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Abstract. Mobile robots are used to support planetary exploration and
safety-critical environments such as nuclear plants. Central to the devel-
opment of mobile robots is the specification of complex required behav-
iors known as missions. In this paper, we use NASA’s Formal Require-
ments Elicitation Tool (FRET) to specify functional robotic mission re-
quirements. To examine the applicability of FRET in the mobile robotics
domain, we studied robotic mission patterns specified in Linear Temporal
Logic (LTL). These patterns were originally derived from a large repos-
itory that included patterns from the literature and consultation with
industrial experts. We extend this repository with those found during
our extensive literature review. Although FRET has been successfully
used in the past in case studies within the aerospace domain, mobile
robot requirements present new challenges in their specification. To this
end, our work provides a methodological basis for using FRET in the
specification of robotic mission requirements.

1 Introduction

Mobile robots can help to separate humans from hazards and inaccessible envi-
ronments, such as nuclear plants [14] and planetary exploration [12]. For exam-
ple, NASA’s Curiosity and Perseverance rovers are mobile robots that explore
Mars, enabling us to gather data and execute missions that are currently out of
reach for human astronauts. Central to the development of such systems is the
elicitation and specification of mission functional requirements that guide the
⋆ GOVERNMENT RIGHTS NOTICE This work was authored by employees of KBR
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design and analysis process. Robotic mission requirements typically describe the
high-level tasks that the robotic system must accomplish and how it should re-
act in specific situations. These requirements are typically written in ambiguous
natural language making their understanding and specification error-prone.

Formal languages, rooted in rigorous semantics, provide the means to pre-
cisely describe and reason about intended behavior; however, they are less intu-
itive than natural language. Even for experts, translating mission requirements
into a formal language, like temporal logic, can be challenging [19,32]. To bridge
the gap between intuitive natural language descriptions and unambiguous formal
languages, specification patterns have been proposed by the research commu-
nity. Recent work in [35] presents a collection of 22 temporal logic specification
patterns for robotic missions, resulting from a systematic literature review and
consultation with industrial partners and domain experts.

NASA’s Formal Requirements Elicitation Tool (FRET) provides support for
users to write their system’s requirements using a restricted natural language.
These requirements are automatically provided with temporal logic semantics
that is more amenable to analysis and verification than the natural language
requirements would be [9,19]. The ability to automatically generate temporal
logic formalization from (structured) natural language requirements is useful,
particularly in domains where those specifying the requirements may not be
experts in logical formalization.

Our objective in this paper is to examine whether FRET, which has been
used on aerospace use cases (e.g., [19,37,32]), can be adopted more generally
in the robotics domain. Although FRET has been used effectively in specific
robotic use cases [9,21], we examine the generalizability of FRET for mission
specifications of mobile robots.

We begin by exploring the specification patterns identified in [35]. We exam-
ined the literature to find a more up-to-date set of patterns, which resulted in
extending the original set with 6 new specification patterns and their associated
temporal logic formalizations. We specify these patterns using FRET [23].

Specifically, this paper contributes:

1. A set of six newly identified robotic mission specification patterns that were
derived from a systematic literature review (Section 2)

2. The specification using FRET of the patterns identified in [35], as well as
our newly identified patterns (Section 3).

3. A study of the expressibility and applicability of FRET for robotic missions
in Section 4.

2 Systematic Review: Identification of Robotic Patterns

We present our work on adding new robotic mission patterns to the set of pat-
terns from [35], which, to the best of our knowledge, is the most extensive repos-
itory targeting robotic missions for mobile robots and their translation into Lin-
ear Temporal Logic (LTL) specifications. Each pattern is characterized by (i)
a name; (ii) a description of the mission requirement; (iii) a template of the
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Table 1. The venue sources used to obtain the primary studies for our literature
review. We include the total number of publications per venue, which were identified
using the queries defined in Section 2.

i Venues Acronyms Type Num
publ.

i.1 International Journal of Robotics Research IJRR Journal 29
i.2 Transactions on Software Eng. TSE Journal 1
i.3 Robotics and Automation Letters RA-L Journal 369
i.4 Transactions on Robotics T-RO (Trob) Journal 63
i.5 Transactions on Automation Science and Eng. T-ASE Journal 0
i.6 Software Eng. for Adaptive and Self-Managing Sys. SEAMS Conf. & Symposium 0
i.7 Symposium on Applied Computing SAC Conf. & Symposium 2
i.8 Foundations of Software Engineering ESEC/FSE Conf. & Symposium 0
i.9 Intelligent Robots and Systems IROS Conference 133

i.10 Int. Conference on Robotics and Automation ICRA Conference 137
i.11 Int. Conference on Automation Science and Eng. CASE Conference 32
i.12 International Conference on Advanced Robotics ICAR Conference 15
i.13 International Conference on Software Engineering ICSE Conference 9
i.14 Int. Conf. on Model Driven Eng. Languages and Sys. MODELS Conference 3
i.15 Simulation, Modeling and Progr. for Aut. Robots SIMPAR Conference 2
i.16 Software Engineering and Formal Methods SEFM Conference 2

ii Library/Search engine
ii.1 IEEE Computer Society digital library 22
ii.2 Google Scholar search 16

TOTAL 835

mission specification in temporal logic; (iv) variations of the pattern describing
possible minor changes; (v) examples of how it is used and occurrences in the
literature; and (vi) its relationship to other patterns. We refer to the original set
from [35] as the Initial Patterns, and our enlarged set simply as Patterns.

LTL Background. We briefly review future time LTL operators [6,10] used
throughout the paper. The X operator refers to the next time point, i.e., Xϕ
is true iff ϕ holds at the next time point. The F operator refers to at least one
future time point, i.e., Fϕ is true iff ϕ holds at some future time point including
the present time. G is true iff ϕ is always true in the future. ϕUψ is true iff ψ
holds at some point t in the future and for all time points t′ such that t′ < t, ϕ
is true. ϕWψ has similar semantics but does not require that ψ holds at some
point in the future, i.e., ψ remains false. The release operator ϕVψ is defined as
!((!ϕ)U(!ψ)).5 This means that either ψ never holds and ϕ holds forever or that
ψ occurs at time t and ϕ holds at all time points t′ such that t′ ≤ t.

2.1 Methodology: Systematic Review

We conducted a systematic review following the guidelines in [8] and [28]. We
scanned 835 primary studies gathered from a list of well-known venues and dig-
ital resources. Our search spanned the last five years (2018–2022). Before 2018,
5 We use (∧,∨,¬) and (&,|,!) indistinguishably for the usual logical operators.
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we relied on the extensive review from which the original mission patterns were
conceived [35]. Our literature review focuses on the identification of robotic mis-
sion specifications and seeks to answer the following exploratory questions:

– (RQ1) What types of logics are used in the specification of these mission
requirements?

– (RQ2) For studies that use LTL, what types of missions do they describe
and how are these specified?

– (RQ3) Are there any newly-identified patterns that are not already captured
by the Initial Patterns repository?

Search strategy. To identify the most relevant publications, we obtained an
initial set of studies from (a) well-known high-impact venues in the areas of
robotics and automation and (b) Google Scholar and IEEE Computer Society
digital library. The first source provided high-impact papers ensuring the quality
of the results, while search engines provided a wider search of the literature.

The list of venues is shown in Table 1. Papers were gathered from the DBLP
database, filtering by year and venue, using the query: “robot|MRS$ task|schedule|
allocation|mission|adapt”6, where spaces mean logic and’s, | logic or’s and $ looks
for exactly the word before this sign. For Google Scholar and IEEE Library,
only the top 25 results sorted by relevance were considered. For both engines,
we used the query “(robots OR robot OR MRS) AND (task OR tasks OR schedule
OR scheduling OR allocation OR mission OR missions OR adapt OR adaptation).”

Inclusion criteria. We identified 835 primary studies after removing: 1) du-
plicates; 2) papers focusing on robotic hardware development rather than mis-
sions; and 3) two papers related to the Initial Patterns. We focus our literature
review on formally specified missions, in comparison with the Initial Patterns
repository [35], which considers missions described either in natural language or
formally. We wanted to assess how often formalisms are used in robotic missions
and gather information about the different logics used in the robotic missions
domain. Such information is valuable for developing and identifying requirement
specification patterns and extending formalization tools, such as FRET. As ex-
pected, the majority of papers do not use formalisms for mission specification.

Data items. For the studies that use LTL in the formalizations, we collected
the following data:
– Title. Title and reference to the paper.
– Summary. English language Description of the LTL mission requirements.
– Mission. Set of LTL formulae that describe the mission requirements.
– Pattern. If the pattern already exists in Initial Patterns, then we provide

its name. Otherwise, we introduce the name of the newly-identified pattern.
For each study, we manually extracted the mission specifications defined in

temporal logic. We next present our findings concerning the three exploratory
questions.

6 MRS stands for Multi-Robot Systems.
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2.2 Answering The Research Questions

At the beginning of this section, we outlined three research questions that we
discuss, in light of our findings from the literature search, below.

(RQ1) What types of logics are used in the specification of these
mission requirements?

We identified 16 papers that formally specify mission requirements; five use
LTL and the rest use different logics. We encourage the reader to explore the
background sections of these papers for a deeper understanding of these logics.
Signal temporal logic (STL) is frequently used for the specification of robotic
missions [27,42,41]. In [41], STL is used to declare tasks for the collaborative
manipulation of robotic arms. A fragment of LTL, called capability temporal
logic (CaTL), is used in [30] to generate specifications with absolute or relative
timing of task completion, repetition frequencies, and different types of task
interdependence, like sequencing or synchronization. In [25] a new specification
language for mission specifications called Event-based Signal Temporal Logic,
which is an extension of STL, is proposed. In [26], the authors implement a
framework for the satisfiability of robotic missions described in an extended
version of the Event-based STL logic by adding the ability to specify discrete
uncontrolled event reactions. Metric temporal logic (MTL) was used in [38] for
the specification of robotic manipulators. While FRET currently supports MTL,
we are extending the pattern repository on mobile robot missions. Hence, the
study of motion planning on robotic manipulators is deferred for future work.

For self-adapting mobile service robots, in [11], probabilistic computational
tree logic (PCTL) encodes mission optimization metrics such as time or energy
consumption. A repository of mission patterns defined in RPCTL, i.e., PCTL
extended with rewards, is provided in [36] as a continuation of the Initial Patterns
augmented with quantitative reasoning by adding the probabilistic and reward
operators. RPCTL is also used in [44]. A variant of LTL, called sc-LTL, is used
in [47] for the specification of missions to guide the multi-task planning problem
using a Q-learning based approach. Finally, five studies formalize robotic mission
specifications in LTL [5,18,33,40,46], which we detail next.

(RQ2) For studies that use LTL, what type of missions do they de-
scribe and how are these specified?

Table 2 presents the five studies with LTL formulae. The first column presents
the LTL formulae; the second the corresponding pattern, if it exists; the third
column provides an English description. The last column contains the reference
to the corresponding research paper. In [18], the authors present a heuristic
technique for updating robotic plans as new tasks are allocated. The robot tasks
consist of moving boxes, pulling levers, travelling between locations and scanning
rooms. In [5], the specification of multi-robot systems with collaborative tasks
is studied. Continuing, [33] proposes a decentralized planner for part knowledge
called MAPmAKER, evaluated on two case studies: one with robots in a residen-
tial facility and the other as a services provider. Next, [40] studies the allocation
and planning of tasks with multiple robots in four variants of an office envi-
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ronment; while [46] describes MRS missions in which robots have limited local
information. Its case study consists of picking and dropping a box at different
locations and performing activities such as scanning and taking pictures.

(RQ3) Are there identified patterns that are not already captured by
the Initial Patterns repository?

From the gathered set of 42 formulae (first column, Table 2), 23 were already
defined by a pattern in the Initial Patterns repository and one could not be iden-
tified as a pattern (identified in the second column as NA). For the remaining 17
formulae, we proposed a new set of six patterns: (1)Visit with reaction, (2) Weak
sequenced visit , (3) Continuous visit with reaction, (4) Weak patrolling , (5) De-
liver with visit , (6) Maintain safe state (depicted in column two within square
brackets [ ]). The mission specification that is not defined as a pattern follows
the form: F(l1 ∧ a∧X((a1Ua2)∧ F a)), where {a, a1, a2} is a set of actions and
l1 is a reachable location. This is a very specific behaviour where action a is per-
formed at location l1, followed by two actions a1,a2 in a given order, performing
action a again in the future; hence, this is not considered a pattern.

Formalization of new patterns. Let R = {r1, r1, ..., rn} be a set of robots
and A = {a1, a2, ..., am} a set of actions that robots can perform, where ai holds
when any robot rj ∈ R executes action ai. Let L = {l1, l2, ..., ln1} be a set of
locations and lk holds when a robot reaches this location. We use the notation
l# to indicate any location in L, a# any action in A, (l#)ω an infinite trace of
locations, and (a#)

∗ a finite trace of actions. We define a logical disjunction of
the set of locations to be visited as dx =

∨n2

j=1 sj where sj ∈ S belongs to a
subset of locations S ⊆ L and n2 is the number of elements in S. For example,
if locations l1 or l2 or l4 are to be visited, then d1 = l1|l2|l4, which holds when
any of these locations are visited. We denote {dx} = S the set of locations in
dx. For the previous example {d1} = {l1, l2, l4}. We define gi,k = li ∧ ak as the
visit of location li where ak action is performed. Let l#−{1,2,3} be any location
except for locations l1, l2 or l3; we define the new patterns as:

Visit with reaction: Visit a set of locations in an unspecified order. When
at that location, an action must be carried out. In this case, we use the
conjunction to assemble a formula with multiple locations and actions.

n∧
i=1

F(li ∧ ai), where ai ∈ A

Example: Action a1 must be done at location l1 and action a2 at location l2,
at least once. An example of a trace that satisfies the mission requirement
is l# −→ {l2, a2} −→ l# −→ {l1, a1} −→ (l#)

ω. The trace l# −→ a2 −→ l2 −→
{l1, a1} −→ (l#)

ω violates the requirement as action a2 is never carried out
when visiting l2.

Weak sequenced visit: Visit n locations in a specific order, where the ith
location i ≤ n exists in {di}. It does not prohibit the interleaving of locations.
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Table 2. Collection of LTL mission specifications extracted from the systematic review.
New patterns are depicted in bold square brackets [ ].

Temporal Logic Formula Pattern name
(from Patterns ) Definition Ref.

(!dropoff U (room2 ∧ pickup))
(!dropoff U (room3 ∧ dropoff))
F(room3 ∧ pulllever)
GF(room1 ∧ scan ∧ usecamera)

Wait
Wait
[Visit with reaction]
Patrolling

Pick up box from room2, drop it off in
room3; pull the lever in room3.
Repeatedly scan and take a picture in
room1.

[18]

(!(room1scan) U (room4scan))
F(room1 ∧ scan)

Wait
[Visit with reaction] Scan in room4, then scan in room 1.

GF(room2 ∧ scan)
GF(room5 ∧ scan)

Patrolling
Patrolling

Repeatedly travel between room2
and room5 and scan in those rooms.

F(room1 ∧ usecamera)
F(room4 ∧ pickup)

[Visit with reaction]
[Visit with reaction]

Take a picture in room1 and pick
up a box in room4, in any order.

G(F(loadcarrier)) Patrolling Periodically robot r1 loads debris on r2. [33]

G(F(detectload ∧ F(unload))) Sequenced patrolling Robot r2 load debris and later unload.

G(F(takesnapshot ∧ F(sendinfo))) Sequenced patrolling Robot r3 repeatedly takes and sends
pictures.

F(s1 ∧ (F(s2 | s3))) [Weak ordered visit] Reach a destination where service s1
is provided, then perform either s2 or s3.

G(F(s4 | s5)) [Weak patrolling] Visit s4 or s5 infinitely often.

F(desk ∧ default ∧
X((carrybin U dispose) ∧ F(default)))

F(desk ∧ emptybin ∧ X(desk ∧ default))
G(carrybin ⇒ !public)

NA

[Cont. visit with reaction]
Instant reaction

Robot by the desk while not loaded. Carry
the bin until garbage is disposed and put it
away again to reach the default state.
Place empty paper bin next to the desk.
Avoid public areas while carrying a bin.

[40]

F(printer)
F(kitchen)
G(battery_20)

Visit
Visit
[Maintain safe state]

Refill supplies at the printer room and the
kitchen. Ensure sufficient battery.

F(p ∧ carry U (d10 ∧ X!carry))
F(p ∧ carry U (d7 ∧ X!carry))
F(p ∧ carry U (d5 ∧ X!carry))
G(carry ⇒ !public)
F(printer)

[Deliver after visit]
[Deliver after visit]
[Deliver after visit]
Instant reaction
Visit

Distribute copies (p) to desks d10,
d7, d5, and avoid public areas
while carrying the document.
Printer has sufficient paper.

F(m1 ∧ photo)
F(m4 ∧ photo)
F(m6 ∧ photo)
G(!meeting ⇒ !camera)
F(d5 ∧ carry U (d3 ∧ X!carry))
G(carry ⇒ !public)
F(d11 ∧ guide U (m6 ∧ X!guide))

[Visit with reaction]
[Visit with reaction]
[Visit with reaction]
Instant reaction
[Deliver after visit]
Instant reaction
[Deliver after visit]

Take a photo in rooms m1, m4,
and m6. Deliver document from
d5 to d3. Guide a person at d11
to room m6. Turned off camera
while not in meeting rooms.
Document is not delivered
through any public areas.

(GF(t1))
(GF(t4))
G(w ∧ !o)
(GF(t2))
(GF(t3))

Patrolling
Patrolling
[Maintain safe state]
Patrolling
Patrolling

Robots persistently survey locations
t1, t2, t3 and t4. Always remain
in the working space w and
avoid obstacles in o.

[46]

F(r1t1) ∧ F(r2t2) ∧ F(r3t3) ∧ F(r4t4)
(!r1t1 U r4t4)
F(t4 ∧ F(t3))

Visit
Wait
Ordered visit

Each robot has a local task to perform.
Robot r1 do task t1 only after r4 do t4.
Do task t3 after t4.

[5]
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F(d1 ∧ (F(d2 ∧ (F(d3 ∧ ...(F(dn)))))))︸ ︷︷ ︸
F di nested n times

Example: An instance of this property where d1 = l1 and d2 = l2|l3 is
written as F(l1 ∧ F(l2|l3)). The traces l1 −→ l# −→ l2 −→ (l#)

ω and
l1 −→ l# −→ l3 −→ (l#)

ω satisfy the instance of this property as l2 or l3
holds after l1. The trace l2 −→ (l1)

ω does not satisfy the requirement as l2
never holds after l1.

Continuous visit with reaction: Visit a location for n consecutive steps. Dur-
ing the visit, perform an action at each time step.

F(g1,1 ∧ (X(g1,2 ∧ (X(g1,3 ∧ ...(X(g1,n)))))))︸ ︷︷ ︸
X g1,i nested n times

Example: Location l1 must be visited and perform action a1 when arriving,
and a2 at the next time step. In this case, g1,1 = l1 ∧ a1 and g1,2 = l1 ∧ a2,
hence the specification is written as F(l1 ∧ a1 ∧ (X(l1 ∧ a2))). The trace
{l1, a2} −→ {l2, a2} −→ {l1, a1} −→ {l1, a2} −→ (l#)

ω satisfies the requirement.
The trace {l1, a1} −→ {l2, a2} −→ (l#)

ω violates it as the robot exits l1 before
doing a2.

Weak patrolling: Visit infinitely often one or more locations within {di}.
n∧

i=1

(G(F(di)))

Example: At least one of locations l1, l2 or l3 must be visited infinitely of-
ten. In this case, d1 = l1|l2|l3 and the specification is written as G(F((l1 |
l2 | l3)). The traces l1 −→ (l# −→ l2)

ω and l3 −→ l# −→ (l1)
ω satisfy the

requirement, as at least one location is visited infinitely often. The trace
l2 −→ l4 −→ (l#−{1,2,3})

ω does not satisfy the requirement.

Deliver after visit: Eventually start action one and, if not at the specified lo-
cation, start action two. If not at the specified location, continue performing
action two until the specified location is visited and stop performing action
two afterwards.

F(a1 ∧ a2U(li ∧X!a2)), where a1,2 ∈ A

Example: When a1 happens, then carry an object (a2) until location l1 is
reached. The trace ({a1, a2} −→ {!a1, a2})∗ −→ (a2)

∗ −→ l1 −→!a2 −→ (l#)
ω sat-

isfies this property at some point as action a2 holds until it arrives at location
l1 and, at the next time step, a2 is false. Notice that when li is reached, the
action a2 can be true or false. The trace {a1, a2} −→ {l1, !a2} −→ (a2)

ω does
not satisfy the requirement because !a2 does not hold after l1.
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Fig. 1. Patterns for robotic missions for mobile robots organized in five categories:
coverage, surveillance, avoidance, trigger and monitor. New patterns are depicted in
yellow within square brackets [ ]. The rest are from the original catalogue [35].

Maintain safe state: Check that an action holds at every time point, for in-
stance, for monitoring purposes; this formalization is also called an invariant.

n∧
i=i

G(ai)

Example: Measure the battery energy at all times to maintain it at least at
20%, where a1 holds if the battery energy is ≥20%. A trace that satisfies the
specification is a1 −→ (l#, a1)

ω, while the trace l1 −→ (a1)
ω violates it because

a1 does not hold at the first time point.

We define actions as activities that the robots must execute within their
operational domain, such as avoiding obstacles. Additionally, for the pattern
maintain safe state, these actions include non-functional activities such as en-
suring that the battery charge maintains a specific charge level.

Figure 1 shows the Patterns grouped into five categories: Coverage, Surveil-
lance, Avoidance, Monitor, and Trigger. Note that Reaction is a subcategory of
Trigger. As this robotic mission pattern catalogue is intended to grow as new pat-
terns are identified, in this paper, we propose the Monitor category to capture
the continuous monitoring of some mission-related parameter or behaviour, for
instance, continual monitoring of battery energy level and maintaining the tem-
perature within a specified range. The rest of the categories are taken from [35].

3 Expressing robotic missions in FRET

In this Section, we study the specification of Patterns in FRET.
FRETish Background: A FRETish requirement comprises up to six ele-

ments (of which the elements marked with a * are mandatory): 1) scope spec-
ifies the time intervals where the requirement is enforced; 2) condition is a
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Boolean expression that whenever true specifies that the response shall hap-
pen; 3) component* is the system component that the requirement is levied upon;
4) shall* is used to express that the component’s behavior must conform to the
requirement; 5) timing specifies when the response shall happen, subject to the
constraints defined in scope and condition and 6) response* is the Boolean
expression that the component’s behavior must satisfy. Since not everything can
be expressed in pure FRETish, the language provides escape-to-LTL by allow-
ing Boolean expressions to contain standard LTL operators such as Globally
(meaning G), Future (meaning F), Untl (meaning U), Releases (meaning V)
and Nxt (meaning X).

Table 3 shows how we specified the robotic mission Patterns in FRETish. The
shaded rows indicate new patterns identified by this work that are not included in
the Initial Patterns and are also not supported by the toolset that accompanies
them, PsALM [34]. The second column contains the name of the pattern and the
corresponding LTL formulation. Since both PsALM and FRET tools work on
instantiated versions of the patterns, we present the formulations instantiated
for a specific number of locations. For example, Table 3 lists the instantiated
version of the Visit pattern for two locations l0, l1. The third column contains
the pattern written as FRETish requirement(s). The plus (+) sign is used when
multiple requirements are needed to express a single pattern. In certain cases,
e.g., Ordered Visit, a pattern can be written as the composition of an existing
pattern, e.g., Sequenced Visit, with additional FRETish requirements.

Table 3: Robotic Mission Patterns in FRETish.

# Instantiated Pattern Requirement(s) in FRETish

1 Visit
F l0 ∧ F l1

robot shall eventually satisfy l0
+ robot shall eventually satisfy l1

2 Sequenced Visit
F (l0 ∧ (F l1))

robot shall eventually satisfy l0 & Future(l1)

3 Ordered Visit
F (l0 ∧ (F l1 )) ∧
(! l1) U (l0)

Sequenced Visit pattern
+ robot shall until l0 satisfy !l1

4 Strict Ordered Visit
F (l0 ∧ (F l1 )) ∧
(! l1) U (l0) ∧
(! l0) U (l0 ∧ X (! l0 U (l1)))

Ordered Visit pattern
+ robot shall immediately satisfy Untl((!l0), l0 &
Nxt(Untl(!l0,!l1)))

5 Fair Visit
F l0 ∧ F l1
G (l0 ⇒ X ((! l0) W l1)) ∧
G (l1 ⇒ X ((! l1) W l0))

Visit pattern
+ whenever l0 robot shall at the next timepoint satisfy
Releases(l1,!l0 | l1)
+ whenever l1 robot shall at the next timepoint satisfy
Releases(l0,!l1 | l0)

6 [Visit With Reaction]
F(l0 ∧ action)

robot shall eventually satisfy l0 & action

7 [Weak Sequenced Visit]
F(l0 ∧ F(l1 ∨ l2))

robot shall eventually satisfy l0 & (Future(l1 | l2))

8 [Continuous Visit With Re-
action]
F((l0 ∧ a1) ∧ (X (l0 ∧ a2)))

robot shall eventually satisfy (l0 & a1) & (Nxt(l0 & a2))

9 [Deliver After Visit]
F(a1 ∧ a2 U (l0 ∧ X !a2))

robot shall eventually satisfy a1 & Untl(a2, l0 &
Nxt(!a2))

10 Patrolling
(G F l0) ∧ (G F l1)

whenever true robot shall eventually satisfy l0
+ whenever true robot shall eventually satisfy l1

11 Sequenced Patrolling
G (F (l0 ∧ (F l1)))

robot shall always satisfy Future(l0 & Future(l1))
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Table 3 – Continued from previous page.

# Instantiated Pattern Requirement(s) in FRETish

12 Ordered Patrolling
G (F (l0 ∧ (F l1))) ∧
!l1 U l0 ∧
G(l1 ⇒ X((!l1) U l0))

Sequenced Patrolling pattern
+ robot shall until l0 satisfy !l1
+ robot shall eventually satisfy l1
+ whenever l1 robot shall at the next timepoint satisfy
Untl(!l1,l0)

13 Strict Ordered Patrolling
G (F (l0 ∧ (F l1))) ∧
!l1 U l0 ∧
G(l1 ⇒ X((!l1) U l0)) ∧
G(l0 ⇒ X (!l0 U l1))

Ordered Patrolling pattern
+ whenever l0 robot shall at the next timepoint satisfy
(Untl(!l0,l1))

14 [Weak Patrolling]
G (F (l0 ∨ l1))

whenever true robot shall eventually satisfy l0 | l1

15 Fair Patrolling
(G F l0) ∧ (G F l1) ∧
G (l0 ⇒ X ((! l0) W l1)) ∧
G (l1 ⇒ X ((! l1) W l0))

Patrolling pattern
+ whenever l0 robot shall at the next timepoint satisfy
Releases(l1,!l0 | l1)
+ whenever l1 robot shall at the next timepoint satisfy
Releases(l0, !l1 | l0)

16 Past Avoidance
(!l0) U p

robot shall until p satisfy !l0
+ robot shall eventually satisfy p

17 Global Avoidance
G(!(l0))

robot shall never satisfy l0

18 Future Avoidance
G((c) ⇒ (G(!l0)))

whenever c robot shall never satisfy l0

19 Upper Restricted Avoidance
!F(l0 ∧ X(F(l0 ∧X(F(l0)))))
at most n times where n=2

robot shall immediately satisfy ! Future(l0 &
Nxt(Future(l0 & Nxt(Future(l0))))

20 Lower Restricted Avoidance
F(l0 ∧ X(F(l0 ∧X(F(l0)))))
at least n times where n=3

robot shall eventually satisfy (l0 & Nxt(Future(l0 &
Nxt(Future(l0)))))

21 Exact Restricted Avoidance
(!l0) U (l0 ∧ (X(!l0 U (l0 ∧ (X(!l0
U l0 ∧ X(G !l0)))))))
exactly n=3 times

robot shall immediately Untl (!l0, l0 & (Nxt(Untl (!l0,
l0 & (Nxt(Untl(!l0, l0 & Nxt(Globally !l0))))))))

22 Instant Reaction
G(p1 ⇒ p2)

whenever p1 robot shall immediately satisfy p2

23 Delayed Reaction
G(p1 ⇒ F(p2))

whenever p1 robot shall eventually satisfy p2

24 Prompt Reaction
G(p1 ⇒ X(p2))

whenever p1 robot shall at the next timepoint satisfy p2

25 Bound Reaction
G(p1 ⇐⇒ p2)

robot shall always satisfy p1 <-> p2

26 Bound Delay
G(p1 ⇐⇒ X(p2))

robot shall always satisfy p1 <-> Nxt(p2)

27 Wait
l0 U p

robot shall until p satisfy l0
+ robot shall eventually satisfy p

28 [Maintain Safe Space]
G action

robot shall always satisfy action

4 Discussion

Prior uses of FRET have typically been in the aerospace domain. However,
FRET has also been studied in robotic applications, including inspection [9] and
grasping [21]. Nevertheless, neither of these prior works systematically evaluated
the expressibility of requirements for robotic systems as we do in this paper.

4.1 Expressibility of FRETish for Robotic Mission Requirements

The robotic mission requirements that we studied in this paper can be different
from aerospace requirements written previously in FRET [32,15,19,37]. Their
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difference lies mainly in the unique nature and intrinsic complexity of robotic
missions that require complex LTL specifications, e.g., nested temporal operators
and reachability properties based on multiple locations.

We were able to specify all 28 patterns using FRET, however, in 13 cases
(Table 3 rows 2, 4, 7-9, 11-13, 15, 19-21, 26), we had to use FRET’s escape-to-
LTL feature for patterns with nested temporal operators in Sequenced Visit
and Untl and Nxt In future work, we will study how to extend FRET to capture
these patterns in pure FRETish. One way would be to compositionally build
complex patterns that require nesting of operators from simpler ones. Prior work
makes a first step toward this by refactoring FRETish requirements that share
repeated segments [20].

Table 3 shows that in certain cases, multiple FRETish requirements are
needed to specify a single pattern. This decomposition of a pattern is bene-
ficial for analysis purposes - performance-wise and also analysis feedback can
be more targeted to specific sub-requirements - but also simplifies and makes
the FRETish requirements easier to understand. To this end, FRET also helps
users think of semantic subtleties and make intentional decisions when writing
requirements. Consider the Ordered Visit pattern that uses the strong until U
operator. The FRETish language provides the until keyword as a timing field
option, however its semantics is that of weak until W7. To be able to express
strong until, e.g., p U q we need two requirements in FRETish, i.e., one that
expresses p W q and a second that expresses F q. As a result, when writing
a requirement with the until keyword, the user must decide whether this is the
intended semantics of the requirement or whether the intended semantics should
be strong until instead. In the latter case, the user needs to intentionally add an
extra requirement (see row 16, Table 3).

Finally, there might be multiple semantically equivalent ways of specifying
the same pattern in FRETish, however, due to space limitations, we only present
a single option per pattern in Table 3.

4.2 Comparing Patterns with FRETish Robotic Requirements in
the Wild

Prior work contains FRETish requirements that were specified for a rover inspec-
tion mission [9]. We observe that some of these (system-level) requirements cor-
respond to the Maintain safe space pattern that we have identified. For exam-
ple, Rover shall always satisfy speed <= 10. Further, [9] also has component-
level requirements that fit this pattern. Our focus in this paper is on requirements
at the system and mission levels.

Other related work uses FRET in the specification of requirements for a
robotic grasping system [21]. Here, we found instances of the Maintain safe
space pattern as well as instances of the Global avoidance pattern. For ex-
ample, SV shall always satisfy !collide(SV, TGT). We note that here the

7 According to FRET developers, this was a design choice after studying that when
the until keyword was used in a requirement, in most cases it meant weak until.
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global avoidance pattern is phrased differently than we have shown in Table 3,
which uses the never timing in FRET. However, these two structures, one using
logical negation and the other using never timing, are semantically equivalent.
Although this robotic system is somewhat different from the mobile robots that
we focus our work on, it is interesting that these safety-related patterns appear.

Finally, in recent work on the NASA Ames Research Center project Troupe,
which aims at developing a fleet of rovers capable of autonomously mapping
their environment [43], we found instances of the Maintain safe space and
Delayed reaction patterns. The latter, however, uses a bounded version of the
eventually timing operator, i.e., within 1 second.

More work is needed to examine the applicability of the Patterns more widely,
both for robotics and whether similar patterns are useful in other critical systems.
That said, their appearance in the aforementioned works demonstrates their
relevance. Providing a set of generic patterns thus gives developers and engineers
a starting point for eliciting requirements for robotic missions using FRET.

4.3 On PsALM and FRET

PsALM [34] was specifically developed to support predefined robotic patterns,
i.e., those in the Initial Patterns catalogue. FRET is a requirements elicita-
tion tool that supports the use of predefined templates but also authoring and
understanding of requirements written from scratch in structured natural lan-
guage. For example, to enable compositional analysis, a user would need to
write component-level requirements complementary to the mission-level ones as
demonstrated in [9]. If a developer intends to only use predefined Patterns to
synthesize temporal formulae, then they can use either tool. The selection of
a tool also depends on the intended purpose beyond this formalization stage.
PsALM can generate inputs for multiple planners, simulators and model check-
ers. In contrast, FRET supports the generation of input for model checkers
and runtime monitoring tools. Moreover, when using pure FRETish, FRET can
generate both pure future-time and pure past-time LTL formulae (the PsALM
mission catalogue is currently restricted to future-time LTL). By leveraging the
pure past-time LTL translation, we can further perform realizability checking or
other types of analysis with tools that can only digest pure past-time LTL.

4.4 Threats to Validity

We limited our search terms to those specified in §2.1 but it is possible that
slightly different terms might have yielded different results. These mission pat-
terns are defined for mobile robots transitioning between locations to perform
tasks. Hence, in comparison to [35], we decided to explicitly include the search
terms for the scheduling and allocation of tasks. It is also true that limiting our-
selves to the 25 entries deemed most relevant by the search engine might have
resulted in some interesting papers being omitted. However, we note that a larger
literature review of formal specification and verification of autonomous robotic
systems also travelled five pages deep in their chosen search engine (also Google
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scholar) [31]. Their review was older and more general than ours, spanning pa-
pers published from 2007–2018. Future work might analyse the papers found
during their review (which revealed temporal logics as a popular specification
formalism for robotics) in light of the patterns that we identified.

In [33], the authors refer to previous studies on specification patterns [29,16,24]
but we couldn’t find a reference to the specific guideline they follow. Hence, we
followed the guidelines for Systematic Reviews in Software Engineering from
[8,28]. Had we opted for a collection of search engines, rather than just Google
Scholar, this may have impacted the patterns that we derived. Our results are
thus limited to those that are identified using Google’s algorithms. Notably, the
venues that our papers were drawn from were robotics, rather than formal meth-
ods venues. Including more venues where temporal logic papers appear, such as
Formal Methods Europe or SAFECOMP for example, might have provided a
richer set of temporal logic formulas.

Limiting our search to papers published at mostly academic venues might
have resulted in gaps in the patterns that we identified. Our future work will
seek to validate these patterns alongside industrial partners to ensure that our
patterns are applicable and that additional patterns, including those that were
potentially overlooked by our literature review, are identified and added to our
catalog. For instance, we will seek to extensively validate these patterns and
extract new patterns through missions and robotic projects at NASA, such
as Troupe [7]. Two other sources we will consider for the extraction of addi-
tional robotic patterns in future work are well-known robotics competitions and
large-scale studies. Robotic competitions such as RoboCup [3] and the DARPA
Robotics Challenge [2] provide insights into state-of-the-art robotic missions,
and large-scale case studies such as those conducted by Amazon Robotics offer
real-world applications to investigate. For instance, the deployment of multi-
ple mobile robots in an Amazon warehouse setting [1] presents opportunities to
formalize complex robot interactions and mission strategies through FRETish,
and ultimately, logic languages. This further validation and expansion of our
catalog of patterns will help to ensure the maximum impact of this work whilst
encouraging a wider uptake of FRET in robotics development.

5 Related work

The specification of patterns in temporal logic is not a new concept. Develop-
ing sets of commonly occurring patterns is useful to guide developers in spec-
ifying their systems [16,24,39]. Existing tools should ideally express commonly
occurring patterns to encourage their uptake and ensure that they are applica-
ble in relevant domains. Robotic systems are frequently built of multiple (often
pre-existing) components, each with its own requirements [13]. Identifying and
expressing frequently used patterns thus enables uniformity and reuse.

Recently, several efforts have focused on creating repositories of robotic mis-
sions gathered from industry and literature that can be easily reused and imple-
mented. For example, ROBOMAX [4] is a dynamic repository of robotic systems
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with self-adaptation capabilities that researchers can expand with new missions.
ROBOMAX contains missions described in natural language.

Other works use temporal logic formalizations for the description of robotic
missions and in particular for the planning of mobile robots [17,22]. Many of
these were considered in the creation of mission patterns. However, these pat-
terns do not support reasoning about quantities such as the cost to complete
a mission or the probability of mission success without failure. As the need for
qualitative requirements grows [45,44], a second set of robotic patterns, pre-
sented in [36], expands the mission patterns of [35] with quantitative semantics
adding probabilities and rewards to capture uncertainty in robotic mission spec-
ifications. We did not use this second repository as FRET does not currently
support probabilistic requirements.

6 Conclusion

This paper contributes (1) newly identified robotic mission patterns that were
derived from a systematic literature review. The paper studies (2) the specifi-
cation in FRETish of 28 distinct patterns, both newly identified in this paper
and previously described in [35]. Finally, (3) we discuss and examine the impli-
cation that these patterns have for the design and applicability of FRET, by
examining its expressibility and comparing these patterns with pre-existing sets
of FRETish requirements. The catalog presented in Table 3 provides a method-
ological basis for roboticists wishing to use FRET to specify functional mission
requirements for robots that are engaged in common tasks such as patrolling.
Previously, FRET has been predominantly used for aerospace systems case stud-
ies. This paper illustrates that FRET can be more widely applicable, focusing
on the mobile robotics domain.

In future work, we will explore additional sources of robotic missions. This
will entail examining large-scale robotic applications, gaining insights into robotic
missions through interviews with industrial developers, and investigating exist-
ing missions from projects at NASA and robotic competitions. We also plan to
study the applicabilility of these patterns to other autonomous systems, such as
within the context of Unmanned Aircraft Systems (UAS).
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