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Abstract

We estimate and test long-run risk models using international macroeconomic and

financial data. The benchmark model features a representative agent who has recur-

sive preferences with a time preference shock, a persistent component in expected

consumption growth, and stochastic volatility in fundamentals characterized by an

autoregressive Gamma process. We construct a comprehensive dataset with quar-

terly frequency for ten developed countries and employ an efficient likelihood-based

Bayesian method that exploits up-to-date sequential Monte Carlo methods to make

full econometric inference. Our empirical findings provide international evidence

in support of long-run risks, time-varying preference shocks, and countercyclical-

ity of the stochastic discount factor. We show the existence of a global long-run

consumption factor driving equity returns across individual countries.
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Really, the most natural thing to do with the consumption-based model is to

estimate it and test it, as one would do for any economic model (p.267).

—— Cochrane, John H. (2008)

1. Introduction

The “equity premium puzzle”, first documented by Mehra and Prescott (1985), states

that the standard consumption-based asset pricing model with constant relative risk

aversion (CRRA) would require implausibly high risk aversion to explain the historical

equity premium in the US market, given low variation observed in the consumption data.

Since then, a rapidly growing literature has emerged to explain the equity premium

puzzle, along with other notable behaviors of asset returns such as a low and smooth

risk-free rate, high equity volatility, and stock return predictability (e.g., Weil, 1989;

Campbell and Cochrane, 1999; Routledge and Zin, 2010; Ju and Miao, 2012; Wachter,

2013). Among those consumption-based models, the long-run risk model proposed by

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) has attracted remarkable

attention and become a benchmark in the literature.

However, studies on consumption-based models and the long-run risk models in par-

ticular so far have been confined to explaining the US market data. Analysis based on

macroeconomic and financial data in other developed countries is rather limited, even

though it would be interesting for reasons as follows. First, as highlighted by Campbell

(2003, 2018), the equity premium puzzle is a global phenomenon that also prominently

prevails in other developed countries. Second, given that the heart of the long-run risk

models is a slow-moving latent process driving expected consumption growth, we then

ask whether the relative positive evidence in support of long-run risk is special for the

U.S market? Complementing the US-based finding with evidence from other economies

is one promising way to address questions regarding the importance of this process and

provides a way to test the model.

Thus, as one contribution of our paper, we construct a comprehensive dataset in-
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cluding quarterly macroeconomic and financial data in the post-war period for a rich

set of developed countries and estimate and test long-run risk models using this dataset.

Our sample for estimation consists of quarterly data on aggregate consumption, divi-

dends, risk-free rates, and stock market returns for ten developed countries, including

the US, the UK, Germany, France, Italy, Japan, Canada, Australia, the Netherlands,

and Switzerland.

Moreover, the predominant approach in prior research on consumption-based asset

pricing has predominantly employed calibration. This involves selecting values for primi-

tive parameters within a utility function and specifying fundamental processes to match a

chosen set of moments related to fundamentals and asset returns. As highlighted earlier,

it is natural to formally estimate and test consumption-based models. However, struc-

tural estimation studies in asset pricing remain notably scarce. This scarcity is primarily

attributed to the formidable challenges in econometric estimation posed by consumption-

based models. The complexity arises from the highly nonlinear nature of global solutions

to these models concerning state variables. Additionally, the limited availability and low

frequency of data on fundamentals, particularly for countries other than the US, further

contribute to the difficulty. Consequently, only a handful of studies have undertaken

econometric estimation of consumption-based models using US data; see, for example,

Bansal, Gallant, and Tauchen (2007), Bansal, Kiku, and Yaron (2016), Schorfheide, Song,

and Yaron (2018), Gallant, Jahan-Parvar, and Liu (2019), and Fulop et al. (2022). Most

of these studies either use moment-based or indirect inference methods (e.g., Bansal,

Gallant, and Tauchen, 2007; Bansal, Kiku, and Yaron, 2016; Gallant, Jahan-Parvar, and

Liu, 2019), which do not fully exploit information in the likelihood function implied by

the original asset pricing models, or crucially rely on the log-linearization method of

Campbell and Shiller (1988) to solve for asset prices (e.g., Bansal, Gallant, and Tauchen,

2007; Bansal, Kiku, and Yaron, 2016; Schorfheide, Song, and Yaron, 2018). In recent

work, Pohl, Schmedders, and Wilms (2018) demonstrate that the log-linearized solutions

to long-run risk models can generate significant numerical errors. They show that using

projection methods to solve for global solutions to long-run risk models can account for
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higher-order effects and effectively reduce numerical errors. In this paper, we conduct

full likelihood-based estimation by exploiting the global nonlinear solutions and Bayesian

techniques.

We consider a representative agent who has recursive preferences (Epstein and Zin,

1989; Weil, 1989) that allow for the separation between risk aversion and the elasticity

of intertemporal substitution (EIS). We follow the long-run risk literature and assume

that expected consumption growth contains a slow-moving persistent component that

is subject to stochastic changes, and that conditional volatilities of fundamentals are

stochastic, capturing time-varying economic uncertainties. Rather than using the au-

toregressive (AR) process to model conditional variance, as is commonly done in the

long-run risk literature, we assume that conditional variances of fundamentals follow au-

toregressive gamma (ARG) processes to ensure positivity of conditional variances. This

assumption leads to reliable solutions to the models with time-varying uncertainty. Fur-

thermore, we follow Albuquerque et al. (2016) to assume that the agent’s rate of time

preference is subject to stochastic changes. Introducing time-varying preference shocks

plays a crucial role for a consumption-based model in reconciling correlation and covari-

ance between stock returns and fundamentals typically observed in the US data as well

as in international data. Considering the model with time-varying preference shocks, our

estimation naturally takes into account the empirical correlation between stock returns

and fundamentals. As a consequence, the parameter estimates and latent states obtained

in the estimation are consistent with the estimated law of motion for time preference

shocks.

We rely on the collocation projection method to solve for global solutions to our mod-

els and make full econometric inference based on an efficient likelihood-based Bayesian

method that exploits up-to-date sequential Monte Carlo methods. We extend the se-

quential Monte Carlo square (SMC2) method used in Fulop et al. (2022) with a more

efficient particle filter for likelihood estimation to estimate our models that have more

latent states. Different from moment-based methods, our SMC2 method takes advan-

tage of full information contained in the likelihood function, obtained from running an
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efficient square-root unscented particle filter, and provides us with the posterior distri-

bution of model parameters and the smoothing distribution of latent states over time

that determine fluctuations of asset prices. Different from traditional Bayesian Markov

Chain Monte Carlo (MCMC) methods or particle MCMC methods (Andrieu, Doucet,

and Holenstein, 2010), a tailor-made version of which is used in Schorfheide, Song, and

Yaron (2018) for estimating a linearized model, our SMC2 method provides us with the

marginal likelihood estimates that are necessary statistics for model comparisons and can

be easily parallelized, making it computationally convenient to use in estimation.

We want to emphasize that we implement estimation separately for each country, as

our main purpose is to examine whether long run risk exists and how the model performs

in non-US countries. In other words, we do not examine international risk sharing among

developed countries, but instead consider consumption and portfolio autarky for each of

the developed countries. A desirable approach would be to estimate the models jointly

for a selected set of countries, but at the cost of only a very small number of countries to

be considered because of the heavy computational burden in the solution and estimation

algorithms. Hence, we leave this interesting direction to future research.

Our empirical findings can be briefly summarized as follows. First, we find that with

regard to fitting asset returns, the time-varying preference shock plays a much more

important role than a separate stochastic volatility process capturing a time-varying

independent risk in the dividend dynamics. For almost all the countries, introducing an

independent stochastic volatility process in dividend growth cannot improve the model fit

on stock market returns but incur a very high computational cost. Overall, our preferred

model is the one that features a time-varying preference shock, a persistent component in

expected consumption growth, and a common stochastic volatility process that governs

the dynamics of both consumption growth and dividend growth. Such evidence exists

almost in all the countries.

Second, our estimation results based on the international analysis clearly indicate

values of the EIS greater than 1 (the posterior means are around 2), a presumption

that has been emphasized by studies on long-run risks and more broadly, by asset pricing

5



studies based on recursive preferences; see, for example, Bansal and Yaron (2004), Bansal

et al. (2014), Ai (2010), Ju and Miao (2012), Wachter (2013), Croce (2014), and Jahan-

Parvar and Liu (2014). For all the countries in our analysis, the posterior mean estimates

of the relative risk aversion (RRA) parameter range between 5 and 10. Our estimates of

relative risk aversion are reasonable and consistent with the prediction of economic theory

as well as experimental evidence, but are smaller than values commonly postulated in

the calibration studies for the countries other than the US. We find that introducing

time-varying preference shocks in the long-run risk model helps deliver economically

plausible estimates of risk aversion, not only for the US but also for the other developed

economies. Our estimates of RRA and EIS for different countries provide empirical

support to investors’ preference for early resolution of uncertainty based on international

evidence.

Third, we find that for all the countries, expected consumption growth consists of

a persistent component, albeit the importance of this long-run risk component varies

across countries. For the US, the long run component accounts for a significant amount

of time variation in consumption growth, while for the other countries it accounts for

less variation in consumption growth. Moreover, there is notable heterogeneity across

countries in the level of persistence in stochastic volatility of consumption growth.

Fourth, for most of the countries in our sample, the stochastic discount factor under re-

cursive utility has a countercyclical component. In addition, conditional equity premium

and conditional volatility of stock returns also exhibit countercyclical variation to a cer-

tain extent. With regard to fitting time series of asset returns, for all the ten countries,

our estimation generates fitted risk-free rates that closely track the historical movements

of the actual risk-free rates, suggesting high accuracy of our estimates of the stochastic

discount factor. Nevertheless, fitted market returns remain less accurate, though they

can explain a significant fraction of actual market returns for all the countries.

Finally, we find that the correlations of the long-run consumption components are

much stronger than the consumption growth rates across individual countries. There-

fore, we construct a global long-run consumption factor based on the filtered long-run
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consumption components of individual countries. We find that this global long-run con-

sumption factor strongly comoves with a global equity market factor, defined as the

equal-weighted average of equity market returns across the ten individual countries or

the market factor of the Fama-French developed economies (Fama and French, 2012). The

beta estimates of equity market returns of individual countries on the global long-run con-

sumption factor are all larger than 1 and highly statistically significant in the time-series

regressions, and the factor carries a significant positive risk premium, at about 0.85%

with a p-value of 5%, as estimated in the cross-sectional regression.

Our paper is closely related to two recent papers, Schorfheide, Song, and Yaron (2018)

and Fulop et al. (2022), both of which employ likelihood-based Bayesian approaches to

estimate their respective versions of the long-run risk model. However, our paper dif-

fers from these two in important aspects. First, both studies exclusively focus on the

US market, whereas ours implements empirical investigations for ten developed countries

and provides international evidence in support of long-run risks. Second, Schorfheide,

Song, and Yaron (2018) introduce separate volatility processes, respectively, for con-

sumption growth, the long-run risk component, and dividend growth using conditional

log-normal processes. They rely on linearization of the log-volatility processes and the

log-linearization method to find linear functions for equilibrium asset prices. It is worth

mentioning that there exist nontrivial differences between the approximating model char-

acterizing asset prices and the model used in the estimation. In addition, without using

log-linearization, their Bayesian estimation method is too computationally demanding

and hard to implement for ten countries. Third, Fulop et al. (2022) consider long-run

risk models in which the consumption volatility process is modeled using either an ARG

process or an AR process; however, the preference shock is absent in their models, and

they don’t consider a separate dividend volatility process as well. Fourth, neither of the

two studies does model comparisons to evaluate the relative importance of different state

variables determining asset prices.

Another related work is Creal and Wu (2020) that estimates consumption-based mod-

els with long-run risks, recursive utility, time preference shocks, and a noncentral Gamma
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volatility process, using the US Treasury yields data. However, different from our struc-

tural estimation, they implement estimation using a two-stage procedure, separately for

the state dynamics and the pricing kernel, and furthermore, their estimation relies on

loglinearization of long-run risk models. In a recent contribution, Nakamura, Sergeyev,

and Steinsson (2017) employ Bayesian MCMC methods to estimate a long-run risk model

using annual per capita consumer expenditures data on many developed countries for a

long sample. However, their identification of long-run risks solely relies on the consump-

tion data, and they do not estimate preference parameters or stochastic rates of time

preference as we do in this paper. An earlier work by Rangvid, Schmeling, and Schrimpf

(2010) uses the generalized methods of moments (GMM) to estimate a long-run risk

model without a dividend process or stochastic consumption volatility for fifteen coun-

tries. They heavily rely on log-linearization and only exploit consumption and market

returns data at an annual frequency.

The rest of the paper is organized as follows. Section 2 presents long-run risk models

considered in our estimation. Section 3 briefly describes the solution method and our

econometric inference based on sequential Monte Carlo methods. Section 4 discusses the

international macroeconomic and financial data used for model estimation. Section 5

presents estimation results and discusses asset pricing implications. Section 6 concludes

the paper. Additional materials are given in the Internet Appendix.

2. Model Framework

2.1. Preferences

We examine an endowment economy, in which a representative agent has recursive pref-

erences as in Epstein and Zin (1989) and Weil (1989). Moreover, following Albuquerque

et al. (2016) and Schorfheide, Song, and Yaron (2018), we introduce time preference

shocks in the utility function. As shown in Albuquerque et al. (2016), a major role of

time preference shocks is to mitigate the strong correlation between stock returns and

measurable fundamentals that is typically obtained in consumption-based models without
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demand shocks. As a result, the agent’s recursive utility function is given by

Vt =
[
(1− δ)λtC

1−γ
θ

t + δ
[
Et(V 1−γ

t+1 )
] 1
θ

] θ
1−γ

, (1)

where Ct is the time-t consumption, 0 < δ < 1 is the agent’s time preference parameter,

λt is the shock to the time rate of preference, γ is the RRA parameter, ψ is the EIS

parameter, θ is given by θ = 1−γ
1−1/ψ

, and Et denotes conditional expectation with respect

to information up to time t.

This class of preferences allows for a separation between RRA and EIS. The agent

prefers early (late) resolution of uncertainty when γ > 1/ψ (γ < 1/ψ), and when γ = 1/ψ,

the agent has CRRA preferences and is neutral to the timing of resolution of uncertainty.

The agent’s utility maximization is subject to the following budget constraint,

Wt+1 = (Wt − Ct)RW
t+1, (2)

where Wt is the agent’s wealth, and RW
t is the return on the wealth portfolio.

For any asset i with ex-dividend price Pi,t and dividend Di,t, the standard Euler

equation holds, i.e.,

Et [Mt+1Ri,t+1] = 1, (3)

where Ri,t+1 = (Pi,t+1 + Di,t+1)/Pi,t, and Mt is the stochastic discount factor (SDF). In

particular, for the risk-free asset, we have Rf,t = 1/Et[Mt+1]. It can be shown that the

SDF for the recursive utility function defined in Equation (1) takes the form1

Mt+1 = δ
λt+1

λt

(
Ct+1

Ct

)− 1
ψ

 Vt+1[
Et
(
V 1−γ
t+1

)] 1
1−γ

 1
ψ
−γ

, (4)

which can be alternatively expressed as

Mt+1 = δθ
(
λt+1

λt

)θ (
Ct+1

Ct

)− θ
ψ (
RW
t+1

)θ−1
. (5)

1See Albuquerque et al. (2016) for a derivation.
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Thus, the Euler equation (3) implies that for the return on the wealth portfolio, RW
t ,

we have

Et

[
δθ
(
λt+1

λt

)θ (
Ct+1

Ct

)− θ
ψ (
RW
t+1

)θ]
= 1, (6)

and for the return on the market portfolio, Rm,t, we have

Et

[
δθ
(
λt+1

λt

)θ (
Ct+1

Ct

)− θ
ψ (
RW
t+1

)θ−1
Rm,t+1

]
= 1. (7)

As in Albuquerque et al. (2016), we assume that the growth rate of preference shocks,

defined as xλ,t+1 ≡ ln (λt+1/λt), follows an AR(1) process,

xλ,t+1 = ρλxλ,t + σληλ,t+1, (8)

where the shock ηλ,t is standard normal, i.e., ηλ,t ∼ N(0, 1), and is independent of the

other shocks in the model.

2.2. Fundamentals

We follow Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) and assume that

the log of consumption growth, ∆ct+1 ≡ ln (Ct+1/Ct), consists of a persistent component,

xt, and a transitory component,

∆ct+1 = µ+ xt + σc,tηc,t+1, (9)

xt+1 = ρxxt + φxσc,tηx,t+1, (10)

and that dividends are imperfectly correlated with consumption and their log-growth

rate, ∆dt+1 ≡ ln (Dt+1/Dt), has the dynamics of

∆dt+1 = µd + Φxt + φdcσc,tηc,t+1 + φdσd,tηd,t+1, (11)

where ηc,t, ηx,t, and ηd,t are i.i.d normal N(0, 1), and σ2
c,t and σ2

d,t are conditional variances

of consumption growth and dividend growth, respectively.
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In the standard long-run risk model (Bansal and Yaron, 2004; Bansal, Kiku, and

Yaron, 2012), consumption variance is assumed to follow a Gaussian AR(1) process.

However, this modeling choice suggests that consumption variance can take negative

values, which renders the numerical solution to the model problematic. To overcome

this issue, Fulop et al. (2022) and Creal and Wu (2015, 2020) use an autoregressive

gamma (ARG) process, proposed by Gourieroux and Jasiak (2006), to model consumption

variance and show that the ARG-based long-run risk model outperforms the AR-based

one in fitting US market data. To this end, we follow Fulop et al. (2022) to model the

conditional variances, σ2
i,t for i = {c, d}, using ARG processes with order 1,

σ2
i,t ∼ Gamma(φis + ζi,t, ci), ζi,t ∼ Poisson

(
ρisσ

2
i,t−1

ci

)
, (12)

where Gamma(·) and Poisson(·) denote the gamma distribution and the Poisson dis-

tribution, respectively, ρis controls the persistence of each variance process, ci deter-

mines the scale, and to ensure positivity of conditional variances, the Feller condi-

tion, φis > 1, needs to be satisfied. As shown in Gourieroux and Jasiak (2006) and

Creal (2017), the transition density of σ2
i,t is a noncentral gamma distribution.2 Its

conditional mean and variance are given by E[σ2
i,t|σ2

i,t−1] = σ̄2
i (1 − ρis) + ρisσ

2
i,t−1 and

V ar[σ2
i,t|σ2

i,t−1] =
(1−ρis)σ̄2

i

φis

(
(1− ρis)σ̄2

i + 2ρisσ
2
i,t−1

)
, respectively. The stationary distri-

bution of the ARG process is Gamma(φis, ci/(1− ρis)) with the long-run mean given by

σ̄2
i = φisci/(1− ρis). We label this extended long-run risk model as “eLRR2”.

When we assume that the same conditional variance enters into dynamics of both

consumption growth and dividend growth, i.e., σc,t = σd,t = σt, we have a nested long-

run risk model with time preference shocks, which we label as “eLRR1”. When we further

shut down time preference shocks, we obtain the counterpart of the standard long-run

risk model, which is also studied in Fulop et al. (2022), and we simply label this nested

2The density function has the form of

f(σ2
i,t|σ2

i,t−1) =

(
σ2
i,t

ρisσ2
i,t−1

)(φis−1)/2
1

ci
exp

(
−

(σ2
it + ρisσ

2
i,t−1)

ci

)
Iφis−1

2
√
ρisσ2

i,t−1σ
2
i,t

ci

 ,

where Iζ(x) = (x/2)ζ
∑∞
i=0(x2/4)i/{i!Γ(ζ + i+ 1)} denotes a modified Bessel function of the first kind.
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model as “LRR”.

3. Solution and Econometric Inference

3.1. Model Solution

The usual method to solve the long-run risk models is the log-linear approximation

method of Campbell and Shiller (1988).3 In a recent paper, Pohl, Schmedders, and

Wilms (2018) show that solving long-run risk models with log-linearization can yield

significant numerical errors when state variables are persistent. They advocate using

projection methods to account for higher-order effects. The higher-order effects are im-

portant for producing reliable asset pricing results. Therefore, in this paper, we solve

our models using the collocation projection method (Judd, 1992, 1999). In the Internet

Appendix, we also provide the log-linear solutions to the eLRR2 and eLRR1 models.

To illustrate the collocation projection method, we denote the current state of the

economy by z and the state in the next period by z′; for example, in the full model

of eLRR2, the state vector is z = {xλ, x, σ2
c , σ

2
d}. We solve the models in two steps as

follows.

First, we solve the Euler equation for the wealth portfolio and obtain the wealth-

consumption ratio. In the projection method, the solution function of the log wealth-

consumption ratio, ϕw(z) ≡ ln
(
W (z)
C(z)

)
, is approximated by Chebyshev polynomials and

a set of associated unknown coefficients. In particular, the approximation is given by

ϕ̂w(z) =
∑n

k=0 αw,kΛk(z), where Λk(z), k = 0, . . . , n, is a set of basis functions, and αw,k,

k = 0, . . . , n, is a set of unknown coefficients to be determined. The basis functions are

constructed as products of Chebyshev polynomials for the relevant state variables. For

the Euler equation, the solution function of the log wealth-consumption ratio satisfies

E
[

exp

(
θ

(
ln δ + x

′

λ +

(
1− 1

ψ

)
∆c(z′|z) + ϕw(z′)− ln

(
eϕw(z) − 1

)))∣∣∣∣ z] = 1, (13)

3For example, see Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012), Bansal, Kiku, and
Yaron (2016), Beeler and Campbell (2012) and Schorfheide, Song, and Yaron (2018)
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where the log-return on the wealth portfolio is given by

rw(z′|z) ≡ ln

(
W (z′)

W (z)− C(z)

)
= ϕw(z′)− ln(eϕw(z) − 1) + ∆c(z′|z). (14)

Second, we approximate the solution function of the log price-dividend ratio by ϕ̂(z) =∑n
k=0 αkΛk(z), where αk, k = 0, . . . , n, is a set of unknown coefficients to be determined.

Equations (3) and (5) imply that the log price-dividend ratio, ϕ(z) ≡ ln
(
P (z)
D(z)

)
, satisfies

E
[

exp

(
θx
′

λ + θ ln δ − θ

ψ
∆c (z′|z) + (θ − 1) rw(z′|z) + r(z′|z)

)∣∣∣∣ z] = 1, (15)

where r (z′|z) is the log-return on an asset with the dividend growth rate of ∆d(z′|z),

r(z′|z) = ln
(
eϕ(z′) + 1

)
− ϕ(z) + ∆d(z′|z). (16)

We apply the collocation projection method and approximate the solution functions

ϕw(z) and ϕ(z) using Chebyshev polynomials. For the Gaussian innovation shocks, we

use the Gauss-Hermite quadrature to compute conditional expectations. For the ARG

specification, we use the importance sampling method to compute conditional expecta-

tions. The collocation projection method leads to a square system of nonlinear equations,

which can be solved using the standard nonlinear equation solvers to obtain the solutions

to the unknown coefficients αw,k and αk.
4

To facilitate numerical computation, we first derive the Jacobian of the square sys-

tem of nonlinear equations with respect to the solution coefficients (via the chain rule)

analytically when solving for the wealth-consumption ratio and the price-dividend ra-

tio. We then supply the user-defined Jacobian to the numerical solvers in MATLAB.

We find that this practice greatly reduces computational burden and improves numerical

efficiency. Even for the model eLRR2 with four state variables that has substantial nu-

merical complexity, the implementation of global solutions is fast. Thus, our numerical

4Borovicka and Stachurski (2020) show exact necessary and sufficient conditions for existence and
uniqueness of solutions to a class of models with recursive utility. In our estimation, arbitrary parameter
values may be generated and do not necessarily satisfy these conditions. We impose these conditions in
the estimation as additional restrictions on parameters when solving and simulating our models.
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algorithm improves over previous studies in terms of computational cost.5

3.2. Estimation

Our models can be cast into the framework of nonlinear and non-Gaussian state-space

models. There are four state variables in the full model: the growth rate of preference

shocks, xλ,t, whose dynamics are given in Equation (8), the long-run component, xt,

whose dynamics are given in Equation (10), and the consumption and dividend variance

processes, σ2
i,t for i = {c, d}, whose dynamics are given in Equation (12).

Moreover, there are four observables including the consumption growth rates (∆ct),

the dividend growth rates (∆dt), the stock market returns (rm,t), and the risk-free returns

(rf,t). The dynamics of consumption and dividend growth rates are given in Equations

(9) and (11), respectively. For the stock market and risk-free returns, we assume that

their dynamics are given by

rm,t = f(zt, zt−1,∆dt,Θ) + σmηm,t, (17)

rf,t = g(z̃t,Θ) + σfηf,t, (18)

respectively, where zt = {xλ,t, xt, σ2
c,t, σ

2
d,t}, z̃t = {xλ,t, xt, σ2

c,t}, Θ denotes the set of model

parameters, rm,t and rf,t are the observed market and risk-free returns, f(·) and g(·)

are two nonlinear functions resulted from the projection method determining the model-

implied market and risk-free returns, and the error terms in Equations (17) and (18)

capture asset pricing errors, which are assumed to follow independent standard normal

distributions with σm and σf being the standard deviations of the respective pricing

errors.

For T periods, we denote all observations as y1:T = {∆ct,∆dt, rm,t, rf,t}Tt=1 and the

latent states as z1:T = {xλ,t, xt, σ2
c,t, σ

2
d,t}Tt=1. Our aim is to estimate the joint posterior

distribution of parameters and latent states, p(Θ, z1:T |y1:T ), which can be decomposed

5Previous studies such as Pohl, Schmedders, and Wilms (2018) and Fulop et al. (2022) use the
cubic spline interpolation method to obtain the solution functions. Because an analytical Jacobian is
unavailable with the cubic spline method, both Pohl, Schmedders, and Wilms (2018) and Fulop et al.
(2022) cannot achieve numerical efficiency as our algorithm does.
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into

p(Θ, z1:T |y1:T ) = p(z1:T |Θ, y1:T )p(Θ|y1:T ), (19)

where p(z1:T |Θ, y1:T ) solves state smoothing, and p(Θ|y1:T ) addresses parameter inference.

We extend the SMC2 method proposed in Fulop et al. (2022) with more efficient

numerical methods and particle filter for likelihood estimation to estimate our models.

The dimension increase of state variables makes state filtering more challenging. Instead

of using the unscented Kalman filter (UKF) of Li (2011) as in Fulop et al. (2022) to

generate proposals, we rely on the square-root version that efficiently solves the covariance

singularity problem. Both improvements in numerical computation and particle filtering

greatly enhance the efficiency of the likelihood estimation and considerably reduce the

computational cost.6

The SMC2 method is based on the ideas of particle Markov chain Monte Carlo methods

(PMCMC) (Andrieu, Doucet, and Holenstein, 2010) and sequential Monte Carlo samplers

(Del Moral, Doucet, and Jasra, 2006). The former shows that MCMC samplers converge

to the real posterior distribution of parameters even when the likelihood is approximated

by particle filters, and the latter suggests that a bridge can be built between the prior

and posterior distributions of parameters by using some MCMC kernels of invariant

distribution of parameters. The SMC2 method delivers exact draws for the joint posterior

distribution of parameters and latent states for any given number of the state particles.

Different from moment-based methods, our econometric method exploits full infor-

mation contained in the likelihood function of the models in estimation. In addition,

our method provides us with the posterior distribution of model parameters and the

smoothing distribution of latent states over time that determine fluctuations of asset

prices. Different from traditional Bayesian MCMC methods or PMCMC methods (An-

drieu, Doucet, and Holenstein, 2010),7 the SMC2 method can directly deliver the marginal

6Nevertheless, the estimation remains computationally challenging for the full model (eLRR2). For
example, for the US that has a sample size of 290 quarters with the sample ranging from 1947Q2 to
2019Q3, the estimation takes only about 1.2 hours for LRR (two state variables) and 2.5 hours for
eLRR1 (three state variables), whereas it takes more than 25 hours for eLRR2 (four state variables).
All estimations are implemented in Matlab on a Dell workstation with Intel Xeon Gold 6238R CPU (46
cores). We make the Matlab codes available for reproducing all our empirical results.

7A tailor-made version of PMCMC is used in Schorfheide, Song, and Yaron (2018) for estimating the
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likelihood estimates that are necessary statistics for model comparisons and can be easily

parallelized, making it computationally convenient to use in estimation. For more details

on the SMC2 method, we refer readers to Chopin, Jacob, and Papaspiliopoulos (2013),

Fulop and Li (2013, 2019), and Fulop and Duan (2015).

4. Data

Our dataset can be viewed as an updated and extended version of the international dataset

used in Campbell (1999, 2003, 2018). Specifically, we construct quarterly data on real

aggregate consumption, dividends, risk-free rates, and stock market returns for each of

the following ten countries: Australia (AU), Canada (CA), France (FR), Germany (DE),

Italy (IT), Japan (JP), the Netherlands (NL), Switzerland (CH), the UK (UK), and USA

(US). For the US and UK, the sample starts from 1947:Q2 and 1965:Q4, respectively; for

all the other countries, the sample starts from 1973:Q4; and for all the countries in our

analysis, our sample ends in 2019:Q3.

4.1. Macroeconomic Data

Macroeconomic data on real seasonally-adjusted aggregate consumption, population, and

consumer price index (CPI) are downloaded from Datastream. Following the literature

(see, e.g., Campbell, 1999, 2003; Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012),

for the US, the UK, and Canada, we use the seasonally adjusted real consumption (per

capita) of nondurables and services.8 However, for the other countries, given data avail-

ability, we use private final consumption expenditures to measure aggregate consumption.

Specifically, we take real seasonally-adjusted private final consumption expenditures from

the Quarterly National Accounts of Organization for Economic Cooperation and Develop-

ment (OECD) database, which are then divided by the annual population obtained from

International Financial Statistics (IFS, line 99) of International Monetary Fund (IMF) to

linearized model.
8See the Internet Appendix for the detailed description of the construction of nondurables and services

consumption.

16



yield real seasonally-adjusted consumption per capita.9 Moreover, as a comparison, we

also use the private final consumption data for the US, the UK, and Canada in our esti-

mation. The estimation results are very similar to those obtained using the nondurables

and services consumption. For the sake of brevity, these results are presented in the

Internet Appendix.

The source of CPI for the US is the Treasury and Inflation database of Wharton

Research Data Services (WRDS), and the source of CPI for the other countries is IFS

(line 64). We construct quarterly CPI from monthly data by selecting the value of the

last month in each quarter for all the countries except for Australia, as the IFS line 64

for Australia is already available at quarterly frequency. We take the first difference of

log CPI to construct inflation rates.

4.2. Interest Rate Data

The short-term interest rates are downloaded from Datastream. Specifically, we download

and construct the following nominal interest rates for each of those countries,

• Australia and Canada: 3-month or 90-day interbank rates from OECD main eco-

nomic indicators;

• France: average monthly money market rates from Banque de France;

• Germany: 3-month (monthly average) Frankfurt interbank offered rates from Eu-

ropean Banking Federation/the Financial Markets Association;

• Italy: 3-month (monthly average) interbank deposit rates from Bank of Italy;

• Japan: overnight uncollaterised call money rate (average) from Bank of Japan;

• Netherlands: average money market rates paid on bankers’ call loans from IFS;

missing values are replaced by the observations from call money rate from De Ned-

erlandsche Bank (DNB);

• Switzerland: overnight Swiss franc deposit rates in international money markets

from IFS; missing values are replaced by the observations from call money/interbank

9As consumption data are time-averaged, and the level of consumption is not a point-in-time obser-
vation but a flow during a quarter, we face a timing convention problem when computing consumption
growth. As such, we follow Campbell (2003) and use the ‘beginning-of-quarter’ timing convention to
calculate the growth rate of consumption per capita.
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rate from OECD main economic indicators;

• UK: rates at which 91-day bills are allotted; weighted averages of Friday data from

Bank of England;

• US: 90-day US treasury bill rates from the Treasury and Inflation database of

WRDS.

Furthermore, to alleviate the concern of the sovereign default risk, we construct

default-free interest rates for all the countries by measuring the sovereign default risk

using the Moody’s sovereign ratings.10 We run panel regressions of interest rates on

sovereign ratings by controlling both country and seasonal fixed effects. The interest

rates that remove the component explained by sovereign ratings are regarded as default-

free interest rates. The details of construction of default-free interest rates are included

in the Internet Appendix.

To construct the real risk-free rates, following the literature (see, e.g., Bansal and

Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Schorfheide, Song, and Yaron, 2018), we

first construct the ex post real risk-free rates by deflating nominal interest rates using

inflation rates and then regress the ex post real risk-free rates on one-year lagged nominal

rates and one-year lagged inflation rates. The predicted values from this regression yield

the ex ante risk-free rates, which are used in our estimation.

4.3. Stock Market Data

The stock market data for the US are obtained from the Center for Research in Security

Prices (CRSP). The market returns are the value-weighted returns on the stock portfolio

of NYSE, AMEX and NASDAQ. The dividend growth rates are constructed from the

value-weighted returns including and excluding dividends. For the remaining countries,

following Rangvid, Schmeling, and Schrimpf (2014), we rely on stock market data from

Datastream and obtain nominal dividends by multiplying the market price index by the

market dividend yield.

For all the countries, as in Bansal and Yaron (2004) and Schorfheide, Song, and Yaron

10We thank a referee for this suggestion.
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Table 1: Summary Statistics

E[rm] σ[rm] E[rf ] σ[rf ] E[∆c] σ[∆c] E[∆d] σ[∆d] Sample Period

US 0.0700 0.1621 0.0058 0.0090 0.0185 0.0098 0.0254 0.0466 1947:Q2-2019:Q3

UK 0.0642 0.1873 0.0107 0.0145 0.0077 0.0591 0.0162 0.0380 1965:Q4-2019:Q3

DE 0.0575 0.2007 0.0153 0.0137 0.0153 0.0183 0.0251 0.0563 1973:Q4-2019:Q3

FR 0.0712 0.2223 0.0151 0.0139 0.0140 0.0129 0.0346 0.0499 1973:Q4-2019:Q3

IT 0.0339 0.2530 0.0144 0.0170 0.0135 0.0156 0.0176 0.0998 1973:Q4-2019:Q3

JP 0.0330 0.2074 0.0079 0.0100 0.0153 0.0232 0.0211 0.0472 1973:Q4-2019:Q3

CA 0.0552 0.1587 0.0205 0.0119 0.0131 0.0134 0.0197 0.0537 1973:Q4-2019:Q3

AU 0.0666 0.1940 0.0250 0.0138 0.0172 0.0187 0.0269 0.0559 1973:Q4-2019:Q3

NL 0.0732 0.1985 0.0125 0.0132 0.0119 0.0193 0.0229 0.0626 1973:Q4-2019:Q3

CH 0.0648 0.1888 -0.0004 0.0090 0.0074 0.0115 0.0477 0.0589 1973:Q4-2019:Q3

This table reports summary statistics of the data used for model estimation. The data are sampled at a
quarterly frequency for ten developed countries, including the United States (US), the United Kingdom
(UK), Germany (DE), France (FR), the Netherlands (NL), Switzerland (CH), Italy (IT), Japan (JP),
Canada (CA) and Australia (AU). The sample period for each country is also shown in the table. The
summary statistics consists of the mean and standard deviation of equity returns (E[rm] and σ[rm]), the
mean and standard deviation of the risk-free rate (E[rf ] and σ[rf ]), the mean and standard deviation
of per capita consumption growth (E[∆c] and σ[∆c]), and the mean and standard deviation of dividend
growth (E[∆d] and σ[∆d]). All variables are in real and log terms.

(2018), we smooth nominal dividends by aggregating their values of the most recent four

quarters (including the current quarter). Real stock returns (real dividend growth rates)

are calculated by deflating nominal stock returns (nominal dividend growth rates) using

quarterly inflation rates.

4.4. Summary Statistics

Table 1 presents the summary statistics of the data used for model estimation. The

annualized average real market return ranges from 3.30% (JP) to 7.32% (NL), and its

annualized volatility ranges from 15.9% (CA) to 25.3% (IT). In contrast, the mean and

volatility of real risk-free rates are much smaller: the annualized average rate ranges from

almost 0 (CH) to 2.50% (AU) and the annualized volatility ranges from 0.90% (US and

CH) to 1.70% (IT).

In general, the real dividend growth rates are larger and more volatile than the real

consumption growth rates. The annualized average real dividend growth rate varies from

1.62% (UK) to 4.77% (CH) and its annualized standard deviation varies from 3.80%

(UK) to 9.98% (IT); the annualized average real consumption growth rates are around
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2%, ranging from 0.74% (CH) to 1.85% (US), with smaller variations ranging from 0.98%

(US) to 5.91% (UK).

The cross-country correlations of consumption growth rates are almost positively cor-

related, ranging from -0.10 to 0.56. The US consumption growth is positively correlated

with consumption growth in the remaining countries, with the correlation being as high

as 0.36 with France, whereas the UK consumption growth is very weakly correlated with

most of the remaining countries. The average cross-country correlation of consumption

growth rates is about 0.19. Relative to consumption growth, the dividend growth rates

across the countries show higher correlations. In particular, the dividend growth rates

among the European countries have notable comovements, with correlation ranging from

0.25 to 0.55. Both the risk-free rates and stock market returns across the countries are

strongly positively correlated.

5. Empirical Results and Implications

5.1. Estimation Results

We estimate three model specifications for each of the ten countries and compare perfor-

mance across different models for each country. The first model (LRR) is the long-run

risk model with one stochastic volatility process and without preference shocks. The

second model (eLRR1) differs from the first by taking preference shocks into account.

The third model (eLRR2) further allows for a separate volatility process in the dividend

growth rates.

Our estimation method needs to be initialized by the prior distributions of model

parameters. Our choice of those prior distributions is consistent with the literature; see,

e.g., Schorfheide, Song, and Yaron (2018) and Fulop et al. (2022). Importantly, we impose

relatively loose priors on key parameters in the utility function and state processes. For

instance, the prior on RRA (γ) is a truncated normal with a mean of 6 and a standard

deviation of 2, which allows γ to take values larger 10; the prior on EIS is a truncated

normal with a mean of 2 and a standard deviation of 0.5, allowing it to take values
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smaller or larger than 1; both persistence parameters ρx and ρs have a uniform prior

bounded within (-1,1). Furthermore, our priors on the variances of the pricing errors on

market returns and risk-free rates are sufficiently loose. The exact functional forms and

hyperparameters of the prior distributions are presented in the Internet Appendix.

5.1.1. Model Performance

Table 2 displays several measures used to assess model performance: a statistical measure,

i.e., the log marginal likelihood (ML) that measures the overall goodness-of-fit of the

model by taking into account both parameter and state uncertainties, and two economic

measures, i.e., the standard deviations of the pricing errors in stock market returns and

risk-free rates (σm and σf , respectively) that measure how far the model-implied asset

returns are from the observed ones. According to the marginal likelihood estimates and

the estimated standard deviations of the pricing errors, we find that the eLRR1 model

outperforms the LRR model. The estimated σm and σf for eLRR1 are smaller than those

obtained for LRR for almost all the economies under consideration. The only exception

includes Switzerland (CH), for which σm is marginally higher under eLRR1. Furthermore,

the marginal likelihood estimates are unanimously much higher under eLRR1 than those

obtained under LRR for all the economies.

Turning to the comparison of performance between eLRR1 and eLRR2, we could not

find affirmative evidence of improvement of eLRR2 over eLRR1. While the log marginal

likelihood estimates improve in general when a separate dividend volatility process is

introduced, there is little gain in fitting stock returns for almost all the economies. These

results suggest that the preference shock is a very important element that leads to better

performance in fitting the data, whereas allowing for independent idiosyncratic risks in

dividend growth does not seem to improve the overall economic performance of the model.

Furthermore, the computational cost of estimating eLRR2 is more than ten times larger

than that of estimating eLRR1. Thus, in what follows, we focus on estimation results

and discuss asset pricing implications based on the parsimonious model of eLRR1.11 For

11The estimation results for the alternative models LRR and eLRR2, including the posterior estimates
of model parameters and the smoothed latent states, are presented in the Internet Appendix.
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Table 2: Model Performance

Panel A. LRR Panel B. eLRR1 Panel C. eLRR2

σm(%) σf (bp) ML h σm(%) σf (bp) ML h σm(%) σf (bp) ML h

US 8.26 9.85 3.441 1.2 7.10 3.62 3.547 2.5 7.72 3.57 3.563 27.6

(0.30) (1.20) (0.37) (0.71) (0.30) (0.72)

UK 9.49 3.37 2.152 1.0 8.74 5.62 2.233 2.3 8.66 4.94 2.243 30.6

(0.39) (1.01) (0.45) (1.28) (0.44) (1.13)

DE 10.6 7.83 1.988 0.6 9.27 3.49 2.130 1.8 8.69 4.90 2.131 22.5

(0.49) (0.74) (0.55) (0.69) (0.51) (0.61)

FR 10.6 16.4 1.966 0.6 9.13 6.98 2.095 1.5 9.31 8.51 2.139 27.5

(0.45) (1.26) (0.73) (1.39) (0.67) (1.31)

IT 13.0 15.2 1.791 0.6 11.0 9.81 1.884 1.3 11.8 9.06 1.916 19.9

(0.58) (1.38) (0.79) (1.89) (0.75) (1.77)

JP 10.5 4.19 1.986 0.7 9.37 5.13 2.069 1.8 9.84 4.45 2.096 59.0

(0.49) (1.20) (0.53) (1.06) (0.55) (1.04)

CA 6.49 60.9 1.981 0.6 6.14 6.11 2.156 1.6 6.37 6.27 2.168 20.8

(0.50) (2.89) (0.51) (1.82) (0.51) (1.45)

AU 9.93 8.66 1.940 0.6 8.66 8.65 2.007 1.6 9.07 10.0 2.051 25.0

(0.45) (1.30) (0.69) (2.47) (0.53) (1.91)

NL 10.8 17.4 1.874 0.6 7.23 16.8 1.940 1.5 8.29 14.3 1.969 23.6

(0.50) (1.61) (0.90) (2.62) (0.64) (3.01)

CH 4.95 44.3 2.017 0.7 5.47 13.2 2.105 3.0 5.72 11.8 2.121 90.3

(0.67) (2.30) (0.65) (2.33) (0.83) (1.94)

This table shows estimation results on model performance by comparing three model specifications for the
ten countries. LRR refers to the long-run risk model with one stochastic volatility process but without
preference shocks. eLRR1 refers to the model with one stochastic volatility process and preference
shocks. eLRR2 differs from eLRR1 by further allowing for an independent volatility process in dividend
growth. The metrics used for assessing performance of a model include the standard deviations of the
measurement errors in stock returns and risk-free rates (σm and σf respectively) and the log marginal
likelihood (ML) in thousands. h presents the computational cost in hours for estimating each model for
each country.

the US, UK, and Canada, our discussion is based on estimates using the nondurables and

services consumption data. In the Internet Appendix, we present parameter estimates

using the private consumption expenditures data and find that the general implications

are very similar.

5.1.2. Parameter Estimates

Table 3 presents posterior estimates of the primitive parameters in the recursive utility

function and in the dynamics of consumption and dividend growth for all the countries,

which result from the eLRR1 model. The posterior mean estimates of the subjective

discount factor δ are similar across most of the countries and are well above 0.99 except

Germany. The standard deviation and the (5, 95)% percentiles indicate that the estimates

are bounded within small intervals and consistent with low real risk-free rates observed

22



in most of those countries.

The posterior estimates of RRA (γ) for the US are largely in line with the long-run

risk literature. The posterior mean of γ is around 9, and the (5, 95)% credible interval

is about (7, 11). These estimates are similar to those reported in Schorfheide, Song, and

Yaron (2018), Gallant, Jahan-Parvar, and Liu (2019), and Fulop et al. (2022). For the

other countries, the posterior estimates of γ are slightly small: the posterior mean ranges

from 5.6 (UK) to 7.8 (FR), and their (5, 95)% percentiles are well within the interval

(4,10). Note that the US credible interval overlaps the credible intervals of most of the

remaining countries, suggesting that the γ estimate for the US is not highly statistically

different from the estimates for the other countries. The values of γ lower than 10 are

commonly considered being economically reasonable.

The long-run risk literature advocates values of EIS (ψ) greater than 1. Estimation

studies such as Schorfheide, Song, and Yaron (2018), Gallant, Jahan-Parvar, and Liu

(2019), and Fulop et al. (2022) find empirical support for ψ > 1 based on the US data.

Our estimation with international data further provides support for typical values of ψ

used in the calibration studies based on long-run risks. Table 3 reveals that the posterior

mean estimate of ψ is around 2, ranging from 1.6 (CA) to 2.6 (DE) across the ten countries

in our study and is slightly larger than the typical value of 1.5 used in the calibration

studies. The 5% percentile estimate of ψ is consistently above 1 in all the economies.

Together with the estimates of γ, these results suggest that investors in the developed

economies have a strong preference for early resolution of uncertainty (ψ � 1/γ). In

addition, since our estimation uses both macroeconomic and market data, the estimates

of ψ obtained are naturally consistent with the empirical fact that the risk-free rate is

not very responsive to expected consumption growth and consumption volatility.

The estimated specification of the growth rate of the preference shock exhibits high

persistence for all the countries. The posterior means of the persistence parameter ρλ are

above 0.9 for all the countries except for the Netherlands (0.89) and Switzerland (0.80).

Among those countries, the preference shock of the US economy has the highest level

of persistence (0.99). The posterior mean, standard deviation, and (5, 95)% percentiles
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Table 3: Parameter Estimates

Mean Std 5% 95% Mean Std 5% 95%

Panel A: US Panel B: UK

δ 0.9988 0.0004 0.9980 0.9993 0.9919 0.0013 0.9896 0.9937

γ 8.9250 1.1462 7.0289 10.912 5.5838 0.5780 4.6212 6.5314

ψ 2.3347 0.2409 1.9412 2.7466 2.4302 0.3177 1.9049 2.9659

ρλ 0.9947 0.0019 0.9912 0.9974 0.9199 0.0152 0.8914 0.9420

φλ 0.0011 0.0001 0.0010 0.0012 0.0017 0.0002 0.0015 0.0020

ρx 0.9842 0.0057 0.9744 0.9920 0.8256 0.0277 0.7768 0.8695

φx 0.2313 0.0265 0.1928 0.2790 0.0421 0.0067 0.0319 0.0533

σ̄ 0.0046 0.0001 0.0043 0.0048 0.0283 0.0006 0.0270 0.0291

ρs 0.7493 0.0396 0.6806 0.8053 0.7300 0.0324 0.6767 0.7807

φs 1.4371 0.1809 1.1570 1.7546 1.7261 0.2569 1.3187 2.1584

Φ 1.7936 0.2558 1.4113 2.2496 6.6574 1.0394 5.0798 8.4375

φdc 0.7352 0.1774 0.4702 1.0233 0.1158 0.0211 0.0856 0.1536

φd 4.8155 0.3099 4.3329 5.3593 0.3667 0.0284 0.3202 0.4135

Panel C: DE Panel D: FR

δ 0.9758 0.0014 0.9734 0.9781 0.9908 0.0012 0.9887 0.9928

γ 6.1211 1.1471 4.2561 8.0819 7.8204 1.2996 5.7472 10.0032

ψ 2.5502 0.2497 2.1402 2.9506 2.1286 0.3423 1.5691 2.7111

ρλ 0.9874 0.0019 0.9839 0.9900 0.9366 0.0113 0.9175 0.9541

φλ 0.0014 0.0001 0.0012 0.0015 0.0024 0.0002 0.0021 0.0026

ρx 0.7831 0.0277 0.7386 0.8291 0.8342 0.0316 0.7767 0.8827

φx 0.1227 0.0160 0.0976 0.1501 0.1691 0.0244 0.1340 0.2130

σ̄ 0.0083 0.0003 0.0077 0.0087 0.0059 0.0002 0.0055 0.0062

ρs 0.5979 0.1029 0.4248 0.7482 0.7251 0.0921 0.5538 0.8504

φs 2.2423 0.3921 1.6280 2.8823 2.5078 0.5592 1.6274 3.4454

Φ 12.742 1.5315 10.431 15.421 11.031 1.4944 8.8130 13.710

φdc 0.2241 0.0747 0.1236 0.3638 0.2957 0.0865 0.1763 0.4652

φd 1.7555 0.1694 1.5040 2.0520 2.3772 0.2022 2.0505 2.7142

Panel E: IT Panel F: JP

δ 0.9917 0.0014 0.9893 0.9938 0.9979 0.0009 0.9961 0.9990

γ 6.5814 1.1305 4.7721 8.3589 6.8750 1.1844 4.9134 8.8646

ψ 1.9455 0.2776 1.4828 2.4369 2.0436 0.3374 1.4755 2.5831

ρλ 0.9545 0.0114 0.9339 0.9712 0.9476 0.0220 0.9073 0.9776

φλ 0.0026 0.0002 0.0022 0.0030 0.0017 0.0002 0.0014 0.0020

ρx 0.8009 0.0336 0.7421 0.8509 0.8528 0.0286 0.8038 0.8959

φx 0.2101 0.0278 0.1655 0.2598 0.0778 0.0123 0.0589 0.0991

σ̄ 0.0072 0.0003 0.0067 0.0076 0.0110 0.0003 0.0105 0.0113

ρs 0.8276 0.0442 0.7451 0.8914 0.5313 0.0730 0.4130 0.6475

φs 1.9710 0.4248 1.3132 2.7242 1.6515 0.2237 1.3070 2.0522

Φ 11.939 1.5439 9.4130 14.596 10.886 1.3787 8.8501 13.300

φdc 0.4247 0.1554 0.2197 0.7103 0.2279 0.0509 0.1519 0.3230

φd 3.7120 0.3563 3.1744 4.3031 1.2463 0.0866 1.1171 1.3968
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Panel G: CA Panel H: AU

δ 0.9927 0.0011 0.9907 0.9943 0.9932 0.0019 0.9897 0.9960

γ 7.3618 1.3513 5.2225 9.5506 7.6687 1.3397 5.6417 9.8209

ψ 1.6423 0.3064 1.1846 2.1864 2.2731 0.3133 1.7712 2.7726

ρλ 0.9213 0.0143 0.8966 0.9441 0.9452 0.0204 0.9093 0.9724

φλ 0.0022 0.0002 0.0019 0.0025 0.0025 0.0003 0.0021 0.0030

ρx 0.8515 0.0220 0.8131 0.8856 0.7925 0.0315 0.7414 0.8450

φx 0.1472 0.0221 0.1133 0.1861 0.1313 0.0200 0.0978 0.1662

σ̄ 0.0064 0.0002 0.0060 0.0066 0.0085 0.0003 0.0079 0.0089

ρs 0.6888 0.0743 0.5619 0.7957 0.7579 0.0709 0.6268 0.8552

φs 1.7900 0.3335 1.2922 2.3767 1.5678 0.4747 1.0658 2.5485

Φ 9.6628 1.2461 7.7111 11.841 9.6065 1.4759 7.3703 12.140

φdc 0.1566 0.0589 0.0803 0.2706 0.2507 0.0736 0.1498 0.3764

φd 2.4358 0.1587 2.1812 2.7082 1.7120 0.1808 1.4455 2.0323

Panel I: NL Panel J: CH

δ 0.9940 0.0019 0.9905 0.9966 0.9992 0.0005 0.9982 0.9997

γ 6.4751 1.3511 4.3457 8.7169 7.5197 1.5592 4.8934 9.9948

ψ 1.9574 0.3115 1.4549 2.4729 1.8697 0.3787 1.2105 2.4811

ρλ 0.8911 0.0238 0.8482 0.9293 0.8000 0.0338 0.7504 0.8598

φλ 0.0030 0.0003 0.0025 0.0036 0.0027 0.0003 0.0022 0.0033

ρx 0.8872 0.0319 0.8288 0.9311 0.8915 0.0216 0.8488 0.9211

φx 0.1466 0.0316 0.1009 0.2025 0.1338 0.0263 0.0926 0.1800

σ̄ 0.0087 0.0003 0.0081 0.0092 0.0054 0.0002 0.0050 0.0056

ρs 0.7157 0.0688 0.5930 0.8143 0.6008 0.0968 0.4310 0.7532

φs 1.8729 0.3357 1.3683 2.4376 1.6553 0.3241 1.1749 2.2318

Φ 6.8215 1.2283 5.0626 9.0170 11.516 1.5961 8.9746 14.214

φdc 0.3239 0.0787 0.2123 0.4711 0.4165 0.1375 0.2367 0.6683

φd 2.4695 0.2022 2.1433 2.8183 3.6874 0.2710 3.2685 4.1545

This table reports posterior means, standard deviations, 5 and 95 percentiles of model parameters for
the long-run risk model with one stochastic volatility process and preference shocks (eLRR1). Parameter
estimates are for preference parameters in the recursive utility function and parameters in the processes
of consumption growth and dividend growth. The estimation is implemented using the Bayesian SMC2

method, for the ten countries in our sample.

altogether indicate that the specification of the time preference shock is well identified

from international data. The estimates of the volatility parameter φλ are small, ranging

from 0.11% to 0.30%, and are very similar in most of those countries. The magnitude of

variation in the growth rate of the preference shock implied from our estimates is in line

with that postulated in the calibration of Albuquerque et al. (2016).

However, when we shut down time-varying preference shocks, we obtain very different

estimates of RRA and EIS.12 The posterior mean of γ varies much larger across countries,

12For brevity, these results are not reported here. See the Internet Appendix for parameter estimates
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ranging from 3.4 (UK) to 8.4 (FR). Furthermore, it seems important to incorporate pref-

erence shocks in the model for identifying the EIS parameter when long-run consumption

risk is present. Absent from the preference shock, the EIS estimates vary dramatically

across the countries and become much smaller in all the economies. Its posterior mean

(5% percentile) is below 1 in 5 (6) out of the ten countries. These results suggest that

introducing time-varying preference shocks in the long-run risk models helps deliver eco-

nomically plausible estimates of risk aversion and EIS, not only for the US but also for

the other developed economies.

Our estimation based on international data provides empirical support for the presence

of a persistent component in consumption growth across different countries. The posterior

mean estimates of the persistence parameter (ρx) ranges from 0.78 (DE) to 0.98 (US) at

the quarterly frequency in these countries. As for the US, we see that the posterior mean

of ρx is about 0.98 and its the (5, 95)% credible interval is (0.97, 0.99), which are close

to the typical values used in the calibration studies. When we shut down time-varying

preference shocks, the estimated long-run consumption component becomes even more

persistent for all the countries (see the Internet Appendix).

In addition, we find that the importance of the long-run component varies significantly

across countries, as is evident from the estimates of φx. The countries that feature a

significant fraction of long-run risk in aggregate consumption include the US and Italy,

for which the posterior mean estimates of φx are about 0.2. The consumption dynamics in

the other countries have moderately smaller amounts of long-run risk, with the posterior

mean of φx being about 0.04 – 0.17. The long-run risk component accounts for the least

significant role in consumption dynamics in the UK and Japan. Taking into account

our empirical results that the EIS estimates are greater than 1 and that long-run risk

drives consumption dynamics, our estimation implies that the long-run risk model is a

convincing description of the macroeconomic and market data jointly for global developed

economies.

Regarding the consumption volatility specification, the estimates of the long-run

for the LRR model.
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mean, σ̄, are largely in line with the variations of the historical consumption growth

in different countries. However, the persistence of the stochastic volatility process varies

significantly across countries as the posterior mean of ρs ranges from 0.53 (JP) to 0.83

(IT). These estimates are much smaller than the values typically assumed in the cali-

bration studies. Consumption volatility is more persistent in the US, the UK, France,

the Netherlands, Italy, and Australia than in Germany, Switzerland, Japan, and Canada.

These results therefore cast doubt on the argument usually made in the long-run risk

literature (e.g., Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012, 2016) that a

very persistent volatility process is required to explain the behavior of market returns.

By fully exploiting information in the likelihood function of the asset pricing model, our

study does not find global evidence to support this argument.

Turning to the dividend growth process, similar to Abel (1999), our estimates of

the leverage parameter, Φ, are all well above 1 (between 1.8 and 12), capturing the

“levered” nature of dividends, and are much higher in the other countries than in the

US. This result indicates that the long-run risk component plays a more important role

in depicting the dividend growth dynamics in countries excluding the US. However, we

obtain very different estimates of Φ in the model absent from time-varying preference

shocks: its posterior mean is around 1 in most of the countries and its 5% percentile is

smaller than 1 in five out of the ten countries (see the Internet Appendix).

In the estimation, the parameter φdc is primarily identified from the covariation be-

tween consumption growth and dividend growth. The posterior mean of φdc ranges from

0.11 (UK) to 0.74 (US). In the US, consumption and dividend have stronger comovement,

leading to higher estimates of φdc than those in the other countries. The parameter φd

determines the amount of variation of dividend growth due to the idiosyncratic risk. Due

to the empirical result that much of the variation of dividend growth is loaded onto the

long-run component in the countries excluding the US, the estimates of φd are moderately

lower in those countries than in the US.
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5.1.3. Time Series of Latent States

Our Bayesian method can directly provide us with time series of filtered states, i.e., the

growth rate of preference shocks (xλ,t), the long-run consumption component (xt), and

the consumption volatility (σt). Those filtered time series naturally take into account

both parameter and state uncertainties. Figures 1 displays the posterior means and (5,

95)% credible intervals of the filtered latent states for three selected countries: the US,

the UK, and Japan. For the other countries, we present those figures in the Internet

Appendix for economizing the space.

As noted by Albuquerque et al. (2016), xλ determines how the agent trades off current

utility versus future utility. All else being equal, an increase in xλ implies higher valuation

of future utility relative to the current utility. The plots of the posterior mean of xλ,t

reflect time variation in investors’s valuation of future versus current utility in different

countries. For the US, the posterior mean of xλ,t experiences significant declines in several

recession episodes such as late 1940s, early 1980s, 1990s, and the 2008 global financial

crisis, albeit the average correlation with consumption growth is low.

While our model assumes that xλ,t is independent of the other latent states, Bayesian

estimation suggests that from the perspective of posteriors the variation in xλ,t is partially

associated with either the long-run component or stochastic volatility, or both. Interest-

ingly, for the US and the UK, the posterior mean of xλ,t is negatively correlated with that

of xt, while the posterior mean of xλ,t is positively correlated with that of σt for these three

countries. This pattern is more noteworthy in the first half of samples for those countries

discussed above. A similar pattern also holds for the other countries, whose results are

reported in the Internet Appendix. In times either when expected consumption growth

is low or when conditional volatility of consumption growth is high, the growth rate of

the time preference shock is likely to be high and as such, investors value future utility

more relative to the current consumption. Because all of the three driving forces tend to

induce investors to save more, asset prices therefore capture these effects altogether. As

a consequence, when we use asset returns data in the estimation, our estimation strategy

leads to the covariation of the posterior estimates of the three latent states. However,
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Figure 1: Filtered Latent States: US, UK, and Japan

This figure plots the posterior means of the filtered latent states, the growth rate of preference shocks
(xλ,t), the long-run consumption component (xt), and the consumption volatility state (σt), for the US,
the UK, and Japan.

the two-stage procedure in Creal and Wu (2020) can hardly capture this covariation.

In addition, Figures 1 shows that the long-run component plays a more significant

role in driving the time variation of consumption growth for the US than for the other

countries. This observation echoes the parameter estimates for the long-run risk specifi-

cation reported in Table 3. Not surprisingly, expected consumption growth tends to fall

in recessions while rise in booms. The time series of the posterior mean of the stochastic

volatility component exhibits the feature of volatility clustering. In the US, the filtered
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volatility of consumption growth has experienced several upswings in early 1950s, mid

1970s, early 1980s and periods around the 2008 crisis, in which several episodes coincide

with the NBER recessions. In the UK, significant increases in the posterior mean of

σt occur in recession periods around 1975–1980 and 2008–2010. In Japan, the filtered

volatility of consumption growth rises in the beginning of 1970s, late 1990s, the 1997

Asian financial crisis, and periods around 2010 and 2014, all of which have witnessed

dramatic declines in consumption growth. More discussions for the other countries can

be found in the Internet Appendix.

5.2. Asset Pricing Implications

5.2.1. Moment Matching and Asset Return Fitting

In the consumption-based asset pricing literature, the moments matching exercise has

been mostly confined to the US data so far. Few studies ever examined performance

of matching moments of asset returns for other developed economies. We assess the

performance of the estimated long-run risk model in matching moments (means and

variances) of asset returns for the countries in our study. In particular, for a specific

moment of interest we compute the model-implied analogue for a given parameter set

and a latent state path under the joint posterior distribution given the data set. We

then report the posterior quantiles of these model-implied moments that account for

uncertainties in both the parameters and the latent states.

Table 4 presents moments of asset returns for all the countries, which are generated

from the parameter and state particles obtained from our SMC-based Bayesian estima-

tion. The results reveal that the estimated model can well reconcile moments of asset

returns for the developed markets in our study. First, the estimated long-run risk model

can deliver mean and standard deviation of risk-free rates very close to the moments of

the data across all the countries, by means of the 5%, 50% and 95% percentiles. Since

the risk-free rate is the reciprocal of conditional expectation of the SDF in the model,

our results imply that the behavior of the model-generated SDF is reasonable. Second,

the estimated model can closely match the mean and volatility of market returns for six
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Table 4: Asset Return Moments

Data 5% 50% 95% Data 5% 50% 95%

Panel A: US Panel B: UK

E[rm] 7.00 8.18 9.16 10.09 6.42 4.95 8.11 11.47

σ[rm] 16.21 18.96 23.08 27.30 18.73 13.36 15.80 18.69

E[rf ] 0.58 0.56 0.57 0.59 1.07 1.05 1.07 1.10

σ[rf ] 0.90 0.89 0.90 0.91 1.45 1.42 1.44 1.45

Panel C: DE Panel D: FR

E[rm] 5.75 10.43 11.33 12.28 7.12 5.97 7.33 8.90

σ[rm] 20.07 18.19 21.10 24.54 22.23 19.24 23.47 28.45

E[rf ] 1.53 1.53 1.54 1.56 1.51 1.48 1.52 1.55

σ[rf ] 1.37 1.36 1.37 1.37 1.39 1.36 1.38 1.40

Panel E: IT Panel F: JP

E[rm] 3.39 6.63 8.27 10.23 3.30 2.31 3.91 6.34

σ[rm] 25.30 26.20 30.81 35.93 20.74 17.62 21.18 24.94

E[rf ] 1.44 1.39 1.44 1.48 0.79 0.76 0.78 0.81

σ[rf ] 1.70 1.67 1.69 1.71 1.00 0.98 1.00 1.01

Panel G: CA Panel H: AU

E[rm] 5.52 4.79 6.20 7.96 6.66 4.78 7.25 9.89

σ[rm] 15.87 16.61 19.58 22.82 19.40 16.37 19.44 23.37

E[rf ] 2.05 2.02 2.05 2.08 2.50 2.45 2.49 2.53

σ[rf ] 1.19 1.17 1.19 1.20 1.38 1.35 1.38 1.40

Panel I: NL Panel J: CH

E[rm] 7.32 4.32 6.43 8.57 6.48 4.71 5.02 5.65

σ[rm] 19.85 20.51 25.78 31.19 18.88 21.77 25.38 29.30

E[rf ] 1.28 1.18 1.26 1.35 -0.04 -0.08 -0.02 0.05

σ[rf ] 1.32 1.22 1.27 1.32 0.90 0.79 0.85 0.89

This table presents moments of stock returns and risk-free rates implied by the eLRR1 model for the ten
countries. The moments of asset returns calculated from the data are also shown for each country. The
moments of asset returns implied by the model are calculated from the parameter and state particles in
real time obtained from the Bayesian SMC2 method.

out of the ten developed markets. The (5, 95)% credible intervals of E[rm] and σ[rm]

embrace the corresponding moments of market returns in the data for the UK, France,

Japan, Canada, Australia, and the Netherlands. For Germany, while the estimated model

overstates the first moment of market returns, the (5, 95)% credible interval of σ[rm] well

contains the true market volatility. For Switzerland, the model underestimates the equity

premium but overestimates the equity volatility. The model overestimates both equity

premium and volatility for the US and Italy.

We also investigate how the model implied asset returns track the observed returns.
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Figure 2: Fitted Risk-Free Rates and Market Returns: US, UK, and Japan

This figure plots the model-implied risk-free rates and market returns together with the actual returns in
the data for the US, the UK, and Japan, respectively. For each country, the model-implied risk-free rates
and market returns are computed from the posterior means of the model parameters and the posterior
means of the filtered latent states.

Our estimation yields fitted risk-free rates that can closely track the movement of the

actual risk-free rates in all the countries. The upper panels of Figure 2 display the related

results for the three selected countries: the US, the UK, and Japan, and for the other

countries, we present those figures in the Internet Appendix. In the model, either an

increase in expected consumption growth or a reduction in conditional volatility leads to

a lower risk-free rate. As a result, our Bayesian estimation identifies the association of

the variations in risk-free rates with those in xt and σt for the countries in our analysis.

For instance, for the UK in Figure 2, the dramatically low risk-free rates observed in

1970s are consistent with the contemporaneous high volatility of consumption growth.

Nevertheless, we observe that the pricing errors are significant in fitting market returns

for all the countries in the analysis, a fact that can be observed from the pricing error

standard deviations in Table 2 as well.
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5.2.2. Cyclical Variations of SDF

We next examine the cyclical variation of the estimated SDF. For this purpose, we de-

compose the SDF under recursive utility into two components as follows,

Mt+1 = δexλ,t+1

(
Ct+1

Ct

)−γ
︸ ︷︷ ︸

M1,t+1

· δθ−1

(
Ct+1

Ct

)γ− θ
ψ (
RW
t+1

)θ−1

︸ ︷︷ ︸
M2,t+1

, (20)

where M1,t+1 is the SDF under the CRRA utility, and M2,t+1 arises due to the separation

between RRA and EIS. We compute the time series estimates of Mt+1, M1,t+1 and M2,t+1

using the posterior means of the model parameters and the filtered latent states for

each country. Table 5 reports the overall correlations of the SDF and its components

with consumption growth for each country. We find that the estimated SDF displays

countercyclicality: the correlations between the SDF and consumption growth are all

negative, ranging from -0.14 (IT) to -0.75 (UK). We also find that the countercyclicality

of M1 is much stronger than that of M2 for all the countries. For example, the correlation

between M1,t (M2,t) and consumption growth is about -0.52 (-0.14) for Germany, and

the correlation between M1,t (M2,t) and consumption growth is about -0.53 (-0.24) for

Switzerland.

Figures 3 plots the time series of the estimated Mt+1, M1,t+1 and M2,t+1, along with the

consumption growth data, for the three selected countries: the US, the UK, and Japan.

For the US, we observe that the estimated SDF has a notable countercyclical component,

which rises in recessions and falls in booms. The correlation between the SDF and

consumption growth is about -0.50 over the sample. A similar finding has been found

for the US by Chen, Favilukis, and Ludvigson (2013), though they obtain dramatically

different estimates of preference parameters than ours. This result implies that for an

asset whose payoff is procyclical, its risk premium tends to be positive in a setting where

consumption growth contains a very persistent component and stochastic volatility is also

persistent. Both components of the SDF account for its countercyclical variations. The

SDF under the CRRA utility, M1,t+1, is strongly countercyclical because the variation
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Table 5: Cyclical Variations of SDF

US UK DE FR IT JP CA AU NL CH

M -0.50 -0.75 -0.15 -0.24 -0.14 -0.25 -0.22 -0.17 -0.24 -0.26

M1 -0.64 -0.94 -0.52 -0.35 -0.51 -0.77 -0.48 -0.55 -0.55 -0.53

M2 -0.50 -0.72 -0.14 -0.24 -0.12 -0.23 -0.21 -0.16 -0.22 -0.24

Et[rm,t+1 − rf,t] -0.23 -0.11 0.09 0.08 -0.05 -0.14 -0.16 -0.06 -0.17 -0.23

σt[rm,t+1] -0.26 -0.11 -0.09 0.08 0.04 -0.14 -0.16 -0.08 -0.17 -0.21

This table presents, for each of the ten countries, 1) correlations of the SDF (Mt) and its components
(M1,t and M2,t) with per capita consumption growth respectively, and 2) correlations of conditional
equity premium (Et[rm,t+1−rf,t]) and conditional volatility (σt[rm,t+1]) of equity returns with per capita
consumption growth respectively. The SDF and conditional moments of equity returns are computed
based on the posterior means of the model parameters and the filtered latent states, both of which are
estimated using the Bayesian SMC2 method.

of the preference shock is low according to our estimation. Compared to M1,t+1 that is

independent of long-run risk, volatility risk and investors’ attitudes toward intertemporal

substitution, M2,t+1 has a dominant effect in determining the SDF in the long-run risk

model. It is noteworthy that the estimated M2,t+1 is also significantly countercyclical,

taking into account long-run risk, volatility risk and investors’ preferences toward the

timing of the resolution of uncertainty. For the UK, the countercyclicality of the SDF

is very strong: the correlation between the SDF and the consumption growth is as large

as -0.75. The figure shows that the countercyclicality of the SDF is also significant in

Japan, again due to correlation of M2,t+1 with consumption growth. Results for the other

countries can be found in the Internet Appendix.

Table 5 reports the overall correlations of consumption growth with conditional equity

premium (Et[rm,t+1−rf,t]) and conditional volatility (σt[rm,t+1]) of equity returns implied

by our long-run risk model for all the countries. The conditional equity premium and

conditional volatility of equity returns are computed based on the posterior means of

the model parameters and the filtered latent states. Except for France, Italy (for equity

volatility), and Germany (for equity premium), all correlations are negative: the strongest

negative correlation between equity premium and consumption growth is for the US and

Switzerland (-0.23), and the strongest negative correlation between conditional volatility

and consumption growth is for the US (-0.26). Figure 4 plots conditional equity premium

and conditional volatility of equity returns implied by our long-run risk model, along with
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Figure 3: Stochastic discount factor: US, UK, and Japan

This figure plots the model-implied SDF and its components, together with per capita consumption
growth for the US, the UK, and Japan, respectively. For each country, the model-implied SDF is
computed from the posterior means of the model parameters and the posterior means of the filtered
latent states.

the consumption growth, for the above-mentioned three countries. The plots suggest

that both conditional equity premium and conditional volatility of equity returns have a

countercyclical component in those three countries.
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Figure 4: Conditional risk premium and volatility: US, UK, and Japan

This figure plots the model-implied conditional equity premium and conditional volatility of equity
returns, together with per capita consumption growth for the US, the UK, and Japan, respectively. For
each country, the conditional equity premium and conditional volatility of equity returns are computed
from the posterior means of the model parameters and the posterior means of the filtered latent states.

5.2.3. Counterfactual Analysis

To emphasize the importance of the preference shock and the long-run component, we

perform counterfactual analyses on fitted risk-free rate and market returns generated

from our estimation. In particular, we compute counterfactual risk-free rates and market

returns that would be obtained either in the absence of the preference shock or the

long-run component. For all the countries, the impacts of the preference shock and the

persistent component in expected consumption growth on the risk-free rate and market

returns are remarkable. Figure 5 presents the corresponding results for the three selected

countries: the US, the UK, and Japan. Additional plots for the other countries can be

found in the Internet Appendix.

It turns out that for the US the preference shock matters notably not only for the
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Figure 5: Counterfactual analysis: US, UK, and Japan

This figure plots counterfactual risk-free rates and market returns for the US, the UK, and Japan that
would be obtained either in the absence of the preference shock (xλ,t) or the long-run risk component
(xt). For each country, the results are computed from the posterior means of the model parameters and
the posterior means of the filtered latent states.

level of the risk-free rate but also for its time variation. The risk-free rate without the

preference shock is too high and too smooth relative to the risk-free rate implied by

the benchmark model eLRR1. This finding complements the analysis of Schorfheide,

Song, and Yaron (2018) who find that the preference shock mainly accounts for the time

variation in the observed risk-free rate. In contrast, the impact of the preference shock

on the risk-free rate is less important for the UK and Japan. This is a distinct feature for
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most of countries other than the US, which, however, has not been documented in previous

studies. The preference shock also has crucial effects on equity returns. For the US, the

UK, and Japan, the equity returns implied by the model abstracted from the preference

shock are too low and too smooth compared to the returns implied by the eLRR1 model;

such a result can also be found for the other countries. This finding is consistent with the

mechanism illustrated by Albuquerque et al. (2016) that the preference shock generates

additional risk premium.

Turning to the role of the long-run component, we find that the risk-free rate that

would prevail without the the long-run component is too smooth compared to the fitted

risk-free rate in the eLRR1 model. In addition, equity returns become lower and less

volatile in the absence of the long-run component. Figure 5 illustrates such impacts for

the three selected countries.

5.3. A Global Long-Run Consumption Factor

A key insight in the long-run risk model is that a long-run consumption component plays

a crucial role in explaining equity risk premium. We have found international evidence

in support of existence of long-run risk in the ten developed countries. In addition, we

also find that the correlations of the long-run consumption components become much

stronger across individual countries than the correlations of consumption growth, and

the former range from 0.14 to 0.70 with the average cross-country correlation being 0.47.

These empirical findings motivate us to construct a global long-run consumption factor

as follows. First, we take the equal-weighted average of the filtered long-run consumption

components across individual countries at each point in time, i.e.,

fc,t =
1

N

N∑
i=1

x̂t,i, t = 1, . . . , T. (21)

Second, we take innovations of fc,t (first difference, ∆fc,t) as a global long-run consump-

tion risk factor. Figure 6 presents the time series of this global consumption factor, which

spans from 1973:Q4 to 2019:Q3. Since the global consumption factor is constructed from
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Figure 6: A Global Consumption Factor

This figure plots the time series of the global consumption factor (solid line) that is constructed first
by taking the equal-weighted average of the filtered long-run consumption components across individual
countries at each point in time and then taking the first difference. The global consumption factor is
multiplied by 100. The bars represent a global equity market factor that is defined as the equal-weighted
average of equity market returns across the ten individual countries. These two factors are in quarterly
frequency, spanning from 1973:Q4 to 2019:Q3. The shaded areas are NBER recession periods.

structural estimation of the long-run risk model, it not only captures macroeconomic

conditions reflected in the fundamentals data but also encapsulates relevant information

contained in asset prices. For comparison, we also superimpose a global equity market

factor, defined as the equal-weighted average of equity market returns across the ten in-

dividual countries. We see that our global long-run consumption factor strongly comoves

with this global equity market factor, with a correlation of as high as 0.86.

We examine how this global consumption factor performs in explaining variations

of equity premium across countries. Following Cochrane (Chapter 12, 2005), we imple-

ment the two-pass regressions procedure. Panel A of Table 6 presents results from the

time-series regressions of equity returns in individual countries on the global consumption

factor (∆fc,t) with a constant. We find that for all the countries the beta (slope) estimates

are larger than 1 and are highly statistically significant. The adjusted R2 ranges from

29% (CA) to 62% (NL) (above 40% for 9 countries and above 50% for 6 countries). We
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then run the cross-sectional regression without a constant to estimate the risk premium

associated with the global consumption factor. Panel B of Table 6 presents the estimate

(λ̂c) and χ2 tests for assessing the model’s overall performance in the cross-sectional re-

gression. For comparison, we use three approaches, namely, ordinary least square (OLS),

Shanken (1992)’s method, and Hansen (1982)’s GMM, to compute standard errors and

χ2 statistics. We find that the estimate of the factor risk premium, λ̂c, is about 0.85%

and that the p-value of λ̂c is about 5% regardless of the approach used to calculate the

standard error. These results indicate that the global consumption factor carries a signif-

icant positive risk premium. We also find that the p-values of the χ2 tests are all large,

being around 0.7 under the three approaches, and that the mean absolute pricing error

(MAE) of the model is about 0.26%.13

We further examine how our global consumption factor is related to the Fama-French

six developed markets factors (Fama and French, 2012), which are constructed based on

stock market data of 23 developed countries that contain the 10 countries considered in

this paper. Those factors include the market factor (MKT), the size factor (SMB), the

value factor (HML), the profitability factor (RMW), the investment factor (CMA), and

the momentum factor (MOM). However, the Fama-French six developed markets factors

are only available from July 1990.14 Panel C of Table 6 presents results from regressions

of quarterly individual Fama-French factors on our global consumption factor. We find

that the developed market factor (MKT) is closely related to the global consumption

factor, as the coefficient on the global consumption factor is about 1.38, which is highly

statistically significant (t = 14.7), and the adjusted R2 is about 67%. The slope coefficient

is larger than one, suggesting that the global equity market represents a levered claim

on the the global consumption factor. The global consumption factor also explains to

some extent the profitability (RMW) and investment (CMA) factors, as the coefficients

13Following the same fashion, we also construct a global consumption volatility factor based on the
filtered consumption volatility of individual countries. However, we find that both the beta estimates
of this factor in the time-series regressions and the factor risk premium estimate in the cross-sectional
regression are not statistically significant.

14Those data are available at Ken French’s online data library, https://mba.tuck.dartmouth.edu
/pages/faculty/ken.french/data library.html. We construct quarterly factors by summing up monthly
factor returns in each quarter.
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Table 6: The Global Consumption Factor and Equity Risk Premia

A. Time-Series Regressions

US UK DE FR IT JP CA AU NL CH

100×Const. 1.32 1.29 0.98 1.33 0.39 0.80 0.62 0.95 1.45 1.61

(2.96) (2.61) (1.80) (2.25) (0.44) (1.58) (0.94) (1.57) (2.69) (3.37)

βc 1.32 1.42 1.47 1.70 1.65 1.09 1.10 1.26 1.54 1.39

(16.1) (11.5) (10.0) (15.2) (11.0) (9.58) (7.81) (8.05) (11.2) (10.8)

Adj R2 0.60 0.57 0.55 0.61 0.44 0.48 0.29 0.43 0.62 0.57

B. Cross-Sectional Regression

Estimate OLS Shanken GMM

λ̂c 0.85% 0.05 0.05 0.05

χ2 0.69 0.71 0.70

MAE 0.26%

C. Global Consumption Factor and Developed FF Six Factors

MKT SMB HML RMW CMA MOM

100×Const. 1.42 0.19 0.77 1.05 0.63 1.74

(3.02) (0.57) (1.33) (4.31) (1.54) (2.67)

∆fc 1.45 0.03 -0.16 -0.25 -0.39 -0.34

(14.7) (0.49) (-1.12) (-3.77) (-3.32) (-1.74)

Adj R2 0.67 -0.01 0.01 0.18 0.18 0.05

Panel A presents results from the time-series regressions of equity returns in individual countries on
the global consumption factor (fc,t) with a constant. Panel B presents the estimate of the factor risk

premium (λ̂c) and χ2 tests. p-values are computed based on the standard errors of the estimate and
the χ2 statistics using the OLS method, Shanken (1992)’s method, and the generalized methods of
moments (GMM). In both panels, the sample spans from 1973:Q4 to 2019:Q3. Panel C presents results
from regressions of the Fama-French six developed markets factors on the global consumption factor.
The Fama-French six developed markets factors are only available from July 1990, and we construct
quarterly factors by summing up monthly factors returns in each quarter. In all panels, the t−statistics
are reported in parentheses.

on the global consumption factor in both regressions are highly statistically significant,

and the adjusted R2s are about 18%. The global consumption factor seems marginally

related to the momentum factor (MOM), as the coefficient is only marginally statistically

significant (t = −1.74) and the corresponding R2 is only about 5%.

6. Conclusions

The long-run risk model of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

has attracted remarkable attention and has become a benchmark in the consumption-
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based asset pricing literature. Despite the success of the long-run risk model in charac-

terizing dynamics of fundamentals and asset returns in the US market, its performance

with regard to other developed countries is yet to be examined. Furthermore, the vast

majority of consumption-based asset pricing studies have relied on the calibration ap-

proach, and studies on structural estimation of asset pricing models remain very limited.

The main cause for the sparsity in this research is that efficient econometric estimation of

consumption-based models is challenging primarily due to that global solutions to these

models are highly nonlinear functions of state variables and that data on fundamentals

are often observed in very low frequencies and are hard to obtain for countries other than

the US.

We estimate and test long-run risk models by employing an efficient likelihood-based

Bayesian method that exploits up-to-date sequential Monte Carlo methods for interna-

tional economies. Our benchmark model features a representative agent who has recursive

preferences with a time preference shock, a persistent component in expected consump-

tion growth, and stochastic volatility in fundamentals characterized by an autoregressive

Gamma process. We construct a comprehensive dataset including macroeconomic and fi-

nancial data in the post-war period for ten developed countries, including the US, the UK,

Germany, France, Italy, Japan, Canada, Australia, the Netherlands, and Switzerland. We

use the quarterly data on consumption, dividends, and asset returns to implement esti-

mations.

Our estimation provides international evidence in support of long-run risks in ex-

pected consumption growth and a countercyclical component in the stochastic discount

factor. We find that the introduction of time-varying preference shocks in the long-run

risk model helps deliver economically plausible estimates of relative risk aversion and the

elasticity of intertemporal substitution, not only for the US but also for the other devel-

oped economies. We also find that the importance of the persistent component varies

significantly across the countries. In addition, our estimated stochastic volatility process,

which reflects time-varying economic uncertainty, is less persistent than those postulated

in the calibration studies. Our estimation yields model-fitted risk-free rates that closely
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track the historical movements of the actual risk-free rates for the countries. We show

the existence of a global long-run consumption factor, which strongly comoves with the

global equity market factor and carries a significant positive risk premium.

An interesting future research direction would be to undertake the joint modeling and

estimation of LRR models on the country panel, allowing us to have a principled discus-

sion of cross-country correlations in consumption and asset prices in different classses.
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