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A Generative Shape Compositional Framework to
Synthesise Populations of Virtual Chimaeras

Haoran Dou, Seppo Virtanen, Nishant Ravikumar∗, Alejandro F. Frangi∗, Fellow, IEEE

Abstract—Generating virtual organ populations that capture
sufficient variability while remaining plausible is essential to con-
duct in-silico trials of medical devices. However, not all anatom-
ical shapes of interest are always available for each individual in
a population. The imaging examinations and modalities used can
vary between subjects depending on their individualised clinical
pathways. Different imaging modalities may have various fields of
view, are sensitive to signals from other tissues/organs, or both.
Hence, missing/partially overlapping anatomical information is
often available across individuals. We introduce a generative
shape model for multipart anatomical structures, learnable
from sets of unpaired datasets, i.e., where each substructure
in the shape assembly comes from datasets with missing or
partially overlapping substructures from disjoint subjects of the
same population. The proposed generative model can synthesise
complete multipart shape assemblies coined virtual chimaeras.
We applied this framework to build virtual chimaeras from
databases of whole heart shape assemblies that each contribute
samples for heart substructures. Specifically, we propose a graph
neural network-based generative shape compositional framework
which comprises two components, a part-aware generative shape
model which captures the variability in shape observed for each
structure of interest in the training population, and a spatial
composition network which assembles/composes the structures
synthesised by the former into multipart shape assemblies (viz.
virtual chimaeras). We also propose a novel self-supervised
learning scheme that enables the spatial composition network
to be trained with partially overlapping data and weak labels.
We trained and validated our approach using shapes of cardiac
structures derived from cardiac magnetic resonance images in
the UK Biobank. When trained with complete and partially
overlapping data, our approach significantly outperforms a PCA-
based shape model (trained with complete data) in terms of
generalisability and specificity. This demonstrates the superiority
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of the proposed method, as the synthesised cardiac virtual
populations are more plausible and capture a greater degree of
shape variability than those generated by the PCA-based shape
model.

Index Terms—In-silico trials, virtual populations, graph neural
network, generative model.

I. INTRODUCTION

IN-silico trials (IST) offer a paradigm shift for the innova-
tion of medical devices and the regulatory approval process

that underpins the path to the commercialisation of devices and
their adoption in routine patient care. Traditionally, collecting
scientific evidence for the regulatory approval of new devices
and drugs required in vitro and in vivo evaluation of safety
and efficacy. However, this practice poses a methodological
and economic burden on medical products that impede inno-
vation and delay/hinder patient benefit. In response, regulatory
agencies are increasingly embracing complementary sources
of evidence that refine, replace, and reduce the need for animal
and human testing [1]. ISTs use computational modelling
and simulation to assess the safety and efficacy of medical
devices in the virtual world, in populations of digital twins
or virtual patients (VP), and provide digital (or in silico) as
opposed to real-world evidence that supports device regulatory
approval. Therefore, ISTs have the potential to explore device
performance in a wider range of patient characteristics than
it is feasible to recruit for in a real clinical trial. They could
help refine, reduce, and partially replace in vivo clinical trials.

ISTs require the generation of digital twin or virtual patient
populations that capture sufficient anatomical and physiolog-
ical variability, representative of the target patient popula-
tions, to allow a meaningful in silico evaluation of device
performance [2]. In this study, we focus on the challenge of
generating representative populations of anatomy, specifically
cardiovascular anatomy. We also define digital twins [3] as
distinct from virtual patients in the following way: digital
twins are considered to be patient-specific replicas of anatom-
ical structures generated by segmenting medical images (e.g.
magnetic resonance (MR) or computed tomography (CT)
images) of patients, and representing the shape of anatomical
structures of interest in some parametric form (e.g. triangular
surface meshes). Virtual patients [4] are considered parametric
representations of anatomical structures sampled from a gen-
erative model (e.g., probabilistic PCA, variational autoencoder
(VAE)), where the latter was learnt from a population of
digital twins. Virtual patients do not represent any specific
patient’s anatomy, but are instances generated from a trained
model. We introduce virtual chimaeras (VCs), as opposed to
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natural human chimaeras [5], as distinct entities from VPs
in the following way: a VC is a parametric representation of
anatomical structures sampled from a generative model trained
using partially overlapping data, i.e. where all anatomical
structures of interest are not available for all individuals in the
training population [6]–[8]. This is distinct from VPs as we
define them as instances of statistical/generative models that
require complete overlap in the training data, i.e. all anatomical
structures of interest are available for all individuals in the
training population (e.g., PCA). Henceforth, we will refer
to these scenarios that lead to VCs and VPs as learning
statistical/generative shape models with ’partial overlap’ or
’complete overlap’ in training data for brevity.

A. Virtual Population Modelling

Virtual populations of anatomical shapes (typically repre-
sented as computational meshes) are essential for conducting
ISTs of medical devices. However, building rich/descriptive
generative shape models of multipart anatomical structures is
challenging. Most techniques require large volumes of training
data that comprise the same semantic parts/shapes in each
training sample [9], [10]. This would require expensive and
laborious annotation of medical imaging data to ensure that
anatomical shapes of interest can be accurately extracted from
each subject/sample, which is prohibitive. Relying on complete
annotations precludes using existing public databases where
annotations for a few anatomical structures of interest may
already be available [7], [8]. Additionally, specific anatomical
structures may only be visible/easy to delineate in specific
image modalities that are less prevalent. For example, cine-MR
images do not capture the 3D structure of the atria or the aorta
within the field of view. However, large-scale databases such
as the UK Biobank are available (comprising >40k subjects’
images) [11]. In contrast, computed tomography angiography
(CTA) captures fine details of all four cardiac chambers and
the associated great vessels (e.g. aorta and pulmonary artery)
in 3D owing to its high spatial resolution. Still, it brings the
added risk of patient exposure to radiation. Consequently, the
scale of publicly available CTA data is usually much smaller
than cine-MRI.

Although some studies in the computer vision domain [12],
[13] have investigated learning multipart generative shape
models using disparate data sets with non-/partially overlapped
parts (i.e., where individual components from different data
sets are leveraged to learn a model that synthesises multipart
shape assemblies), this remains unexplored within the medical
imaging domain to the best of our knowledge. Given the
deluge of annotated medical imaging data (characterising
anatomical structures of interest) that have been curated in
recent years, which is likely to increase in coming years,
there is a need in the medical image computing community to
develop techniques that facilitate the estimation of multipart
generative shape models, by using anatomical structures that
may be available in multiple disparate populations/databases
and image modalities.

B. Relevant Literature

This study focusses on the generation of virtual populations
of cardiovascular anatomy represented as triangular meshes
of the surface. While several previous studies have proposed
image-based generative models that capture anatomical vari-
ability across a people, we restrict our discussion of relevant
literature to previous work on statistical/generative shape mod-
elling. Early work on statistical shape models (SSMs) was mo-
tivated by the need for model-constrained image segmentation
approaches to preserve the topology of segmented anatomical
structures by using SSMs as a shape prior. However, a detailed
review of these methods is beyond the scope of this study, and
we refer the reader to the review by Heimann et al. [14] for
more information on the topic.

PCA-based statistical shape modelling has thus far been
the most common approach to building virtual populations of
anatomical shapes. SSMs learnt using PCA were popularised
by [15] and have been used extensively to generate virtual
anatomy populations [16], [17], in quantitative shape analysis
for computer-aided diagnosis [18] and model-based segmen-
tation [19] approaches. SSMs have also been extensively used
in the cardiovascular domain to explore associations between
cardiac morphology and function [20], [21], to segment car-
diac images [22]–[24], and to characterise shape variability
in healthy [25] and pathological populations [26]. Inspired
by [27], the first study to construct a multipart SSM of the
heart, several subsequent studies [28]–[30] have used PCA
and its variants to build 4D (3D+time) statistical models that
can capture spatiotemporal variability between and within sub-
jects in cardiac shape, simultaneously. For example, Hoogen-
doorn et al. [31] decoupled the shape between subjects and
the temporal variations (dynamics) between subjects through
a bilinear model, allowing extrapolation of the cardiac phase
from the SSM even in the absence of individual measurements.

PCA-based SSMs generate virtual shape populations by
sampling from the shape space spanned by an orthogonal set of
basis vectors, i.e. the eigenvectors (or principal components) of
the covariance matrix of the population of shapes used to build
the model. Both point-set- and mesh-based representations
of anatomical structures have been used to create SSMs in
this way. However, a prerequisite for PCA-based SSMs is
point-wise correspondence across the population of training
shapes (typically achieved via co-registration of shapes before
SSM construction) and complete overlap across all samples in
the training population. In other words, standard PCA-based
SSMs cannot handle missing structures or effectively use
training samples with partial overlap in anatomical structures.
Recent advances in deep learning have shown that deep neural
networks can be formulated as powerful generative models for
images and geometric (e.g., point clouds, meshes/graphs) data
due to their ability to learn rich hierarchical representations
of data [32]. It has been widely adopted in different appli-
cations, such as 3D face reconstruction [33], [34], molecular
generation [35]. Some studies [36]–[40] have adopted these
approaches to generate virtual anatomy populations. For exam-
ple, Beetz et al. [36] used a variational autoencoder (VAE) [41]
to learn latent representations of cardiac biventricular anatomy
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represented as point clouds. They equipped the network with
additional population-specific characteristics inputs to allow
conditional synthesis of biventricular anatomies. Romero et
al. [38] explored the efficiency of the generative adversarial
network (GAN) [42], trained on binary aorta masks. Danu et
al. [40] used a deep generative model to generate voxelised
vessel surfaces and ensure compatibility between the un-
structured representation (points/polygons) of vessel surfaces,
and the structured domain required for the application of
convolutional neural networks. Bonazzola et al. [39] used
a convolutional graph VAE to learn latent representations
of image-derived 3D left ventricular meshes and used the
learnt representations as surrogates for cardiac phenotypes in
genome-wide association studies.

Although practical, all methods above were designed for
single-part anatomies [38], or require complete overlap across
all training samples in terms of the presence/absence of
anatomical structures of interest in multipart shape assem-
blies [36]. Therefore, such techniques do not maximise the
value of multiple disparate datasets with partial overlap of
anatomical structures, limiting the variability that can be
synthesised in multipart shape assemblies (as the training
population is limited to samples exhibiting complete overlap).
Recent advances in shape compositional learning [9], [10],
[12], [43] within the computer vision domain look to address
these limitations by leveraging complementary information
available in disparate data sets to build rich generative models
of multipart shape assemblies. For example, Luo et al. [43]
presented a compositional contour-based shape model in-
corporating multiple metrics to account for varying shape
distortions or deformations. Li et al. [9] proposed to learn
3D shape synthesis through a two-stage framework including
part generation and assembly, while GIRAFFE [12] modelled
3D scenes using compositional neural feature fields.

C. Contributions

This study proposes a generative shape compositional learn-
ing framework based on graph-convolutional neural networks
to generate virtual cohorts of cardiovascular structures (repre-
sented as surface meshes/undirected graphs). We refer to the
synthesised constructs as virtual chimaera cohorts. The devel-
oped approach enables disparate data sets with partially over-
lapping anatomical structures to be used to learn a generative
model of multipart shape assemblies. Although the proposed
generative framework is demonstrated here in cardiovascular
structures, it is generic by design and applicable to other multi-
structure/organ ensembles. The key contributions of this study
are as follows.

1) This is the first study to tackle the problem of combining
data from different subjects with partially-overlapping
anatomical structures in a generative shape modelling
framework to synthesise multipart shape assemblies rep-
resentative of native anatomy. We refer to instances syn-
thesised by the proposed approach as virtual chimaeras.

2) Although generative shape compositional learning has
previously been proposed within the computer vision
domain, this is the first study to propose an approach for

synthesising multipart assemblies of anatomical struc-
tures.

3) Existing generative shape compositional learning ap-
proaches have used composition networks that predict
rigid or affine transformations to compose the individual
parts synthesised into multipart assemblies. We extend
these approaches by including a nonrigid registration
component in our composition network to reduce topo-
logical errors such as gaps or mesh intersections between
individual parts (anatomical structures) of the shape
assembly.

4) We propose a novel self-supervised approach to train
the shape composition network. The proposed approach
uses the shared-boundary information between adjacent
structures (i.e. nodes/vertices shared between surfaces of
adjacent structures) to guide the training of the composi-
tion network. Existing approaches to learning generative
shape composition have relied on strong supervision
for training the composition network, i.e., where (i) the
ground truth spatial transformations required to com-
pose multiple structures into a coherent multipart shape
assembly spatially are known a priori; or (ii) where the
ground truth multipart shape assembly is available for
each training sample. This precludes the use of partially
overlapping data (the main motivation of this study) to
train the shape composition network. The proposed self-
supervised training scheme alleviates the need to access
the spatial transformations of the ground truth or the
complete multipart shape assembly a priori and allows
the composition network to be trained using partially
overlapping data.

Building generative models of multipart shape assemblies
(such as the cardiovascular structures considered in this study,
namely, four cardiac chambers and the root of the aortic vessel)
is challenging due to the distinct variability in shape of each
part, often the varying topology between the individual parts,
and typically, the need for a suitable training set where all
parts/structures of the shape assembly of interest are available
for all samples (which precludes the combination of multiple
datasets with partially overlapping anatomical structures). It
is, therefore, desirable to formulate a generative framework
that can effectively capture the variability in the shape of
each part in an assembly, can accommodate varying topology
across regions, and, finally, is not dependent on the availability
of all aspects of the shape assembly, across all samples in
the training set. To facilitate this, we explore two different
generative approaches for learning part-aware latent repre-
sentations of five cardiovascular structures (i.e. four cardiac
chambers and the aortic root) and analyse them within the
proposed compositional framework. These two approaches are
called the independent generator and the dependent genera-
tor. The independent generator comprises five independent
graph-convolutional variational autoencoders (gcVAEs) cor-
responding to the five cardiovascular structures of interest.
The dependent generator is a novel graph-convolutional multi-
channel variational autoencoder (mcVAE). These are regarded
minor contributions of the study in addition to the core
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Fig. 1. Schematic illustration of our proposed shape compositional framework, which consists of a part-aware generator to learn the shape representations of
each part and a composition network to perform the affine and nonrigid transformation to spatially compose the synthesised parts into a whole heart shape
assembly.

contributions (1-4) listed above as - (i) convolutional mesh
autoencoders (CoMA) [33] and gcVAE [44] were previously
proposed for different applications on 3D face reconstruction
and deformable shape completion, respectively; and (ii) mc-
VAE was also previously proposed for learning shared latent
representations of multimodal images [45]. Our contributions
in this regard are thus restricted to using these approaches
within a novel shape compositional learning framework and
formulating a graph-convolutional variant of the mcVAE.
Finally, we also propose new metrics for evaluating the quality
of synthesised virtual cardiac cohorts in terms of the overall
variability in shape captured across the synthesised virtual
chimaeras, their anatomical plausibility, and their clinical
relevance evaluated as ratios of standard cardiac volumetric
indices, referred to as ‘clinical acceptance criteria’.

II. METHODOLOGY

The proposed deep compositional framework of shapes for
synthesising virtual cardiac populations is described by the
schematic shown in Fig. 1. It comprises two modules: a part-
aware generative model and a composition network. The part-
aware generative model can be formulated in several ways,
using traditional statistical/machine learning approaches (e.g.
PCA, probabilistic PCA, etc.) or recent geometric deep learn-
ing approaches (e.g. gcVAEs). This study explores two gener-
ative schemes based on graph-convolutional neural networks:
the independent generator and the dependent generator. The
independent generator learns latent representations of each

part individually, where each subgenerator is a gcVAE specific
to its part. This provides flexibility in the overall generative
framework since each gcVAE partwise is trained indepen-
dently, allowing the use of partially overlapping patient data
to train each gcVAE. Additionally, as each gcVAE explicitly
models the part-wise variability in shape observed across the
training population(s), we argue that their combination within
the proposed shape composition framework can synthesise vir-
tual cardiac cohorts that capture a greater degree of variability
in shape than afforded by using a single gcVAE (or similar
model, e.g., PCA) to model all parts in the shape assembly
jointly.

In contrast, the dependent generator learns a shared latent
representation across all parts of a shape assembly (that is, all
four cardiac chambers and the aortic root in this study) using
a graph-convolutional mcVAE network [45]. The dependent
generator models the joint likelihood of the observed data,
i.e., of all parts in the shape assembly, as a product of the
conditional likelihoods of each piece, conditioned on the other
observed parts, the shared latent variables, and the model pa-
rameters. Estimating shared latent variables promotes anatomi-
cal plausibility in the shapes synthesised using the learnt latent
representation, as the latter captures the covariation observed
across multiple parts in the training population(s). As the
dependent generator learns a shared latent representation of all
elements in a shaping assembly, the model by design enables
the conditional synthesis of one or multiple parts, given one or
more other parts as inputs. Similarly, the dependent generator
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can also be trained using partially overlapping patient data
(i.e., when not all elements in a shape assembly of interest are
available in all samples considered in the training population).
We explore the independent and dependent generator within
the proposed shape compositional framework to compare their
relative merits in terms of the quality of the synthesised cardiac
virtual chimaera cohorts — one is an approach designed
to enhance the overall variability in the captured anatomical
shape (as in the former); the other is designed to promote
anatomical plausibility (as in the latter).

Cardiovascular structures synthesised using the part-aware
generator (based on either the independent or dependent
generator) are initially not spatially composed. Therefore,
they do not represent complete, anatomically plausible hearts.
A composition network is required to facilitate this spatial
composition. The composition network comprises a deep
graph-convolutional neural network that first estimates 3D
affine transformations to spatially organise each synthesised
part/cardiovascular structure into a valid shape assembly. That
is, the synthesised parts are transformed so that their relative
positions and orientations to each other are consistent with
native anatomy. Subsequently, the composition network refines
the shape assembly by estimating a nonrigid transformation
that locally deforms the nodes at interfaces between adjacent
parts. This nonrigid transformation step is necessary as affine
transformations alone could result in gaps and intersections
between adjacent elements in a shape assembly, which is
reduced through the former. The output of the composition
network is a composed whole heart mesh/shape assembly,
representing a virtual heart chimera instance (as illustrated
in Fig. 1).

A. Part-Aware Generative Model
As discussed, using the independent or dependent generator,

the part-aware generative model enables the semantic part-
wise synthesis of the cardiovascular structures of interest,
namely the four cardiac chambers and the aortic root. We
select graph convolution operations based on truncated Cheby-
shev polynomials [46] and adopt mesh downsampling and
upsampling operations as in CoMA [33] to construct encoder-
decoder networks for independent and dependent generators.
As shown in Fig. 1, each encoder-decoder network pair in the
independent and dependent generator takes a triangular surface
mesh of a part/cardiovascular structure as input and outputs
the reconstructed surface mesh. Each mesh is represented by
a list of 3D spatial coordinates of its vertices and an adja-
cency matrix defining vertex connectivity (i.e. edges of mesh
triangles). Mesh downsampling and upsampling operations in
the network help capture global and local shape contexts and
are defined over a multi-resolution mesh hierarchy based on
quadric edge collapses [47]. The order is divided into five
resolution levels. Features are learnt at each resolution level
using a graph-convolution block with two constituent graph-
convolution layers. In the encoder, the number of feature
channels within each layer in each of the five blocks is 16,
32, 32, 64 and 64, respectively, with increasing network depth.
Similarly, the same number of channels is used in reverse order
for each block in the decoder.

Graph Conv

Instance Norm

ELU

ELU

Graph Conv

Instance Norm

Instance Norm

Pool

Graph Conv

Instance Norm

ELU

ELU

Graph Conv

Instance Norm

Instance Norm

Up Sample

(a) (b)

Fig. 2. Schematic illustration of the graph convolution blocks. (a) is the
architecture of the residual graph convolution block in the encoder, and (b)
is that in the decoder.

To strengthen the efficiency of feature exchange between
vertices [48] and mitigate the problem of vanishing gradients
when training the network, we replace the basic graph convolu-
tion block used in [33] with a residual block (shown in Fig. 2).
Each residual block comprises two graph convolution layers
that extract features using the inputs provided to the union
and a residual connection [49] that combines the output of the
first and second graph convolution layers through summation.
Chebyshev graph convolution operations are used throughout
this study due to their strictly localised filters, which enable
learning of multiscale hierarchical patterns combined with
mesh-pooling operations and low computational complexity.
Each graph convolution layer is followed by an instance nor-
malisation layer [50] and an exponential linear unit (ELU) [51]
for activation. Additionally, an instance normalisation layer
is used in the residual branch to ensure similarity in feature
statistics relative to the output of the second graph convolution
layer in the block.

The part-aware generative model is trained in independent
and dependent generators by optimising a composite loss
function that combines three different losses. The independent
and dependent generators are Bayesian models based on
VAEs. The latent space from which the observed data X are
generated can be discovered by approximating the posterior
distribution of the latent variables using variational inference
[41]. This is achieved by optimising the evidence lower
bound (ELBO) of the observed data concerning the networks’
parameters, which can be formulated as a summation of
the expected reconstruction error (i.e., expected negative log-
likelihood of the data) and the Kullback-Leibler divergence of
the approximate posterior distribution of the latent variables,
from their assumed prior (as shown in [41]). Based on this
formulation of the ELBO, we construct our composite loss
function to include a reconstruction loss Lrecon based on
the norm computed vertexwise L1 between the predicted and
original mesh vertices; the Kullback-Leibler divergence LKL

between the approximate posterior distribution of the latent
variables q(z|X), and the prior distribution over the latent
variables p(z); and an additional regularisation loss Lregular
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that penalises outliers and encourages smooth surface recon-
structions. A multivariate Gaussian prior (p(z) ∼ N (0, I))
with unit variance is used throughout this study for the
independent and dependent generators. The key difference
between the independent and dependent generator lies in the
formulation of Lrecon, i.e. the expected negative log-likelihood
of the observed data X. The composite loss function used to
train each part-aware gcVAE in the independent generator and
the graph-convolutional mcVAE in the dependent generator is
given by

L = Lrecon + ω0LKL + Lregular (1)

where, ω0 denotes the weight of the LKL loss. The reconstruc-
tion loss Lrecon for each gcVAE in the independent generator
is computed as,

Lrecon = ∥Xc −X
′

c∥1 (2)

where, Xc and X
′

c denote the input and reconstructed mesh
of part c. As the dependent generator is a graph-convolutional
mcVAE that learns a shared latent representation across all
c = {1...C} parts in a shape assembly, the joint data likelihood
across all parts Xc=1..C ∈ X can be expressed as p(X | z) =∏C

c=1 p(Xc | z) by assuming that each part is conditionally
independent of the others (conditioned on z). Based on this
assumption, the reconstruction loss Lrecon is calculated as

Lrecon =

C∑
c=1

C∑
c′=1

∥Xc −X
′

c|c′∥1 (3)

where, X
′

c|c′ is the reconstructed mesh of part c conditioned
on the shared latent space of all parts c′ = {1...C}. This
formulation of the joint data likelihood based on mcVAE [45]
enables the reconstruction of a multipart shape assembly given
a single part as input. Complete multipart shape assemblies can
also be sampled from the shared latent space learnt.

Finally, Lregular is formulated identically for independent
and dependent generators and contains two terms: a Lapla-
cian smoothness loss and an edge length loss. Laplacian
loss encourages neighbouring vertices to move coherently,
thus reducing self-intersections of the mesh and encouraging
smoother surface reconstructions [52]. Given a vertex v and
neighbouring vertices vk, where, vk ∈ N(v), it is defined as:

LLaplacian =
∑
v

v −
∑

vk∈N(v)

1

∥N(v)∥
vk

 (4)

The edge length loss penalises spurious motion of vertices
relative to k neighbouring vertices and is defined as,

Ledge =
∑
v

∑
vk∈N(v)

∥v − vk∥2 (5)

Therefore, the overall regularisation loss Lregular is defined
as the weighted summation of both losses mentioned above
and is given by,

Lregular = ω1LLaplacian + ω2Ledge (6)

The weights associated with the terms in the composite loss
function (ω0, ω1 and ω2) are hyperparameters tuned and set
empirically.

B. Spatial Composition Network

Once the part-aware generative model is trained, using
either the independent or the dependent generator, all parts
in the shape assembly can be sampled from the model.
Since each piece is generated separately, their spatial positions
and orientations relative to one another are inconsistent with
the native anatomy. Consequently, when initially assembled,
synthesised parts may have significant intersections/overlaps
with other features or large gaps with certain parts with which
they are meant to share boundaries, as per native anatomy.
Thus, learning the spatial relationships between elements in the
assembly is imperative to estimate the spatial transformations
necessary to compose the individual parts synthesised into
a whole heart-shaped crowd consistent with native anatomy.
Previous studies on learning shape composition in the com-
puter vision domain [9], [53] have relied on rigid registration
for assembling synthesised individual parts using a dedicated
spatial composition network and have predominantly applied
such a generative framework to solid structures such as chairs,
tables, planes, etc. However, due to the deformable nature of
soft tissue, cardiovascular structures exhibit localised nonlinear
variations in shape between patients. Consequently, rigid/affine
transformations alone are insufficient to accommodate such
localised shape variations and to compose the individual parts
synthesised into whole-heart shape assemblies consistent with
native anatomy. Therefore, we propose a spatial composition
network that estimates the affine and nonrigid transformations
(see Fig.1) and composes the cardiovascular structures syn-
thesised by the part-aware generator into whole-heart shape
assemblies. Furthermore, our approach differs distinctly from
previous methods for learning shape composition [9], [53] that
rely on strong supervision to estimate the necessary spatial
transformation. Instead, we propose a self-supervised learning
scheme to calculate the desired affine and nonrigid transforma-
tions, driven by the shared vertices between adjacent structures
in the shape assembly (known a priori).

Figure 1 shows our composition network, which takes the
generated shapes of each cardiovascular structure (that is, four
cardiac chambers and the aortic root) as input and outputs
the entire composed heart. Synthesised parts are first passed
to the affine registration module of the composition network.
This affine registration module comprises part-specific sub-
networks utilising the same architecture as each encoder in
the independent generator, which is trained simultaneously
to extract features from the input shapes. These features are
aggregated by concatenation and used to guide the estimation
of the desired affine transformations (see Fig.1), denoted
Tc=1...C , resulting in an initial coarsely composed whole-
heart shape. The subscript indicates the cth part in the shape
assembly.

The estimated 3D affine transformations comprise eight pa-
rameters, including translation ([Tx, Ty, Tz]), scaling (S), and
rotation ([Q1, Q2, Q3, Q4] parameterised using quaternions).
The loss function minimised to train the affine registration
module of the composition network (in a self-supervised
manner) and estimate the desired 3D affine transformations
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is given by

Laffine =

C∑
c=1

∥Vtransf
o − TcVc∥1 (7)

where Tc represents the affine transformation estimated and
applied to part c in the assembly; Vc denotes the vertices
shared between part c and all other C − 1 parts in the
assembly, where the latter (i.e. all other C − 1 parts) are
represented by subscript o; Vtransf

o denotes the transformed
vertices shared between all other C − 1 parts in the assembly
given the cth part. Here, Vtransf

o is constructed by concate-
nating shared vertices from all parts C − 1 (given a part
c in the assembly), following an affine transformation. That
is, Vtransf

o = {TdVd}d={1...C−1}, where Vd denotes the
vertices shared between part d in the assembly and part c,
for d ̸= c.

Ensuring coherence at the boundaries between adjacent
cardiovascular structures is essential to ensure anatomical
plausibility in the synthesised virtual chimaera cohorts and
to prevent topological errors in whole heart shape assemblies.
As rigid/affine registration alone is insufficient to prevent inter-
sections and gaps between adjacent cardiovascular structures
in the assembly, our composition network also comprises a
nonrigid registration module, which deforms each part locally
and refines the composition of the synthesised structures. The
non-rigid registration module is a graph-convolutional neural
network with a similar encoder-decoder architecture used for
each gcVAE specific to each part in the independent generator,
and additional skip connections [54] aggregating the features
in each encoder block with its corresponding decoder block at
the same mesh resolution level. This module is trained as an
autoencoder rather than a VAE. It inputs the coarsely aligned
whole-heart shape of the preceding affine registration step.
It estimates vertex-wise displacements to refine the spatial
composition of the whole-heart shape assembly. The nonrigid
registration module is also trained in a self-supervised manner
(as with the affine registration module) by minimising a loss
function given by

Lnon−rigid =

C∑
c=1

∥Vtransf
o − T nr

c Vc∥1+

ω3LLaplacian + ω4∥T nr∥1

(8)

where T nr represents the nonrigid transformation, i.e. the
vertex-wise displacements, estimated for all vertices of all
parts in the coarsely aligned full heart shape output from
the preceding affine composition step, and T nr

c are the dis-
placements estimated for the vertices shared between part c
(denoted Vc) and all other C − 1 parts in the assembly. The
shared vertices of the latter (i.e., all other C−1 parts) are rep-
resented by subscript o and Vtransf

o denotes the transformed
vertices shared between all other C − 1 parts in the assembly
and the cth part. Here, Vtransf

o is constructed by concatenating
vertices shared between all C − 1 parts and the cth part in the
assembly after deformation using estimated displacements in
the vertices. That is, Vtransf

o = {T nr
d Vd}d={1...C−1}, where

Vd denotes the vertices shared between part d in the assembly
and part c, for d ̸= c. In equation 8, LLaplacian represents the

Laplacian loss (described in equation 4) used to regularise the
estimated vertex-wise displacements, encouraging the latter to
be similar for neighbouring vertices and resulting in smooth,
localised deformations of each part in the shape assembly.
The third term in the equation 8 applies L1 normalisation
to the vertex-wise displacements to encourage sparsity in the
estimated vertex displacements and penalise the motion of
vertices that are not in the vicinity of vertices shared between
two adjacent regions. ω3 and ω4 are the empirically tuned
regularisation parameters.

Following this two-step process, comprising an initial affine
and a subsequent non-rigid registration step, the composition
network is trained by optimising Laffine and Lnonrigid,
respectively, to spatially organise the cardiovascular structures
synthesised by the part-aware generator into anatomically
consistent virtual heart chimeras.

III. EXPERIMENTS CONFIGURATION

A. Datasets

The generative shape compositional framework proposed in
this study was trained and validated using a subset of cardiac
cine-magnetic resonance (cine-MR) imaging data available
from the UK BioBank (UKBB) [55]. We created a cohort
of 2,360 subject-specific meshes of the whole heart using
the manual contours provided for the four cardiac chambers
in a previous study [56]. The subject-specific meshes of the
entire heart were created by registering a high resolution
heart atlas mesh of an earlier study [21] with the manual
contours. The cardiac atlas comprises the following cardio-
vascular structures: left/right ventricle (LV / RV), left/right
atrium (LA / RA), the root of the aorta vessel, and four-valve
planes (i.e. mitral, tricuspid, aortic and pulmonary valves).
Additionally, vertices in the atlas mesh are shared between
the following structures: LV-RV, LV-LA, LA-RA, RV-RA, LV-
aorta, LA-aorta, and RA-aorta. Registration of the atlas mesh
to each subject’s manual contours results in a cohort of subject-
specific meshes (i.e. undirected graphs) that share point cor-
respondence, i.e. have the same number of vertices/nodes
and share the same edge connectivity. This enables spectral
convolutions in the graph-convolution layers used through-
out the proposed generative-shape compositional framework
(as fixed/common graph topology across all samples is a
prerequisite for the former). Additionally, the self-supervised
learning scheme proposed in this study to train the composition
network is driven by the shared vertex information available
for adjacent parts/structures in the cardiac atlas mesh (which
is automatically propagated to all subject-specific meshes via
registration). Atlas-to-contour registration was achieved using
a combination of the point set registration algorithm (viz.
Generalised coherent point drift) developed previously by our
group [57] to establish soft correspondences between atlas and
subject-specific contours and subsequent thine-plate-spline-
based warping of the atlas mesh to each subject’s outlines.
Further details on the registration process used to create
the cohort of subject-specific meshes used in this study are
available in [11]. We randomly split the general cohort of
whole heart meshes from 2360 subjects into 422/59/1879 for
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training, validation, and testing, respectively. We explore two
distinct scenarios when training the proposed generative shape
compositional framework. These include (a) complete overlap
in the data across all training samples, that is, where the
data of all subjects included in the training set contain all
cardiovascular structures in the whole heart shape assembly;
and (b) partial overlap in the data across training samples,
where 300 subjects have only one cardiovascular structure,
resulting in 60 samples for each of the five structures of
interest (ie LV, RV, LA, RA and aorta), while the remaining
122 subjects in the training set are considered to have complete
assembly of all heart shape. Throughout this study, for each
subject, we only use meshes representative of one-time point
in the cardiac cycle, namely, at end-diastole. The samples in
the resulting training, validation, and test sets are used to train
and evaluate the proposed approach throughout the study.

In this study, we evaluated our study based on partially
overlapping scenarios simulated in the UKBB datasets. How-
ever, such scenarios can also be created based on multiple
public and private datasets by registering the template mesh
with patient-specific segmentations or meshes from the latter,
as explained above. Examples of such data sets can be found
in MedShapeNet [58], MM-WHS [59], Sunny Brook Cardiac
Data [60], M&Ms challenge [61], and Reprise III clinical trial
data (Private) [62], among others.

B. Implementation Details

The proposed approach was implemented using Py-
Torch [63] on a PC with an NVIDIA RTX 2080Ti GPU. We
trained part-aware generative models (i.e., both independent
and dependent generator) using the Adam optimiser [64] with
an initial learning rate of 1e−4 and batch size of 16 for 600
epochs. The order of the Chebyshev convolution polynomial
was set to 6. The latent dimensions of each part-specific
subnetwork in the independent generator were set to 16, 12,
16, 12, and 8 for the LV, RV, LA, RA, and aorta, respectively.
However, the latent dimension of the dependent generator was
set to 60, with 12 components of the latent vector dedicated
to modelling the shape variability observed in each of the
five cardiovascular structures of interest, namely, LV, RV, LA,
RA, and aorta. We set the resampling factors for learning
shape features across a multi-resolution mesh hierarchy to:
[4, 4, 4, 6, 6] for the LV and RV, [4, 4, 4, 4, 5] for the LA,
[4, 4, 4, 4, 6] for the RA, and [4, 4, 4, 4, 4] for the aorta. These
down- and up-sampling factors were chosen empirically for
the five graph-convolution blocks in the encoder and decoder
networks, respectively, in independent and dependent gener-
ators. During the training of the independent and dependent
generator, a warm-up strategy was adopted to improve stability
and prevent mode collapse in the learnt posterior distribution
over the latent variables. This is achieved by initially training
the partwise gcVAEs in the independent generator and the
mcVAE in the dependent generator, with the weight of KL loss
term (i.e. ω0 in equation 1) set to zero for 300 epochs (i.e., they
are trained as plain autoencoders). The learnt weights initialise
the subsequent training step for the independent and dependent
generator, where the importance of the KL loss term is initially

set to a small value, ie 1e−6, and, subsequently, increased each
epoch by multiplying by a factor of 1.25, up to a maximum
value of 1e−4. The weight of the other regularisation terms
in the composite loss function (see Equation 6), namely ω1

and ω2, was set to 8 and 1. The weights for the regularisation
terms in the self-supervised registration loss function (refer to
equation 8) used to train the composition network, namely, ω3

and ω4, were set to 8 and 5e−7, respectively.
The hyperparameters of the network architecture and the

optimiser used for the part-aware generator were retained for
the composition network, except for the initial learning rate
and batch size, which were set to 5e−4 and 4, respectively.
We randomly sampled individual part shapes from different
patients to train the composition network. This helped to
demonstrate that the proposed composition network can be
trained with partially overlapping data.

Specifically, the composition network was trained in two
stages. We first trained the model with only Laffine to
ensure that the model learnt the relative pose of the parts.
Subsequently, we fixed the parameters of the affine part in the
network and trained the remaining parameters with Lnonrigid.
Additionally, we adopted a curriculum learning strategy that
feeds data to the model in an easy-to-hard manner (real-
to-synthetic), stabilising the optimisation. The composition
network was first pre-trained using parts sampled from the
original patient-specific cardiac meshes. The data splits used
to train and evaluate part-aware generative models were kept
the same for the composition network to ensure a fair eval-
uation. Subsequently, we fine-tuned the composition network
for 200 epochs using parts synthesised by the IG-CO part-
aware generative model. The data set of the synthesised parts
comprised 2000 samples, randomly split into 1600/200/200 for
training, validation, and testing, respectively.

All hyperparameters associated with the part-aware genera-
tive models and the composition network were tuned based on
the validation set. The performance of the proposed generative
shape composition framework was evaluated in the holdout test
set, using several metrics designed to assess generalisability,
specificity, and plausibility in terms of critical clinical cardiac
indices, evaluated across synthesised virtual chimaera cohorts
(relative to the actual population of the UK Biobank).

C. Generating Virtual Chimaera Cohorts

When developing/choosing generative shape models for any
given application and sampling strategies used to synthesise
virtual cohorts of anatomy from the former, it is typical to
make design choices that achieve a balance/trade-off between
the variability in shape captured (relative to target/natural
patient populations), and the anatomical plausibility of the
instances synthesised in the virtual cohorts. Balance of shape
variability and anatomical likelihood in synthesised virtual
cohorts is essential for in-silico trials as cohorts with high
variability may contain unrealistic shapes, unrepresentative of
native anatomy/variations occurring naturally. On the contrary,
cohorts synthesised with strict plausibility restrictions may not
be expressive in the range of shape variations they represent,
limiting the anatomical envelope that can be explored in



IEEE TRANS. NEURAL NETW. LEARN. SYST., 2024, IN PRESS 9

subsequent in vitro trials. In [38], a detailed quantitative
evaluation of the benefits and drawbacks of applying dif-
ferent sampling strategies to PCA-based shape models was
explored by synthesising virtual cohorts of the aortic root
and vessel. Romero et al. concluded that uniform sampling
in the learnt latent space/principal subspace of a shape model
yields cohorts with more significant shape variability, while
sampling from unit Gaussian distributions to generate latent
vectors representative of virtual shape instances (for PCA-
based shape models) ensures greater plausibility in the syn-
thesised virtual cohorts. Most existing studies generate new
samples by sampling from the unit Gaussian distribution [33],
[65]. In this study, we favour the synthesis of cohorts that
maximises the variability in shape captured for each cardiac
structure of interest and, therefore, opt for a uniform sampling
strategy to synthesise the virtual chimaeras. The rationale
was to assess whether virtual cohorts synthesised using the
different generative shape models investigated in this study
could capture the variability in cardiac shape and associated
clinically relevant cardiac indices observed in a natural (and
unseen) population. Specifically, using the generative shape
models proposed in this study (i.e., the independent and
dependent generator), we synthesise cardiac virtual chimaera
cohorts by uniformly sampling each latent variable within the
mean ±2 standard deviation interval, where the means and
standard deviations for each latent variable are learnt from the
training data. Similarly, for fair comparison, virtual cohorts
are synthesised using the PCA-based shape model by sam-
pling coordinates in the low-dimensional principal subspace
uniformly in the interval defined [−2

√
λi,+2

√
λi], where, λi

denotes the eigenvalue of the ith principal component (i.e.
ith eigenvector that spans the principal subspace). The PCA-
based shape model used throughout this study retained 24
principal components, explaining 95% the variation in cardiac
shapes observed in the training set used for all models. Addi-
tionally, when sampling latent vectors/coordinates in principal
subspace, two standard deviations about the mean were used
throughout, as we experimentally verified that sampling with
three standard deviations or more resulted in a large number of
irregular/implausible shapes in the synthesised virtual cohorts.

D. Evaluation Criteria

We evaluated the proposed framework for the composition
of synthesised shapes in terms of the following criteria:
generalisability, which measures the ability of trained shape
models to reconstruct unseen cardiac conditions and thus
assesses the variability of shape captured by the learnt latent
representations; specificity, which sets anatomical plausibil-
ity in the cardiac virtual cohorts synthesised; and clinical
relevance. Generalisation errors were evaluated using the
Euclidean distance (ED) and F1-score [66], [67]. Precisely,
unseen test shapes were reconstructed using trained shape
models investigated in this study, i.e. PCA, IG-CO, IG-PO,
DG-CO, and DG-PO. Subsequently, the ED and F1 scores
were evaluated between the original and reconstructed test
shapes. Similarly, specificity errors were quantified as the ED
between each sample in the synthesised virtual populations

and its nearest neighbour (in terms of ED) in the actual
unseen population of cardiac shapes. ED was evaluated as
the vertex-to-vertex Euclidean distance between two cardiac
bodies. The F1 score computes the harmonic mean of the
precision and recall of the reconstruction. The accuracy is
the fraction of predicted points in the reconstruction with the
nearest neighbour in the ground truth within a certain distance.
At the same time, recall is the fraction of correct points in the
ground truth with the nearest neighbour in the reconstruction
within the same threshold.

Furthermore, the registration errors incurred by the compo-
sition network were quantified using the Hausdorff distance
(HD). Specifically, HD measured the distance between the
vertices shared across all pairs of adjacent cardiac structures
at their shared boundaries, following affine and non-rigid
composition.

IV. RESULTS

We conducted several experiments to evaluate the per-
formance of the generative shape models proposed in this
study and compared them with each other and PCA. This
section summarises the results obtained regarding general-
isation and specificity errors for the methods investigated
and the population-level quality of their synthesised virtual
heart populations, assessed in terms of critical clinical cardiac
indices.

A. Generalisability

A model with good generalisability can capture the vari-
ability of the seen (training) data and generalise to or explain
the unseen (testing) data. The generalisability of a genera-
tive/statistical shape model can be assessed in terms of the
error incurred when reconstructing unseen test data, thus
evaluating its ability to explain unseen shapes and provid-
ing information on the overall variability in shape captured
by the model [68]. Table I summarises the generalisation
errors of all methods investigated in this study for the five
cardiovascular structures of interest. We observe that the IG
models significantly outperform PCA for three of the five
structures of interest (i.e. LV, LA, and RA). Of particular
importance to note is that IG-PO, which was trained with
missing/partially overlapping data, also outperformed PCA,
which, conversely, was introduced with complete data. Ad-
ditionally, both IG models consistently outperformed the DG
models in generalisation errors across all five structures. This
indicates that by learning an independent part-specific latent
space, the IG models can capture a greater degree of shape
variability for each structure of interest than afforded by PCA
and correspondingly, can synthesise more diverse virtual heart
populations (in terms of shape) than the latter. Examples
of virtual heart chimaeras generated by spatially composing
(using the composition network) individual parts/structures
sampled from the trained IG-CO model are shown in Figure 3
(examples of virtual hearts synthesised by all investigated
methods are included in the supplementary material).
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TABLE I
GENERALISATION ERRORS OF THE PROPOSED INDEPENDENT/DEPENDENT GENERATOR TRAINED ON COMPLETE/PARTIALLY OVERLAPPING DATASET,

AND THE PCA MODEL, ON THE HOLDOUT TEST DATASET (MEAN±STD). THE BOLD RESULTS INDICATE STATISTICALLY SIGNIFICANT IMPROVEMENTS
OVER THE PCA MODEL.

Part PCA [27] Dependent Generator Independent Generator
Complete [45] Partial Complete [33] Partial

ED F1 ED F1 ED F1 ED F1 ED F1
LV 2.37±0.71 0.71±0.11 1.78±0.38 0.72±0.66 1.92±0.39 0.70±0.11 0.88±0.17 0.95±0.05 1.43±0.25 0.82±0.08
RV 1.74±0.39 0.82±0.07 2.68±0.55 0.66±0.08 2.76±0.61 0.65±0.09 1.84±0.62 0.75±0.15 2.22±0.55 0.71±0.11
LA 2.10±0.51 0.82±0.07 2.70±0.62 0.71±0.09 2.51±0.57 0.73±0.09 1.47±0.41 0.89±0.08 1.84±0.50 0.83±0.09
RA 1.43±0.37 0.92±0.05 1.99±0.61 0.82±0.10 2.15±0.62 0.80±0.10 1.21±0.40 0.93±0.09 1.43±0.49 0.90±0.09

Aorta 1.40±0.40 0.92±0.06 1.98±0.55 0.80±0.10 2.18±0.67 0.77±0.12 1.51±0.48 0.87±0.11 1.71±0.45 0.83±0.10
Full Heart 2.30±0.74 0.77±0.08 3.53±0.76 0.66±0.07 3.48±0.71 0.66±0.06 2.97±0.73 0.71±0.08 3.18±0.75 0.69±0.08

Fig. 3. Examples of virtual chimaeras generated by the independent generator trained with complete data (IG-CO). Each component of the latent vector was
randomly sampled from the posterior Gaussian distribution learnt from the training dataset.

B. Specificity

Specificity errors are used to assess the anatomical plausibil-
ity of quantitatively synthesised virtual heart populations. This
is done by evaluating the distance of each generated sample
in the virtual population to the closest/most similar shape in
the real population [68]. Table II summarises the specificity
errors obtained for the virtual heart populations synthesised
using each investigated model. Errors are quantified for each
of the five structures of interest individually and for the whole
heart shape assemblies. We observe that DG-CO achieves
the highest specificity (i.e., lower specificity errors indicate
greater plausibility) of all the methods investigated across all
structures except the aorta. While DG-PO, which was trained
with missing parts/partially overlapping data, is comparable to
PCA in all structures. By learning a joint latent representation
across all parts in the whole heart shape assemblies, the depen-
dent generator models constrain the posterior distribution of
the latent variables to explain shared variation across multiple
parts. Intuitively, this enforces greater plausibility in the whole

heart shape instances generated from the trained model.
In contrast, the independent generator model IG-CO, trained

using complete data, has lower specificity (i.e., higher speci-
ficity errors) than PCA and the dependent generator models
for the ventricles, but is comparable to the latter for the
atria. As the independent generator models learn distinct
latent representations for each part/structure, covariation in
shape across multiple parts is not captured. Consequently, the
known partwise latent spaces focus on maximally capturing
the variability in shape of each part, at the cost of plausibility
in the instances generated.

C. Evaluation of clinical relevance

Based on the evaluation criteria proposed in [38] to as-
sess virtual aorta cohorts synthesised by generative shape
models, we evaluate the clinical relevance of virtual heart
cohorts synthesised using the models investigated in this study.
Specifically, we define the clinical acceptance rate (A) as the
percentage of synthesised samples in the virtual cohorts whose
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TABLE II
SPECIFICITY ERRORS OF THE VIRTUAL POPULATIONS FROM DIFFERENT MODELS (MEAN ± STD). THE BOLD RESULTS INDICATE THAT SPECIFICITY IS

SIGNIFICANTLY BETTER THAN OR HAS NO SIGNIFICANT DIFFERENCE TO THE PCA MODEL.

Methods Full Heart LV RV LA RA aorta
PCA [27] 3.262±0.007 2.211±0.006 2.687±0.009 2.688±0.010 3.054±0.011 2.217±0.008

DG-CO [45] 3.160±0.007 1.974±0.006 2.647±0.006 2.524±0.008 2.958±0.013 2.399±0.013
DG-PO 3.325±0.017 2.219±0.025 2.640±0.020 2.598±0.009 3.058±0.020 2.254±0.015

IG-CO [33] 3.780±0.073 2.558±0.064 3.668±0.122 2.731±0.044 3.094±0.048 2.555±0.053
IG-PO 3.353±0.006 2.181±0.005 2.653±0.008 2.712±0.007 3.150±0.011 2.312±0.008

TABLE III
CLINICAL ACCEPTANCE RATE A(%) FOR CARDIAC VIRTUAL COHORTS SYNTHESISED USING ALL METHODS INVESTIGATED.

Cardiac Indices µ σ M M ± 2B PCA [27] Dependent Generator Independent Generator
Complete [45] Partial Complete [33] Partial

LV Volume 131.94 20.39 127.06 [85.12, 168.99] 98.05 100 96.95 98.15 99.90
RV Volume 116.75 20.66 118.19 [76.77, 159.61] 93.50 99.50 98.30 90.50 97.30
LA Volume 34.98 9.78 30.69 [9.33, 52.04] 84.60 98.90 98.50 94.85 99.65
RA Volume 52.39 10.87 47.93 [24.43, 71.43] 87 95.40 97.25 96.65 99.10

cardiac indices, namely, LV volume, RV volume, LA volume,
and RA volume, are within a 90% confidence interval of the
distribution of these indices, observed in the UK Biobank
population used in this study. As the distributions of these in-
dices were verified to be non-Gaussian using the Kolmogorov-
Smirnov test, we rely on Chebyshev’s inequality to define the
95% confidence interval based on the corresponding mean (µ),
variance (σ2) and the mode (M) observed in a real-world
population. According to Chebyshev’s inequality, intervals
defined by M ± 2B, where B =

√
σ2 + (M − µ)2, contain

at least 90% of the area under the corresponding probability
density functions [69].

The clinical acceptance rate A is used as an additional met-
ric to assess the anatomical plausibility of the synthesised vir-
tual cohorts. It is motivated by the need to preserve clinically
relevant cardiac volumetric indices in the synthesised cohorts
(relative to the UK Biobank population reference). Table III
summarises the statistical description of each cardiac index
in the entire population and A calculated for all four cardiac
chambers in the virtual cohorts synthesised. The dependent
generator models (DG-CO and DG-PO) consistently obtain
higher acceptance rates across all cardiac indices than the PCA
model, consistent with the specificity errors summarised in
Table II. Although specificity errors indicate that independent
generator models synthesise cardiac chamber shapes that are
less plausible than PCA in some cases, the clinical acceptance
rates estimated for IG-CO and IG-PO are consistently higher
than PCA in all cardiac indices (refer to Table III). This
indicates that the independent and dependent generator models
proposed in this study, when trained with complete and par-
tially overlapping data, provide better fidelity in preserving the
distributions of clinically relevant cardiac indices in the virtual
cohorts synthesised relative to the UK Biobank population than
PCA. The range of values estimated for all four cardiac in-
dexes of interest, namely, LV-volume, RV-volume, LA-volume
and RA-volume, across all synthesised virtual cohorts and the
actual UK Biobank population considered in this study, are
summarised as box plots in Figure 4.

D. Evaluation of nonrigid spatial composition

An essential contribution to this study is formulating a
nonrigid self-supervised composition network to spatially
compose the synthesised cardiovascular structures into co-
herent whole-heart shape assemblies (that is, virtual heart
chimaeras). While previous approaches to generative shape
composition learning have proposed rigid/affine composition
networks, this is the first study to adopt nonrigid regis-
tration for the same (in addition to estimating an initial
affine transformation). To demonstrate the benefits of non-
rigid registration of the composition network, we compared
the quality of the composed virtual heart chimaeras obtained
using only affine registration with those obtained by affine
and non-rigid registration. Data from the holdout test set and
samples from the virtual cohort synthesised using IG-CO were
used in this experiment. Table IV summarises the Hausdorff
distance (HD) between the shared vertices of all seven pairs
of adjacent structures in the whole heart shape assemblies
with shared boundaries, following composition with (w/) and
without (w/o) nonrigid registration. These results indicate that
the nonrigid spatial composition network consistently out-
performs its affine counterpart across all adjacent structures,
achieving significantly lower HD errors (reported as mean±std
calculated across all samples N used in the experiment in
Table IV). Thus, non-rigid registration is a crucial component
for synthesising virtual heart chimaeras using the proposed
framework, as it improves coherence at boundaries between
adjacent structures and reduces topological defects compared
to affine registration alone.

V. DISCUSSION

This study presents a new shape compositional framework
to synthesise virtual heart populations. While several previous
studies have proposed generative shape models for synthesis-
ing virtual populations of multipart anatomical shapes, they
have all relied on the availability of training data with complete
overlap across all samples, i.e. all structures/parts of interest
being available across all samples in the training set. Conse-
quently, existing approaches are not designed to combine the
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Fig. 4. Box plots compare the median and interquartile range for all four cardiac indices of interest across the synthesised virtual cohorts and the UK Biobank
population. Boxplots for each synthesised virtual cohort are labelled according to the corresponding method used: PCA, IG-CO, IG-PO, DG-CO and DG-PO.

TABLE IV
HAUSDORFF DISTANCES (MEAN±STD) ESTIMATED BETWEEN SHARED

VERTICES OF ALL PAIRS OF ADJACENT STRUCTURES WITH SHARED
BOUNDARIES IN THE WHOLE HEART SHAPE ASSEMBLIES. WHOLE HEART
SHAPE ASSEMBLIES WERE COMPOSED USING THE SPATIAL COMPOSITION

NETWORK WITH (W/) AND WITHOUT (W/O) NONRIGID REGISTRATION,
BASED ON DATA FROM (A) THE HOLDOUT TEST DATASET, WHICH WAS

RECONSTRUCTED USING IG-CO; AND (B) PARTS/STRUCTURES
SYNTHESISED BY THE TRAINED IG-CO MODEL.

Adjacent Structures Reconstructed (N=1879) Synthesised (N=200)
w/o (mm) w/ (mm) w/o (mm) w/ (mm)

LV-RV 6.30±1.61 1.69±0.42 7.90±5.87 2.53±3.44
LV-LA 5.09±1.35 1.51±0.32 6.17±6.06 1.94±2.27
LA-RA 4.26±1.22 1.26±0.28 4.78±1.37 1.40±0.54
RV-RA 5.74±1.67 1.39±0.29 6.55±2.99 1.67±1.24

LV-aorta 4.49±1.24 1.40±0.28 5.54±6.24 2.15±3.92
LA-aorta 2.97±1.04 0.88±0.20 3.20±1.22 1.08±0.94
RA-aorta 5.09±1.43 1.66±0.43 6.25±2.11 2.23±0.94

shape information available in partially overlapping data, i.e.,
individual structures/parts from different samples/patients, and
synthesise complete multipart shape assemblies. Leveraging
partially overlapping data is especially useful in scenarios
where combining information from disparate multimodal data
sets is necessary to enrich the training set and capture the
desired variability in the shape of multipart shape assemblies.
The two generative models introduced within the framework
for shape composition proposed in this study, namely, the
independent and dependent generators, were shown to syn-
thesise plausible whole-heart shape assemblies using partially
overlapping training data. The specificity of the IG-PO and
DG-PO models was comparable to or better than that of PCA,
where the latter was trained with complete data. In addition to
synthesising plausible shape instances, generative shape mod-
els should generalise well to unseen shape instances, indicating
the variability in shape (observed in the training population)
captured by the trained models. Generalisation errors evaluated
for the models investigated in this study highlight the ability
of IG-PO to generalise to unseen shapes better than PCA for
three out of the five cardiovascular structures of interest (i.e.,
LV, LA and RA).

Furthermore, the clinical relevance of the virtual cohorts
synthesised using all the methods investigated in this study
was evaluated with respect to the preservation of crucial
cardiac volumetric indices relative to the actual population
observed from the UK Biobank. The metric used for the
same, namely, the clinical acceptance rate (see section IV-C)
highlighted the ability of the four models investigated within
the proposed generative shape compositional framework (i.e.
IG-CO, IG-PO, DG-CO, and DG-PO) to preserve clinically
relevant cardiac indices within a 90% interval of the values
observed in the natural population, in a higher proportion of
their virtual cohort samples than provided by PCA. This helps
to further demonstrate the ability of the proposed shape com-
positional framework to generate better quality cardiac virtual
cohorts than PCA, even in the presence of missing/partially
overlapped training data.

PCA-based statistical shape modelling is a powerful tool
for synthesising virtual populations of anatomical struc-
tures [20] and has been extensively explored for this pur-
pose in several previous studies [21], [38]. However, a
fundamental limitation of PCA-based SSMs’ inability is to
learn latent/low-dimensional shape representations from miss-
ing/partially overlapping training data. Thus, such models
require all parts/structures to be available for samples in the
training population to synthesise complete multipart shape
assemblies (e.g. whole heart shapes considered in this study).
Additionally, PCA-based models are linear projections of
shape data onto a lower-dimensional sub-space and cannot
effectively capture nonlinear variations in shapes. This results
in limited generalisation capacity and specificity for statistical
shape models trained using such approaches and, correspond-
ingly, limits the anatomical plausibility of synthesised virtual
cohorts. gcVAE-based generative shape models, on the other
hand, can capture nonlinear variations in shapes, yielding
virtual mates with higher specificity/anatomical plausibility
(see Tables II and III) and generalising better to unseen shapes
(refer to Table I).

Among the gcVAE-based shape models investigated in this
study, the dependent generator models (DG-CO and DG-
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PO) are based on a multichannel VAE graph convolutional
[45], which can capture nonlinear correlations between all
cardiovascular structures of interest, by learning a shared latent
space across all systems. This enables the dependent generator
models to generate virtual cohorts with better anatomical
specificity/plausibility than the independent generator models
(see Table ??). The higher specificity of dependent generator
models is further complemented by their ability to preserve
key cardiac clinical indices in the virtual cohorts synthesised
than PCA and, in some cases, their independent generator
counterparts, as evidenced by the higher clinical acceptance
rates achieved for each cardiac index evaluated (refer to
Table III). Improved specificity, however, comes at the cost
of generalisability and the overall variability in shape captured
by the dependent generator models as the learnt latent space is
constrained to explain the shared variation of all structures in
the whole heart shape assemblies observed across the training
population.

Conversely, the independent generator models do not cap-
ture correlations between structures as they use independent
part-wise VAEs. However, their dedicated part-wise latent
spaces provide greater flexibility than their dependent gener-
ator counterparts, enabling them to capture greater variability
in shape for the structures of interest. This is reflected in
the lower generalisation errors achieved by the independent
generator models (see Table I) and the wider range of values
observed for the relevant cardiac indices in the virtual cohorts
synthesised (see Figure 4), relative to their dependent genera-
tor counterparts.

In this study, we incorporate both generators into our
compositional pipeline instead of using either one to give
our model more suitability/applicability for responding to the
different scenarios in conducting ISTs or in silico simulation
studies. The dependent generator model and cardiac virtual
chimaera cohorts synthesised thereof are better suited to ISTs
where greater statistical fidelity is required in the enrolled
virtual patients/chimaeras in terms of key/relevant anatomical
phenotypes. The virtual cohorts synthesised by this generator
may be used in public health planning, personalised treatment,
and medical device evaluation in specific target patient groups.
Conversely, the independent generator model is better suited
to exploratory ISTs, where the aim is to investigate ’what if’
scenarios and assess the performance of medical devices in
niche sub-populations that express phenotypic traits that are
concentrated in the tails of the general population distribution,
i.e. in other words, where, virtual cohorts with greater anatom-
ical variability are desired. In summary, the trade-off between
specificity and diversity required in a virtual population varies
depending on the specific research objectives and its context
of use. The construction of a well-rounded pipeline can lead
to solid applicability in clinical practice.

Previous studies on generative shape composition learn-
ing [9], [10] within the computer vision domain have relied
on fully supervised learning to spatially compose synthesised
parts into multipart shape assemblies by estimating rigid or
affine transformations, as stated previously. Such approaches
work well when the shape assemblies of interest are rigid bod-
ies/structures (e.g. chairs, tables, etc.). However, the anatom-

ical structures of soft tissues are deformable and exhibit
significant non-linear variations in shape between individuals
in a population. Consequently, spatially composing multiple
such structures into anatomically plausible shape assemblies
requires affine and nonrigid registration. In other words, gen-
erative shape composition learning for multipart/multiorgan
anatomies requires the synthesised structures to be treated
as a recomposable set of deformable parts. We address this
challenge by introducing a self-supervised affine and nonrigid
spatial composition network. This alleviates the need for
ground-truth transformations and composed multipart shape
assemblies to be available a priori. As shown in Table IV,
the non-rigid registration component of the proposed spatial
composition network yields significant improvements over its
purely affine counterpart in terms of coherence achieved at
shared boundaries between adjacent structures in the assem-
blies composed of the whole heart shape. Furthermore, the
self-supervised learning approach used to train the spatial
composition network is driven by weak labels defined by the
shared vertices between all adjacent structures with shared
boundaries. Hence, the composition network can be trained
with parts/structures that are synthesised independently of each
other. This is central to enabling the proposed generative shape
composition framework to be trained with partly overlapping
data (ie, where the training population comprises patient data
with missing parts/structures).

VI. LIMITATIONS, CHALLENGES AND FUTURE WORK

Although the proposed approach facilitates the synthesis
of virtual heart cohorts using missing / partially overlapping
training data, some limitations, challenges and potential for
future improvements remain. These include -

1) Diverse Topology: The current generative shape com-
positional framework requires all input shapes, represented
as surface meshes, to share point-wise correspondence and
comprise the same graph topology (i.e., mesh triangle con-
nectivity should be identical). This requires coregistration
of all meshes of the corresponding parts for all patients
included in the training, validation, and test populations before
training or evaluating any of the components of the proposed
framework. This co-registration preprocessing step helps es-
tablish point-wise spatial correspondence and maintain a fixed
graph topology across all samples, but also limits the utility
of the proposed generative shape compositional approach to
those applications where anatomical shape correspondence
exists and can be estimated. This precludes the application
of the present framework from modelling organ shapes where
pathology-driven topological changes are present and diverse
across patient populations (as there is no notion of anatomical
correspondence in such a scenario). Expanding the current
approach to accommodate variable topology in anatomical
structures between patients/input samples and synthesising
anatomically plausible virtual populations would broaden the
range of applications in computational medicine and in silico
trials for which the approach would be suitable.

2) Topological Guarantee: The current compositional
framework of generative shapes does not guarantee that the
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topology of the virtual chimaeras synthesised is preserved
relative to the native anatomy, as no explicit constraint en-
forces the same. Although the spatial composition network
achieves low errors following the alignment/composition of in-
dividual cardiac structures into a whole-heart shape assembly,
minor topological defects, such as localised intersections/holes
between adjacent frames, remain in some virtual chimaera
instances. In the context of conducting in silico trials using
cardiac virtual chimaera cohorts synthesised by the proposed
approach, these topological errors must be fixed using appro-
priate mesh/geometry processing techniques (which is feasi-
ble) before computational volumetric meshes that are usable in
biomechanistic simulations can be created from the same. Such
issues can be addressed by introducing additional geometric
and/or topological constraints into the learning process, which
we will explore in future work.

3) Conditional Generation: The current work focusses on
the unconditional generation of virtual heart cohorts. This may
limit its application in ISTs / in silico studies that require
specific characteristics of the target population. Typically, an
essential aspect of patient recruitment in actual clinical trials
used to assess device performance and generate regulatory
evidence for device approval is the precise definition of the
inclusion and exclusion criteria for the problem. These criteria
define the target patient population deemed appropriate/safe to
evaluate the performance of the device of interest. Therefore,
an approach that facilitates the controllable synthesis of virtual
anatomies is desirable in many scenarios of IST. In the future,
we will extend our framework to a conditional-generative
model to meet this requirement.

4) Real Clinical Scenario: Finally, the current study only
emulates the learning scenario to synthesise whole-heart shape
assemblies using missing/partially overlapping training data
from different patient populations (i.e., only UK Biobank
data are used throughout this study). Future work will ex-
plore the combination of anatomical structures extracted from
multimodal imaging data acquired between different patient
populations (e.g., CTA aortic vessel available from a clinical
trial and cine MRI left ventricle available in UK Biobank) to
synthesise virtual heart chimaera cohorts.

VII. CONCLUSION

A generative shape modelling framework is proposed to
build virtual cardiac populations. A vital contribution of the
study is to treat the synthesis of multipart objects, such as
whole-heart shape assemblies, as one of the learning processes
for generative shape composition. The proposed approach
can synthesise complete groups of whole heart shapes, using
partially overlapping training data, where all cardiovascular
structures of interest are unavailable for all patients that
comprise the training population. This demonstrates its po-
tential to combine partially overlapping anatomical structures
from disparate databases and patient populations to synthesise
plausible virtual heart cohorts. We explore two generative
shape modelling schemes within the proposed framework: the
independent and dependent generators. The former facilitates
the generation of more diverse virtual heart cohorts regarding

variability in the shapes of cardiovascular structures and their
corresponding clinically relevant volumetric indices. The latter
provides greater statistical fidelity in specificity, resulting in
more anatomically plausible cardiac virtual cohorts. Although
the synthesis of virtual heart cohorts is the focus of this proof-
of-concept study, the proposed generative shape compositional
framework is generic. It may be employed to synthesise virtual
affiliates of other multipart organs or multiorgan ensembles
(e.g., lungs and their associated airways, abdominal organs,
the complete spine, etc.). This study is an essential step toward
integrating anatomical shape information from disparate, mul-
timodal data sets and diverse patient populations to synthesise
virtual heart chimaera cohorts suitable for conducting in silico
trials of medical devices.
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