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Discrimination of Disposable Vapes from
Batteries Using the Magnetic Polarizability

Tensor
Kane C. Williams, Graduate Member, IEEE , John L. Davidson, Michael D. O’Toole, Member, IEEE ,

Anthony J. Peyton
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Abstract— Disposable vapes pose an environmental and fire hazard
to waste streams when disposed of incorrectly. The lithium battery
inside disposable vapes can produce an exothermic reaction when
the lithium inside the battery is inadvertently exposed to air and
moisture. New sensing technologies may be needed to screen
waste streams for these vape hazards and this paper considers the
potential of inductive techniques based on the magnetic polarisabil-
ity tensor (MPT) representation. The MPT can be described by three
complex components based on a target regardless of orientation.
In this paper, the rank 2 MPT is measured and calculated for 10
vapes and 37 batteries for 28 logarithmically spaced frequencies
from 119 Hz to 95.4 KHz. The 168 features of each object are reduced
down to 2 features using principal component analysis (PCA) and
linear discriminant analysis. The reduction of the features allows for
the visualisation and grouping of the objects. Three clear groups
of objects can be seen when the maximum feature scales the
measurement and a two-component PCA transform is applied. The
first group is the vapes, which are grouped away from the other
batteries. The second is the batteries, which are grouped by size.
Finally, zinc batteries are grouped away from the rest due to their
case material.

Index Terms— electromagnetic induction, magnetic polarizability tensor (MPT), disposable vapes, recycling, waste
recovery.

I. INTRODUCTION

The use of disposable or ‘single-use’ vapes is a worldwide
environmental concern. In the US, the sales of e-cigarettes
increased from 15.5 million in January 2020 to 22.7 million
units per 4-week period in December 2022 [1]. In the UK,
it is estimated that approximately 14 million single-use vapes
are sold each month, with over 50% disposed of incorrectly
[2], [3]. Disposable vapes are non-rechargeable devices that
typically contain a pre-filled 2 ml of e-cigarette liquid and
allow for approximately 600 user inhalations. They are ad-
vertised as cheap and disposable once used. Disposable vapes
tend to have an outer plastic casing to protect the internal

For the purpose of open access, the author has applied a Creative
Commons Attribution (CC BY) licence (where permitted by UKRI, ‘Open
Government Licence’ or ‘Creative Commons Attribution No-derivatives
(CC BY-ND) licence may be stated instead) to any Author Accepted
Manuscript version arising. This work was supported by the UK Engi-
neering and Physical Sciences Research Council (P122584)

The authors are with the Department of Electrical and
Electronic Engineering, The University of Manchester, Manchester
M13 9PL, U.K. (e-mail: kane.williams@manchester.ac.uk;
j.davidson-2@manchester.ac.uk; michael.otoole@manchester.ac.uk;
a.peyton@manchester.ac.uk).

contents. The vape usually consists of a lithium battery,
used to power the device, which connects to a small printed
circuit board containing a control chip, which connects to a
thin copper heating element placed inside a sponge soaked
in the vape liquid. When the user applies pressure to the
mouthpiece, the control chip turns on an LED indicator and
connects the battery to the copper heating element. The heating
element heats the soaked sponge, creating an aerosol inhaled
by the user. When the battery charge is low, the LED flashes,
indicating a low battery, leading to the disposal of the vape.

Vapes contain non-degradable plastics, copper and lithium-
ion batteries. The UK classifies vapes as waste electrical and
electronic equipment (WEEE) and, as such, should be disposed
of appropriately in accordance with local WEEE recycling
regulations [2], [4]. Under WEEE regulations, a producer of
electrical products must finance the collection and treatment
of their products when they become waste [2]. However, many
single-use vape users are either unaware that these products
are recyclable or choose to discard the devices inappropriately.
Consequently, many disposable vapes are discarded in public
bins or become part of the general litter in public spaces [2].
A report by Material Focus found 73% of UK vapers say they
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throw away single-use vapes, with 33% of 16-18 year-olds
throwing away their vapes in the bin at school or work [5].

The lithium used for the vape batteries thrown away in the
UK alone totals 10 tonnes of lithium per year [2]. Lithium
is an essential resource, reflected by declarations such as
the UK government assigning lithium as highly critical [6],
[7]. In 2006, the EU set out the European Battery Directive
2006/66/EC with a target of 45% for collection by September
2016. Collection schemes were set up to allow used batteries to
be returned to the location they were bought. In 2023, the EU
adopted the new battery regulation 2023/1542, which regulates
the batteries throughout their life cycles. The regulation set a
target of 63% by 2027 and 73% by 2030 for producers to
collect waste batteries. Another key target was that 50% of
lithium in waste batteries must be recovered by 2027, increas-
ing to 80% by the end of 2031. Further requirements were
set, focused on electric vehicle batteries, with the mandatory
minimum recovery of different elements, including lithium.

Recent assessments suggest the production scale of lithium
must be increased to match the demand over the next few
decades [8], as previously it was reported that the lithium
demand would be greater than the lithium supply available
without effective recycling [9]. The reported deficit between
2020 and 2050 between the supply and demand of lithium can
only be sustained with suitable recycling methods [8].

The lithium batteries also pose a fire risk when disposed of
incorrectly. When a lithium battery is not correctly discharged,
the lithium within the battery can react to the air and moisture
when crushed or shredded, leading to an exothermic reaction
[10], [11]. Lithium batteries placed into the mainstream waste
can pass through a shredder, which can tear open the battery,
causing a fire by igniting other waste present. It has been
reported that lithium batteries cause around 48% of waste
fires in the UK each year, with a cost of £158 M/p.a.
[12], [13]. Sweden has, on average, more than one fire per
week at waste facilities [14]. A notable fire in a Norwegian
WEEE stream in 2014 took 36 hours to extinguish, where the
extinguishing water was discharged into the nearby stream,
causing contamination [14], [15].

Research has been published on techniques to detect and
remove batteries in a waste stream and focused on general
batteries, not those inside vapes. The techniques currently
researched for the detection and removal of batteries are
magnetic induction, sieves, magnets, vision systems, x-ray and
electrodynamics [10], [16]

Novel and robust methods of detecting disposable vapes
from other waste materials are of vital and timely importance.
This study explores using magnetic induction to determine the
magnetic polarizability tensor (MPT) of vapes and different
batteries. As the dominant metal content in a vape is its battery,
other batteries of similar sizes, which would potentially be
present in a waste stream, were used to assess the efficacy.
Batteries should not be sent to landfills due to the potential of
soil and groundwater contamination; however, many still do
[17], [18]. An induction system does not need a line of sight
to the target, which, in this work, would be the battery located
inside a vape. We measure 28 frequencies to allow for more
information on the object for better discrimination, followed

by dimension reduction techniques to allow visualisation and
reduction of features of the measurements.

Electromagnetic induction has been used in previous work
for the discrimination of scrap metal within waste streams
[19]–[21] with other work using magnetic induction spec-
troscopy (MIS) [22]–[26]. MIS has also been used to differen-
tiate batteries based on size and shape [16]. The MPT has been
researched for the detection and classification of metal objects
for different scenarios. The scenarios include unexploded
ordnance detection [27]–[30], anti-personal landmine detection
[31]–[36] and walk through metal detectors [37]–[41].

The contribution of this article is twofold: First, we demon-
strate the detection of vapes and batteries within an electro-
magnetic field using a coil system and the ability to calculate
the MPT. Second, we show how the many features of the MPT
can be reduced to 2 using dimension-reduction techniques. The
reduction of data allows for visualisation and discrimination
between batteries and vapes.

II. THEORY

A. Magnetic polarizability tensor (MPT)

An object’s features affect its MPT, which includes the
shape, size, orientation, conductivity and permeability of the
component parts [42], [43]. The MPT also depends on the
electromagnetic frequency the object is exposed to. The math-
ematical descriptions of the MPT can be found in other
literature which gives a full mathematical description which
underpin the engineering approximations [44]–[47]. Ledger et
al. [48] have shown a mathematical proof of the generalized
MPT, which justifies using a rank 2 MPT when the object is
present in a uniform field. For clarity and conciseness, only
the equations needed to calculate the Rank 2 MPT are reported
in this section.

M(f) =

M ′
xx + jM ′′

xx M ′
xy + jM ′′

xy M ′
xz + jM ′′

xz

M ′
xz + jM ′′

xy M ′
yy + jM ′′

yy M ′
yz + jM ′′

yz

M ′
xz + jM ′′

xz M ′
yz + jM ′′

yz M ′
zz + jM ′′

zz


(1)

The MPT is represented as a 3 x 3 matrix of tensor
components, which are complex numbers, as shown in (1),
which is symmetric and has 6 unique complex components.
The excitation frequency is f , which must be low enough for
the eddy current approximation to be valid and makes the MPT
frequency dependent. The object’s orientation affects the eddy
current circulating in the object, resulting in a different MPT.
At least six unique measurements of an object are needed to
construct an MPT, but in practice, more measurements will
result in an MPT with less noise and increased accuracy [31].

Vind
∼= −j2πfµ0HT

txMHrx (2)

The induced voltage Vind on the receive coil is shown in
(2). j is the imaginary unit , f is the excitation frequency and
µ0 is the permeability of free space. HT

tx is the transpose of
the transmit field in 3D space at the position of the object and
Hrx is the adjoint magnetic field per unit amp from the receive
coil. When Vind is measured and subsequently Htx and Hrx
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are calculated for a defined number of unique orientations a
set of linear equations can be created. The linear equations
allow an eigenvalue matrix that is orientation-independent for
the rank 2 MPT approximation to be created, which is given
by the following:

M = RΛRT (3)

Where R is a rotation matrix based on Euler’s theorem.
Λ is the diagonal matrix show in (4), which is frequency
dependent. As the matrix is frequency-dependent, a wide
frequency spectrum would provide more details on an object,
which could lead to better discrimination between objects.

Λ(f) =

Λ′
xx + jΛ′′

xx 0 0
0 Λ′

yy + jΛ′′
yy 0

0 0 Λ′
zz + jΛ′′

zz

 (4)

B. Dimension reduction
A common approach in machine learning is to reduce the

dimensionality of data to improve accuracy. The reduction of
dimensions can allow for easier visualisation and reduction
of input features in a machine learning algorithm, which
reduces the complexity of a model. Two dimension reduction
techniques were used for the following work to reduce mea-
surement dimensions from 168 to 2. The 168 features consist
of the real and imaginary components of the three eigenvalues
across 28 frequencies.

Principle component analysis (PCA) is a method which
identifies the closest axis to the data, then projects the data
onto it [49], [50]. The axis chosen should preserve the largest
variance of the original data, or the axis which minimises
the mean squared distance between the point’s new projection
and their original positions [49], [51]. PCA is unsupervised
and does not use the label of the data. PCA first finds the
axis which accounts for the highest variance, followed by the
second axis, which is orthogonal to the first, repeated for the
number of dimensions of a dataset [49]. The variance ratio of
each component can be returned and shows the proportion of
the variance of the dataset projected on the given axis, where
the total of the variance will add up to 1 [49].

Linear discriminant analysis (LDA) is a method which
reduces the number of dimensions of a given input or as a
classification algorithm. LDA will find the most discriminate
axes between classes, allowing a hyperplane to be defined to
project the data, which maximises the separability between the
known classes [49]. LDA is a supervised method and needs
the label of the data to ensure separability.

III. METHOD

A. MPT measurement system
The MPT system was first described by Özdeǧer et al.

[52]. The coil arrangement consists of a transmit coil with
a 240 mm diameter, which is wound as nine separate sections
(turns: 11:3:5:5:5:5:5:3:11). There are two receive coils with a
220 mm diameter connected in series and wound in opposite
directions to produce a gradiometer arrangement, with each

receives coil separated into four separate sections (turns:
27:18:18:49:49:18:18:27). The MPT system comprises of be-
spoke electronics for generation of drive signals, measurement
amplification and data acquisition of the coil arrangement.

The target object is placed inside a truncated icosahedron,
which allows for 16 unique orientations for the calculation
of the MPT [32]. The coil system sweeps 28 logarithmically
spaced frequencies from 119 Hz to 95.4 KHz. The coil system
and the truncated icosahedron are shown in Fig. 1.

To take a measurement, a reference is needed, which is
obtained by a background measurement, followed by a mea-
surement of a target of a known tensor, and then another
background measurement. When an object is measured, first,
a measurement of the background is taken, followed by four
measurements of the object in different orientations, then
another background measurement; this is repeated until 16
unique orientations are measured, finishing with a background
measurement.

Rx 1Tx 1

Coil system

Truncated

icosahedron

Rx 2
Tx 2

Tx 3

Rx 3Tx 4

Rx 4

Rx 5
Tx 5

Rx 6Tx 6

Tx 7
Rx 7

Tx 8

Rx 8Tx 9

(A) (B)

Fig. 1. The MPT measurement system and the truncated icosahedron
(A) and coil arrangement showing transmit (Tx) and receive (Rx) coil
subsections (B).

B. Dataset
The dataset consists of 10 used disposable vapes and 37

batteries collected from battery recycling points. The vapes
include four brands and five different sizes, which are shown in
Fig. 2. The batteries used in this study consist of D, AA, AAA
and E-block sizes, with their type being a mix of alkaline,
Nickel metal hydride (NiMH), lithium, zinc and zinc chloride.
Table I shows the sizes and types of batteries used.

C. Software
Sklearn V1.2.2 was used to train PCA and LDA models

using the functions “PCA” and “LinearDiscriminantAnaly-
sis”. The PCA function returned the variance ratio of each
component using “.explained variance ratio ”. The returned
ratio is a number between 0 and 1; for the results, the
variance has been converted into a percentage, with 100%
representing 1. The LDA model needs to be trained and then
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TABLE I
THE SIZE AND TYPES OF BATTERIES MEASURED IN THIS STUDY.

Size
Battery Type D AA AAA E

Alkaline 2 7 4 3
NiMH 3 3 1 0

Lithium 0 5 0 0
Zinc 0 2 2 0

Zinc Chloride 0 4 0 1
Total 5 21 7 4

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Fig. 2. The ten vapes which were measured in this study.

tested on unseen data. To achieve this, the Sklearn function
“LeaveOneOut” was used, which trained an LDA model with
all the measurements apart from one. The one measurement
not used would be used as the test for the model, which would
transform this measurement and subsequently plotted. The
process would repeat until every measurement has been used
as a test measurement, which allows a result that represents
how the algorithm would perform unseen data.

D. Scaling
Two types of scaling were applied. The first was global scal-

ing, where all measurements were used to scale all eigenvalue
measurements of each sample between 0 and 1. The second
was individual scaling, where each sample measurement was
used to scale all eigenvalue measurements of the sample
between 0 and 1, independent of the other samples.

IV. RESULT AND DISCUSSION

In the first part of this section, we explore the different
eigenvalues of a vape and three batteries using the method
described in Section III-A. In the second part, we use PCA
and LDA to reduce the 168 dimensions into two dimensions
to group and differentiate the vapes from the batteries.

Fig. 3 shows the three eigenvalues of a vape, a NiMH
D, alkaline AAA and a lithium AA battery. Fig. 3 shows
similar responses for eigenvalues 2 and 3 for all four batteries,
which is expected due to the symmetrical nature of a cylinder
[53]. The D battery, which is the largest, gives the largest
response for all four objects for the real eigenvalues. The D
battery gives the largest response for the imaginary eigenvalue
1. However, the vape gives the strongest response for the
imaginary eigenvalues 2 and 3. The vape in Fig. 3 shows a
difference to the batteries. The vape real response of all three
eigenvalues reaches a lower negative value, and the peak of the
imaginary component of the eigenvalue is lower in frequency
than the batteries in eigenvalues 2 and 3. In eigenvalue 1, the

peak of the imaginary component is similar to the D battery
but lower in frequency than the other two batteries.

Fig. 4 (a) shows the reduction of the 168 dimension data,
which is real and imaginary components of the three eigen-
values across 28 frequencies, to two dimensions using PCA
when global scaling is applied. We can see a grouping of D
and E-type batteries, though there is one D battery near the
cluster of E batteries. AA and AAA batteries are also grouped
together, though four batteries are not part of this group. These
four batteries are Zinc batteries, which tend to give a small
response. The vapes can also be grouped, though one AA zinc
battery is close to a vape measurement.

Fig. 4 (b) shows the reduction of the 168 dimensions
to two using PCA when individual scaling is applied. We
see a grouping of D and E batteries again, with the D
battery, which was an outlier previously, now part of the D
group. The AA and AAA are grouped together, though some
separate grouping can be seen, where the AAA batteries are
grouped between two AA batteries. The left group of the
batteries is zinc chloride, and the right is alkaline, lithium,
and NiMH. These two groups relate to the different metal
cylinder materials that both batteries use. Three zinc batteries
are now grouped, with the fourth on its own below the E and
D groups. Notably, the zinc batteries are no longer grouped
close to the vapes. The vapes have their own grouping, which
can be seen where no other batteries are close. The groupings
give a good discrimination of the vapes from the batteries.

The variance for PCA component 1 is 75.4% and 18.8%
for component 2 when the data is not scaled. The variance
of PCA when the data is scaled is 66.7% and 20.7% for
PCA components 1 and 2, respectively. The total variance
of the data preserved is 87.2% when the measurements are
not scaled and 87.4% when the measurements are scaled. If
the number of PCA components is increased to 3, the total
variance increases by 2.79% when the measurements are not
scaled and 6.17% when the measurements are scaled. Future
work may find that the increase in total variance could improve
classification accuracy.

Fig. 5 (a) shows the reduction of the 168 dimension data into
two dimensions using LDA, where the batteries are grouped
into size, using the leave one out method when global scaling
is applied. The D-sized batteries are clearly grouped, and the
E-sized batteries are also grouped together, though one vape
is near this group. The AA and AAA are all grouped, so it is
difficult to separate them from each other. The Zinc batteries
which were grouped together or close to the vapes with PCA
are now grouped within the AA and AAA groups. There is a
large central cluster of vapes, with vapes 1, 2 and 3 separate
from this group. In Fig. 4 (a), it can be observed that vapes 2
and 3 are separate from the main group. As LDA is used with
the leave one out method, the LDA model needs to be trained
first and then used to transform the unseen measurements. As
the vapes have no other similar measurements, the model has
not been trained on similar measurements, which leads to the
measurement not being part of the main cluster.

Fig. 5 (b) shows the reduction of the 168 dimensions to two
using LDA, where the batteries are grouped into size, using
the leave one out method when individual scaling is applied.
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Fig. 4. The PCA transform of 10 vapes and 37 batteries into two components using (a) global measurement scaling and (b) individual measurement
scaling prior to applying PCA. Each outlier vape is labelled.

Fig. 5 (b) shows a grouping of all the vapes with no batteries
within the group. The batteries are all clustered together and
do not have a clear separation into size, as seen in Fig. 4.

Fig. 6 (a) shows the reduction of the 168 dimension data into
two dimensions using LDA, where the batteries are grouped
into type, using the leave one out method when global scaling
is applied. It can be seen in Fig. 6 (a) that there is a cluster of
vapes, and as seen previously, vapes 1, 2 and 3 are not near this
cluster. Most of the batteries are not clustered, with the only
observable clusters being AA zinc chloride and AAA alkaline
/ NiMH clustered together. Fig. 6 (b) shows the reduction of

the 168 dimensions to two using LDA, where the batteries
are grouped into size, using the leave one out method when
individual scaling is applied. Fig. 6 (b) shows a large grouping
of batteries where it is difficult to differentiate them. There is
a small grouping of D batteries and E alkaline batteries. The
zinc batteries, which were separate from the batteries in Fig.
4 are again separate from the main group of batteries. There
is a clear grouping of the vapes away from the batteries, and
they are not affected by the separate group of zinc batteries.

The plots in Fig. 6 show that it is difficult to reduce the
dimensions with LDA when using the type of battery as a
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Fig. 6. The LDA transform of 10 vapes and 37 batteries, labelled based on type, into two components using (a) global measurement scaling and
(b) individual measurement scaling prior to applying PCA, using leave one out. Each outlier vape is labelled.

label. A cause of this is that the model is being trained to
separate measurements where the batteries had similar casing
material. The similar casing material will result in similar
measurements, which would be difficult to separate. When the
batteries were grouped by size in Fig. 4, batteries with similar
casing in material and size had the same label, leading to
more apparent separation and grouping. A Hitachi VULCAN
LIBS analyser was used to acquire the metal composition of
the AA batteries’ casing and top and bottom contacts. The
tested AA alkaline, NiMH, and lithium batteries all have a
case and top and bottom contact made from Ni-200, which
is a corrosion-resistant nickel alloy. The same casing of the
three battery types explains their groupings in the presented
results. The zinc chloride battery has a case and top and bottom
contacts made from carbon steel (C-steel). Finally, the zinc
battery has a bottom contact made from C-steel and a top
contact of Ni-200 and the casing is made from a cardboard-
like material. The casing material explains the response when
the zinc batteries are measured, which is essentially dominated
by and approximates the MPT behaviour of a ferromagnetic
cylinder.

V. CONCLUSION

The magnetic polarizability tensor allows for a feature-
rich measurement of a metallic object, which, when paired
with the dimension reduction techniques PCA and LDA,
can create a clear grouping of objects in two dimensions.
The magnetic polarizability tensor has been used previously
to detect firearms and knives from other objects as they
pass through walk-through metal detectors [31]. This article
presents the first results of using the magnetic polarizability
tensor to classify waste, more specifically, the discrimination
of disposable vapes from batteries. The measurements, which
consist of 168 features, are reduced to two features to allow
for visualisation and dimension reduction. The 168 features
consist of the real and imaginary components of the three
eigenvalues across 28 frequencies.

When PCA is used, the batteries are grouped into sizes
apart from zinc batteries, which are separate from their cor-
responding size group. The zinc batteries are grouped close
to the vapes but are still separable. When the measurements
are independently scaled, the grouping of all the batteries and
vapes becomes clearer, especially as the vapes and the zinc
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batteries have further separation.
When LDA is used, which is trained with the labels of the

measurements, the grouping of the vapes and batteries is clear.
When the measurements are not independently scaled, there
is a grouping of the vapes, though one outlier measurement
is close to the E-type batteries. The vape measurement being
close to the E-type battery was due to the LDA model not
being trained on any measurements similar to outlier mea-
surement. When the measurements are independently scaled,
there is a clear differentiation between the vapes and batteries.
Though the batteries cannot be separated by size like in PCA,
the vapes are separate from the batteries.

Additionally, when LDA was used to separate the vapes
from the batteries based on their type, there was no grouping.
However, when the measurements were independently scaled,
the vapes were grouped away from the batteries. The batteries
cannot be easily separated, though some minor groups were
present, with the zinc batteries separate from the other batter-
ies. A reason for the poor grouping was that the LDA model
was trained on labels based on the battery type and size. The
labelling of type and size led to the LDA model trying to
separate batteries of similar size and material casing from each
other, which would have similar measurements.

The magnetic polarizability tensor has shown to be a useful
measurement to use to differentiate vapes from batteries. PCA
and LDA have been shown to reduce the dimension of the
measurements to two features, which allows visual grouping
of the objects. The PCA results are most important as it is
not trained with the data labels, so it does not know the label
of each measurement. Future work will need to build up a
larger measurement library and combine dimension reduction
and machine learning techniques to detect vapes in a waste
stream for removal. However, more work would be needed
to measure and calculate the magnetic polarizability tensor in
real time on a moving conveyor belt.
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