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Abstract—Federated learning (FL) has emerged as a privacy-
aware collaborative learning paradigm where participants jointly
train a powerful model without sharing their private data.
One desirable property for FL is the implementation of the
right to be forgotten (RTBF), i.e., a leaving participant has
the right to request to delete its private data from the global
model. Recently, several server-side unlearning methods have
been proposed to remove a leaving participant’s gradients from
the global model. However, unlearning itself may not be enough to
implement RTBF unless the unlearning effect can be independently
verified, an important aspect that has been overlooked in the
current literature. In this paper, we prompt the concept of
verifiable federated unlearning, and propose VERIFI, a unified
framework integrating federated unlearning and verification that
allows systematic analysis of the unlearning and quantification
of its effect, with different combinations of multiple unlearning
and verification methods. In VERIFI, the leaving participant is
granted the right to verify (RTV), that is, the participant notifies
the server before leaving, then actively verifies the unlearning
effect in the next few communication rounds. The unlearning is
done at the server side immediately after receiving the leaving
notification, while the verification is done locally by the leaving
participant via two steps: marking and checking. The marking
step injects carefully-designed markers to fingerprint the leaving
participant’s data, while the checking step examines the change
of the global model’s performance on the markers.

Based on VERIFI, we conduct the first systematic and large-
scale study for verifiable federated unlearning, considering 7
unlearning methods and 5 verification methods that cover exist-
ing, adapted and newly proposed ones for both unlearning and
verification. Particularly, the newly proposed methods include
a more efficient and FL-friendly unlearning method uS2U, and
two more effective and robust non-invasive-verification methods
vFM and vEM (without training controllability or external data,
without white-box model access or introducing security hazard).
We extensively evaluate VERIFI on 7 datasets, including both
(natural/facial/medical) images and audios, and 4 types of deep
learning models, including both Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). Our analysis
establishes important empirical understandings and evidence for
more trustworthy federated unlearning.

I. INTRODUCTION

Federated learning (FL) is a collaborative learning
paradigm that allows participants to train a powerful machine
learning model jointly without sharing their private data [5],
[25], [53]. This privacy-preserving nature of FL makes it an
ideal choice for real-world privacy-sensitive collaborations in
finance [50], healthcare [52], [7], insurance [46] and many

other fields. One essential requirement of FL is the partici-
pants’ “right to be forgotten” (RTBF), which has been stated
explicitly in the European Union General Data Protection
Regulation (GDPR) [18], [37] and the California Consumer
Privacy Act (CCPA) [23]. That is, a participant has the right
to request a deletion of its private data. Arguably, one may
worry that its private data will be memorized by the global
model and continue to be exploited even after leaving the
federation. As leaving/joining is a common behavior in FL,
it is thus necessary to ensure that every participant can join
and leave the federation freely, and more importantly,
with no concerns. However, so far, participants have difficulty
exercising the RTBF in existing FL frameworks, which might
discourage potential participants to join the federation.

The concept of machine unlearning [6], [39] has recently
been proposed to remove data from a machine learning model.
Several unlearning methods are designed to actively unlearn
certain data from a trained model. A simple yet costly approach
for unlearning is to retrain the model from scratch with the
requested data being removed from the training set [6]. It can
be made more efficient if the model is trained on summarized
(e.g., aggregates of summations) or partitioned subsets rather
than individual training samples, in which case, the model
only needs to be updated on the subset(s) associated with
the requested samples [10], [19]. The above methods are
less practical for large-scale datasets, although advanced data
partitioning or intermediate model breakpoint strategies may
help [6], [24]. More recently, machine unlearning has been
extended to the FL setting, a.k.a., federated unlearning [30],
which is arguably more challenging. In FL, 1) the global
model is updated based on the aggregated rather than the
raw gradients; 2) FL can have a large number of participants;
and 3) different participants may have similar, or to some
extent, shared training samples. Consequently, simple gradient-
based methods such as subtracting the reconstructed or dummy
gradients of the leaving participant may harm the original task
or introduce new privacy threats into FL [30], [32].

Moreover, federated unlearning is only one side of the coin
for the RTBF. A more concerning question from a participant’s
perspective is: how to make sure that my data has indeed
been forgotten, hopefully in a verifiable and measurable
way, which we believe is the core of establishing mutual
trust in FL. Unfortunately, this important aspect has been
largely overlooked in the FL literature. In traditional machine
unlearning, the unlearning effect can be simply verified by
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the model’s performance (e.g., accuracy and loss) on the
unlearned data or additionally injected backdoor data [6],
[10], [41]. However, in FL, the accuracy and loss may hardly
change when only one or a few participants left the federation,
owing to the contribution of other participants. Besides, it
is not secure in FL to use backdoor solely for the purpose
of unlearning verification as it might introduce new security
threats into the commonly contributed and shared global model
(see Appendix VI-D). So far, it still lacks understanding of how
to effectively and reliably verify that the data has indeed been
deleted after unlearning. In fact, due to the lack of a unified,
holistic and all-round FL verification framework, several key
fundamental questions for trustworthy RTBF in FL remain
unexplored:

• Federated Unlearning. Is federated unlearning necessary
or might natural forgetting be enough to forget the leaving
participant’s data?

• Unlearning Verification. Do we need more sophisticated
methods or simple methods like checking the global
model’s performance on the leaving participant’s data are
enough to measure and verify the unlearning effect?

• Practical Choice. What are the most effective combina-
tion(s) of unlearning and verification methods that can
effectively unlearn, clearly verify, while causing minimal
negative impact on the original task?

To answer the above questions, in this paper, we promote
the concept of verifiable federated unlearning, which treats
verification as important as unlearning and grants the par-
ticipant the “right to verify” (RTV). Specifically, we design
and implement VERIFI, a unified framework for verifiable
federated unlearning. The core of VERIFI contains 1) a
federated unlearning module; 2) a verification module with
two key verification steps, namely marking and checking;
and 3) a generic unlearning-verification mechanism applicable
to common FL frameworks. Fig. 1 provides an overview
of VERIFI. The unlearning module can be any unlearning1

method adopted at the server size that erases the information
of the leaving participant’s data (which we call “leaving
data”). The marking step of the verification module injects/tags
specifically selected or designed patterns or training examples
as markers. The checking step of the verification module then
verifies the degree of unlearning based on different verification
metrics defined w.r.t. the global model and the markers. The
unlearning-verification mechanism integrates all the above
steps into a chained pipeline and specifies when and what to
mark, and who and when to unlearn and verify.

With VERIFI, we bring together a comprehensive set
of unlearning and verification methods, including not only
existing ones but also many adapted from other fields, as
well as newly proposed in this paper. We conduct the first
systematic study on the practicality of different combinations
of unlearning and verification methods for verifiable federated
unlearning. For unlearning, we study the limitations of exist-

1Without ambiguity, we use “unlearning” instead of “federated unlearning”
for simplicity.

ing one-step (e.g., differential privacy2) and multi-step (e.g.,
retraining and gradient subtraction) unlearning methods, such
as high cost and significant negative impact on the original
task. We also propose a more efficient and FL-friendly one-
step unlearning method scale-to-unlearn (uS2U)3. uS2U scales
down the leaving participant’s gradients/parameters to trigger
the global model to erase its memorization of the participant.
Verification consists of two steps: marking and checking. For
marking, the existing method leverages backdoored samples
to verify the unlearning effect [41], which is unsuitable for FL
as backdoor methods are invasive methods that could introduce
global threats to all FL participants. We consider this backdoor-
based verification method in VERIFI as a comparison, and fur-
ther propose two non-invasive unique memory-based methods.
The two proposed verification methods verify the unlearning
effect based on the sensitive performance of the global model
on a specific subset of the leaving data. Moreover, we also
adapt existing watermark and fingerprint methods proposed for
deep learning intellectual property protection as verification
methods for federated unlearning. We systematically analyze
the pros and cons of these marking methods in VERIFI. For
checking, we explore loss, accuracy, influence function (IF)
[27] and Kullback–Leibler (KL) divergence [20] to measure
the performance change on the marked data (i.e., markers)
before and after unlearning. Our extensive evaluation and
analyses provide answers to the three fundamental questions
mentioned earlier, and establish the empirical foundation for
verifiable and trustworthy federated unlearning.

In summary, our main contributions are:

• We design the first unlearning-verification framework VER-
IFI for verifiable federated unlearning. VERIFI grants FL
participants the right to verify, i.e., the verification of
the unlearning effect when leaving the federation. VERIFI
introduces a unified mechanism that allows quantitative
measurement on the effectiveness of different combinations
of unlearning and verification methods.

• With VERIFI, we identify the limitations of existing un-
learning and verification methods, and propose a more
efficient and FL-friendly unlearning method uS2U and two
more effective and robust non-invasive unique memory based
verification methods (vEM and vFM)4. The advantages of
the three proposed methods are also demonstrated by our
extensive experiments.

• With VERIFI, we systemically study 7 unlearning methods
and 5 verification methods (i.e., 5 marking methods and 4
checking metrics) with both Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) on 7
datasets, including 3 natural image, 1 facial image, 1 audio
and 2 medical image datasets. Our extensive study unveils
the necessity, potentials and limitations of different federated
unlearning and verification methods.

2Although uDP cannot ensure completely zero memory in machine unlearn-
ing [6], we still explored its practical unlearning effect in federated unlearning
for the purpose of completeness.

3We use the u symbol to indicate unlearning methods.
4We use the v symbol to indicate verification methods.
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Fig. 1: Overview of the proposed VERIFI framework and its three key modules: 1) unlearning module; 2) verification module;
and 3) unlearning-verification mechanism. The standard “Federated Learning” procedure is further illustrated in Fig. 2.

II. PRELIMINARIES

A. Federated Learning

In FL, a number of participants jointly train a global
model by communicating gradients or model parameters with
a central server. At each communication round, the participants
download the global model from the server, perform a certain
number of local updates on their private data, and then upload
the accumulated local updates (gradients) to the server. The
server then aggregates (e.g., using FedAvg [34]) the accumu-
lated local updates to update the global model. The complete
FL procedure is illustrated in Fig. 2. The participants’ private
data is protected during the entire FL process, as it never leaves
the local devices.
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Fig. 2: Collaboration and learning in federated learning.

Let [n] = {1, ...,n} be the set of n participants with
each participant owning a private dataset Di for i ∈ [n], and
D = D1 ∪D2 ∪ ·· ·Dn is the full training dataset. At the t-
th communication round, the i-th participant first downloads

the global model wwwt , and then performs local update(s), e.g.,
using Stochastic Gradient Descent (SGD), on the local data
Di to obtain an updated local model www(i)

t+1. The accumulated
gradient, www(i)

t+1−wwwt , is then sent to the server for the global
model update, e.g., using FedAvg [34] as follows:

wwwt+1 = wwwt +
1
n ∑

i∈[n]
(www(i)

t+1−wwwt). (1)

Besides FedAvg, other aggregation rules are proposed for
Byzantine-robust FL: Krum [4], Median [54], Bulyan [22] and
Trimmed Mean [54]. Meanwhile, FL can be either horizontal
where the participants share the same feature space but own
different data samples, or vertical where the participants share
the same data sample IDs but possess different features. In
this work, we focus on a typical horizontal FL setting with
FedAvg, as defined in Eq. (1).

B. Federated Unlearning and Verification

Federated Unlearning. It has been shown that deep neural
networks have both memorization and forgetting effects [55],
[2], [26], i.e., they naturally memorize information about the
training data and so naturally forget the removed data (from
the training dataset) during training. Different from natural
forgetting5, machine unlearning explicitly forces a model to
forget its memorization of a target (requested to delete) subset
of training samples [6]. Intuitively, unlearning can be achieved
by (re)training the model on the updated dataset with the
requested samples removed. In traditional machine learning,
this can be done via expensive retraining, or more efficient
partition/breakpoint based learning with data partitions/aggre-
gates [10], [19], [6], [24]. Noise can also be used to smooth
out the memorization of particular samples [39]. However, in
FL, information is shared via gradients. This motivates the
two pioneering works [30], [32] in federated unlearning to

5The participant leaves with no active unlearning conducted by the server.
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subtract the calibrated or generated gradients of the leaving
participant to unlearn information. We will incorporate and test
the two methods (as well as the costly retraining) in VERIFI
and propose a more effective unlearning method for FL. More
detailed analysis about the pros and cons of the unlearning
methods in VERIFI can be found in Section III-B and IV.

Unlearning Verification. Intuitively, the effectiveness of un-
learning can be verified by the change in the model’s per-
formance before and after unlearning. In existing works, loss
or accuracy on the leaving data is often used to achieve the
verification purpose [6]. Unlearning can also be verified on
a set of backdoored training samples [41] obtained via a
backdoor attack, which is essentially a data poisoning process
that injects a trigger pattern into a small subset of training
data so as to trick the model into memorizing the correlation
between the pattern and a target class [21], [12]. Suppose the
trigger pattern is rrr and its associated backdoor target class is
ytarget . Once the trigger is learned by the model f , the model
will constantly predict the target class on any samples attached
with the trigger pattern:

argmax f (xxx⊕ rrr) = ytarget , ∀(xxx,y) ∈D , (2)
where, the model f outputs the class probabilities, the opera-
tion xxx⊕rrr produces a backdoored version of xxx, (xxx,y) is an input-
label pair, and D is the training dataset in traditional machine
learning. If the unlearning is effective, then the model will
forget the backdoor correlation and predict the correct class
instead:

argmax f (xxx⊕ rrr) = y, ∀(xxx,y) ∈D , (3)
where f denotes the model obtained after unlearning and y is
the correct class of xxx.

Although several unlearning methods have been proposed,
the challenge and potential issues of unlearning verification
have not been thoroughly studied, especially in FL. In fact, [41]
is the only work that has investigated the verification problem,
however, it was conducted in traditional machine unlearning. It
proposes to use backdoored samples to obtain more sensitive
verification. Considering the high security risk (could backdoor
all participants) of backdoor techniques, it is thus not ideal to
use backdoor verification in FL.

We also adapt and study two plausible concepts from
the deep learning intellectual property (IP) protection domain
for unlearning verification: watermarking [45], [56] and fin-
gerprinting [9]. Watermarking is an invasive technique that
embeds owner-specific binary string or backdoor triggers into
the model parameters to help determine the ownership of the
model at a later (post-deployment) stage, while fingerprinting
generates new samples to fingerprint the model’s unique prop-
erties like decision boundary [9]. In this work, we specially
design and adapt these two types of techniques for federated
unlearning verification. More systematic analysis of different
verification methods can be found in Section III-C and IV-C.

III. PROPOSED VERIFI FRAMEWORK

In this section, we present our VERIFI framework in detail.
Lying at the core of VERIFI is our proposed unlearning-
verification mechanism. As illustrated in Fig. 3, the mechanism
defines the timeline when unlearning and verification should be
performed, and by whom, i.e., the central server or the leaving
participant (“leaver”). Here, we focus on unlearning the leaver
and his/her verification in FL in Fig. 3.

A. Unlearning-Verification Mechanism

Suppose the entire FL process consists of Ttotal com-
munication rounds. As shown in Fig. 3(a), the mecha-
nism divides the entire process into two stages, including
a free stage ([T0,Tenabled)) and an unlearning-enabled stage
([Tenabled ,Ttotal ]). The free stage refers to an early FL stage
where the global model has not yet converged to a good
solution. In this stage, all participants can join and leave the
federation freely without activating the unlearning mechanism,
as in this stage, the next round of training often overwrites
the model’s memorization at the previous rounds. Leaving
the federation after Tenabled will activate the unlearning and
verification process, as at this time, the model’s memorization
of the private data is stabilized. Note that joining the federation
at this stage should also be carefully examined as it is a harvest
stage where small contribution can receive a big reward, i.e.,
a high-performance global model. Here, we only focus on
leaving and unlearning.

Fig. 3(b) shows the pipelined unlearning-verification mech-
anism with a single leaving participant6 . The detailed steps
can be found in Mechanism 1. In this paper, we focus on
one leaving participant per round while leaving more complex
scenarios to future work. Specifically, the leaving participant
(denoted by a) first notifies the server about the leaving at tm
(Step 2). Meanwhile, the leaving participant applies a marking
method to mark the data (e.g., private training samples, triggers
or model parameters) that needs to be checked against unlearn-
ing (Step 3.a). We call the marked data ‘markers’. Once the
marked model is uploaded to the server (Step 3.b), the leaving
participant notifies the server to apply the unlearning method to
unlearn its data (Step 3.c). Note that the server may or may not
be aware of the existence of markers since the verification right
is in the hands of the participants, not the server. The server-
side unlearning may last for more than one communication
round (Step 4.a). The participant will actively check the
unlearning effect on the markers immediately after marking
is completed (Step 4.b). After a few rounds of checking at
tleave, the participant will leave with assured privacy (Step
5.a) or distrust (Step 5.b), depending on whether the expected
unlearning effect on the marker is satisfied.

Practical Considerations. The time between tm and tleave is
called the checking period, which spans both the marking and
unlearning periods. The longer the checking period, the more
certain the leaving participant is about the verification result.
Nevertheless, the longer checking period also means that the
leaving participant can download the global model more times
than he/she should, which might be unfair to other participants.
As such, tleave is an important hyper-parameter that should
be agreed upon among the federation. The Tenabled hyper-
parameter, which ends the free stage and enables unlearning,
can be determined by the global training loss or accuracy. In
FL, the server does not have data to compute the global loss/ac-
curacy. Nevertheless, the server can estimate the convergence
by the stability of the aggregated gradients. It is also worth
mentioning that dividing the FL process into two stages is of
practical importance: it can avoid the collapse of the global
model caused by the unlearning.

6VERIFI is easily extended to the situation where multiple leavers require
to be forgotten and verified.
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Mechanism 1: Federated Unlearning-Verification
Input: Unlearning-enabled stage [Tenabled ,Ttotal),

marking starting point tm ∈ [Tenabled ,Ttotal),
unlearning starting point tu ∈ (tm, tleave),
leaving point tleave ∈ (tu,Ttotal), checking
metric threshold δ , marking function φ(·),
unlearning function ϕ(·), checking function
ψ(·), aggregation rule Agg(·)

1) Free stage: Vanilla FL before Tenabled
2) At tm, participant a notifies the server to leave
3) Marking at tm:

a) a marks its local model w̃ww(a)
t+1 ← φ(www(a)

t+1)

b) a uploads the marking update w̃ww(a)
t+1−wwwt to server

c) a notifies the server the completion of marking
4) Unlearning at tu ∈ [tm +1, tleave):

a) Server performs aggregation and unlearning:
wwwt+1 ← Agg

(
ϕ

({
www(i)

t+1−wwwt

}n

i=1

))
b) Checking: a checks if unlearning is sufficient

ψ(wwwtm)−ψ(wwwt+1)≥ δ

5) Leaving at tleave:
a) a leaves with assured privacy if

ψ(wwwtm)−ψ(wwwt+1)≥ δ

b) a leaves with distrust if ψ(wwwtm)−ψ(wwwt+1)< δ

System Assumption. Following existing unlearning works
[31], [41], we assume a trusted server with an unlearning
method in place. We also assume that the local data of the
involved participants remains the same in each contributed
round of FL. The server adopts partial device participation
strategy in each round to motivate generating an excellent
model with respect to each participant, such as choosing 10
participants among the 100 alternatives to contribute their
local models each time. Beyond the above assumption, we
additionally explore the adversarial scenarios that the server
and other participants are unlearning-malicious in Section
V-A.

B. Unlearning

Unlearning is performed by the server immediately after
the completion of marking by the leaving participant. All
unlearning methods are marked by the subscription symbol
u before their names. For a comprehensive analysis, we adopt,
adapt or propose a set of comprehensive methods in this work.
This gives us 7 unlearning methods in total, including 3 exist-
ing, 3 adapted and 1 newly proposed (uS2U), as summarized
in Table I. uRT and uRTB are both retraining-based unlearning

methods but with different retraining starting points [24], [19].
uCGS, uGGS and uIGS all exploit gradient subtraction to
erase the leaving data but with different gradient reconstruction
strategies [30], [32]. uDP is an existing differential privacy [1]
based unlearning method [39]. Considering the high cost and
negative impact of existing unlearning methods on the original
task, we further propose uS2U, a more efficient and friendly
unlearning method that is more compatible with FL.

1) Proposed Scale-to-Unlearn (uS2U): uS2U is inspired
by the observation that scaling up/down the uploaded up-
dates can substantially influence the global model [3], [30],
[32]. Intuitively, scaling up/down one’s local update would
increase/reduce its contribution to the global model. When
unlearning is activated, uS2U erases the contribution of the
leaving data from the global model as follows:

ϕ

(
www( j)

tu+1−wwwtu

)
=

{
α

(
www(a)

tu+1−wwwtu

)
, if j is a

β
(
wwwTenabled −wwwtu

)
, if j ∈ C�a

(4)

where tu ∈ [Tenabled ,Ttotal ] is the current unlearning round (see
Fig. 3), α ∈ (0,1) is the down-scaling ratio, β ∈ [1,+∞) is the
up-scaling ratio, and C records the selected participants in FL
at tu. Since in the unlearning-enabled stage, all local models
are expected to have minimal parameter changes within a few
communication rounds. Therefore, uS2U can use the global
model at Tenabled to roughly approximate other participants’
local models at tu: www( j)

tu+1 = wwwTenabled ,∀ j∈C�a. Note that uS2U
does not need accurate approximation here. By scaling up/-
down others’/a’s local update at tu, uS2U tends to increase
a’s distance to other participants’ local updates, thus actively
forcing the model to unlearn a. After unlearned by uS2U, the
global model is closer to other participants’ local models and
farther away from a’s local model. The theoretical explanation
can be found in Appendix VI-G. uS2U is compatible with most
of the commonly used aggregation rules such as FedAvg [34]
and Krum [4].

2) Existing or Adapted Unlearning Methods: Retraining
methods, including Retraining (uRT) and Retraining break-
point (uRTB), retrain the global model without the leaving
data. uRT reverts the global model to the starting point www0,
then retrains the model from scratch without the leaving
participant a’s local gradients. uRTB is adapted from uRT
and it retrains the global model from a certain breakpoint
wwwb. uRTB additionally requires storing the intermediate global

5



TABLE I: A summary of unlearning methods.

Mechanism Method Source Description

Multi-Step

Retraining Retraining (uRT) Existing Retrain from scratch
Retraining Breakpoint (uRTB) [24], [19] Adapted Retrain from the stored intermediate model at the breakpoint

Gradient Subtraction
Calibrated Gradient Subtraction(uCGS) [30] Existing Subtract the calibrated unlearned gradients by leveraging others’ historical updates
Generated Gradient Subtraction(uGGS) [32] Existing Subtract the unlearned gradients produced by a trainable dummy generator

Individual Gradient Subtraction(uIGS) [6], [10] Adapted Subtract the leaver’s gradient

One-Step Covered by noise Differential Privacy (uDP) [39] Adapted Cover the memory by introducing noise
Scaling Scale-to-Unlearn (uS2U) Proposed Scale up others’ gradient and scale down the leaver’s gradient

model obtained at each communication round.

Gradient subtraction methods, including Calibrated Gra-
dient Subtraction (uCGS), Generated Gradient Subtraction
(uGGS) and Individual Gradient Subtraction (uIGS), erase
the leaving data by subtracting the corresponding gradients.
uCGS [30] leverages a calibration algorithm to approximate
the gradients to be unlearned from other participants’ histor-
ical updates. uGGS [32] deploys a trainable dummy gradient
generator to produce the gradients to be unlearned. uIGS is
adapted from the above two methods and it directly subtracts
the local updates of the leaving participant during the next
few rounds of aggregation. Formally, these methods perform
gradient subtraction as follows:

ϕ

(
www(a)

t+1−wwwt

)
=−λ ∑

i∈Ω

(
ŵww(a)

i+1−wwwi

)
, (5)

where, ŵww(a)
i+1 is a’s local gradient (raw, generated or estimated)

to be unlearned, λ is a hyper-parameter balancing the unlearn-
ing of a’s local updates and the original task, and Ω records
the rounds when a’s gradient has been uploaded to the server.

Differential Privacy (DP) method, uDP [39] adds noise to
a’s local updates at tu to smooth out the sensitive information
and cover the memorization of a’s private data in the global
model:

ϕ

(
www(a)

t+1−wwwt

)
= eε

(
www(a)

t+1−wwwt

)
+δ , t = tu, (6)

ε is the privacy budget, δ is a relaxation term, the smaller
ε , the more noise is added into the local model. The central
server introduces and adjusts the (ε,δ ) parameter pair to blur
the memorization without degrading too much of the global
model’s performance.

Discussion. Among the above 7 unlearning methods, uRT and
uRTB are arguably the most effective yet costly unlearning
methods. The 5 multi-step methods (see Table I), including
the 2 retraining and 3 gradient subtraction methods, all need
to perform unlearning for multiple communication rounds
(ideally, the same number of rounds as the leaving participant’s
contribution in the past). As such, these methods need to store
the raw, generated or estimated local/global gradients for each
round. Such storage may raise new privacy concerns. Both
uDP and our proposed uS2U are one-step methods that only
exploit the current round of gradient information. So both
methods are lightweight and do not need to store the local
or global gradients. By involving noise into the gradients, uDP
may hurt the original task as FL heavily relies on high-quality
gradients to converge. Compared with uDP, our uS2U is more
FL-friendly as it has minimum (or even positive) impact on
other participants’ local updates after aggregation.

C. Verification

Verification is performed by the leaving participant, con-
sisting of two chained steps: marking and checking. In other
words, once a marking method is determined, so does its
checking method or metrics. In Table II, we adopt, adapt or
propose 5 marking methods for unlearning verification. vFM
and vEM are our proposed non-invasive verification methods.
vBN inherits the backdoor-based verification in [41], thus also
raising new security risks. vME and V BF are both adapted from
the deep learning intellectual property protection field [45], [9].

1) Marking: We call the marked information as ‘markers’,
a concept that is analogous to the biomarkers used in biomed-
ical studies [15]. Intuitively, markers can be any information
related to the leaving data, e.g., a subset of local samples,
gradients or models. Table II summarizes the characteristics
of the marking methods.

Proposed Unique Memory Markers. We propose to leverage
the unique memories of the global model about the leaving data
as effective markers. Specifically, we propose to explore two
types of unique memories: forgettable memory and erroneous
memory7.

Forgettable Memory (vFM) refers to the subset of forget-
table examples by the global model. Intuitively, forgettable
examples are the hardest and unique examples owned by
the leaving participant, whereas unforgettable examples are
easy examples shared across different participants [43]. vFM
determines forgettable examples by the variance of their local
training loss and chooses a subset of samples with the highest
loss variance across several communication rounds as the
markers. Fig. 4 illustrates a few forgettable examples (i.e.,
markers) identified by vFM from the MNIST [29] dataset. We
denote the marker set found by vFM for a leaving participant
a as Dm

a and Dm
a ⊂ Da. At the marking step, a locally fine-

tunes the model for a sufficient number of iterations to reduce
the local loss variance on Dm

a , then uploads the fine-tuned
parameters to the server. Now the global model will also have
relatively low loss variance on Dm

a . During checking, a can
monitor the global model’s loss variance on Dm

a to verify the
unlearning effect. Effective unlearning should quickly recover
the high loss variation on Dm

a .

Erroneous Memory (vEM) refers to the subset of erroneous
(incorrectly predicted) samples to the global model. Intuitively,
erroneous samples are likely to be the hard and rare samples
uniquely owned by the leaving participant, as otherwise they
should be well learned by the global model if other participants
also have these samples. As described in Algorithm 2, vEM

7The unlearning verification effect difference between these unique memory
samples and the leaving data can be found in Appendix VI-E.
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TABLE II: A summary of marking methods.

Category Method Source Type Marker Checking Training
Controllability

External
Data

White-box
Access

Watermark Model Embedding(vME) [45] Adapted Invasive Embedded bits in model parameters Matching rate of the extracted bits ○ + ○
BadNets(vBN) [41] Existing Invasive Pixel-level backdoor trigger Accuracy on the backdoor samples è ○ +

Fingerprint Boundary Fingerprint(vBF) [9] Adapted Invasive Boundary samples Accuracy on the boundary samples + ○ +

Unique Memory Forgettable Memory(vFM) Proposed Non-invasive Forgettable samples Variance of loss on the forgettable samples + + +
Erroneous Memory(vEM) Proposed Non-invasive Erroneous samples Loss on the erroneous samples + + +

○— Required è— Partially required +— Not required

(a) '6' (b) '5' (c) '2' (d) '9' (e) '5'

Fig. 4: Forgettable examples (markers) found by vFM for one
leaving participant during 10-participant FL on MNIST [29].

first investigates the top κ (%) of the high loss samples (Line
1) and selects the majority class of erroneous samples into the
marker set Dm

(a) (Line 2). Note that the marker set has only one
class (i.e., the majority class). Fig. 5 shows a few erroneous
MNIST samples identified by vEM, in which images of class
'7' are misclassified as '2'. vEM then relabels Dm

(a) to its mostly
predicted label by the local model f (a) (Lines 4-6) and fine-
tunes the local model on the relabelled dataset to obtain a
marked model f̃ (a) (Line 7). The marked model will then be
uploaded to the central server to be aggregated into the global
model. Fine-tuning with erroneous labels is to make the loss
on the markers smaller and check if the global model can
increase the loss on the markers through unlearning. Since
a fine-tunes the local model to maintain a low loss on the
vEM markers during the marking process, effective unlearning
should quickly recover the high losses on the markers.

(a) '2' (b) '7'→'2'

Fig. 5: Erroneous samples (markers) found by vEM for one
leaving participant during 10-participant FL on MNIST. (a): a
normal image from class '2'; (b): the erroneous images with
majority true class '7' but mostly are predicted as '2'.

Existing or Adapted Marking Methods. Existing watermark-
ing methods such as parameter-based [45] and backdoor-based
watermarking [56] or fingerprinting methods [9] from the field
of deep learning intellectual property protection can be adapted
as marking methods.

For watermarking, we adopt the backdoor-based (vBN)
marking method from [41] that was initially proposed for
traditional machine unlearning verification. vBN leverages the
BadNets [21] backdoor attack to inject trigger patterns associ-
ated with a backdoor class into the global model to verify the
unlearning effect. At the marking step, vBN fine-tunes the local
model on backdoored data and uploads the backdoored local

Algorithm 2: Erroneous Memory Marking

Input: The local model f (a) and private data Da of
participant a, erroneous sample proportion κ ,
fine-tuning iterations T (a)

f t .
Output: Marked local model f̃ (a), marker dataset Dm

a
1 Dκ

l ← top κ% of high loss samples (and labels) in Da

2 Dm
a ← the majority class of samples in Dκ

l
3 Da← Da \Dm

a
4 foreach (xxx,y) ∈ Dm

a do
5 y ← the most predicted label on Dm

a
6 end
7 f̃ (a) ← fine-tune f (a) on Da∪Dm

a for T (a)
f t iterations

8 return f̃ (a), Dm
a

parameters to the server for aggregation. After fine-tuning,
backdoored samples exhibit a high attack success rate on
the backdoored local and global models. Effective unlearning
should break the correlation between the trigger pattern and
the backdoor class, i.e., lowering the attack success rate.

For fingerprinting, we adapt the Boundary Fingerprint
(vBF) [9] to find decision boundary fingerprints (markers) to
verify unlearning. vBF generates adversarial examples that are
close to the decision boundary to characterize the robustness
property of the local model f (a). Arguably, the adversarial ex-
amples with relatively high and close top-2 class probabilities
are boundary examples [9]. Therefore, before the unlearning
round tu (see Fig. 3), vBF marks the following adversarial
examples as markers:

Dm
a = {(xxx+σ ,y) | | f (a)top−1(xxx+σ)− f (a)top−2(xxx+σ)| ≤ γ,(xxx,y) ∈ Da},

(7)
where, f (a)top−1(xxx+σ) and f (a)top−2(xxx+σ) denote the top-1 and
top-2 class probabilities respectively, xxx+σ is the PGD [33]
adversarial example of xxx, and γ ∈ [0,0.1) is a small positive
value defining how close are the two probabilities. At the
marking step, vBF first fine-tunes the local model on Dm

a to
obtain a marked local model f̃ (a) which now becomes robust to
Dm

a and has more smoothed boundary around the markers. The
marked local model will then be uploaded to the central server
and aggregated into the global model. Effective unlearning
should quickly forget the smoothed (robust) boundary around
the markers (thus resulting in wrong predictions), which can be
easily checked by the performance on the adversarial markers.

Remark. Note that some verification methods included in this
work may raise security concerns (see Appendix VI-D), or
become less effective if a secure FL algorithm is implemented.
One example is the backdoor-based verification proposed in
[41]. This aspect has also been considered when categorizing
the verification techniques or making our recommendations.
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Therefore, we categorize the marking methods in Table II into
two major types: 1) invasive methods that need to tamper with
the FL process, such as modifying the global model training
or injecting external data; and 2) non-invasive methods that
only need to keep track of a subset of existing data. The
last three columns highlight the three undesired properties:
training controllability, external data and white-box access.
These undesired properties may introduce new security or
privacy risks into FL. Invasive methods often rely on one or
more of the undesired properties. By contrast, our proposed
unique memory-based methods do not require any of training
controllability, external data or white-box access.

2) Checking: Checking is also performed by the leaving
participant immediately after the marking. In this step, the
change of the global model’s performance on the markers can
be used to measure the degree of unlearning. This process can
take a few communication rounds until the leaving time Tleave.
Note that the performance is directly measured on all leaving
samples if markers are not used, as it did in most prior works
[10], [6], [31].

Here, we consider four metrics (including accuracy, loss,
influence function [27], and KL divergence [20]) to measure
the model’s performance or performance change. The accuracy
and loss can be easily calculated on either the marker set or
the entire leaving data. Influence function [27] formalizes the
impact of a training sample on model prediction. We compute
the influence function (IF) of all leaving samples (not just the
markers) on the global model to quantify unlearning. We refer
readers to [27] for more calculation details of the influence
function. KL divergence (KL) [20] measures the distributional
difference between the global model’s output probability dis-
tribution and an ideal with-unlearning probability distribution
~ρ . Arguably, the uniform distribution indicates an ideal case
of unlearning, i.e., ~ρ = ( 1

C , · · · ,
1
C ) with C is the total number

of classes. This gives us the following KL divergence metric
on the markers for unlearning verification:

KL(Dm
a ) = Exxx∈Dm

a

[
ft(xxx) log

ft(xxx)
~ρ

]
, t ∈ [tm,Ttotal). (8)

If unlearning is effective, then the global model will not
produce any meaningful predictions on the markers, resulting
in a low or even zero KL divergence.

IV. EXPERIMENTS

We conduct extensive experiments with the VERIFI frame-
work to answer the key research questions (RQs) on verifiable
federated unlearning defined in Section I. All experiments are
conducted on a Linux server with 4 Nvidia RTX 3090 GPUs,
each with 24 GB dedicated memory, Intel Xeon processor with
16 cores and 384 GB RAM. Our code is implemented using
PyTorch 1.7.1 with CUDA 11.1 and Python 3.7.

Experimental Setup. We run experiments on 7 datasets,
including two popular low-resolution image classification
datasets (MNIST [29] and CIFAR-10 [28]), a speech recog-
nition dataset (SpeechCommand [49]), two high-resolution
image datasets for face (VGGFace_mini [36]) and natural ob-
ject (ImageNet_mini[16]) recognition, and two medical image
datasets for skin cancer (ISIC [44], [13], [14]) and COVID-
19 (COVID [17]) diagnoses. The datasets and corresponding

TABLE III: Datasets, models and test accuracies (Acc).

Dataset #classes #samples Resolution Model Acc (%)
MNIST [29] 10 70000 32*32 LeNet-5 99.11

CIFAR-10 [28] 10 60000 32*32 ResNet-18 95.37
SpeechCommand [49] 10 46256 32*32 CNN-LSTM 73.09
ISIC [44], [13], [14] 4 8000 224*224 DenseNet-121 68.06

COVID [17] 3 16619 224*224 ResNet-18 88.42
ImageNet_mini [16] 10 13500 224*224 ResNet-18 90.60
VGGFace_mini [36] 20 7023 224*224 ResNet-18 95.59

TABLE IV: VERIFI setup. η : local learning rate; η f l : global
learning rate; |B|: local batch size; Tenabled : unlearning-enabled
round; t ′u: unlearning round (an early-stage testing); t ′leave:
leaving round (an early-stage testing); tm: marking round; tu:
unlearning round (standard testing); tleave: leaving round (stan-
dard testing); Ttotal : total round; Tlocal : local update epochs; n:
number of involved participants at each round; N: total number
of participants.

η η f l |B| Tenabled t ′u t ′leave tm tu tleave Ttotal Tlocal n N

MNIST 0.01 10 1024 40 40 100 110 120 200 200 1 10 100
CIFAR-10 0.1 1 128 40 40 100 110 120 200 200 10 10 100

SpeechCommand 0.1 1 256 25 25 50 60 70 100 100 10 10 100
ISIC 0.1 1 8 40 40 100 106 112 130 130 10 10 100

COVID 0.1 1 16 40 40 100 106 112 130 130 10 10 100
ImageNet_mini 0.1 1 16 140 140 180 186 192 210 210 10 10 100
VGGFace_mini 0.1 1 16 240 240 300 306 312 330 330 10 10 100

models are summarized in Table III. The training data of each
dataset are equally distributed to each participant, and there
is no overlap between individual data. The default parameter
settings (e.g., learning rate and optimizer) are summarized in
Table IV and Table IX in Appendix VI-A. The experimental
setup of VERIFI is summarized in Table IV. The two grey
highlighted hyper-parameters are for an early-stage testing
(i.e., leaving immediately after unlearning is enabled) experi-
ment only.

A. Is Federated Unlearning Necessary?

We first test what would happen if there is no unlearning
but only Natural Forgetting (uNF) when a participant a leaves
the federation. a is randomly chosen from all the alternative
participants in FL and does not influence the final result. We
evaluate the unlearning effect of uNF by comparing the global
model’s performance on the leaving data with that obtained via
Natural Training (uNT) (a never leaves) at the end of FL. The
results are shown in Table V. It is evident that the performance
differences (the diff columns in Table V) between uNF and
uNT are almost negligible according to all four metrics. It
means that the global model still memorizes the leaving data
if the participant leaves at the convergence stage. Therefore,
unlearning is necessary to actively remove information about
the leaving participant’s private data.

B. Are Markers Necessary for Verification?

To answer the question, we run experiments to verify
the different unlearning effects of the 7 unlearning methods
using only the checking metrics without any marking methods
(markers). Intuitively, if the checking metrics alone can prop-
erly identify the difference before and after unlearning, then
specialized markers are unnecessary. For each of the 4 metrics
(i.e., accuracy, loss, KL and IF), we compute its difference
before (at tm) and after (at tu) unlearning on the leaving data
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Fig. 6: Verifying the unlearning effect using only the 4 metrics (rows) computed on the leaving data. Each radar chart has 7
dimensions corresponding to the 7 unlearning methods, with each dimension showing the metric difference before and after
(after minus before) unlearning. Each column of radar charts correspond to one dataset. Failed verification occurs at dimensions
with almost zero difference before and after unlearning.

TABLE V: The absolute performance change (diff=
|uNF−uNT|) on the leaving data caused by uNF.

Dataset Metrics At the Leaving Round At the End of FL
uNT uNF diff uNT uNF diff

CIFAR10

Acc (%) 77 77.8 0.8 87 85 2
Loss 0.14 0.14 0.0 0.08 0.08 0.0
KL 6.75 6.92 0.17 8.31 8.47 0.16
IF 9.21e-7 5.67e-5 5.58e-5 1.89e-7 1.98e-5 1.98e-5

Speech
Command

Acc (%) 64.61 64.67 0.06 64.73 67.21 2.48
Loss 0.50 0.52 0.02 0.48 0.5 0.02
KL 2.1 2.08 0.02 2.46 2.24 0.22
IF -0.007 -0.006 0.001 0.006 0.006 0.0

Covid

Acc (%) 68.18 65.15 3.03 81.82 80.3 1.52
Loss 0.49 0.36 0.13 0.26 0.3 0.04
KL 0.31 0.66 0.35 1.12 0.99 0.13
IF 1.34e-5 0.03 0.03 0.001 0.001 0.0

VGGFace
_mini

Acc (%) 57.14 69.64 12.5 78.57 76.79 1.78
Loss 0.66 0.54 0.12 0.63 0.49 0.14
KL 3.03 3.81 0.78 3.47 3.99 0.52
IF 0.085 0.247 0.162 0.029 0.073 0.044

Da. Take accuracy as an example, the metric difference is
computed as follows:

Accdi f f (Da) = |Acctm(Da)−Acctu(Da)|. (9)

Similarly, we can define other three metrics: Lossdi f f , KLdi f f ,
and IFdi f f .

We plot the 4 metric differences for all 7 unlearning meth-
ods on each dataset in Fig. 6. Large metric differences (large
covered area in a radar chart) indicate successful verification.
For a given metric, if it successfully verifies the difference

before and after unlearning across different datasets, it can
be regarded as an effective metric for federated unlearning
verification. Unfortunately, as shown in Fig. 6, we find that, in
general, none of the metrics can effectively verify the unlearn-
ing effects of all unlearning methods. Furthermore, among the
7 unlearning methods, uDP and uRT are relatively easier to
verify by any of the 4 metrics. This means that we don’t need
sophisticated verification methods if uDP or uRT is adopted
as the unlearning method. While this result is encouraging,
the two unlearning methods also have their own weaknesses.
For instance, uRT is very costly and uDP causes the most
performance drop among the 7 unlearning methods (see Table
VII). We have also tested two naive methods for verification:
model parameter difference and privacy leakage difference
in Appendix VI-B and VI-C, respectively. The results show
that the parameter difference (measured by Euclidean distance
or Cosine similarity) of the global model before and after
unlearning is also insufficient for verifying the unlearning
methods, except uDP, uRT and our uS2U. Furthermore, from
the perspective of privacy leakage [11], i.e., the success rate
of membership inference of the leaving data, even uRT cannot
verify (e.g., not having a noticeable lower success rate than
uNT) due to the contributions of other participants. Overall,
we conclude that many (5/7) of the unlearning methods may
not be properly verified by the 4 metrics without specialized
markers. More effective unlearning methods like uDP and uRT
have certain weaknesses for practical usage.
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C. Federated Unlearning Verification with Markers

Here, we verify the unlearning effect of the 7 unlearning
methods, with the 5 marking methods (markers). Similarly,
we compute the metric difference of the global model on
the marker set DM

a before and after unlearning following
equation (9). Due to space limitations, we only show the most
effective metric for each type of marker8. The results are
visualized in Fig. 7. A valid marking method should recognize
uRT as the most effective unlearning method as uRT is the
golden standard (i.e., the best unlearning one could achieve).
And our uS2U should be more effective than uCGS, uIGS and
uGGS, since it not only downscales the leaving gradients but
also upscales other participants’ gradients. An ideal marking
method should be able to distinguish the different strengths of
the unlearning methods.

The most effective verification method. In general, our
proposed vEM demonstrates better verification ability than
vFM, vME and vBN 9, while vBF ranks the last. Particularly,
vEM markers could always distinguish (showing larger metric
differences) stronger unlearning (uRT, uRTB, uDP and uS2U)
from the mild ones (uCGS, uIGS and uGGS) on all datasets. By
contrast, vFM could not effectively distinguish the unlearning
effect of uS2U and uRTB on MNIST. vME (injecting a bit
string into the model parameter space) fails to verify uDP as
it is not sensitive to the noise of uDP. Meanwhile, backdoor-
based markers like vBN fail to mark the global model on the
high-resolution datasets (the accuracy on vBN markers of the
ISIC4, COVID, ImageNet_mini and VGGFace_mini datasets
is similar to random guessing), and thus lose the verification
ability. This result indicates that the performance of invasive
marking methods cannot be guaranteed in practice. vBF can
only distinguish the unlearning effect of uRT and uDP as other
unlearning methods will not cause significant change on the
decision boundaries.

The most effective unlearning methods. By examining the
verified unlearning effect by the most effective marker vEM,
we can also cross-validate the effectiveness of the 7 unlearning
methods. In general, uRT, uRTB, uDP and our proposed uS2U
demonstrate more effective unlearning effects than the other
3 unlearning methods. Note that, as a completely retraining
method, uRT is arguably the most effective unlearning one
could achieve and it is not surprising that uRT demonstrates
better unlearning effects than uRTB, uDP and uS2U on nearly
all datasets. The other three gradient subtraction based un-
learning methods (uCGS, uIGS and uGGS) exhibit limited
unlearning effectiveness on the vEM markers.

Robustness to the byzantine-robust aggregation rules. We
investigate the robustness of the most effective marker vEM
and two invasive markers vBN and vME when the server
adopts different aggregation rules. The results on CIFAR-10
dataset are reported in Table VI. It is clear that the metric
difference identified by vBN and vME drops drastically when
robust aggregation rules like Krum and Median are used at

8The vBN result is normalized with the ideally maximum accuracy gap
100%, others are normalized according to the maximum gap value, owing to
the unsuccessful backdoor-watermark injection in the big datasets.

9Specifically, to avoid the instant performance change on the backdoor-
based watermarking method, we take the median performance during [tm, tm +
2] as the result on the markers at tm.

the server side10. By contrast, our vEM can maintain a stable
difference, i.e., it is reasonably robust to the byzantine-robust
aggregation rules.

TABLE VI: Verification robustness to different aggregation
rules on CIFAR10 dataset with vRT unlearning. ‘diff’: absolute
metric difference before and after vRT.

Verification Rule Metrics Before After diff

vBN
FedAvg Accuracy 84.8 0.0 84.8
Krum Accuracy 6.2 0.0 6.2

Median Accuracy 9.8 0.0 9.8

vME
FedAvg Accuracy 71.88 48.44 23.44
Krum Accuracy 39.06 48.44 9.38

Median Accuracy 40.62 48.44 7.82

vEM
FedAvg Loss 12.3 28.1 15.8
Krum Loss 14.61 25.69 11.08

Median Loss 12.14 27.09 14.95

Unlearning cost. Here, we investigate the cost of different
unlearning methods. As shown in Table VII, uS2U demon-
strates the least overall computational overhead and minor
influence on the initial FL task. Besides, uRT needs the most
time as it retrains from scratch. uRTB needs the most space
as it saves the intermediate models. uCGS is both time- and
space-consuming as the gradients to be unlearned need to be
calibrated based on other participants’ gradients. By contrast,
the time/space cost of uGGS and uIGS are less than uCGS
as they directly construct the leaving gradients without using
other participants’ models. uDP needs little time/storage cost
by simply adding noises while causing most performance drop.
Apart from uDP and uRT, other unlearning methods hardly
degrade the global model’s performance at the end of FL11.

Verification cost. Here, we study the time cost, storage cost
and negative impact on the original FL task for different
verification methods. The results are reported in Table VIII.
All marking methods cause tolerable performance drop (either
in terms of loss or accuracy). Among the 5 marking methods,
vFM shows less time/space cost than vEM and vME, while
vBN is the most time-consuming marking method as it needs
to inject a backdoor watermark into the global model. vBF also
requires much time/space to save and generate the boundary
fingerprints. The verification method with less time overhead
would produce the acceptable time delay in the large-scale
practical FL system.

Correlation between the markers and the leaving data.
The unlearning effect is more pronounced on the markers
than on the leaving data as the markers are specially designed
to serve this purpose. This raises a natural question to what
extent can the markers represent the leaving data? To answer
this question, we analyze the correlation between the global
model’s performance on the markers and on the leaving data
when adopting uRT during [tu− n, tu + n] as an example. In
this experiment, n is set to 10 on MNIST, CIFAR-10 and

10The two robust aggregation rules are widely applied and can be modified
and combined to form other aggregation rules, such as Bulyan [22] and
Trimmed Mean [54].

11The minor negative impact of uGGS, uIGS and uCGS on the original task
can be owned to the hyperparameter λ .
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Fig. 7: Verifying the unlearning effect using 5 types of markers with each row representing one type of markers and each column
corresponding to one dataset. The 7 dimensions of each radar chart correspond to the 7 unlearning methods, with each dimension
showing the normalized metric difference (with log transformation) before and after (after minus before) unlearning. The most
effective metric for markers vBN, vME, and vBF is accuracy, while the most effective metrics for our memory-based markers
vEM and vFM are loss and loss variance, respectively.

TABLE VII: Unlearning costs measured on CIFAR10 dataset.

Time(s) Space(MB) Ttotal∆Acc Ttotal∆Loss
uRT 8157.91 44 -4.17 0.14

uRTB 929.87 1760 0.18 0.0
uCGS 1516.37 1936 -0.82 0.05
uGGS 186.34 0 -0.8 0.03
uIGS 37.9 176 0.13 0.02
uDP 17.1 0 -6.26 0.22

uS2U 21.61 44 0.05 0.01

TABLE VIII: Verification costs measured on CIFAR10 dataset.

Time(s) Space(KB) Ttotal∆Acc Ttotal∆Loss
vBN 263.5 4 -0.53 0.02
vME 90.2 12 -1.64 0.08
vBF 142.1 1233 -1.54 0.06

vEM 99.6 4 -2.82 0.15
vFM 10.26 4 -2.73 0.13

SpeechComamnd datasets, and 6 on other datasets. As shown
in Fig. 8, the performance trends on the markers (except vBN

markers) and the leaving data show a strong correlation before
and after unlearning. This confirms that unlearning the markers
can largely reflect the degree to which the server is unlearning
the leaving data.

D. Unlearning-Verification: The Combinations

The verification method goes with the unlearning method.
Fig. 9 shows the normalized verifiable unlearning effect of all
the combinations of 7 unlearning methods and 5 verification
methods on CIFAR-10 and SpeechCommand datasets. Each
cell is associated with an unlearning method and a verification
method. The blue cells highlight the best verifiable unlearning
effect. Combining our analyses above, we obtain the following
findings. A general effectiveness ranking of the unlearning
methods is: uRT > uRTB > uS2U > uDP > uCGS ≈ uGGS
≈ uIGS. Considering the high cost of uRT and uRTB, and the
negative impact of uDP on FL, it leaves our proposed uS2U
to be the most promising unlearning method for its relatively
higher effectiveness, higher efficiency, less negative influence
on FL and higher verifiability. It is thus promising for future
work to explore similar unlearning strategies or improve uDP
for more effective, efficient, harmless and verifiable federated
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Fig. 8: Correlation between unlearning the markers vs. un-
learning the leaving data.

(a) CIFAR-10 (b) SpeechCommand

Fig. 9: The unlearning effect of 7 unlearning methods
(columns) verified by 5 marking methods (rows). The unlearn-
ing effect is the normalized (max: 1, min: 0) metric difference
within each marking method (row): in each row, the maximum
verifiable effect is 1 while the minimum is 0. The higher
the normalized score, the better the unlearning-verification
method.

unlearning.

As for the verification methods, the deeper blue colored
cells are more effective. So, the general ranking is: vEM >
vFM > vME > vBF > vBN. We put vME, vBF and vBN to
the end of the list is because they are all invasive methods
that may introduce new security risks into FL (see Appendix
VI-D). This makes our proposed vEM the most promising ver-
ification method. The combination of our proposed uS2U with
vEM verification is the most promising federated unlearning-
verification strategy. If uDP can be improved for FL, then the
uDP-vEM can also be an effective combination.

V. MORE EXPLORATIONS

A. Adversarial Setting

We also use VERIFI to analyze a challenging adversarial
setting where the attacker (the unlearning-malicious server or
participant) may store the global model before participant a
leaves and then restore a’s memory after a leaves. This will
compromise a’s privacy. Since the unlearning-malicious server
would not easily retreat at the cost of losing the excellent
model updates from others, we then focus on the unlearning-

malicious participant setting. We take the verification method
vME as an example, which checks unlearning based on the
extracted bits from the model parameters. The successfully
marked model by vME would maintain a high and stable ac-
curacy on the vME markers. We assume the server implements
the ideal unlearning method uRT which could effectively erase
the memory about a’s leaving data and markers.

Fig. 10 shows the different results when the attacker could
capture and upload the global model in and out of the marking
stage. As shown in Fig. 10(a), uRT decreases the accuracy on
the markers at the unlearning round. However, the accuracy
on the markers arises after the attack. In VERIFI, the leaver
continuously tracks the global model to check unlearning for
a while, not instantly. Therefore, the performance rise on the
markers can be checked by the leaver, and the leaver would
deem the unlearning invalid. However, if the attacker only
captures the global model out of the marking stage in Fig.
10(b), the accuracy on the markers would not change. Thus,
the leaver would deem the unlearning effective. Admittedly,
VERIFI can only detect the deceived unlearning situation at
a certain probability. Fortunately, the retrievable model out
of the marking period would maintain a longer time span
and a larger difference from the attacker’s local model at the
previous round, which would raise more attention. Thus, we
can improve the accuracy of cheated unlearning checking by
analyzing the similarity between the models of the adjacent
rounds. This is an exciting problem that is worth further
exploration.

(a) with marking (b) without marking

Fig. 10: The attacker uploads the historical global model (in
and out of the marking stage) to attack the effectiveness of the
unlearning. The three vertical lines mark the time of marking
tm, unlearning tu, and attack, respectively.

B. More Unlearning and Verification Parameters

We make a comprehensive analysis to explore the pa-
rameter influence in VERIFI. We take the mature verification
method — vBN as an example, the concrete result can be found
below.

Influence of the marking time to the marking effect: Fig.
11(a) ∼ Fig. 11(c) presents the unlearning verification results
when the marking time is respectively 10-th round (earlier),
110-th round (proper) and 210-th round (later). With the
marking time getting later, the success probability of marking
decreases, and the performance change caused by unlearning
reduces. As for the reason, when the model has converged to
a stable state, injecting the watermark into the global model
gets harder. Meanwhile, the unlearning effect on the markers
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at tu degrades, increasing the difficulty of distinguishing the
authentic unlearning effectiveness. Thus, it’s better to activate
unlearning and verification when the global approximately
converges.

(a) 10-th round (b) 110-th round (c) 210-th round

Fig. 11: Leaving time influence on CIFAR10 dataset.

Influence of marking parameters: Different marking param-
eters inevitably cause unevenly marking effect, and further
influence the unlearning verification result. We take the size
and transparency (commonly used in vBN) parameters to
explore the influence of marking parameters (intensity). The
big size and low transparency represent the stronger backdoor-
based watermark and marking effect. As shown in Fig. 12(a)
∼ Fig. 12(c), we compare the unlearning verification results
when trigger size becomes smaller and trigger transparency
becomes higher, i.e., the marking effect gets weaker, the
performance on the markers at the marking time (in light
blue) is relatively low, the performance change introduced
by unlearning is smaller, thus the verified unlearning effect
becomes weaker. Therefore, we should choose some moderate
marking parameters to enhance the marking effect, and further
promote the unlearning verification credibility.

(a) (5, 0.0) (b) (2, 0.0) (c) (5, 0.6)

Fig. 12: Marking parameter (size, transparency) influence on
CIFAR10 dataset. (a) shows a stronger backdoor with big size
5*5 and low transparency 0.0, (b) and (c) show a weaker
backdoor with small size 2*2 or high transparency 0.6.

Influence of the number of involved participants in FL:
Fig. 13(a) ∼ Fig. 13(c) presents the unlearning verification
results when the number of selected clients in each round is
2, 10, 20. Through the comparison of the results, we can
find that the performance difference on the vBN markers
becomes smaller with more participants involved in each
round of FL. The performance change caused by unlearning
is more obvious when fewer participants upload their updates
to the central server, as the result of average unlearning could
not effectively erase so much memory (accounted for nearly
half of the contribution to the global model when only 2
participants involved). Another reason is that the contribution
of an individual is easily covered by others in large-system, i.e.,
other participants’ updates would degrade the leaver’s marking
effect, and further reduce the performance difference caused
by unlearning.

(a) 2 participants (b) 10 participants (c) 20 participants

Fig. 13: Participant number influence on CIFAR10 dataset.
C. Unlearning verification on leaving data with different levels
of non-i.i.d. distribution

In our experiments, we directly use Dirichlet function [35]
with hyperparameter (0.9 and 0.5) to generate the individual
data blocks satisfying different levels of non-i.i.d. distribution.
The smaller the hyperparameter, the more strict the non-i.i.d.
setting. As Fig. 14 shows, uRT and uDP maintain an obvious
performance change on the leaving data, uGGS presents a
bigger change under more strict non-i.i.d. distribution, the un-
learning effect of other unlearning methods is still unobvious.
In a word, even though the leaving data (under a smaller
hyperparameter in Dirichlet function) maintain larger different
distribution with others’ data, the unlearning effect solely on
the leaving data is not so ideal, calling for more dedicated
unlearning verification.

Fig. 14: Unlearning verification on leaving data with different
non-i.i.d. distribution extent. The left figures show the results
on non-i.i.d data distribution with hyperparameter 0.9. The
right figures show the results on non-i.i.d data distribution with
hyperparameter 0.5 (more strict non-i.i.d.). Both subfigures
show the loss difference on the leaving data before and after
unlearning by the corresponding unlearning method.

VI. CONCLUSION AND FUTURE WOK

In this paper, we design and implement the first open-
source platform — VERIFI, a unified federated unlearning and
verification framework that allows systematic analysis of the
verifiable amount of unlearning with different combinations
of unlearning and verification methods. Based on VERIFI,
we conduct the first systematic study in the literature for
verifiable federated unlearning, with 7 unlearning methods
(including newly proposed uS2U) and 5 verification methods
(including newly proposed vEM and vFM),covering existing,
adapted and newly proposed ones for both unlearning and
verification. Extensive experiments showed that our proposed
uS2U is an effective, efficient and secure federated unlearning
method with little time cost, storage cost and negative impact
on the original FL task. The experiments also confirm the
effectiveness of our proposed non-invasive vEM methods for
federated unlearning verification. The combination of vEM and
uS2U yields so far the most promising approach for verifiable

13



federated unlearning without tempering with the FL process,
white-box model access or raising new security risks.

Research on verifiable federated unlearning is emerging
and VERIFI is able to serve as an open test bed for developing
and benchmarking future federated unlearning and verification
techniques. Following VERIFI, there are a rich set of research
opportunities to explore further, such as new unlearning and
verification methods (concurrently taking the robustness, ef-
ficacy and additional fairness issue into consideration), free
leaving of multiple participants, certification of federated un-
learning, etc.
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APPENDICES

A. Parameter

MNIST is a popular digit recognition dataset, adding up
to 70000 32*32 gray images. Among them, 60000 pictures
are used for training, and 10000 for testing [51]. Cifar 10
is a widely recognized object classification dataset, consisting
of 10 classes of 32*32 RGB pictures, 50000 for training and
10000 for testing [28]. ISIC is composed of 4 classes skin
images (Basal cell carcinoma, Melanoma, Benign keratosis-
like keratosis and Melanocytic nevus), each class contains
2000 pictures, 1600 for training and 400 for testing [44], [13],
[14]. COVID is the chest x-ray lung images, classified into 3
categories, including 1699 COVID-19, 6069 pneumonia, 8851
normal samples [48]. We randomly sample 20 and 10 classes
from VGGFace and ImageNet to compose VGGFace_mini
and ImageNet_mini [8], [16]. In VGGFace_mini, there are
totally 7023 224 *224 face images, 4916 for training, 2107 for
testing. ImageNet_mini is composed by 13500 224 *224 RGB
images, 13000 for training, 500 for testing. Speechcommand
is composed by 32 *32 spectrograms after MFCC [57], 37005
for training, 9251 for testing. To stimulate the non-i.i.d. data

distribution, we also provide the Dirichlet distribution function
[35] to supply the unbalanced data to each participant. The
corresponding models are summarized in Table III.

Different unlearning methods need diverse parameters. The
(ε,δ ) parameter pair used in uDP is set (0.2,0) for MNIST,
and (0.1,0) for other datasets. λ used in uGS is 0.01 for all
datasets. The scaling ratio α and β in uS2U is set as 0.1 and
1 for all datasets. Table IX summarizes the hyper-parameters
used for different verification methods.

TABLE IX: Parameters of verification

Verification Parameter Setting
learning rate 0.01
mark epoch 100 for MNIST and CIFAR10 (50 for others)
optimizer SGD

momentum 0.9
Training

weight decay 2.00E-04

embedding dim 64
embedding layer features.conv1 (conv0 for ISIC)
projetcted matrix random

vME

penality loss ratio 0.05

size 5 for 32*32 (25 for 224*224)
alpha 0

toxic data percent 10% for others and 30% for CIFAR10
backdoor learning rate 0.01 for others and 0.05 for CIFAR10

vBN

target class 0

the size of D̃ 400vSF the size of Dm
a 20

number of boundary data 100vBF loss gap γ 0.01
vFM forgettable memory ratio 0.1
vEM errorneous sample propportion κ 0.1

B. Federated Unlearning Verification by Comparing Parame-
ter Differences

We compare the model parameter deviation before and after
unlearning in Table X. We could observe that except uDP, uRT
and uS2U, most unlearning methods have similar parameter
deviation with uNT and uNF, which means model parameters
fail to reliably verify whether unlearning is effective. Thus, the
unlearning effect cannot be directly observed from the model
parameter deviation.

C. Federated Unlearning Verification by Membership Infer-
ence

We adopt membership inference in [40] to verify unlearn-
ing from the perspective of privacy. In our experiments, the
global model at the end of FL is treated as the shadow
model. The training data and test data are directly regarded
as the member and non-member data to simplify the process.
As shown in Fig. 15, verifying federated unlearning from
the perspective of privacy is infeasible. Since even after
being unlearned by uRT, which absolutely and completely
removes the leaving data and retrains from scratch, the deduced
membership ratio still would not drop significantly than uNT,
sometimes even higher. As for the reason, the similar data
may belong to other participants in the federation, increasing
the difficulty to verify unlearning in the aspect of privacy. It
is worth mentioning that unlearning itself would cause the
extra privacy concerns, which is out of scope of VERIFI, we
recommend reading the work [11].
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TABLE X: The model parameter difference after unlearning

Dataset Method uNF uNT uRT uRTB uCGS uGGS uIGS uDP uS2U

CIFAR10 Euclidean Distance 1.44 1.55 29.37 1.48 1.52 1.47 1.49 334.33 3.47
Cosine Similarity([0,1]) 0.99 0.99 0.60 0.99 0.99 0.99 0.99 0.50 0.98

SpeechCommand Euclidean Distance 2.23 2.29 5.09 2.00 2.56 2.23 2.13 34.90 2.40
Cosine Similarity([0,1]) 0.87 0.92 0.76 0.93 0.88 0.94 0.94 0.38 0.95

Covid Euclidean Distance 1.49 1.77 91.22 1.52 2.30 2.03 1.51 334.28 5.54
Cosine Similarity([0,1]) 0.97 0.97 0.53 0.97 0.96 0.96 0.98 0.47 0.92

VGGFace_mini Euclidean Distance 3.39 3.57 109.03 3.34 3.49 3.38 3.36 334.43 13.95
Cosine Similarity([0,1]) 0.93 0.93 0.35 0.93 0.93 0.93 0.93 0.44 0.86

Fig. 15: Verifying unlearning from the perspective of privacy
with each row representing one dataset, each column rep-
resenting one unlearning method. The value represents the
membership ratio between the deduced member data in the
leaving data and all the leaving data.

D. Security risk of vBN

Apart from working as a watermark to verify unlearning,
vBN itself is a traditional backdoor attack widely studied in
[42], [3], [47]. Fig. 16 shows that even at the end of FL,
the backdoor (any sample patched with the trigger would be
classified into the target class) still exists. Some unlearning
methods cannot completely remove the security risk caused by
the invasive marking method. Specifically, even with unlearn-
ing, the attack success rate of backdoor-based watermark even
reaches 50%. Fortunately, the security threat can be removed
with the robust aggregation rules, such as Krum and Median,
as shown in Fig. 16.

Attack success rate on the         markers

04

dog airplane

Fig. 16: Security threat of vBN

E. Verification effect difference between unique memory sam-
ples and leaving data

As shown in Section III-C1, we have presented the details
and causes of choosing the particular unique memory samples

as the markers. Here, we discuss the concrete unlearning
verification effect difference between leveraging the unique
memory samples and the leaving data. Fig. 17 shows that the
selected memory markers could maintain the better unlearning
verification effect, since they can identify the unlearning per-
formance of other unlearning methods besides uRT and uDP.

(a) vEM (b) vFM

Fig. 17: Unlearning verification effect difference between
leveraging the unique memory samples and leaving data on
CIFAR10 dataset. (a) shows the unlearning verification effect
of erroneous memory vEM markers and leaving data, (b) shows
the unlearning verification effect of forgettable memory vFM
markers and leaving data.

F. Unlearning verification visualization

We show the unlearning verification effect via leverag-
ing the interpretability technique — Grad-CAM [38] in Fig.
18. These saliency maps of the selected forgotten individual
sample, patched with a 5*5 white square trigger in vBN, are
computed based on the global model at the end of FL. The
original label of the sample is dog and the target class of the
backdoor example is airplane. Before unlearning, the memory
about ι still exists as the backdoor sample is classified as the
target class and the high attention area is mainly located on
the trigger (see Fig. 18(b)). As Fig. 18 shows, uRT obtains
the most explicit unlearning effect since the attention on the
trigger, caused by the leaver ι , totally disappears. uRTB, uDP
and uS2U apparently degrade the high attention on the trigger,
not ideal like uRT. The weakened attention can be owed to the
gradually eliminated memory about the backdoor watermark
introduced by ι . The attention decrease on the trigger can
also be observed in uNF, uCGS, uGGS and uIGS, however,
not so obvious as other unlearning methods, as the result
of unsatisfied unlearning. Benefiting from the verification
method, the unlearning effect can be explicitly presented with
the visualization technique.

G. Theoretical Explanation

We provide a theoretical unlearning verification explana-
tion to help understand why unlearning could be verified on
the vBF markers or from the perspective of privacy.
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(a) Example (b) Before
Unlearning

(c) uNF (d) uRT (e) uRTB (f) uCGS (g) uGGS (h) uIGS (i) uDP (j) uS2U

Fig. 18: Unlearning verification visualization in vBN — CIFAR10

uS2U and vBF: We provide a simple theoretical explana-
tion of how uS2U quantitatively changes the decision boundary
of the global model characterized by boundary examples (vBF),
which can then be verified with our proposed metrics.

We assume that the central server applies FedAvg aggre-
gation rule to update the global model of the next round:

wwwt+1 = wwwt +
1
n ∑

i∈[n]
(www(i)

t+1−wwwt) (10)

uS2U lowers the leaving participant a’s contribution to the
global model by reducing a’s local update:

ϕ

(
www(a)

t+1−wwwt

)
= α

(
www(a)

t+1−wwwt

)
, t = tu, (11)

∀ j∈C�a

(
www( j)

t+1−wwwt

)
= β

(
wwwTenabled −wwwt

)
, t = tu, (12)

We set a = n and β = 1 to facilitate understanding of the
explanation. vBF characterizes the decision boundary of the
local model f (a) using a subset of perturbed training samples
close to the decision boundary. Arguably, the samples with
relatively high and close top-2 class probabilities are boundary
samples. vBF generates the boundary markers satisfying:

Dm
a = {(xxx,y)|(xxx,y) ∈ Da, | f (a)top−1(xxx+σ)− f (a)top−2(xxx+σ)| ≤ γ},

(13)
where, f (a)top−1(xxx + σ) and f (a)top−2(xxx + σ) denote the top-1
and top-2 class probabilities respectively, σ is the generated
perturbation by PGD and γ ∈ [0,0.1) is a small positive value
defining how close the two probabilities. Since unlearning and
verification are activated after Tenabled in VERIFI, when the
global model has converged to a good solution, we can make
a reasonable assumption that the boundary samples of a’s local
model could also work as boundary samples to the converged
global model wwwt+1.

To simplify the complex derivation, we choose a binary
classifier (assumed linearly around {xxxi,yi} ∈ Dm

a ,yi ∈ {±1}),
f (xxxi) = wwwT

t xxxi +b,

yi =

{
+1, wwwT

t xxxi +b≥ 1
−1, wwwT

t xxxi +b≤−1
(14)

Then, we get yi(wwwT
t xxxi+b)≥ 1, the decision boundary distance

between the two classes {+1,−1} is 2
‖wwwt‖ , the optimizer would

optimize 2
‖wwwt‖ to enlarge the distance of decision boundary

between two neighbor classes : maxwwwt{ 2
‖wwwt‖}

After launching uS2U at t, the global model at t +1 is:

wwwt+1 = wwwt +
1
n

(
∑

i∈[n−1]
(www(i)

t+1−wwwt)+ϕ

(
www(n)

t+1−wwwt

))

= wwwt +

∑
i∈[n]

(www(i)
t+1−wwwt)+(α−1)(www(n)

t+1−wwwt)

n

≈ wwwt +

∑
i∈[n−1]

(www(i)
t+1−wwwt)

n

(15)

The average local update from other n− 1 participants is:

www[n−1]
t+1 =

∑i∈[n−1] www
(i)
t+1

n−1 , the global model update at t +1: wwwt+1−

wwwt =
(n−1)www[n−1]

t+1
n < www[n−1]

t+1 , then uS2U works by scaling down/up
his own/others’ update and further influences the global model
update. The hyper-parameter α used in our experiment is 0.1.
Since the global model wwwt+1 is reduced after uS2U, then the
distance between the two classes of decision boundary 2

‖www‖ is
enlarged, as shown in Fig. 19. Thus, the results on the original
constructed boundary samples would change, we then focus on
the result change to verify whether unlearning is successful.

(a) Decision boundary before un-
learning

(b) Decision boundary after un-
learning

Fig. 19: Decision boundary change after unlearning

uDP and privacy: We analyze the unlearning effect of
uDP from the privacy perspective, specifically, the information
about whether the sample zzz is in a’s local training data is
limited. Once uDP works as an unlearning method, the upper
threshold of membership information about zzz is limited. The
data of a is Da ∼ D, D denotes distribution of Da, the inferer
is In f , wwwt is the global model, the model of a is wwwa

t = wwwt(Da),
b is uniformly chosen from {0,1} which denotes whether zzz
belongs to a. b = 0 if zzz∼D, b = 1 if zzz∼Da. The membership
inference result can be expressed as:

Mem(In f ,wwwt ,m,D) =
{

1, In f (zzz,wwwa,m,D) = b
0, In f (zzz,wwwa,m,D) 6= b

(16)

Then the membership advantage of In f can be expressed as
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the difference between In f ’s true and false positive rate:

Mem_Adv(In f ,wwwt ,m,D)=Pr[In f = 0|b= 0]−Pr[In f = 0|b= 1]
(17)

Then we give a short theoretical explanation of uDP could
impose a strict limit on the information about a:

Mem_Adv(In f ,wwwt ,m,D)≤ eε −1 (18)

Given Da = (z1, · · · ,zm) and zzz ∼ D, then D
′
a =

(z1, · · · ,zi−1,zzz,zi+1, · · · ,zm), wwwa′
t = wwwt(D

′
a). In f (zzz,wwwa

t ,m,D)
and In f (zi,wwwa′

t ,m,D) have identical distributions for all
i ∈ [m], thus,

Pr[In f = 0|b = 0] = 1−E[ 1
m

m

∑
i=1

In f (zi,wwwa
t ,m,D)] (19)

Pr[In f = 0|b = 1] = 1−E[ 1
m

m

∑
i=1

In f (zi,wwwa′
t ,m,D)] (20)

Then,

Mem_Adv = E[
1
m

m

∑
i=1

(In f (zi,wwwa′
t ,m,D)− In f (zi,wwwa

t ,m,D))]

(21)
Assume that the local models of k participants in a federated
learning round is www1

t , · · · ,wwwk
t . uDP ensures that for all j ∈ [k],

Pr[wwwa′
t = www j

t ]≤ eε Pr[wwwa
t = www j

t ] (22)

Thus the membership advantage can be written as:
k

∑
j=1
E[

1
m

m

∑
i=1

(Pr[wwwa′
t = www j

t ]In f (zi,www
′
a,m,D)−Pr[wwwa

t = www j
t ]In f (zi,wwwa

t ,m,D))]

=
k

∑
j=1
E[

1
m

m

∑
i=1

(Pr[wwwa′
t = www j

t ]In f (zi,www
j
t ,m,D)−Pr[wwwa

t = www j
t ]In f (zi,www

j
t ,m,D))]

=
k

∑
j=1
E[

1
m

m

∑
i=1

(Pr[wwwa′
t = www j

t ]−Pr[wwwa
t = www j

t ])In f (zi,www
j
t ,m,D)]

≤
k

∑
j=1
E[

1
m

m

∑
i=1

(eε Pr[wwwa
t = www j

t ]−Pr[wwwa
t = www j

t ])In f (zi,www
j
t ,m,D)]

=
k

∑
j=1
E[

1
m

m

∑
i=1

(eε −1)Pr[wwwa
t = www j

t ]In f (zi,www
j
t ,m,D)]

(23)
Then, Mem_Adv must be smaller than eε − 1 since

In f (zi,www
j
t ,m,D) ≤ 1, meaning the membership inference ad-

vantage is limited by the upper threshold. Thus, after unlearned
by uDP, the membership information about a is limited,
unveiling the effectiveness of unlearning from the perspective
of privacy.
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