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Origin  
SmI2 (Kagan’s reagent) remains one of the most versatile and selective single electron transfer (SET) 
reagents. The chemistry of SmI2 has provided unique solutions to synthetic problems in many fields, however, 
its use in super-stoichiometric amounts raises concerns over sustainability. The few methods catalytic in SmI2 
have to rely on the presence of super-stoichiometric metal co-reductants to regenerate Sm(II). We reported 
a radical-relay approach to catalysis with SmI2 that negates the need for co-reductants and additives. 

Reaction Mechanism  

Building on our prior intra-molecular process, a more challenging and unprecedented SmI2-catalyzed inter-
molecular radical coupling between cyclopropyl ketones and unsaturated hydrocarbons has been developed. 
Here, reversible SET from SmI2 to ketone 1 generates ketyl radical I, which undergoes fragmentation to 
reveal samarium(III) β-enoyl-radical II (A). Intermolecular coupling with alkyne 2, and ensuing radical re-
bound addition to the Sm(III)-enolate moiety within intermediate III, produces new ketyl radical IV. Back 
electron transfer (BET) from IV to the Sm(III)-center regenerates the active Sm(II) species, while yielding 
densely-functionalized cyclopentenyl product 3. It is also possible that ketyl radical IV directly reduces starting 
ketone 1, feeding an electron transfer chain mechanism. The key aspects driving the observed reactivity are: 
i) the use of SmI2 in catalytic amounts (as low as 15 mol%) – lower concentrations of the reagent prevent 
competing reduction of radical intermediate II to the corresponding carbanion, and; ii) the instability of the 
starting ketyl radical I, which promotes fragmentation and pushes the reaction equilibrium towards the 
formation of a more stable product ketyl radical IV. Computational studies were used to predict the 
conformation of samarium ketyl radical Ia, and show that the ketyl aryl substituent is twisted out of plane, 
thus vouching for the instability of the corresponding ketyl radical I (B). Remarkably, our study unveils an 
intriguing link between ketone conformation and efficient cross-coupling in SmI2-catalysis.   
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Importance  

The SmI2-catalyzed process provides synthetic access to highly-decorated cyclopentene scaffolds, suitable 
for further derivatization (C). Of mechanistic importance, our radical relay strategy not only enables SmI2-
catalysis in the absence of super-stoichiometric co-reductant and additives, but also facilitates intermolecular 
radical processes under Sm(II) conditions, which are inherently challenging due to competing reduction of 
radicals to carbanions. This study provides further insight into the mechanism of radical relays involving SmI2, 
and paves the way for the future use of this classical reagent in modern radical catalysis. 
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