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Unsupervised Machine Learning-Based User
Clustering in THz-NOMA Systems

Yushen Lin, Student Member, IEEE, Kaidi Wang, Member, IEEE, Zhiguo Ding, Fellow, IEEE

Abstract—In this paper, different unsupervised machine learn-
ing (ML)-based user clustering algorithms, including K-Means,
agglomerative hierarchical clustering (AHC), and density-based
spatial clustering of applications with noise (DBSCAN) are
applied in non-orthogonal multiple access (NOMA) assisted
terahertz (THz) networks. The key contribution of this paper
is to design ML-based approaches to ensure that the secondary
users can be clustered without knowing the number of clusters
and degrading the performance of the primary users. The studies
carried out in the paper show that the proposed schemes based
on AHC and DBSCAN can achieve superior performance on
system throughput and connectivity compared to the traditional
clustering strategy, i.e., K-means, where the number of clusters
is determined in an adaptive and automatic manner.

Index Terms—Machine learning (ML), non-orthogonal multi-
ple access (NOMA), and user clustering.

I. INTRODUCTION

With the fifth-generation (5G) communication successfully
standardized and deployed globally, the research for sixth-
generation (6G) wireless communication recently attracts sig-
nificant attention as the current 5G communication networks
can no longer meet all the requirements of tremendous traf-
fic growth envisioned in the future wireless networks, i.e.,
ultra-high throughput, ultra-massive connectivity, and ultra-
low latency, etc [1]. Non-orthogonal multiple access (NOMA)
combined with beamforming (BF) and terahertz (THz) tech-
nologies is seen as a promising solution to meet the growing
demand. The THz spectrum offers a vast amount of bandwidth
for communication, and NOMA can boost spectral efficiency
by enabling multiple users to share the same bandwidth
resources [2], [3].

This paper differs from existing works on THz-NOMA
[4]–[7] in that it focuses on the application of machine
learning(ML)-based clustering techniques for legacy THz-
NOMA systems, where beams have been pre-configured to
serve primary users. The main contributions of this work
include: i) investigating how existing beams can be utilized
to serve secondary users by applying unsupervised ML-based
user clustering algorithms, specifically agglomerative hierar-
chical clustering (AHC) and density-based spatial clustering of
applications with noise (DBSCAN); ii) proposing methods that
offer a more robust performance, particularly when the number
of clusters needs to be determined dynamically, as compared
to the benchmark K-Means algorithm. Simulation results are
presented to demonstrate the feasibility and effectiveness of
these ML approaches in THz-NOMA networks and to evaluate
the trade-off between system performance and complexity.

Y. Lin, K. Wang, and Z. Ding are with School of Electrical
and Electronic Engineering, The University of Manchester, M13 9PL,
U.K. (e-mail: yushen.lin@student.manchester.ac.uk, kaidi.wang@ieee.org and
zhiguo.ding@manchester.ac.uk).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system with one base station (BS) and N single-
antenna users, where the BS is located at the centre of a disc
and the users are randomly distributed. The collection of all
users and secondary users are denoted by N = {1, 2, · · · , N}
and J = {1, 2, · · · , J}, respectively. It is assumed that N
users are divided into M clusters and served by the BS with
L antennas where M ≤ L. As shown in Fig. 1, in each cluster,
one user is selected to play the role of the primary user, and
the rest of the users become secondary users [2]. Thus, in the
considered system, there are M primary users and J = N−M
secondary users, where J ≥ M , denoted by UP and US ,
respectively.

Fig. 1. A schematic diagram of the considered system model.

A. Spatial and Beamforming Model

The illustrations of the user deployments are followed by the
Poisson cluster process (PCP), where the point is identically
and independently distributed (i.i.d.) around the parent point
as shown in Fig. 2. It resembles physically-clustered user
scenarios, i.e., meeting rooms or cafés. Hybrid BF is used
to generate beams for the primary users, which means that the
signal vector sent by the BS could be expressed as follows:

s̃Pv =
[
f̃1, · · · , f̃M

]
DbmsPv , (1)

(a) Focused user deployment. (b) Overlapping user deployment.

Fig. 2. Clustering results from different algorithms under
focused and overlapping user deployment with N = 30.
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f̃m denotes the analog BF vector for UP
m, and Dbm denotes

the M ×M digital BF matrix, and svP = [sv
P
1 , · · · , svPM ]T .

The analog BF vector can be selected from a pre-configured
codebook [8], [9]:

f̃m ∈
{
M− 1

2 ad

(
(2π × 0)

Ψ

)
, · · · ,M− 1

2 ad

(
2π(Ψ− 1)

Ψ

)}
,

(2)
where Ψ is the size of codebook, and ad(θ) is a L× 1 vector
to denote the angle of departure (AoD). Specifically, ad(θ) is
given by:[

1, e
−j2π

As

λ
sin(θ)

, · · · , e
−j2π(L−1)

As

λ
sin(θ)

]T
, (3)

where As and λ denote antenna spacing and wavelength,
respectively. Without loss of generality, the value of As

λ is
assumed to be 1

2 in the system. UP
m’s BF vector fm can be

chosen by using the codebook and finding a vector whose
θ is closest to the corresponding primary users’ AoD. The
composite BF vector of primary users fm could be written as:

fm =
[
f̃1, · · · , f̃M

]
dm, (4)

where fm can be considered as bandwidth resources to be
allocated to US , and dm denotes the m-th column of Dbm.
B. Channel and Signal Model

The channel vector between the BS and UP
m is given by

[10],

hP
m = ad(θm)

gPm
√
PLP

m

(1 + rm,P )
, (5)

where gPm ∼ CN (0, σ2
m), PLP

m and rm,P represent the
channel, path loss, and distance, respectively. Specifically, the
path loss is defined as follows [3]:

PLP
m =

(
c

4πfc

)−2

eζrm,P (rΓPL

m,P + 1), (6)

where c denotes the speed of light, fc denotes carrier fre-
quency, ζ represents the molecular absorption coefficient, and
ΓPL is the path loss exponent. The signal received at UP

m

could be expressed as follows [2]:

yPm =
|ϱPm|2√
PLP

m

aHd (θPm)

M∑
i=1

fi

(√
pPi s

P
i + xs

)
+ nP

m, (7)

where ϱPm denotes the fading coefficient, θPm denotes the AoD
of the corresponding primary user and nP

m denotes the additive
while Gaussian noise with noise power σ2. Moreover, the
transmitted signal xs denotes as

∑J
j=1 bji

√
pSjis

S
ji, where pSji

is the transmit power of secondary user and sSji is the message
to secondary user US

j via beam i.
According to the decoding strategy in [2], all the primary

users decode their own signals and treat the signals for
secondary users as noise. The data rate of primary user UP

m

can be expressed as follows:

RP
m = log

(
1 +

qppPm

qp
∑J

j=1 bjmpSjm +Υm + σ2

)
, (8)

where qp denotes |ϱP
m|2

PLP
M

|aHd (θPm)fp|2, the inter-beam interfer-
ence Υm is:

Υm =
|ϱPm|2

PLP
m

M∑
i=1,i̸=m

|aHd (θPm)fi|2
pPi +

J∑
j=1

bjip
S
ji

 , (9)

where bjm and bji are the beam allocation indicator as
suggested in [11].

At the secondary user, the signal for UP
m via the same beam

can be decoded and removed, and then US
j can decode its own

signal at the following data rate:

RS
j,m = log

1 +

|ϱs
j |

2

PLS
j
pSjm|aHd (θSj )fm|2

Υjm + σ2

 , (10)

where the path loss PLS
j , and inter-beam interference of US

j

Υjm are defined similarly with those for UP
m.

C. Problem Formulation

In this subsection, the formulated optimization problem is
presented. Afterward, how the different clustering algorithms.
In the considered THz-NOMA system, the sum rate of the
secondary users could be expressed as follows:

RS
sum =

J∑
j=1

M∑
m=1

bjmRS
jm. (11)

A sum-rate maximization problem can be formulated as:
max
M,C

RS
sum (P1a)

s.t. Cm ∩ Cm′ = ∅, Cm, Cm′ ∈ C,m ̸= m′, (P1b)
J∑

j=1

M∑
m=1

bjmpSjm ≤ PT , (P1c)

RP
m ≥ R̄P

m,∀m, (P1d)

where the set of cluster index sets denotes by C, C =
{C1, · · · , CM}, and Cm is denoted by the set of users in cluster
m. PT represents the total transmission power of the BS, and
R̄P

m denotes the QoS primary users’ target data rate. Constraint
(P1b) ensures that each user can only be assigned to one
cluster. Constraint in (P1c) represents the total transmission
power budget. Constraint (P1d) ensures that no secondary user
is scheduled on beam fk but primary user UP

m still suffers
interference from the secondary users on the other beam. It is
worth mentioning that the power utilization of primary users
is not the main concern based on the P1a. The design of BF
with power allocation is not the main scope and is assumed
to be given in the paper, which can be treated as promising
research directions.

Humans can easily identify the three clusters in the user
deployment shown in Fig. 2(a). However, it is a non-trivial task
for the BS to determine the appropriate number of clusters.
Since the user clustering problem is an integer programming,
which is an NP-complete and non-convex optimization and
highly challenging to solve [12]. Moreover, this is further com-
pounded by the degradation of the sum capacity due to inter-
beam interference. These challenges motivate the application
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of ML-based user clustering algorithms to assist the BS to
make proper decisions in an automatic and adaptive manner.

III. DESCRIPTION OF PROPOSED ML-BASED USER
CLUSTERING APPROACHES

In this section, how the different clustering algorithms, i.e.,
K-means, DBSCAN, and AHC can be applied in the proposed
system is demonstrated.

A. Benchmark Scheme: K-Means Clustering

K-means is a partitioning-based clustering algorithm de-
signed to find a pre-defined number of clusters, which are
represented by their centroids.

The rationale behind the benchmark K-means is described
as follows: denote Z by the pre-configured number of clusters,
and aj , j ∈ J , by the AoD of secondary users. Choose K
centroids, and each AoD of users is then assigned to the closest
centroid by comparing the distance between users’ AoD and
the center of each cluster dist(aj , µm), and each set of users
assigned to the same centroid forming a cluster. The criterion
of recomputing the center of each cluster can be expressed as
follows:

µm =
1

|Cm|
∑
j∈Cm

aj . (12)

Then repeat the assignment and update the centroid until the
threshold is met or equivalently.

Proposition 1. The objective function in K-means, i.e.,
dist(aj , µm), can be expressed as follows:

min
m=1,··· ,M

−2R[aHj µm] + µH
mµm. (13)

Proof: This proposition can be proved by expanding the
original objective function:

∥aj − µm∥2 = −2R[aHj µm] + aHj aj + µH
mµm, (14)

where the term aHj aj can be neglected as it has no impact
on the optimal solution of (P1a) as the AoD for the users’
channels is fixed.

The proposed methods use the AoD of the users’ channels
as feature, rather than the users’ path loss. This is because the
users with similar path loss may have significantly different
azimuth angles. Therefore they should not be grouped into the
same cluster in the considered massive MIMO-NOMA system.

B. DBSCAN-based User Clustering

Unsupervised learning techniques that identify unique
groups or clusters in the data are referred to as density-
based clustering. The motivation for applying DBSCAN in the
proposed system is driven by its ability to determine Z based
on the density of the data points and the adjustable parameters
eps and minPts, providing an advantage over K-means in a
dynamic manner.

The following definitions and concepts are provided to
better understand DBSCAN:

Definition 1. (minPts): The minimum of observations that be
grouped together for a region to be considered dense.

Definition 2. (Eps): A measurement of distance will be used
to find observations in the neighborhood of any given point.

Definition 3. (Neighborhood): The distance between two
points a and b, determined by the Euclidean distance.

Definition 4. (Noise): Let C1, · · · , Cn be the clusters w.r.t.
minPtsj , j = 1, · · · , n. Noise is determined as a set of
objects in the observations that do not exist in any cluster
Cj , i.e., noise = {a ∈ D|∀j : a /∈ Cj}, where D is all the
users’ AoD.

The procedure of DBSCAN can be abstracted as follow. It
starts by randomly selecting a point in the dataset. If there are
at least minPts points within a radius of Eps to the point, then
each point to be involved in the same cluster, otherwise, assign
it to noise. The clusters are then expanded by recursively
repeating the neighborhood calculation for each neighboring
point. The DBSCAN algorithm has been modified to determine
the value of Eps by calculating the average distance between
each point and its k-nearest neighbors (KNN). The average k-
distances are then plotted in ascending order on a k-distance
graph. The optimal value of Eps is the point of maximum
curvature where the plot has the greatest slope [13].

C. AHC-based User Clustering Algorithm

The aforementioned clustering algorithms have common
limitations, such as the number of clusters or the hyper-
parameters must be pre-configured by a human user.In this
case, AHC has the advantage because these parameters are not
required input and the results are reproducible. The process of
AHC can be summarized as follows:

• It begins by dividing the dataset into singleton nodes and
combining the two currently closest nodes into one node
until only one node remains, which contains the entire
dataset. For example, the procedure will treat each user’s
AoD as one cluster, and therefore, the number of clusters
will be reduced from N in the proposed system.

• A cluster is formed by merging the two closest data
points, resulting in N − 1 clusters.

• The merging step is repeated the last step until the
threshold is achieved.

The input of AHC is a condensed matrix with a dissimilarity
index and the output is traditionally a stepwise dendrogram
containing clustering results.

Definition 5. (Dissimilarity index): On a set F is a map :
F × F → [0,∞) which is reflexive and symmetric, where F
has N elements.

Definition 6. (Stepwise dendrogram): Denote one finite set F0

with cardinality N = |F0|, a stepwise dendrogram is a list of
N − 1 triples (ui, vi, δi) where i = 0, · · · , N − 2 such that
δi ∈ [0,∞) and ui, vi ∈ Fi, where Fi+1 is recursively defined
as (Fi \{ui, vi}) ∪ ni and ni /∈ F \{ui, vi} is a label for a
new node, where ni is the new node formed by joining the
nodes ui and vi at the distance δi.

The strategy used to determine if the clusters are to be
merged is called Lance-Williams algorithms (LWA). The ad-
vantage of using the LWA is that it does not need to keep the
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original data points. Denote Cp and Cq by the next two clusters
to be merged together, D(p, q) by the distance between Cp
and Cq , and D(pq, r) by the distance between the cluster
Cp∪Cq and cluster Cr. For more general argument, the distance
D(pq, r) can be recursively computed as [14]:

D(pq, r) =χpD(p, r) + χqD(q, r)+

βD(p, q) + γ|D(p, r)−D(q, r)|,
(15)

where χp, χq, β, and γ denote the coefficients that depend on
the numbers of data in the cluster Cp, Cq , and Cr. Different
coefficients correspond to different distance update strategies.
In this letter, Ward’s method [14] is applied, while these co-
efficients are defined by χp =

Np+Nr

Np+Nq+Nr
, χq =

Nq+Nr

Np+Nq+Nr
,

β = −Nr

Np+Nq+Nr
and γ = 0, where Np, Nq , and Nr are the

numbers of data in Cp, Cq , and Cr, respectively. The cluster
dissimilarity in Ward’s method between clusters is given by:

D(Cp, Cq) =
NpNq

Np +Nq
||µp − µq||2, (16)

where µp and µq denote the centroid of Cp and Cq cluster by
averaging the normalized users’ AoD:

µp =
1

Np

Np∑
l=1

ap,l (17)

Proposition 2. The AHC with Ward’s method fulfills the
reducibility property, and merge cost D(Cp ∪ Cq, Cr ∪ Cs) is
independent of the situation where Cr, Cs are merged after
Cp, Cq are merged or another way round.

Proof: The achieved reducibility property of the proposed
method proved can be by checking the equation (16). For a
more general argument of representing the cluster dissimilarity
in Ward’s method [14]:

D(Ck, Cl) =
NkNl

Nk +Nl

(
2

NkNl

∑
a∈Ck

∑
b∈Cl

||a− b||2−

1

N2
k

∑
a∈Ck

∑
a′∈Ck

||a− a′||2−

1

N2
l

∑
b∈Cl

∑
b′∈Cl

||b− b′||2
)
.

(18)

This equation holds regardless of whether the data is Euclidean
or not, since it can be proved inductively from the recursive
distance update equation of Ward’s method. This shows that
dissimilarities in Ward’s method are likewise unrelated to the
sequence of merging steps.

The primary improvement in the AHC algorithm is in the
process of determining the number of clusters, which can be
summarized as follows. The “L method” is employed as the
evaluation metric plotted against the number of clusters, to
calculate the metric for a range of trial cluster counts. To
locate the knee point, which represents the optimal number
of clusters, two lines are fitted via linear regression. The fit is
further refined through an iterative process, which proceeds as
follows. Denote the left and right sequences of observations
as Lf and Rf partitioned at x = f , such that Lf includes
observations with x = 2 · · · f , and Rf is with x = f +1 · · · e,

where f = 3 · · · e− 2. Then, the expression for obtaining the
knee point of the evaluation graph can be obtained as follows:

f̂ = argmin
f

RMSE(f), (19)

where the total root mean squared error RMSE(f), which
separates Lf and Rf at point x = f , is given by:

RMSE(f) =
f − 1

e− 1
RMSE(Lf ) +

e− f

e− 1
RMSE(Rf ).

(20)
It is worth mentioning that the different linkage methods

yield the same clustering results in Fig. 2(a), but different
in Fig. 2(b). The modification made to the linkage equations
to a general form, as represented by (15) allowing further
investigation of the impact of the various linkage methods on
the performance of overlapping distribution, which may be
include in future works.

IV. SIMULATION RESULTS

Computational simulations are presented in this section to
evaluate the performance of the ML-based user clustering
methods. For all conducted simulations [2]: fc = 300 GHz,
σ2 = −90 dBm, ζ = 5e−3, ϱPm = 2, Ψ = 30, bandwidth = 24
GHz. The radius of focused and overlapping deployment are
1 m and 2.5 m, respectively.

The user deployment shown in Fig. 2 illustrates that the
three clustering results of focused user deployment show the
same cluster results, with M = 3, Eps = 0.2, and minPts
= 5, respectively. Only the overlapping case of the result in
AHC is illustrated in Fig. 2(b) due to space limitations.
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Fig. 3. Sum data rate against the number of secondary users
of different clustering algorithms with L = 4.

In Fig. 3, the impact of the number of users on the
performance of the three considered ML cluster algorithms
is studied, where L = 4. The number of clusters and the
value of Eps are set to random for K-Means and DBSCAN.
As can be seen from the figure that AHC outperforms the
other two algorithms, while K-Means and DBSCAN are no
longer promising when the number of clusters and hyper-
parameters are randomly chosen. The dashed lines in Fig. 3
show that the overall system throughput in the case with
overlapping deployment is lower than that with the focused
user deployment as the beams have to cover the larger areas
and users are more separated compared to the deployment
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in Fig. 2(b). In the original DBSCAN algorithm, Eps and
minPts are required to be pre-configured, and both have
different impacts on the clustering results. Eps controls the
local neighborhood of the points and minPts controls the
tolerant of the algorithm to noise. When Eps is too small,
the majority of the points will not be clustered. Otherwise, it
causes close clusters to be merged into a single cluster, which
means that all points will form as a singleton cluster.
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Fig. 4. Sum data rate versus the number of secondary users
of AHC with the different number of antennas with L = 3.

The impact of the antenna number on the performance in
the proposed system is depicted in Fig. 4. It can be seen from
the figure that the sum data rate drops when the number of
antennas increases and such reduction can be explained as
follows. Increasing the number of antennas makes it more
difficult for secondary users to match a beam when spatial
beams become more directional.

In Fig. 5, the analysis of merge cost in AHC and KNN in
DBSCAN is presented to show the strategies of selecting the
number of clusters in AHC and hyper-parameters in DBSCAN
as proposed in Section III. Recall that Fig. 2 shows the distri-
butions of users, which could result in different curvatures in
the graphs of merge cost Fig. 5(a) and 5(b). The figure shows
that the value of minPts is at the maximum curvature around
0.2 with the focused user deployment. However, determining
the maximum curvature can be more challenging for the over-
lapping user deployment compared to merge cost in AHC. The
average run time complexity of AHC and DBSCAN are both
O(N2) as stated in [13], [14]. Some spatial access methods
e.g., R*-trees, could descend complexity to O(n log n) in
DBSCAN. However, such methods is not recommended due to
the same time-consuming nature of the KNN algorithm used

(a) Merge cost in AHC.
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(b) KNN in DBSCAN.

Fig. 5. Analysis of merge cost in AHC and Nearest Neighbour
in DBSCAN.

to determine minPts and Eps when N is large.

V. CONCLUSIONS

In this letter, in order to ensure that the secondary users
can be well clustered without knowing the number of clusters
and degrading the performance of the primary users, three
unsupervised ML-based user clustering algorithms, namely
K-Means, AHC, and DBSCAN, were applied in NOMA-
assisted THz networks. The simulation results demonstrated
that the proposed algorithm based on AHC can outperform
the other two, i.e., K-means and DBSCAN, where the number
of clusters and hyper-parameters are selected in an adaptive
and autonomous manner. For future works, the optimization
of beamforming design and power allocation can be included.
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