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A Nonlinear Estimator for Dead Reckoning of Aquatic Surface Vehicles
Using an IMU and a Doppler Velocity Log

Jessica Paterson, Bruno V. Adorno, Barry Lennox, Keir Groves

Abstract— Aquatic robots require an accurate and reliable
localization system to navigate autonomously and perform
practical missions. Kalman filters (KFs) and their variants are
typically used in aquatic robots to combine sensor data. The two
critical drawbacks of KFs are the requirement for skilled tuning
of several filter parameters and the fact that changes to how
the Inertial Measurement Unit (IMU) is oriented necessitate
modifying the filter. To overcome those problems, this paper
presents a novel method of fusing sensor data from a Doppler
Velocity Log (DVL) and IMU using an adaptive nonlinear
estimator to provide dead reckoning localization for a small
autonomous surface vehicle. The proposed method has only one
insensitive tuning parameter and is agnostic to the configuration
of the IMU. The system was validated using a small ASV in
a 2.4×3.6×2.4 m water tank, with a motion capture system
as ground truth, and was evaluated against a state-of-the-art
method based on KFs. Experiments showed that the average
drift error of the nonlinear filter was 0.16 m (s.d. 0.06 m)
compared to 0.15 m (s.d. 0.05 m) for the state of the art,
meaning that the benefits in terms of tuning and flexible
configuration do not come at the expense of performance.

I. INTRODUCTION

In complex, confined aquatic environments such as
nuclear wet-storage facilities, water storage tanks or flooded
mines, inspection with autonomous Aquatic Surface Vehicles
(ASVs) is increasingly desirable to reduce operational costs
and the need for dangerous manual inspection by humans.
However, without reliable and accurate localization, only
limited levels of autonomy are achievable [1]. For inspection
tasks, in particular, accurate and precise location data
is imperative for the repeatability of measurements and
pinpointing detected anomalies [2].

Localization methods commonly used on land or in
open water, such as wheel encoders or Global Navigation
Satellite Systems (GNSS), are generally unsuitable for use
on ASVs operating in enclosed, confined environments, and
different approaches are required. In general, the sensory
components of a robot’s localization system can be broken
down into two broad categories: 1) those providing distance
measurements relative to fixed objects or features in the
environment, and therefore offering a position fix relative
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to the environment (world or map frame), such as LiDAR
or sonar; 2) and those providing a velocity in the robot’s
body frame, such that odometry can be provided. Where
possible, sensors from both categories are fused to improve
accuracy and redundancy. A prior experimental study [3]
addressing the first category concluded that 2D LiDAR-based
positioning systems are well suited to ASVs in enclosed
spaces. Therefore, this paper focuses on category two.

World frame displacements relative to an initial position
can be derived from body frame velocity by integrating
successive velocity measurements and transforming them
into the initial position frame. This process, dead reckoning,
is usually unsuitable as a stand-alone localization technique
due to inherent drift in the system from accumulated error.
Nonetheless, it may be used to supplement other localization
systems, such as visual or LiDAR-based Simultaneous
Localization and Mapping (SLAM), or as a backup in the
case of outages in a primary localization system [4].

Sensors that provide body frame velocity depend highly on
the robot type and the environment, and options for aquatic
vehicles are limited. Visual odometry is possible but relies on
feature-rich environments and good ambient lighting, which
cannot be guaranteed [5].

On small ASVs, MEMs-based Inertial Measurement Units
(IMUs) are a common sensor choice. They are largely
unaffected by environmental conditions and are small in
size and cost but can lack the precision required to
provide reliable linear velocity measurements [4]. An IMU
contains, at a minimum, a 3-axis gyroscope and a 3-
axis accelerometer. The gyroscope directly provides angular
velocity measurements. However, the gravity vector must
be removed from raw accelerometer measurements before
the resulting acceleration can be integrated to provide linear
velocities. This process accumulates errors very quickly,
mostly due to inaccuracies in the gravity vector’s orientation
and the resulting error in its removal from the raw reading.

It is, therefore, desirable to use a second sensor to measure
linear velocity directly, and Doppler Velocity Logs (DVLs)
are a common choice. As an acoustic sensor, DVL benefits
from being immune to water turbidity yet can be affected
by multi-path and echos. Until recently, most commercially
available DVLs were too large for use on small ASVs, and, to
date, most research into IMU/DVL localization has focused
on large ocean-going vessels [6].

A. Related works

Rogne et al. [7] proposed a dead-reckoning system using
two IMUs. They used different nonlinear observer models



aided by position reference systems during a dynamic
positioning operation in the North Sea, achieving 30 m of
averaged position error in 5 minutes.

Krishnamurthy and Khorrami [8] presented a simulated
self-aligning navigation system for an underwater vehicle,
which fused data from multiple sensors, including a DVL and
an IMU. The system used an Unscented Kalman Filter (UKF)
to estimate the position, velocity, and orientation. Campos
et al. [9] used an Extended Kalman Filter (EKF) to fuse
data from an IMU-based dead reckoning system and GPS to
provide odometry for an ASV as part of a mapping exercise
for offshore wind farm infrastructure. Both [8] and [9]
evaluate their systems in simulation without accounting for
the negative effects of real-world measurement issues such
as sensor misalignment, sensor bias, time synchronization,
and non-uniform noise profiles.

The problem with methods based on system linearization,
such as EKFs, is that the underlying space of rigid motions
(e.g., SE(3)) is a non-Euclidean manifold with an inherent
nonlinear structure, where noises do not propagate through
additive operations but multiplicative ones. Some works
mitigate this problem by using UKF with nonlinear rotational
error propagation [10], but those techniques usually lack
formal proof of convergence. This means that despite
working well in practice, there is no guarantee that those
filters will not diverge. Therefore, some authors have
used nonlinear estimation in systems involving rotations to
formally ensure the stability of the observer error [11], [12].

B. Statement of contributions

We propose a nonlinear estimator for dead reckoning
composed of three components: the estimation of the
misalignment between the IMU and body frame, the data
fusion from the IMU and DVL, and a nonlinear update of
the ASV pose. The key contributions of this paper can be
summarized in three points:

1) A simple formulation for a highly accurate IMU/DVL
dead reckoning system that makes no assumptions
about the initial orientation of the IMU or the steady-
state roll and pitch of the surface vehicle.

2) A formal analysis of the self-calibrating algorithm
using Lyapunov theory, showing that the estimated
gravity vector converges asymptotically to the actual
gravity vector.

3) Experimental validation of the dead reckoning system
in a confined aquatic environment using a sub-
millimeter accurate ground truth.

II. MALLARD’S HARDWARE ARCHITECTURE

MallARD is a holonomic ASV with a four-thruster, two-
pontoon configuration [3]. In the present work, MallARD
was fitted with a Waterlinked A50 DVL [13] and a tactical
grade LORD L3DMGQ7-GNSS/INS [14]. Regarding the
IMU, only the raw 6-axis, angular rate and linear acceleration
measurements were used.

As shown in Fig. 1, the DVL was mounted underneath
the rear pontoon attached via an adapter that holds the

Fig. 1. Rendered image of the MallARD ASV with DVL, IMU, and
VICON object fitted

DVL below the thrusters to minimize the risk of acoustic
interference. The IMU, fitted to an internal electronics tray
in the rear pontoon, is not guaranteed to be in the same
orientation if, for example, the electronics tube is opened to
allow access to the hardware. Hence, the IMU is unlikely to
be in the same orientation each time the robot is deployed.
For simplicity, the robot’s body frame FB was chosen to
align with the VICON object frame, although this is not a
system requirement.

III. MATHEMATICAL BACKGROUND

We use dual quaternion algebra, which provides a
computationally efficient and compact way of representing
poses and twists with a strong geometrical meaning [15].
Quaternions are a straightforward extension of complex
numbers [16], where the imaginary units obey ı̂2 = ȷ̂2 =
k̂2= ı̂ȷ̂k̂=−1. The quaternion set is defined as H ≜ {a +
bı̂+cȷ̂+dk̂ : a, b, c, d ∈ R}. The multiplication and addition
operations are the same as in complex numbers, and one
must only respect the properties of imaginary units. Given
h ∈ H, such that h = a+bı̂+cȷ̂+dk̂, the real part is given by
Re (h) ≜ a and the imaginary part by Im (h) ≜ bı̂+cȷ̂+dk̂.
The quaternion norm is defined as ∥h∥ ≜

√
hh∗, where

h∗ ≜ Re (h)− Im (h) is the quaternion conjugate.
The subset Hp ≜ {h ∈ H : Re (h) = 0} contains elements

that represent points in the tridimensional Euclidean space,
in the sense that addition of elements of Hp (e.g., xı̂+ yȷ̂+
zk̂) is analogous to the addition of their counterparts in R3

(e.g., (x, y, z)). The subset S3 ≜ {h ∈ H : ∥h∥ = 1} has
elements that represent tridimensional rotations. For instance,
a unit-norm quaternion r ∈ S3 can always be written as
r = cos (ϕ/2) + n sin (ϕ/2), which represents a rotation of
an angle ϕ ∈ R around the rotation axis n ∈ Hp ∩ S3.

Given the rotation rAB ∈ S3 from frame FA to frame FB ,
and a point pB ∈ Hp expressed in FB , we can express it in
FA using the adjoint operation:

pA = Ad
(
rAB

)
pB ≜ rABp

B
(
rAB

)∗
. (1)



The derivative of rAB is given by

ṙAB =
1

2
ωA

A,Br
A
B , (2)

where ωA
A,B ∈ Hp is the angular velocity of FB with respect

to FA, expressed in FA.
Given a, b ∈ Hp, the cross product and inner product have

the same meaning as their counterparts in R3 and are defined,
respectively, as

a× b ≜
1

2
(ab− ba) , ⟨a, b⟩ ≜ −1

2
(ab+ ba) . (3)

Dual quaternion algebra extends the set of quaternions by
introducing the dual unit ε [17]. The set of dual quaternions
is defined as H≜{h+εh′ : h,h′∈H, ε2=0, ε ̸=0}. Given
h ∈ H, such that h = h+ εh′, the primary part is given by
P (h) = h and the dual part is given by D (h) = h′.

The set of pure dual quaternions, used to represent twists,
is given by Hp ≜ {h ∈ H : Re (P (h)) = Re (D (h)) = 0}.
The set of unit-norm dual quaternions containing
elements representing rigid motions is given by
S ≜ {h ∈ H : ∥h∥ = 1}, where ∥h∥ ≜

√
hh∗ is the

dual quaternion norm and h∗ = h∗ + εh′∗ is the dual
quaternion conjugate. An element x ∈ S can always be
written as x = r + (1/2)εpr, where r ∈ S3 represents a
rotation and p ∈ Hp represents a translation.

Consider a time-varying rigid motion xA
B ∈ S from FA to

FB , such that xA
B = rAB +(1/2)εpA

A,Br
A
B , in which pA

A,B ∈
Hp is the translation from FA to FB , expressed in FA, and
rAB ∈ S3 is the rotation from FA to FB . The time derivative
of xA

B is given by

ẋA
B =

1

2
ξA
A,B

xA
B =

1

2
xA
Bξ

B

A,B
,

where ξA
AB

= ωA
A,B + ε

(
ṗA
A,B + pA

A,B × ωA
A,B

)
is the twist

in frame FA, in which ωA
A,B ∈ Hp is the angular velocity

that satisfies (2), and ξB
AB

= ωB
A,B + εṗB

A,B is the twist in
FB .

IV. NONLINEAR ESTIMATOR FOR DEAD RECKONING

The nonlinear estimator for dead reckoning is composed
of three components: the estimation of the misalignment
between the IMU and body frame, the data fusion from the
IMU and DVL, and a nonlinear update of the vehicle pose.
For the estimator design, we have the following assumptions:
A1) The transformation between the DVL and body frames
is known; A2) The vehicle’s acceleration does not affect,
on average, the accelerometer measurements; A3) There is
neither roll nor pitch, and the gravity vector is parallel to the
yaw axis; i.e., gB = gW ∈ Hp.

The body, VICON, and DVL frames are assumed to be
at the same position on the robot, with the DVL frame
rotated 180 degrees about the x-axis compared to the other
two frames. For the derivation of the estimator of the
misalignment between the IMU and body frame, we also
assume that we have perfect knowledge of the static gravity
vector in the IMU frame. Nonetheless, this assumption
is relaxed, and we design a recursive expression for the

estimation of the zero-frequency component of the gravity
vector in the IMU frame, which converges asymptotically to
the actual gravity vector.

A. Estimation of the misalignment between the IMU and
body frame

Consider a perfect1 (i.e., without noise) static gravity
vector gI ∈ Hp in the IMU frame, FI . Assume that the
body frame and the world frame have a parallel common axis
aligned with the gravity vector, such that gB = gW ∈ Hp.
For example, if the gravity vector is aligned with the z axis,
then gB = gW = 9.81k̂ m/s2; if it is aligned with the x axis,
then gB = gW = 9.81ı̂m/s2. Given an unknown constant
rotation rBI ∈ S3 between the body frame FB and FI , the
goal is to find an estimation r̂BI (t) such that the estimated
gravity vector in the body frame, ĝB (t) = Ad

(
r̂BI (t)

)
gI ,

converges asymptotically to the actual constant gravity vector
gB ; that is,

lim
t→∞

ĝB (t) = lim
t→∞

Ad
(
r̂BI (t)

)
gI = gB . (4)

We define the gravity estimation error

g̃B(t) ≜ ĝB(t)− gB , (5)

such that (4) is equivalent to

lim
t→∞

g̃B = 0. (6)

Therefore, g̃B = Ad
(
r̂BI

)
gI−gB . Because we assume that

there is neither roll nor pitch, the gravity vector is parallel to
the yaw axis, thus ġB = 0. Using (1), (2), and (3) we obtain

˙̃gB = ˙̂rBI g
I
(
r̂BI

)∗
+ r̂BI g

I
(
˙̂rBI

)∗
= ω̂B

B,I × ĝB . (7)

Given the estimation error dynamics (7), we want to find
a suitable adaptation signal ω̂B

B,I (t) such that the estimated
rotation r̂BI (t) ensures that (6) is fulfilled, that is, the
estimated gravity vector in the body frame converges to its
actual vector.

Theorem 1: Given the adaptation signal

ω̂B
B,I (t) = λ

(
ĝB (t)× gB

)
, (8)

where λ ∈ (0,∞), the gravity estimation error converges to
zero whenever ĝB(0) ̸= −gB .

Proof: Consider the Lyapunov candidate V
(
g̃B

)
=

1
2

∥∥g̃B
∥∥2 = 1

2 ⟨g̃
B , g̃B⟩. Its time derivative is given by

V̇
(
g̃B

)
= ⟨g̃B , ˙̃gB⟩ = ⟨g̃B , ω̂B

B,I (t)× ĝB⟩, (9)

where the last equality holds due to (7). We replace (8)
into (9), use (5) and the fact that λ

(
ĝB×gB

)
×ĝB =

λ
(
gB⟨ĝB , ĝB⟩−ĝB⟨gB , ĝB⟩

)
to obtain

V̇
(
g̃B

)
= λ

(∥∥gB
∥∥∥∥∥ĝB

∥∥∥)2 (
cos2 ϕg,ĝ − 1

)
≤ 0, (10)

1The IMU provides noisy measurements, and the surface robot oscillates
due to water motion. Those main assumptions are relaxed in Section IV-C.



where ϕg,ĝ is the angle between gB and ĝB . Therefore,
V̇
(
g̃B

)
< 0 for all ĝB ̸= ±gB and V̇

(
g̃B

)
= 0 if

and only if ĝB = ±gB .2 Thus, whenever ĝB(0) ̸= −gB ,
the adaptation signal (8) ensures that limt→∞ V

(
g̃B

)
= 0,

which implies limt→∞ g̃B = 0.
The closed-loop system composed of the error dynamics

(7) under the adaptation signal (8) has two equilibrium
points, namely ĝB = ±gB . Because the gravity estimation
error norm always decreases under the adaptation signal (8),
except when the initial estimation is ĝB(0) = ±gB , the
estimated value ĝB will always converge to the actual value
gB when ĝB(0) ̸= −gB .

B. Combining data from the IMU and DVL

The DVL provides the velocities νD along the x and
y axes of its own frame, FD, whereas the IMU gives
the angular velocities ωI expressed in its own frame, FI .
Assuming a known constant rotation rBD between the body
frame FB and the DVL frame FD, our goal is to combine
data from the DVL and the IMU in a single estimated twist

ξ̂
W

W,B
= ω̂W

W,B + ε
(
˙̂pW
W,B + p̂W

W,B × ω̂W
W,B

)
(11)

of the body frame with respect to the world frame FW , where
p̂W
W,B ∈ Hp is the translation associated with the estimated

pose

x̂W
B = r̂WB + ε

1

2
p̂W
W,B r̂

W
B . (12)

Since r̂BI and ω̂B
B,I satisfy the relationship in (2), then

˙̂rBI =
1

2
ω̂B

B,I r̂
B
I . (13)

Thus, after we calculate ω̂B
B,I using (8), we integrate (13) to

obtain an updated estimate of r̂BI , and use it to obtain the
estimated angular velocity of the body frame with respect
to the world frame, ω̂W

W,B = Ad
(
r̂WB r̂BI

)
ωI . Analogously,

˙̂pW
W,B = Ad

(
r̂WB rBD

)
νD. The time-varying estimated body

pose (12) and the estimated body twist (11) satisfy

˙̂xW
B =

1

2
ξ̂
W

W,B
x̂W
B , (14)

which is integrated to update the body pose estimate with
respect to FW .

C. Practical implementation

In Section IV-A, we assume that the gravity vector in
the body frame is aligned with the gravity vector in the
world frame (i.e., gB = gW ), meaning that there is neither
pitch nor roll. We also did not consider the IMU noise.
Both assumptions are, in practice, false. The surface robot
oscillates due to the water motion, and the IMU is noisy;
hence, the gravity vector gI measured in FI is not constant.
Nonetheless, because the IMU noise is Gaussian and the

2Notice that ĝB = ±gB implies ϕg,ĝ = ±1. Furthermore,
∥∥ĝB

∥∥ =∥∥gB
∥∥ because we assume a noiseless gravity vector. This means that it is

unnecessary to consider the general case ĝB = ±αgB for α ∈ (0,∞)
which would also result in V̇ = 0.

robot tends to oscillate symmetrically with respect to the
vertical axis, we can use the zero-frequency component of
the gravity vector in the IMU frame, denoted by ḡI ∈ Hp.

The zero-frequency gravity vector is given by the average
value across all IMU measurements in the discrete-time
domain, which can be efficiently calculated using a recursive
formulation, namely

ḡI [n] =
1

n
gI [n] +

n− 1

n
ḡI [n− 1], (15)

where ḡI [0] ≜ 0 and n ∈ {1, 2, 3, . . .}. This way, when
calculating the estimated gravity vector ĝB in the adaptation
signal (8), we use the most up-to-date value of ḡI , namely

ĝB [n] = Ad
(
r̂BI [n]

)
ḡI [n]. (16)

Fig. 2 presents the three axes of the measured gravity
vector in the IMU frame FI , and the corresponding
zero-frequency components, showing that the filtered
measurements converge to a constant value corresponding
to the actual gravity vector.

Fig. 2. Example of the raw measurement of the gravity vector using an IMU
(dotted lines) and the corresponding zero-frequency components calculated
using the recursive average (15) (solid lines).

Solving the differential equations (13) and (14) in
continuous time to update the estimate (12) is notoriously
hard [18], as the underlying space of rigid motions is
a non-Euclidean manifold [19], [20]. Fortunately, those
equations can be easily integrated numerically in the unit
dual quaternion manifold [15] to obtain the estimates r̂BI
and x̂W

B at time n according to

r̂BI [n] = exp

(
T

2
ω̂B

B,I [n]

)
r̂BI [n− 1] (17)

and
x̂W
B [n] = x̂W

B [n− 1] exp

(
T

2
ξ̂
B

W,B
[n]

)
, (18)

respectively, where T is the sampling time and r̂BI is given
by an initial guess (it might be the identity 1) and x̂W

B [0] = 1.
Lastly, because the norm of the gravity vector is constant,

we need only to estimate the gravity vector direction.



Therefore, in practice, it is convenient to use the normalized
gravity vector; that is gB

norm ≜ gB/
∥∥gB

∥∥. This helps to
eliminate measurement noises that affect the gravity vector
norm.

The nonlinear estimation process is summarized in
Algorithm 1 and was implemented using the DQ Robotics
[21] module for Python. The computational cost is very
low and suitable for real-time, with a total of floating-
point operations summarized as follows: 173 additions,
279 multiplications, four trigonometric operations (sine
and cosine), four divisions, and two square roots. Those
operations can be found by analyzing the cost of addition,
multiplication, adjoint operation, and exponential mapping
of quaternions and dual quaternions [15].

Algorithm 1 Nonlinear estimator.
1: T ← sampling time; n← 1
2: gI [0]← initial guess; x̂W

B [0]← 1; r̂B
I [0]← initial guess

3: while deadReckoning() do
4: ▷ Get measurements from sensors
5: gI [n],ωI [n],νD[n]← getDataFromIMUandDVL()
6: ▷ Filter gI [n] and update the estimate r̂B

I

7: ḡI [n]← 1
n
gI [n] + n−1

n
ḡI [n− 1]

8: ĝB [n]← Ad
(
r̂B
I [n− 1]

)
ḡI [n]

9: ω̂B
B,I [n]← λ

(
ĝB [n]× gB

)
10: r̂B

I [n]← exp
(
T
2
ω̂B

B,I [n]
)
r̂B
I [n− 1]

11: ▷ Project the measurements onto the body frame
12: ω̂B

W,B [n]← Ad
(
r̂B
I [n]

)
ωI [n]

13: ˙̂pB
W,B [n]← Ad

(
rB
D

)
νD[n]

14: ▷ Update the body twist and current pose w.r.t world
15: ξ̂

B

W,B
[n]←ω̂B

W,B [n]+ε
(
˙̂pB
W,B [n]

)
16: x̂W

B [n]← x̂W
B [n− 1] exp

(
T
2
ξ̂
B

W,B
[n]

)
17: n← n+ 1
18: end while

V. EXPERIMENTS

We compared our proposed nonlinear filter with the work
by Fukuda et al. [4], who used an IMU and DVL with
a Kalman Filter (KF) for dead reckoning during GNSS
outages onboard a 50 m long ship in Tokyo Bay. A camera-
based motion capture system (VICON) was used instead of
the global navigation satellite system (GNSS) to initialize
the filter and as a ground truth. Values for the covariance
matrices were chosen according to sensor datasheets where
possible and KF’s Q matrix values were manually tuned to
give the lowest drift possible in the experiments.

A. Data Collection

A VICON motion capture system was used to record
MallARD’s body frame orientation and position. The DVL
frame was collocated with the body frame to reduce the
number of transformations but rotated 180 degrees about the
x axis. The VICON system consisted of 8 cameras mounted
around a 2.4m × 3.6m metallic pool. The vehicle was
tethered to receive joystick commands and transfer sensor
data to a base station computer.

MallARD was manually driven around the pool in
different motion patterns in ten experiments, including

figure-of-eight, stripes, squares, and pure rotation. Each
experiment was capped at two minutes as the dead reckoning
system is not intended to be used stand-alone for extended
periods.

B. Experimental Method and Results

For brevity, the figures in this section present data from
one experiment, figure-of-eight, unless otherwise stated. The
results for all experiments can be verified using the open-
source code and data sets available on GitHub [22].

Before dead reckoning was started, the IMU to body-frame
rotation estimation, described in lines 7–10 in Algorithm 1,
was allowed a four-second period to align the gravity vectors
automatically. The tuning factor was set to λ = 10 for all
experiments.

To assess the efficacy of the algorithm, it was first run
with the initial estimated orientation of the IMU in the body
frame defined to be close to its nominal orientation (i.e.,
r̂BI [0] = cos(π/3) + n sin(π/3), with n = (

√
3/3)(̂ı − ȷ̂ −

k̂)). Then, the same data was used with the initial condition
r̂BI [0] = 1. Fig. 3 shows that, in both cases, the normalized
error between the estimated gravity vector and the actual
gravity vector in the body frame quickly converges to zero.
Therefore, in practice, we do not need to know the nominal
IMU to body-frame rotation, thanks to the quick convergence
of the estimation error.

Fig. 3. The normalized error between the estimated and actual gravity
vectors in the body frame during a four-second calibration. The initialised
estimated rotation is r̂B

I [0] = cos(π/3) + n sin(π/3) and the non-
initialized is r̂B

I [0] = 1.

Fig. 4 shows the yaw component (around the body-
frame z-axis) of the aligned gyroscope data (i.e., already
considering the IMU to body-frame rotation estimation)
against the yaw rate extracted from the VICON’s orientation
quaternion. The alignment between the rotated gyroscope
data and robot’s body frame is held over the full length of
the experiment, highlighting the quality of the IMU to body-
frame rotation estimation, which is given by the adaptation
law (8) and the rotation propagation (17).

To assess the dead reckoning, the full estimated trajectory
is plotted in Fig. 5 along with the results from the state of
the art and VICON ground truth. Over the course of the two-
minute experiment, the dead reckoning estimation from the
nonlinear filter gives a final position drift of 0.04 m. The
state of the art is similarly positioned with a final drift of
0.06 m. Here, ’drift’ is defined as the Euclidean distance



Fig. 4. The angular velocity from the aligned gyroscope data and the
VICON ground truth around the body frame z-axis.

between the final position as determined by the ground truth
and the final position as estimated using dead reckoning.

The relatively accurate final position demonstrates that
the system would operate well as a short-term backup
(i.e., less than two minutes) in case of outages or as an
odometry source for a SLAM package. Averaged over all
ten experiments, summarized in Fig. 6, the average drift for
the nonlinear filter was 0.16 m with a standard deviation
(s.d.) of 0.06 m vs. an average drift of 0.15 m (s.d. 0.05 m)
for the state of the art.

The experiments were repeated with the IMU data rotated
by fixed amounts in degrees to further evaluate the effects
of IMU misalignment in the electronics tube. The KF-
based method is not re-tuned for each rotation and shows
a noticeable increase in final horizontal drift, even for small
(≤ 10 °) rotations of the IMU, whereas the nonlinear filter
is practically unaffected. Fig. 7 shows this rotation has an
effect on both methods for the figure-of-eight experiment.
A similar relationship between angle and drift was observed
for each method across all experiments.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed a dual-quaternion-based nonlinear
estimator for dead reckoning and a comprehensive
experimental evaluation using real-world experiments. The
estimator’s performance is comparable to the state of the art
if the state-of-the-art system has accurate sensor placement
information. However, the nonlinear estimator has several
advantages. First, knowledge of the rotation between the

Fig. 5. Trajectory in x and y in the world frame for both methods and
ground truth.

Fig. 6. Final horizontal drift for each experiment.

Fig. 7. IMU data rotated by fixed amounts to simulate a misalignment
of the IMU in the electronics tube. The nonlinear estimator estimates this
misalignment online, thus being practically unaffected by it.

IMU and the robot’s body frame is unnecessary because
it is calculated online by the estimator, and the estimation
converges within a few seconds of startup. This allows
flexibility in robot configuration that is useful in space-
constrained robot platforms where components are regularly
swapped and repositioned. Second, unlike state-of-the-art
approaches, often based on KFs and challenging to tune, the
proposed method has only one tuning parameter determining
the estimation convergence rate. Third, a formal analysis
has proven closed-loop stability of the estimation error for
the nonlinear filter; formal convergence guarantees are not
available with KF-based approaches because the system
is inherently nonlinear. Lastly, the nonlinear estimator is
computationally inexpensive, requiring 173 additions, 279
multiplications, four trigonometric operations (sine and
cosine), four divisions, and two square roots, which makes
it suitable for real-time applications and implementation in
onboard processing units.

In ten two-minute-long experiments, the average drift was
0.16 m (s.d. of 0.06 m), suitable for use in tandem with
a complementary absolute localization system, providing
estimates between readings and as a backup system in case
of outages.

Although this work has used a DVL for body-frame
velocity measurements, the proposed nonlinear estimator is
agnostic to the type of sensor providing this measurement
and could be used on a wheeled vehicle incorporating
velocity measurements from wheel encoders.

Future work will expand on the ideas presented here
to provide high-accuracy self-tuning and self-aligning
estimators, thus not requiring exact transformations between
sensors.
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