.77 0.531 2.862 1.811 2.216 1.66 0.566 2.324 1.100 2.047 0.77
5-LWM (EW) 0.914 3.543 0.757 3.462 1.74 0.329 1.663 0.475 1.593 1.23 0.438 2.087 0.802 1.927 1.51
5-LWM (VW) 0.421 1.796 1.025 1.475 1.38 0.507 2.758 1.788 2.100 2.21 0.366 1.540 0.967 1.198 1.40

PCA(h∗) 1.584 7.642 7.642 0.001 23.00 1.509 7.290 7.218 1.020 23.00 1.584 7.642 7.642 0.002 23.00
Sieve(J∗) 0.735 3.493 3.489 0.168 4.00 0.709 3.511 3.510 0.073 4.00 0.735 3.493 3.487 0.194 4.00
IV spline(λ∗) 0.216 1.102 0.393 1.030 - 0.462 6.379 1.384 6.227 - 0.144 0.634 0.392 0.498 -
HE 0.860 4.963 4.961 0.149 - 0.861 5.002 4.999 0.159 - 0.860 4.964 4.959 0.222 -

PCA(h̃) 0.211 1.121 0.781 0.805 78.00 0.121 0.690 0.622 0.298 76.36 0.138 0.763 0.093 0.757 125.00

Sieve(J̃) 0.260 1.485 0.822 1.237 15.00 0.147 0.946 0.824 0.464 15.00 0.175 1.059 0.853 0.627 15.00

IV spline(λ̃) 0.162 0.863 0.594 0.626 - 0.467 2.123 2.029 0.626 - 0.129 0.584 0.402 0.423 -
LLS 0.601 3.283 3.225 0.614 - 1.900 11.739 8.178 8.422 - 0.610 3.287 3.273 0.304 -

Panel 2: DGP II
2-LWM (EW) 0.038 0.244 0.079 0.231 0.05 0.034 0.211 0.102 0.184 0.16 0.037 0.221 0.098 0.198 0.01
2-LWM (VW) 0.039 0.238 0.215 0.102 0.00 0.115 0.756 0.551 0.517 0.46 0.041 0.248 0.206 0.138 0.00
3-LWM (EW) 0.507 1.217 0.105 1.213 0.67 0.067 0.294 0.110 0.273 0.70 0.204 0.603 0.072 0.598 0.52
3-LWM (VW) 0.036 0.204 0.171 0.111 0.47 0.095 0.610 0.297 0.532 1.29 0.037 0.218 0.167 0.139 0.47
4-LWM (EW) 1.115 2.528 0.163 2.523 1.28 0.126 0.434 0.069 0.429 1.38 0.443 1.150 0.104 1.145 1.11
4-LWM (VW) 0.097 0.462 0.080 0.455 1.19 0.104 0.631 0.232 0.587 1.96 0.066 0.340 0.073 0.332 1.21
5-LWM (EW) 1.918 4.188 0.243 4.181 1.94 0.190 0.618 0.064 0.615 2.03 0.620 1.613 0.117 1.609 1.67
5-LWM (VW) 0.180 0.752 0.093 0.746 1.86 0.115 0.675 0.111 0.666 2.62 0.085 0.422 0.060 0.418 1.92

PCA(h∗) 0.105 0.683 0.676 0.101 23.00 0.078 0.553 0.460 0.306 23.00 0.106 0.688 0.675 0.134 23.00
Sieve(J∗) 0.150 1.002 0.998 0.089 4.00 0.163 1.051 0.984 0.370 4.00 0.151 1.007 1.000 0.119 4.00
IV spline(λ∗) 0.149 0.777 0.032 0.776 - 0.170 1.655 0.196 1.643 - 0.126 0.576 0.026 0.575 -
HE 0.196 1.536 1.534 0.064 - 0.193 1.512 1.507 0.127 - 0.199 1.537 1.534 0.103 -

PCA(h̃) 0.048 0.324 0.176 0.272 27.00 0.033 0.229 0.100 0.206 27.49 0.047 0.300 0.143 0.263 28.00

Sieve(J̃) 0.075 0.497 0.457 0.195 7.00 0.050 0.381 0.311 0.220 10.00 0.056 0.400 0.351 0.191 10.00
IV spline(λ̃) 0.026 0.168 0.125 0.112 - 0.039 0.252 0.042 0.249 - 0.027 0.174 0.059 0.164 -
LLS 0.133 0.716 0.551 0.457 - 0.247 1.058 0.428 0.968 - 0.094 0.521 0.336 0.398 -

Panel 3: DGP III
2-LWM (EW) 0.008 0.078 0.054 0.056 2.00 0.008 0.077 0.058 0.050 1.96 0.009 0.080 0.055 0.058 2.00
2-LWM (VW) 0.018 0.155 0.154 0.019 2.00 0.032 0.320 0.245 0.206 1.59 0.018 0.157 0.153 0.035 2.00
3-LWM (EW) 0.055 0.310 0.050 0.306 2.83 0.012 0.094 0.014 0.093 2.63 0.026 0.173 0.029 0.170 2.77
3-LWM (VW) 0.013 0.121 0.049 0.110 2.97 0.029 0.274 0.123 0.245 2.21 0.011 0.093 0.045 0.082 2.99
4-LWM (EW) 0.123 0.709 0.038 0.708 3.52 0.017 0.128 0.010 0.128 3.32 0.042 0.272 0.012 0.272 3.43
4-LWM (VW) 0.012 0.111 0.022 0.108 3.72 0.036 0.343 0.047 0.340 2.92 0.009 0.083 0.016 0.082 3.70
5-LWM (EW) 0.192 1.110 0.046 1.109 4.06 0.025 0.177 0.013 0.176 3.96 0.052 0.343 0.020 0.343 3.98
5-LWM (VW) 0.022 0.186 0.017 0.185 4.52 0.041 0.372 0.055 0.368 3.55 0.012 0.107 0.009 0.106 4.45

PCA(h∗) 0.026 0.253 0.252 0.025 23.00 0.017 0.189 0.142 0.126 23.00 0.026 0.255 0.252 0.040 23.00
Sieve(J∗) 0.010 0.108 0.086 0.064 4.00 0.009 0.098 0.085 0.049 4.00 0.010 0.106 0.084 0.065 4.00
IV spline(λ∗) 0.030 0.284 0.007 0.284 - 0.321 8.265 1.467 8.134 - 0.034 0.232 0.007 0.232 -
HE 0.010 0.099 0.089 0.044 - 0.010 0.097 0.088 0.041 - 0.011 0.104 0.088 0.055 -

PCA(h̃) 0.008 0.083 0.047 0.068 25.00 0.005 0.054 0.021 0.049 24.41 0.008 0.078 0.027 0.073 26.00

Sieve(J̃) 0.010 0.108 0.086 0.064 4.00 0.008 0.092 0.067 0.063 5.00 0.010 0.103 0.066 0.079 5.00

IV spline(λ̃) 0.005 0.045 0.021 0.039 - 0.011 0.108 0.037 0.102 - 0.006 0.054 0.022 0.050 -
LLS 0.045 0.350 0.235 0.259 - 0.089 0.740 0.663 0.329 - 0.027 0.255 0.217 0.134 -

Panel 4: DGP IV
2-LWM (EW) 0.065 0.690 0.546 0.422 1.00 0.066 0.710 0.556 0.442 1.00 0.063 0.664 0.540 0.386 1.00
2-LWM (VW) 0.155 1.582 1.564 0.234 1.00 0.153 1.495 1.395 0.538 0.82 0.155 1.584 1.567 0.231 1.00
3-LWM (EW) 0.029 0.236 0.163 0.172 1.17 0.030 0.231 0.176 0.149 1.21 0.027 0.209 0.156 0.138 1.10
3-LWM (VW) 0.125 1.158 1.096 0.374 1.79 0.137 1.378 1.239 0.603 1.55 0.125 1.156 1.095 0.370 1.79
4-LWM (EW) 0.071 0.454 0.100 0.443 1.51 0.024 0.177 0.107 0.141 1.44 0.028 0.208 0.096 0.184 1.44
4-LWM (VW) 0.078 0.617 0.500 0.361 2.66 0.104 0.992 0.812 0.570 2.23 0.073 0.587 0.485 0.331 2.67
5-LWM (EW) 0.179 1.024 0.126 1.016 1.96 0.031 0.196 0.045 0.191 1.90 0.038 0.279 0.053 0.273 1.83
5-LWM (VW) 0.056 0.420 0.342 0.245 3.08 0.088 0.801 0.583 0.550 2.92 0.051 0.387 0.340 0.185 2.99

PCA(h∗) 0.121 1.239 1.239 0.012 23.00 0.113 1.123 1.090 0.269 23.00 0.121 1.239 1.239 0.020 23.00
Sieve(J∗) 0.118 0.947 0.947 0.021 4.00 0.118 0.946 0.946 0.024 4.00 0.118 0.947 0.947 0.031 4.00
IV spline(λ∗) 0.081 0.569 0.124 0.556 - 0.243 3.898 0.831 3.808 - 0.041 0.284 0.113 0.260 -
HE 0.184 1.896 1.896 0.014 - 0.184 1.896 1.896 0.021 - 0.184 1.896 1.896 0.022 -

PCA(h̃) 0.041 0.366 0.277 0.239 43.00 0.022 0.200 0.135 0.148 49.24 0.028 0.251 0.143 0.207 52.00

Sieve(J̃) 0.031 0.250 0.223 0.113 9.00 0.025 0.214 0.166 0.135 14.00 0.025 0.211 0.165 0.132 14.00

IV spline(λ̃) 0.046 0.336 0.241 0.234 - 0.072 0.479 0.432 0.207 - 0.036 0.233 0.166 0.163 -
LLS 0.057 0.513 0.458 0.232 - 0.086 0.793 0.694 0.384 - 0.054 0.467 0.454 0.111 -

Table F.8: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 25 and
small error variance (1×) under alternative option error designs. The specification and choice of tuning parameters of the competing
estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting scheme.
MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared error, root
integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average
number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal mixtures, and

(iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed based on 1,000
simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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N = 25 & Medium error variance (2×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.213 1.085 0.760 0.774 0.02 0.180 0.892 0.837 0.306 0.00 0.193 0.950 0.820 0.479 0.00
2-LWM (VW) 0.608 2.858 2.798 0.584 0.03 0.942 5.042 3.306 3.808 0.51 0.607 2.848 2.796 0.542 0.02
3-LWM (EW) 0.518 1.985 0.358 1.952 0.47 0.161 0.741 0.572 0.472 0.18 0.173 0.816 0.544 0.608 0.05
3-LWM (VW) 0.353 1.613 1.468 0.670 0.06 0.656 3.433 2.127 2.694 1.20 0.352 1.646 1.461 0.758 0.04
4-LWM (EW) 1.285 4.562 0.891 4.474 1.24 0.301 1.443 0.311 1.409 0.75 0.602 2.662 0.739 2.557 0.89
4-LWM (VW) 0.607 2.557 1.010 2.349 0.74 0.611 3.231 1.884 2.624 1.73 0.551 2.296 0.981 2.076 0.71
5-LWM (EW) 1.198 4.370 0.657 4.320 1.85 0.335 1.574 0.242 1.555 1.32 0.526 2.437 0.766 2.313 1.56
5-LWM (VW) 0.489 2.110 0.987 1.865 1.37 0.572 3.065 1.856 2.439 2.23 0.378 1.618 0.798 1.407 1.29

PCA(h∗) 1.584 7.642 7.642 0.001 23.00 1.501 7.256 7.173 1.093 23.00 1.584 7.642 7.642 0.002 23.00
Sieve(J∗) 0.736 3.500 3.491 0.240 4.00 0.710 3.512 3.511 0.103 4.00 0.735 3.498 3.487 0.279 4.00
IV spline(λ∗) 0.256 1.328 0.439 1.253 - 0.457 5.400 1.294 5.243 - 0.170 0.801 0.400 0.694 -
HE 0.859 4.964 4.959 0.212 - 0.860 5.010 5.006 0.207 - 0.860 4.968 4.958 0.319 -

PCA(h̃) 0.245 1.311 0.914 0.940 76.00 0.131 0.729 0.612 0.397 75.92 0.178 0.914 0.594 0.694 83.00

Sieve(J̃) 0.317 1.770 0.836 1.560 15.00 0.160 1.004 0.806 0.599 15.00 0.206 1.180 0.825 0.843 15.00

IV spline(λ̃) 0.194 1.039 0.712 0.756 - 0.459 2.161 1.982 0.862 - 0.144 0.711 0.442 0.557 -
LLS 0.598 3.300 3.189 0.849 - 2.086 14.161 8.436 11.374 - 0.606 3.280 3.253 0.420 -

Panel 2: DGP II
2-LWM (EW) 0.054 0.352 0.052 0.349 0.14 0.040 0.252 0.101 0.231 0.20 0.051 0.322 0.072 0.314 0.07
2-LWM (VW) 0.039 0.242 0.207 0.125 0.00 0.126 0.838 0.532 0.647 0.46 0.044 0.275 0.197 0.191 0.01
3-LWM (EW) 0.902 2.013 0.156 2.007 0.79 0.114 0.431 0.112 0.416 0.74 0.330 0.939 0.072 0.936 0.60
3-LWM (VW) 0.047 0.250 0.167 0.187 0.47 0.114 0.770 0.295 0.711 1.29 0.043 0.256 0.153 0.206 0.45
4-LWM (EW) 1.742 3.783 0.238 3.775 1.43 0.202 0.647 0.085 0.641 1.42 0.684 1.707 0.103 1.704 1.21
4-LWM (VW) 0.163 0.695 0.087 0.689 1.17 0.141 0.849 0.248 0.812 1.99 0.092 0.461 0.069 0.456 1.17
5-LWM (EW) 2.745 5.807 0.274 5.801 2.08 0.317 0.954 0.085 0.950 2.07 0.941 2.360 0.125 2.357 1.85
5-LWM (VW) 0.315 1.239 0.113 1.234 1.82 0.162 0.875 0.168 0.859 2.65 0.142 0.648 0.077 0.643 1.84

PCA(h∗) 0.107 0.692 0.676 0.147 23.00 0.080 0.559 0.452 0.329 23.00 0.110 0.706 0.680 0.191 23.00
Sieve(J∗) 0.151 1.008 1.000 0.127 4.00 0.168 1.091 0.996 0.447 4.00 0.152 1.018 1.004 0.169 4.00
IV spline(λ∗) 0.158 0.891 0.028 0.890 - 0.138 1.098 0.143 1.088 - 0.168 0.781 0.018 0.781 -
HE 0.198 1.538 1.535 0.092 - 0.193 1.510 1.500 0.177 - 0.202 1.543 1.536 0.145 -

PCA(h̃) 0.060 0.406 0.256 0.315 26.00 0.043 0.305 0.118 0.281 27.28 0.061 0.392 0.187 0.345 27.00

Sieve(J̃) 0.080 0.540 0.458 0.287 7.00 0.073 0.518 0.452 0.253 7.00 0.062 0.446 0.349 0.278 10.00

IV spline(λ̃) 0.032 0.202 0.125 0.158 - 0.049 0.316 0.056 0.311 - 0.035 0.236 0.127 0.198 -
LLS 0.149 0.826 0.638 0.524 - 0.351 1.441 0.798 1.200 - 0.116 0.640 0.433 0.471 -

Panel 1: DGP III
2-LWM (EW) 0.010 0.101 0.052 0.086 1.98 0.010 0.094 0.064 0.069 1.88 0.011 0.099 0.056 0.082 1.99
2-LWM (VW) 0.018 0.157 0.154 0.028 2.00 0.033 0.331 0.234 0.234 1.57 0.018 0.161 0.153 0.051 2.00
3-LWM (EW) 0.087 0.493 0.048 0.491 2.82 0.018 0.136 0.021 0.134 2.58 0.039 0.246 0.022 0.245 2.77
3-LWM (VW) 0.021 0.195 0.058 0.186 2.94 0.034 0.322 0.145 0.287 2.18 0.014 0.126 0.044 0.118 2.99
4-LWM (EW) 0.201 1.083 0.046 1.082 3.49 0.030 0.200 0.019 0.199 3.27 0.066 0.412 0.022 0.411 3.44
4-LWM (VW) 0.020 0.186 0.034 0.183 3.70 0.045 0.422 0.071 0.416 2.92 0.014 0.124 0.017 0.123 3.73
5-LWM (EW) 0.313 1.698 0.078 1.696 4.02 0.044 0.286 0.023 0.285 3.95 0.086 0.551 0.022 0.550 3.98
5-LWM (VW) 0.036 0.305 0.016 0.305 4.48 0.053 0.484 0.068 0.479 3.51 0.019 0.166 0.008 0.166 4.49

PCA(h∗) 0.026 0.253 0.251 0.035 23.00 0.019 0.199 0.148 0.133 23.00 0.026 0.257 0.251 0.056 23.00
Sieve(J∗) 0.012 0.123 0.085 0.089 4.00 0.010 0.109 0.084 0.071 4.00 0.012 0.123 0.082 0.091 4.00
IV spline(λ∗) 0.039 0.399 0.013 0.399 - 0.312 7.505 1.621 7.328 - 0.043 0.311 0.007 0.311 -
HE 0.011 0.107 0.087 0.062 - 0.011 0.105 0.087 0.059 - 0.012 0.116 0.087 0.076 -

PCA(h̃) 0.010 0.104 0.060 0.084 25.00 0.007 0.072 0.029 0.066 24.40 0.011 0.102 0.044 0.093 25.00

Sieve(J̃) 0.012 0.123 0.085 0.089 4.00 0.010 0.109 0.084 0.071 4.00 0.012 0.123 0.082 0.091 4.00

IV spline(λ̃) 0.007 0.060 0.021 0.056 - 0.015 0.141 0.045 0.133 - 0.008 0.074 0.022 0.070 -
LLS 0.059 0.431 0.304 0.305 - 0.112 0.984 0.704 0.688 - 0.034 0.294 0.221 0.194 -

Panel 2: DGP IV
2-LWM (EW) 0.068 0.726 0.557 0.466 1.00 0.066 0.707 0.549 0.446 0.99 0.066 0.715 0.553 0.453 0.99
2-LWM (VW) 0.156 1.586 1.570 0.226 1.00 0.158 1.526 1.416 0.569 0.77 0.156 1.591 1.576 0.215 1.00
3-LWM (EW) 0.034 0.283 0.174 0.224 1.27 0.031 0.248 0.179 0.171 1.30 0.029 0.230 0.160 0.166 1.11
3-LWM (VW) 0.125 1.158 1.100 0.365 1.81 0.144 1.441 1.303 0.616 1.54 0.126 1.159 1.102 0.357 1.81
4-LWM (EW) 0.132 0.755 0.116 0.746 1.65 0.030 0.209 0.106 0.181 1.52 0.041 0.296 0.101 0.278 1.43
4-LWM (VW) 0.080 0.620 0.498 0.369 2.68 0.111 1.050 0.861 0.601 2.23 0.073 0.583 0.485 0.324 2.67
5-LWM (EW) 0.302 1.473 0.162 1.464 2.13 0.044 0.274 0.048 0.270 2.00 0.072 0.497 0.088 0.489 1.86
5-LWM (VW) 0.061 0.457 0.344 0.301 3.13 0.090 0.832 0.632 0.542 2.94 0.053 0.403 0.342 0.212 3.02

PCA(h∗) 0.121 1.239 1.239 0.017 23.00 0.112 1.113 1.071 0.304 23.00 0.121 1.239 1.239 0.027 23.00
Sieve(J∗) 0.118 0.947 0.947 0.030 4.00 0.118 0.945 0.945 0.034 4.00 0.118 0.948 0.947 0.043 4.00
IV spline(λ∗) 0.095 0.679 0.137 0.665 - 0.263 5.053 1.033 4.947 - 0.055 0.380 0.115 0.362 -
HE 0.184 1.897 1.896 0.019 - 0.184 1.896 1.895 0.032 - 0.184 1.897 1.896 0.031 -

PCA(h̃) 0.046 0.421 0.300 0.296 43.00 0.026 0.242 0.150 0.191 48.61 0.033 0.303 0.192 0.234 48.00

Sieve(J̃) 0.036 0.266 0.236 0.123 8.00 0.030 0.241 0.223 0.090 9.00 0.028 0.243 0.165 0.178 14.00

IV spline(λ̃) 0.052 0.387 0.284 0.263 - 0.083 0.599 0.563 0.206 - 0.041 0.276 0.197 0.194 -
LLS 0.061 0.555 0.459 0.312 - 0.133 1.397 0.918 1.053 - 0.054 0.478 0.452 0.155 -

Table F.9: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 25
and medium error variance (2×) under alternative option error designs. The specification and choice of tuning parameters of the
competing estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting
scheme. MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared
error, root integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method,
the average number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal

mixtures, and (iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed
based on 1,000 simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined,
respectively. 37



N = 25 & Large error variance (4×)

Alternative Error Design I Alternative Error Design II Alternative Error Design III

Estimator MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1 MTVD RMISE RISB RIV M1

Panel 1: DGP I
2-LWM (EW) 0.273 1.404 0.737 1.195 0.09 0.179 0.905 0.805 0.413 0.00 0.213 1.057 0.783 0.710 0.00
2-LWM (VW) 0.612 2.879 2.814 0.608 0.03 1.153 5.839 3.712 4.507 0.54 0.610 2.889 2.800 0.713 0.03
3-LWM (EW) 1.022 3.830 0.504 3.797 0.72 0.195 0.875 0.520 0.703 0.31 0.263 1.136 0.512 1.015 0.20
3-LWM (VW) 0.357 1.669 1.468 0.795 0.06 0.818 4.307 2.547 3.473 1.13 0.356 1.662 1.471 0.774 0.07
4-LWM (EW) 1.644 5.512 0.851 5.446 1.48 0.327 1.488 0.323 1.453 0.82 0.764 3.146 0.710 3.065 0.97
4-LWM (VW) 0.629 2.690 0.941 2.520 0.70 0.727 3.807 2.035 3.218 1.65 0.552 2.345 0.870 2.178 0.70
5-LWM (EW) 1.753 6.024 0.826 5.967 2.01 0.419 1.970 0.246 1.954 1.43 0.685 2.918 0.691 2.835 1.61
5-LWM (VW) 0.584 2.574 0.972 2.383 1.37 0.691 3.616 1.899 3.077 2.15 0.419 1.836 0.754 1.675 1.27

PCA(h∗) 1.584 7.642 7.642 0.002 23.00 1.498 7.247 7.155 1.153 23.00 1.584 7.642 7.642 0.003 23.00
Sieve(J∗) 0.736 3.503 3.486 0.336 4.00 0.710 3.515 3.512 0.145 4.00 0.737 3.512 3.490 0.388 4.00
IV spline(λ∗) 0.308 1.605 0.564 1.503 - 0.490 5.231 1.320 5.062 - 0.216 1.065 0.401 0.987 -
HE 0.862 4.969 4.960 0.296 - 0.858 5.004 4.989 0.377 - 0.859 4.968 4.949 0.443 -

PCA(h̃) 0.285 1.562 1.016 1.186 76.00 0.164 0.936 0.662 0.662 74.24 0.214 1.119 0.682 0.887 80.00

Sieve(J̃) 0.370 2.016 1.502 1.344 11.00 0.186 1.131 0.809 0.790 15.00 0.255 1.428 0.810 1.176 15.00

IV spline(λ̃) 0.234 1.249 0.872 0.895 - 0.385 2.001 1.519 1.303 - 0.175 0.907 0.519 0.744 -
LLS 0.618 3.353 3.149 1.151 - 1.853 9.526 9.058 2.951 - 0.603 3.290 3.234 0.604 -

Panel 2: DGP II
2-LWM (EW) 0.078 0.520 0.088 0.512 0.25 0.051 0.330 0.105 0.313 0.25 0.071 0.459 0.051 0.456 0.17
2-LWM (VW) 0.042 0.274 0.204 0.183 0.01 0.160 1.205 0.575 1.058 0.61 0.051 0.338 0.192 0.278 0.02
3-LWM (EW) 1.366 3.063 0.280 3.050 0.91 0.147 0.555 0.110 0.544 0.80 0.491 1.370 0.073 1.368 0.71
3-LWM (VW) 0.086 0.389 0.149 0.359 0.50 0.160 1.071 0.331 1.018 1.42 0.060 0.349 0.138 0.321 0.48
4-LWM (EW) 2.543 5.417 0.362 5.404 1.55 0.284 0.867 0.121 0.858 1.48 0.911 2.386 0.130 2.383 1.29
4-LWM (VW) 0.265 1.012 0.090 1.008 1.18 0.184 1.133 0.352 1.076 2.10 0.147 0.697 0.081 0.692 1.15
5-LWM (EW) 3.770 7.761 0.345 7.754 2.21 0.486 1.347 0.130 1.341 2.10 1.324 3.304 0.196 3.298 1.87
5-LWM (VW) 0.513 1.820 0.115 1.817 1.83 0.219 1.215 0.284 1.181 2.73 0.216 0.945 0.080 0.942 1.80

PCA(h∗) 0.111 0.717 0.685 0.213 23.00 0.088 0.602 0.466 0.381 23.00 0.115 0.733 0.680 0.273 23.00
Sieve(J∗) 0.152 1.022 1.006 0.180 4.00 0.171 1.124 1.006 0.501 4.00 0.155 1.037 1.009 0.241 4.00
IV spline(λ∗) 0.176 1.095 0.057 1.093 - 0.242 3.664 0.378 3.644 - 0.208 1.023 0.026 1.022 -
HE 0.201 1.545 1.539 0.134 - 0.196 1.515 1.497 0.234 - 0.206 1.550 1.537 0.205 -

PCA(h̃) 0.074 0.499 0.354 0.352 25.00 0.056 0.388 0.203 0.330 25.74 0.076 0.502 0.268 0.424 26.00

Sieve(J̃) 0.092 0.622 0.476 0.401 7.00 0.086 0.590 0.465 0.363 7.00 0.092 0.607 0.463 0.392 7.00
IV spline(λ̃) 0.041 0.260 0.161 0.204 - 0.061 0.393 0.112 0.377 - 0.047 0.308 0.143 0.273 -
LLS 0.169 0.953 0.733 0.608 - 0.367 1.569 0.897 1.287 - 0.134 0.763 0.532 0.548 -

Panel 3: DGP III
2-LWM (EW) 0.015 0.159 0.046 0.153 1.91 0.012 0.120 0.073 0.095 1.76 0.014 0.130 0.051 0.119 1.97
2-LWM (VW) 0.018 0.159 0.154 0.039 2.00 0.033 0.369 0.218 0.297 1.51 0.018 0.169 0.153 0.071 2.00
3-LWM (EW) 0.128 0.729 0.059 0.727 2.70 0.025 0.183 0.029 0.181 2.44 0.059 0.360 0.035 0.358 2.75
3-LWM (VW) 0.032 0.277 0.083 0.264 2.93 0.041 0.402 0.162 0.368 2.14 0.021 0.188 0.041 0.184 2.95
4-LWM (EW) 0.301 1.573 0.083 1.571 3.29 0.043 0.280 0.028 0.279 3.16 0.099 0.600 0.024 0.600 3.37
4-LWM (VW) 0.035 0.299 0.063 0.292 3.70 0.063 0.586 0.090 0.579 2.89 0.023 0.204 0.029 0.202 3.73
5-LWM (EW) 0.497 2.536 0.142 2.532 3.78 0.073 0.453 0.040 0.452 3.81 0.140 0.854 0.036 0.853 3.90
5-LWM (VW) 0.061 0.480 0.049 0.478 4.49 0.075 0.665 0.081 0.660 3.49 0.033 0.269 0.023 0.268 4.50

PCA(h∗) 0.026 0.255 0.250 0.049 23.00 0.020 0.208 0.144 0.150 23.00 0.027 0.261 0.249 0.078 23.00
Sieve(J∗) 0.014 0.149 0.096 0.115 4.00 0.012 0.131 0.084 0.100 4.00 0.015 0.156 0.091 0.127 4.00
IV spline(λ∗) 0.047 0.522 0.038 0.520 - 0.310 7.853 1.520 7.704 - 0.052 0.392 0.015 0.392 -
HE 0.013 0.124 0.089 0.086 - 0.013 0.123 0.089 0.084 - 0.014 0.137 0.087 0.106 -

PCA(h̃) 0.013 0.131 0.081 0.103 25.00 0.010 0.100 0.047 0.088 24.25 0.014 0.138 0.063 0.123 25.00

Sieve(J̃) 0.014 0.149 0.096 0.115 4.00 0.012 0.131 0.084 0.100 4.00 0.015 0.156 0.091 0.127 4.00

IV spline(λ̃) 0.009 0.081 0.022 0.078 - 0.020 0.183 0.060 0.173 - 0.011 0.101 0.020 0.099 -
LLS 0.067 0.497 0.383 0.317 - 0.155 1.551 0.941 1.233 - 0.043 0.349 0.229 0.263 -

Panel 4: DGP IV
2-LWM (EW) 0.069 0.728 0.531 0.498 0.98 0.067 0.707 0.541 0.455 0.99 0.066 0.701 0.543 0.443 1.00
2-LWM (VW) 0.155 1.583 1.566 0.234 1.00 0.166 1.636 1.476 0.705 0.83 0.155 1.581 1.563 0.243 1.00
3-LWM (EW) 0.043 0.378 0.185 0.330 1.33 0.033 0.264 0.166 0.205 1.36 0.031 0.255 0.164 0.195 1.16
3-LWM (VW) 0.125 1.162 1.097 0.384 1.80 0.146 1.468 1.299 0.685 1.66 0.126 1.167 1.098 0.395 1.77
4-LWM (EW) 0.213 1.123 0.146 1.114 1.73 0.036 0.256 0.107 0.233 1.60 0.059 0.409 0.099 0.397 1.50
4-LWM (VW) 0.089 0.670 0.516 0.427 2.64 0.114 1.092 0.872 0.657 2.33 0.076 0.622 0.499 0.371 2.61
5-LWM (EW) 0.481 2.239 0.263 2.223 2.19 0.061 0.373 0.054 0.369 2.09 0.114 0.717 0.083 0.713 1.92
5-LWM (VW) 0.072 0.528 0.360 0.386 3.15 0.098 0.886 0.666 0.584 2.98 0.055 0.424 0.338 0.256 3.08

PCA(h∗) 0.121 1.239 1.239 0.024 23.00 0.111 1.107 1.055 0.333 23.00 0.121 1.240 1.239 0.041 23.00
Sieve(J∗) 0.118 0.947 0.946 0.042 4.00 0.118 0.945 0.944 0.048 4.00 0.118 0.949 0.947 0.062 4.00
IV spline(λ∗) 0.104 0.790 0.168 0.772 - 0.312 6.891 1.415 6.744 - 0.069 0.483 0.115 0.469 -
HE 0.184 1.897 1.896 0.027 - 0.184 1.896 1.895 0.047 - 0.184 1.897 1.896 0.045 -

PCA(h̃) 0.054 0.482 0.368 0.311 39.00 0.032 0.301 0.171 0.248 47.72 0.039 0.355 0.224 0.276 47.00

Sieve(J̃) 0.039 0.294 0.237 0.174 8.00 0.035 0.257 0.234 0.108 8.00 0.036 0.268 0.235 0.129 8.00

IV spline(λ̃) 0.062 0.462 0.387 0.253 - 0.099 0.775 0.723 0.279 - 0.045 0.322 0.215 0.241 -
LLS 0.070 0.635 0.491 0.403 - 0.213 2.099 1.775 1.120 - 0.056 0.499 0.454 0.206 -

Table F.10: Simulation results of the RND estimates based on the M -LWM model and five competing estimators with N = 25 and
large error variance (4×) under alternative option error designs. The specification and choice of tuning parameters of the competing
estimators are detailed in Online Appendix D. For the LWM method, EW (VW) refers to the equal (Vega) weighting scheme.
MTVD, RMISE, RISB and RIV respectively stands for mean total variation distance, root mean integrated squared error, root
integrated squared bias, root integrated variance, and are defined in Eq. (25)-(27). M1 reports (i) for LWM method, the average
number of log normal densities chosen in each M -LWM model, (ii) for PCA method, the average number of normal mixtures, and

(iii) for Sieve method, the average order of Hermite expansion (i.e. J∗ or J̃). The statistics in the table are computed based on 1,000
simulated paths. The best and the top three statistics among all estimators are highlighted in bold and underlined, respectively.
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F.4 Coverage Properties of LWM Estimators

To examine finite-sample properties of the M -LWM estimator, in this section we study the coverage

properties of confidence intervals (CIs) provided by this estimator. For each simulation scenario

presented in Table 4.2, we compute the 95% estimated CIs over 10,000 equidistant grid points in the

relevant strike range per simulated path. On each grid point, we count the number of times the true

RND coordinate is contained in the corresponding estimated 95% CI and convert it into proportions

(out of 1000 simulated paths). Plots of the 95% coverage probabilities, computed in a pointwise

fashion, are depicted in Figure F.1.

Figure F.1 demonstrates that although the M -LWM estimators generally have smaller coverage

than the nominal 95 when the sample size is small (N = 25). Also, for M = 2 when the parametric

model is less flexible, we also expect low coverage rate as the estimated RND can be very different from

the true one. As the sample size increases to N = 100 and with M ≥ 3, the coverage probabilities are

at least 95% (and even close to 100%) for the major part of the strike range. Therefore, despite that

the finite sample confidence bands under possible model misspecification are not valid asymptotically,

they still provide a conservative estimate for the range of the true RND when the model is mildly

misspecified, which is of reference value to the users.
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Figure F.1: 95% probability coverage plots for the M -LWM estimator with M = 2 to 5 for different DGPs under the baseline i.i.d
option errors with a large error variance (4× the estimated error variance of SPX options). The plots are computed pointwise based
on 1,000 simulated paths. Red dashed horizontal line indicates the 95% threshold.
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F.5 Additional Empirical Results

We present the RND estimates of the FTSE option prices before and after the Brexit using the PCA

and the Sieve estimators with either recommended tuning parameters (PCA(h∗) and Sieve(J∗)) or

tuning parameters adapted from the LWM-based RND estimates (PCA(h̃) and Sieve(J̃)) in Fig. F.2.

The implementation details of these estimators are identical to our first example in Section 5, with

the choices of the tuning parameters shown in the description of Fig. F.2.
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10-3 Panel B: LWM-based tuning parameters
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Figure F.2: RND estimates before and after the Brexit referendum based on the option prices in Fig. 5.5. In each figure, the black
and blue dotted lines are the 95% confidence bands of the equally weighted LWM-based RND estimates. The left (resp. right) panel
presents the RND estimates based on the PCA and the Sieve estimator based on recommended tuning parameters (resp. LWM-

implied tuning parameters). On 23-Jun, the choices of the parameters are: h∗ = 243 (23 parameters), h̃ = 74 (69 parameters),

J∗ = 5 with ξ = 0, J̃ = 34 with ξ = 2.41× 10−5. On 24-Jun, the choices of the parameters are: h∗ = 220 (23 parameters), h̃ = 142

(32 parameters), J∗ = 5 with ξ = 0, J̃ = 28 with ξ = 2.46× 10−5.

The findings in Fig. F.2 are largely consistent with our first example in Section 5. First, with the

recommended tuning parameters as shown in Panel A, both the PCA and the sieve estimators produce

over-smoothed RND estimates that are very different from the LWM-based estimates, which can be

observed by comparing the estimates with the confidence bands of the LWM-based estimates. The

difference is particularly striking on 23-Jun when the LWM-based RND estimate shows a concentrated

dominating mode at around 6600, while both the PCA and the sieve estimator suggest much flatter

RNDs. Interestingly, the Sieve-based RND estimates on both dates are bimodal, which is similar to

the results in Fig. 5.2.

When switching to the tuning parameters implied by the LWM-fitted RND estimates as presented

in Panel B, the resulting RND estimates are much closer to the LWM-based estimates. Both PCA(h̃)

and Sieve(J̃) capture the dominating mode at around 6600 of the RND on 23-Jun, but the identification

of the minor mode from the two estimators is less clear due to the noisy estimates of the left tail.

Nevertheless, they are still contained within the confidence bands of the LWM-based RND estimates,

which is in stark contrast to the result in Panel A. The unimodal RND estimates after the Brexit is

also clearly recovered from Panel B, and the estimates from PCA(h̃) and Sieve(J̃) are again more in
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line with the LWM-based confidence bounds compared to those estimates in Panel A. The noisy left

tails from the two SNP methods are signs of potential overfitting, which calls for more refined methods

to the choice of the tuning parameters.

To evaluate the goodness-of-fit of the RND estimates in Fig. F.2, we plot the corresponding model

residuals in Fig. F.3. Similar to the findings in Section 5, the figure clearly shows that PCA(h∗) and

Sieve(J∗) are not flexible enough to fully explain the observed option prices on both dates, as there are

clear sinusoidal patterns in the residual series with very large SSE. Switching from recommended tuning

parameters to the LWM-implied tuning parameters substantially improves the flexibility of the two

methods, which drastically reduces the SSEs and improves the goodness-of-fit of the two models. The

magnitude of the SSEs for PCA(h̃) and Sieve(J̃) are comparable with those in Table 5.1, confirming

the improved quality of the RND estimates relative to those in Panel A. Overall, the conclusion is

similar to our discussion in the second empirical example of Section 5 that, when compared with the

PCA and the Sieve estimators with different choices of the tuning parameters, the LWM approach still

produces a smooth RND estimates with a reasonable fit to the observed data.
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Figure F.3: Option price and IV residuals associated with the RND estimates in Figure F.2. For each estimator, the price residualsare
defined as On − Ôn, where On and Ôn denote the observed and the model-implied option prices at strike Kn, respectively. SSE in
the legend represents the sum of squared error defined as

∑N
n=1(On − Ôn)2.
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