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On Pólya’s random walk constants∗

Robert E. Gaunt†, Saralees Nadarajah∗ and Tibor K. Pogány‡,§

Abstract

A celebrated result in probability theory is that a simple symmetric random walk on the
d-dimensional lattice Zd is recurrent for d = 1, 2 and transient for d ≥ 3. In this note, we
derive a closed-form expression, in terms of the Lauricella function of type C, for the return
probability for all d ≥ 3. Previously, a closed-form formula had only been available for d = 3.

Keywords: Random walk; return probability; Pólya’s random walk constants; Lauricella func-
tion; Watson’s triple integrals; Laplace transform
AMS 2010 Subject Classification: Primary 60G50; 33C65

1 Introduction

Let p(d) be the probability that a simple symmetric random walk on the d-dimensional lattice
Zd returns to origin, for d ≥ 1. A celebrated result of Pólya [10] states that p(1) = p(2) = 1 but
p(d) < 1 for d ≥ 3. An explicit formula is available in the three-dimensional case:

p(3) = 1− 1/u(3) = 0.3405373296 . . . ,

where

u(3) =
3

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

dx dy dz

3− cosx− cos y − cos z
(1.1)

=

√
6

32π3
Γ
( 1

12

)
Γ
( 5

12

)
Γ
( 7

12

)
Γ
(11
12

)
(1.2)

= 1.5163860592 . . .

(see [2, 5, 7, 13]). The integral in (1.1) is one of Watson’s triple integrals [13] up to a multiplicative
factor.

Closed-form expressions for the case d ≥ 4 are not available to date in the literature, although
numerical values are reported in [4, 8] and an integral representation was obtained by [8]: for
d ≥ 3,

p(d) = 1− 1/u(d), (1.3)

where

u(d) =

∫
(−π,π)d

(
d−

d∑
k=1

cosxk

)−1

dx1 dx2 · · · dxd (1.4)
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=

∫ ∞

0

[
I0

(x
d

)]d
e−x dx, (1.5)

with I0(·) denoting the modified Bessel function of the first kind of order zero, defined by

I0(x) =
∑
k≥0

1

(k!)2

(x
2

)2k
. (1.6)

The integral in (1.4) is a d-fold integral generalisation of the Watson triple integral (1.1) (again,
up to a multiplicative factor). Note that the integral (1.5) is not convergent for d = 1, 2, which
is easily seen from the limiting form I0(x) ∼ ex/

√
2πx, x → ∞ (see [9]).

In this note, we derive a closed-form expression for the return probability p(d) for any positive
integer d ≥ 3. The expression involves the Lauricella function of type C (see [3, 6]), defined by

F
(d)
C (a, b; c1, . . . , cd;x1, . . . , xd) =

∑
k1≥0

· · ·
∑
kd≥0

(a)k1+···+kd(b)k1+···+kd

(c1)k1 · · · (cd)kd

xk11 · · ·xkdd
k1! · · · kd!

, (1.7)

where (f)k = f(f + 1) · · · (f + k − 1) = Γ(f + k)/Γ(f) denotes the ascending factorial or the
Pochhammer symbol. Numerical routines for the direct computation of (1.7) are available; see,
for instance, the Mathematica-based routine presented in [1].

2 Closed-form expression for the return probability

Our main result is the following.

Theorem 2.1. For any positive integer d ≥ 3,

u(d) = F
(d)
C

(
1,

1

2
; 1, . . . , 1;

1

d2
, . . . ,

1

d2

)
. (2.8)

Proof. Using (1.6), we can write (1.5) as

u(d) =

∫ ∞

0

∑
k≥0

1

(k!)2

( x

2d

)2k

d

e−x dx

=

∫ ∞

0

∑
k1≥0

· · ·
∑
kd≥0

1

(k1! · · · kd!)2
( x

2d

)2k1+···+2kd
e−x dx

=
∑
k1≥0

· · ·
∑
kd≥0

1

(k1! · · · kd!)2 (2d)2k1+···+2kd

∫ ∞

0
x2k1+···+2kde−x dx

=
∑
k1≥0

· · ·
∑
kd≥0

1

(k1! · · · kd!)2 (2d)2k1+···+2kd
Γ (2k1 + · · ·+ 2kd + 1) . (2.9)

Using the duplication formula for the gamma function, (2.9) can be written as

u(d) =
1√
π

∑
k1≥0

· · ·
∑
kd≥0

1

(k1! · · · kd!)2 d2k1+···+2kd
Γ

(
k1 + · · ·+ kd +

1

2

)
Γ (k1 + · · ·+ kd + 1)

=
∑
k1≥0

· · ·
∑
kd≥0

(1)k1+···+kd

(
1
2

)
k1+···+kd

(1)k1 · · · (1)kdk1! · · · kd!d2k1+···+2kd
.

Now (2.8) follows from the definition in (1.7).
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Remark 2.2. The return probability (1.3) becomes

p(d) = 1−
[
F

(d)
C

(
1,

1

2
; 1, . . . , 1;

1

d2
, . . . ,

1

d2

)]−1

,

for all positive integers d ≥ 3.

Corollary 2.3. The following reduction formula holds:

F
(3)
C

(
1,

1

2
; 1, 1, 1;

1

9
,
1

9
,
1

9

)
=

√
6

32π3
Γ
( 1

12

)
Γ
( 5

12

)
Γ
( 7

12

)
Γ
(11
12

)
. (2.10)

Proof. Combine (1.2) and (2.8).

Remark 2.4. 1. The reduction formula (2.10) appears to be new. We could not locate it in
standard references such as [12].

2. We were unable to obtain a further simplification of (2.8) for d ≥ 4 from reduction formulas
for Lauricella functions in standard references such as [12]. However, we cannot not rule out
this possibility, especially in the light of the fact that we could not locate (2.10) in the existing
literature.

The direct Laplace transform [11, p. 346, Eq. 3.15.16.35] turns out to be erroneous. Here we
give its corrected form. On specifying λ = νj = 0, aj = d−1 and p = 1 in (2.12) below we arrive
at (2.8). Recall that the modified Bessel function of the first kind of order ν ∈ R is defined for
x ∈ R by the power series

Iν(x) =
∑
k≥0

1

k!Γ(ν + k + 1)

(x
2

)ν+2k
. (2.11)

Lemma 2.5. Denote ν =
∑d

j=1 νj, where d is a positive integer. Let ℜ(λ) + ν > −1 and
νj > −1; j = 1, . . . , d. Let a1, . . . , ad > 0. Then, the Laplace transform

Lp

[
xλ

d∏
j=1

Iνj (ajx)
]
dx =

Γ(λ+ ν + 1)

2νpλ+ν+1

{ d∏
j=1

a
νj
j

Γ(νj + 1)

}

· F (d)
C

(λ+ ν + 1

2
,
λ+ ν

2
+ 1; ν1 + 1, . . . , νd + 1;

a21
p2

, . . . ,
a2d
p2

)
, (2.12)

provided p >
∑d

j=1 aj, or p =
∑d

j=1 aj and ℜ(λ) < d/2− 1.

Proof. The conditions p >
∑d

j=1 aj , or p =
∑d

j=1 aj and ℜ(λ) < d/2− 1 are required to ensure
that the integral in the Laplace transform is convergent; this is easily seen from the limiting
form Iν(x) ∼ ex/

√
2πx, x → ∞ (see [9]).

Applying the power series definition (2.11) of the function Iν(x), denoting n = (n1, . . . , nd)
and n =

∑d
j=1 nj , we conclude by the Legendre duplication formula (twice) that

Lp

[
xλ

d∏
j=1

Iνj (ajx)
]
dx =

∫ ∞

0
e−pxxλ

d∏
j=1

Iνj (ajx) dx

=
∑
n≥0

d∏
j=1

(aj
2

)2nj+νj

Γ(nj + νj + 1)nj !

∫ ∞

0
e−pxxλ+2n+ν+1 dx
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=
∑
n≥0

d∏
j=1

(aj
2

)2nj+νj

Γ(nj + νj + 1)nj !

Γ(λ+ 2n+ ν + 1)

pλ+2n+ν+1

=
2λ√

πpλ+ν+1

d∏
j=1

a
νj
j

Γ(νj + 1)

∑
n≥0

Γ
(λ+ ν + 1

2
+ n

)
Γ
(λ+ ν

2
+ 1 + n

) d∏
j=1

(a2j/p
2)nj

(νj + 1)nj nj !

=
Γ(λ+ ν + 1)

2νpλ+ν+1

d∏
j=1

a
νj
j

Γ(νj + 1)

∑
n≥0

(
λ+ ν + 1

2

)
n

(
λ+ ν

2
+ 1

)
n

d∏
j=1

(a2j/p
2)nj

(νj + 1)nj nj !
,

which is equivalent to the statement.
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