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Data-driven fault detection in a thermocouple
network using neighbouring redundancy,
XGBoost classifier and up-down counter

Diego A. Velandia Cárdenas, Erwin Jose López Pulgarı́n, Member, IEEE and Jorge Iván Sofrony, Member,
IEEE

Abstract— Fault Detection and Isolation (FDI) is of great interest for the control community since it can drive improved
performance in a system by allowing predictive maintenance/repairing and catering for improved operational safety. Fault
Detection and Isolation in large-scale smelting furnaces presents several challenges, as it requires the understanding
of complex thermal and chemical reactions occurring inside the structure. Furthermore, the impossibility of having full
operational information about the process makes the use of model-based methods very complex or unfeasible. This paper
introduces a methodology to develop a Data-Driven FDI system for the detection of incipient and intermittent failures in a
network made out of 322 thermocouples located on the shell of the furnace. Statistical metrics over Fault Counter Time
Windows (FTCW) were used to identify different types of sensor failures, which led to establishing a baseline of known
failure events and to create a dataset to train the Machine Learning (ML) classification models. A data-driven approach
was proposed based on the sensors physical (neighbouring) redundancy, which led to some type of physical redundancy.
A post-processing stage was used to stabilize the model’s response in time, determining that the proposed FDI system
successfully detects faults whilst reducing reported false negatives.

Index Terms— FDI, machine learning, parameter variation, redundancy, sensors network, thermocouple, up-down counter,
XGBoost.

I. INTRODUCTION

ELectric arc furnaces (EAC) are used for smelting ores into
refined metals by driving electricity from the electrodes

in its ceiling to the conducting bottom, through a bed made of
pre-treated ore called calcine. The molten materials inside the
furnace separate by density difference as they heat, allowing
their extraction. Unlike blast furnaces, which are commonly
powered by coke or coal, EACs power can be obtained from
several sources according to availability and price.

Operating a smelting furnace involves constant control
and monitoring of the process. It may be considered as a
safety critical system, meaning that the lack of a strict safety
monitoring scheme may entail catastrophic events [23]. Mon-
itoring activities include tracking the temperature around the
entire furnace’s exterior wall, which results in a complex and
costly operation due to the large number of required sensors
embedded in the furnace’s wall and the extreme environmental
conditions.

The sensors operate in extreme conditions, increasing the
risk of failure, which in turn can put at risk the health of
the furnace. The temperature of the middle wall is a critical
variable to monitor when assessing structural safety, as this is
the zone where the molten metal separates from the slag [17].
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Detecting sensor failures helps to increase the reliability of the
health monitoring system.

FDI techniques have grown in complexity over the years
as they accommodate more complex systems and processes.
FDI systems should trigger actions that improve system
performance, reduce maintenance times, and help to assess
operational risk. Previous work [8] [20] defines four stages
of FDI: detection, isolation, estimation, and adjustment. In
the FDI context, a sensor failure is an undesired change
in a measurement behaviour, leading to the appearance of
precision, stability, and reliability issues. Sensor failures are
due to a wide range of causes including regular wearing,
misuse, environmental conditions, among others.

Failures can be classified as abrupt or incipient, (see Zhang
et al. [25] and Samara et al. [18] for example). Abrupt failures
are sudden alterations in the sensor’s behaviour, turning it
inoperable until corresponding adjustments are performed.
This kind of failure can be identified in a timeline as, in most
cases, a frozen signal or a noticeable (abrupt) measurement
change. The accidental disconnection of a sensor is an example
of abrupt failures requiring simple adjustments; a molten
thermocouple, on the other hand, would require a total sensor
replacement and can imply major efforts or even a total
operation suspension.

Incipient failures are gradual or slight deviations of the sen-
sor’s response compared to its expected values, not disabling
the sensor immediately but making its measurements less
reliable compared to a sensor with no affectations. Incipient
failures result harder to identify, as the change in the sensor’s
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response is not easily detected by visual inspection or its rate
of appearance is not predictable.

One form of FDI is physical redundancy, where additional
sensors that measure the same variable are installed and
used to determine whether there is a failure. This approach
has considerable setbacks as installing more sensors implies
larger investments (economical, logistic, space-wise). Given
the sensor network’s configuration depicted in Figures 2 and
3, an approximation to physical redundancy is proposed.

Analytical sensor redundancy, in contrast, relies on analytic
knowledge of the process, together with sensor and process
data, to establish if a sensor is experiencing a failure. Analyti-
cal redundancy can be performed following three approaches:
model-based, knowledge-based and data-driven.

A model-based approach requires an analytical model that
relates the system’s inputs and outputs to compute the expected
outputs and compare them with the measured values. The
difference between measured and expected values are known
as residuals. Obtaining a detailed model of an electric arc
furnace is considerably complex as it requires highly detailed
knowledge of the furnace’s current state, making the model-
based approach not suitable for the present study case [6].

Knowledge-based approaches, on the other hand, do not
require an analytic model of the system; instead they use the
historical records of known failures and combine them through
a diffuse inference engine with a rule base extracted from
expert knowledge. These systems improve their performance
as they operate, as the knowledge base is increased on each
new successful event detection [3]. These approaches are
recommended when a solid base of knowledge exists and there
is a guarantee that an expert group will continuously review
and adjust the system to achieve the best performance possible.

Data-driven approaches are particularly suitable when deal-
ing with complex systems whose models are difficult to
construct or expert knowledge is not continuously available
for feedback. Data-driven models can be trained once and
operate autonomously until the system changes (degrades)
significantly.

Data-driven models can be classified as unsupervised or
supervised according to the way they work. Unsupervised
models use dimensionality reduction of high dimensional data
to define metrics and group up the observations into different
clusters 1 aiming for the maximum similarity among elements
within a same cluster.

Supervised data-driven techniques assume a statistical
model that modifies some of its internal parameters based on a
sample of the data called training set. The input to supervised
models can be the original data as it was produced, or a set
of metrics derived from the original data, better known as
features.

II. PROPOSED FDI METHODOLOGY

This work proposes an FDI methodology to deal with both
incipient and abrupt sensor failures in a smelting furnace’s
thermocouple sensor network. Sensor measurements were

1Groups of data observations sharing similar characteristics and identified
by a common label.

gathered from a process with little operational data and no
baseline knowledge of existing faults, with a resulting dataset
which was unbalanced due to the significantly fewer failure
events compared to its normal operation.

The contributions of this paper are twofold, Figure 1
features different steps involved in the development of the
contributions. Firstly, we introduced a methodology to create
a knowledge baseline from unlabelled and chronologically
ordered sensor data. Subsection IV-A describes how abrupt
failures are identified and labelled on each sensor’s signal by
applying heuristic rules over rolling time windows; in parallel,
detailed observation is carried out on rolling time windows
of sensors neighbourhoods’ data to identify incipient failures
from sensor measurements alone, this process is explained
in subsection IV-B. The combination of knowledge related
to abrupt and incipient faults leads to the determination of
a baseline, as introduced in subsection IV-C.

Heuristic detection
of abrupt failures

Sensors
neighbouring

Baseline creation

ML dataset
definition

ML model training
and tunning

Complete timeline
validation

Up-down counter
implementation

Start

End

Rolling time
windows

Identification of
incipient failures

Fig. 1. FDI model development process

Secondly, we introduce a data-driven FDI model that deals
with highly unbalanced training data as it is expected under
real operating conditions. In subsection IV-D training and
validations datasets were derived from the baseline to train,
tune and compare various machine learning models, revealing
a shared setback due to the strong subsampling process forced
by the data unbalance, an up-down counter like described in
subsection IV-E was implemented as a post-processing stage
to the ML model to perform a final filter on its computed
results.

Section V describes the results gathered from implementing
our methodologies and models for FDI of both abrupt and
incipient failures. The final implemented model’s architecture
is described in section VI and section VII lists our conclusions
and future work.

III. BACKGROUND AND RELATED WORKS

Cerro Matoso S.A. (CMSA) is Colombia’s biggest lateritic
nickel ore extraction, mining and smelting operation, produc-
ing over 35,000 tons of ferronickel (FeNi) per year [1]. The
smelting stage of CMSA’s operation takes place in an electric
arc furnace measuring 21 meters in diameter and 7 meters in
height, where calcine is fed into the furnace trough feeding
tubes located at its ceiling. Ferronickel separation takes place
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at the furnace’s middle wall, and hence temperature must be
constantly monitored, as the middle wall is the most thermally
and chemically active region.

CMSA’s personnel constantly modifies different operational
parameters including electrode’s electrical power and physical
position, calcine input flow through the 27 different intake
tubes, water flow for heat exchangers located at the medium
wall; some important parameters, like calcine chemical com-
position, are difficult to track on-line. Progress has been made
on using on-line operative measurements for predicting the
calcine chemical composition [22], the expected temperature
at the furnace’s walls [11] and estimating the refractory lining
thickness inside the furnace’s walls [10]. All cases require
having reliable temperature data to construct the models.

The furnace’s circumference is divided into quadrants and
each quadrant is divided into 18 alphabetically labelled sec-
tions, segmenting the furnace’s middle wall in 72 sectors
labelled numerically as shown in Fig. 2. Each of the 72
sectors represent the angular position of a heat exchanging
plate, where the furnace’s inner temperature is monitored using
thermocouples embedded in its wall.

Fig. 2. Coolers distribution over the furnace’s mid-wall (top view)

The furnace’s wall is divided into three main sections along
the vertical axis, upper, middle and lower wall. The furnace’s
middle wall is covered by 5 rows of heat exchanging plates,
4 rows of Plate Coolers (PCs) and one row of Waffle Coolers
(WCs) as shown in Fig. 3. Plate Coolers are grouped by
height and named alphabetically. The PC’s temperature is
monitored by one thermocouple per plate, and the WC’s by
two thermocouples per plate.

Fig. 3. Coolers distribution over the furnace’s mid-wall (front view)

Accurately detecting incipient failures in the thermocouple
network will allow CMSA to schedule and perform preventive
actions on their sensing system rather than waiting for the
need for immediate corrective actions, increasing the reliability
of the measurements provided by the sensor network. This

is of great interest since this is a keystone of the furnace’s
safety and operation control system. Non-reliable data can lead
to several potential conditions ranging from low productivity
due to misguided temperature-dependent control systems, up
to events that can be extremely hazardous for the personnel,
the plant, and the environment.

CMSA’s on-line monitoring system currently has features
that detect temperature anomalies and hence guide on-site
inspections, but there are currently no available records of
incipient failures in the maintenance log.

As incipient failures are not common during the sensor’s
lifespan, and it is desired to work exclusively on production
line data with no artificial registers, appropriate data labelling
rules are required to create a balanced baseline set from highly
unbalanced data. The provided dataset includes temperature
measurements from 322 thermocouples: 37 PC A, 34 PC B,
36 PC C, 72 PC D and 143 WC, whose temperature is logged
periodically every 15 minutes starting from 30/09/2015 up to
30/09/2019, for a total 56, 620, 931 individual data points.

Figure 4 depicts the data distribution of the filtered and
normalized dataset [2] .

Fig. 4. Data distribution box plot

Figure 4 shows how the Waffle Coolers’ temperature tends
to be higher than the rest of the panels, as the normalization
rule has the same boundaries for all panels. It is also possible
to see that temperature values for the Waffle Coolers are more
disperse in comparison to the values for the Plate Coolers;
this in accordance to what is to be expected in the most active
zone of the furnace.

The first setback to overcome is the absence of a baseline
for incipient failures. This baseline is necessary for training
and validation purposes of any proposed FDI model. Figure
5 depicts an example of an incipient failure, a short-time
variation of the value from one of the PC B in the NE quadrant.
These types of events can be rarely noticed by the plant
operators as their values do not exceed operating conditions.
Hence, no alarm is raised.

Supervised FDI models for a blast furnace have been
documented in several cases. Shi et al. [21] proposed a neural
networks-based system for detecting burden surfaces in a steel
production furnace. The scheme was based on radar spectrum
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Fig. 5. Example of incipient failure in a thermocouple

generated images, where a neural network with six layers was
trained to produce a set of features, and then a neural network
with ten layers and a YOLOv3 [16] module was used to
predict the existence of a burden surface. The proposed model
achieved an average prediction over 99% for five prediction
classes.

Leahy et al. [9] classified incipient faults in wind turbine
components using a Support Vector Machine (SVM) and a
manually-labelled dataset under 4 operational conditions: no
fault, general fault, specific fault, fault prediction (about to
happen); the authors achieved a recall of up to 97% in a multi-
label classification system and encountered challenges keeping
up with accuracy. The authors highlight their model’s high
accuracy and also note that one of their labels has over 50%
of its samples wrongly classified, this event is not generating
a noticeable impact in the accuracy score as the class with the
classification issue has less than 100 observations, while the
remaining classes include several thousands of accurately clas-
sified observations. For the present work, balanced training and
validation datasets are employed so any possible classification
issue has a significant impact on the performance metrics.

Mandal et al. [12] proposed a deep learning strategy to
detect different failures in a nuclear reactor’s thermocouples
system. Their approach relies on a solidly established baseline
that relates different sensors’ known failures and their read
signals. Mandal’s work and results highlight the relevance of a
reliable baseline, which is one of the work’s key achievements.

IV. METHODS

To exclude abrupt failures, it is necessary to identify them
first. A combination of rolling time window analysis and
heuristic rules is proposed to achieve this goal. Once abrupt
failures have been identified, rolling time window analysis and
sensors neighbouring is proposed as a tool to approximate
physical redundancy. Data features are extracted from the
different neighbour-window combinations, and an ML training
and testing dataset is extracted from the features and the
baseline data. Dataset subsampling methods are required, con-
sidering the expected high unbalanced nature between healthy
and faulty sensor data.

Different ML models are trained and evaluated, and a final
post-processing stage is implemented to compensate for issues
related to the subsampling performed during the ML training
and testing dataset conformation.

A. Rolling window analysis and abrupt failures detection

The first stage is studying the abrupt failures within the
data, which are simpler to detect and isolate. A combination of
rolling window analysis with heuristic rules is applied to detect
common abrupt failures in the provided dataset. Through
rolling window analysis [13] large amounts of chronologically
ordered data can be sampled and studied as individual blocks
of standardized width. Data analysis criteria can be applied
to each independent data window to determine whether a
condition is met during that specific time-lapse.

Each data window is labelled after the initial timestamp, so
a chronologically ordered dataset contains equally distanced
observations. Given the periodicity of the data logging, rolling
window widths are chosen as multiples of 1/4 of an hour(i.e.
a 1-hour window will contain 4 data points, a 1-day window
will contain 96 data points and so on).

Outliers and frozen values are two common types of abrupt
failures. Frozen values are characteristic of issues like sensor
disconnection, short circuit, open circuit, among other dis-
abling failures. For abrupt failure detection, sensors are studied
individually, and their data is analysed as described below.

An initial time window is taken with the specified width.
For outlier detection, all individual registers within the se-
lected window are compared against the high and low-value
thresholds; the selected time window is labelled as ’outlier’
if the total count of registers outside the value thresholds
surpasses a given maximum outliers count parameter. Frozen
values are detected by computing the variance of the sensor’s
data within the time window; windows with zero variance
means the value is not changing, and therefore it is labelled
as ’frozen’. After both analyses are done, the time window is
moved one timestamp forward and analyses are repeated until
the last window of the given width has been studied.

An outlier count limit to decide whether the whole window
is labelled as faulty by has to be established. Given the
rolling window time width vs. registers count equivalence, a
parameter sweep is carried out to study the number of windows
that will be labelled as faulty for different outliers thresholds.
Outlier threshold is defined then as a minimum count of values
out of limits, defined as a percentage of the number of registers
in the studied time window. Minimum value count will be
rounded using the roof function and constrained to be not
lesser than 1.

B. Sensors Neighbouring

Neighbourhood-based sensor configurations have been pre-
viously proposed by Fekete et al. [4], since nodes share similar
properties due to their proximity. Given the current configura-
tion of the presented furnace, where it is impossible to place
more sensors for physical redundancy, and there is a lack of
a baseline, set of rules, or model for analytical redundancy,
a Neighbourhood-based sensor configuration is proposed to
approach, as close as possible, physical redundancy based on
data similarity between nearby nodes.

In the studied setting, sensor neighbouring focuses on a
group of nearby sensors, or neighbourhood, around a central
thermocouple. Neighbours are always considered within a
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same level, as thermal and chemical reactions inside the
furnace change significantly in the vertical direction. Cor-
relation matrices are proposed to verify the validity of the
neighbouring approach. Correlation matrices have been used
before to perform FDI in a Battery Management System based
on the expected similarity between healthy batteries working
in a single unit. [19]

For data displaying purposes, all thermocouples will be
named as:

[Panel type][angular position][level/letter][quadrant]

Panel types can be either WC for Waffle Coolers or PC for
Plate Coolers, and level or letter depends on the panel type.
PC are organised by levels from A to D and WC contain
two thermocouples per plate, named A and B. As an example,
a sampled neighbourhood is defined around [WC 33 A SW].
The neighbourhood’s timeline data is plotted in Fig. 6 and
correlation matrices analysis is performed to verify similarity.
Analysis using correlation matrices requires testing different

Fig. 6. Measured data for sample 1 neighbourhood

time horizons to verify that sensors in a neighbourhood are
related. Computing the correlation matrix for a full timeline
tends to generate values close to zero. An effective strategy
is to use rolling time windows and explore if the correlation
changes. This strategy helps to avoid false negatives based
on faulty data present in the dataset. The same behaviour
was found for different neighbourhoods, which leads to the
conclusion that sensor neighbouring may be considered as
physical redundancy in the thermocouple network.

C. Identification of incipient failures and baseline
creation

Heuristic rules allowed the identification of abrupt failures
and the consequent reduction of the amount of data required
to create a knowledge baseline for incipient failures. Sensor
neighbouring, window analysis and correlation matrices were
used to initially identify healthy sensors with correlations
over 0.9 between all members of the neighbourhood. Visual
inspection was used to search for incipient failures in the
remaining data.

Sensor data was divided into blocks with a width of 2
weeks, and neighbourhoods were determined within a same
plate type and level to allow visual identification of incipient
failures. When an incipient failure was evidenced (an example
is depicted in Fig. 7), the divergent thermocouple point-data
was tagged as in failure. If a neighbourhood contains at least
one sensor labelled as in failure, the whole neighbourhood will

be labelled as in failure. This collection of labelled data is the
knowledge baseline that allows, among other tasks, assessing
the performance of an incipient failure FDI model.
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Fig. 7. Incipient failure evidenced by visual inspection

It must be highlighted that the baseline data comes from
various thermocouple neighbourhoods and timestamps. There-
fore, value discontinuities exist between the boundaries of
every consecutive pair of neighbourhood data streams. Addi-
tionally, highly unbalanced data is expected between incipient
failures and the healthy data.

D. ML dataset and model

Rolling time window analysis is performed on each baseline
data stream to avoid boundary discontinuities. When the
rolling window hits a stream’s boundary, the window’s starting
date moves to the next stream’s starting date. To define the
ML labels dataset, the concept of population sample size from
statistical theory is adapted to establish the minimum number
of individual registers needed to be in failure within a time
window to be considered entirely as in failure. Following

the population sample equation n =
Z2Npq

NE2 + Z2pq
we can

determine the minimum number n of faulty registers required
for a window to be labelled faulty.

Having a total population N (i.e. the window width in
registers), the confidence interval Z is set to 95%, the sampling
error E is set to 10% to grant a slightly more flexible sample
size compared to the frequently used value of 5%, and the p
and q event probabilities are directly computed from baseline
composition as these events are mutually exclusive.

To define the ML features dataset, for each neighbourhood
time window, individual sensor median value, variance, and
slope are computed and taken as representative features, as
well as the correlation values between each sensor within the
neighbourhood. The same rolling window boundary rule was
applied to compute the labels that indicate whether a time
window is considered in failure.

Once the features dataset has been established, the base-
line is divided into training and validations datasets for the
existence or absence of incipient failures. Both datasets are
selected so they contain the same number of faulty and non-
faulty data, avoiding sampling-induced bias in the model.
Information loss in the ML datasets is expected due to
the required subsampling of the non-faulty data. Complete
timeline validation is proposed to assess ML models under
expected industrial data conditions and evaluate the effects of
the subsampling process.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX YYYY

As there is currently no previous information regarding the
most suitable ML model and time window width for the case
study, three ML models were initially considered: Random
Forest (RF) [5], Support Vector Machine (SVM) [24] and
Extreme Gradient Boosting (XGB or XGBoost) [22].

The experiments’ performance can be measured based on
sensitivity, recall, and accuracy [7]. Sensitivity denotes the
model’s capability to accurately detect faulty data. Recall
relates to the model’s capability for detecting data without
faults, and accuracy is an overall measurement of the model’s
performance for accurately classifying data either as 0 or 1.

ML model validation is usually performed using a balanced
data set under the assumption that the training data set reflects
the highest possible number of scenarios present in the initial
data. For the present case study, the training, and validation
datasets represent a percentage of the total data below 1%, as
stated in subsection V-B.

E. Complete timeline validation and up-down counter
Complete timeline validation uses the whole baseline to

evaluate the performance of a trained ML model, considering
that highly unbalanced data such as the one used here can
produce skewed results.

As in k-folds or hold out validation, performance is mea-
sured using the general metrics, with a special clarification
related to accuracy calculation, which cannot be considered a
reliable metric since the data is highly unbalanced.

Up-down counters (UPC) [14] act as non-memoryless filters
and help the discrete time decision-making process based on
computed residuals. UPC requires 6 parameters: low, high and
detection threshold values, and the internal counter’s initial
value, increase and decrease rates. When a residual is given
to the UPC, it increases its internal counter value if the residual
value is greater or equal to its detection threshold, or decreased
otherwise. The UPC output is set to 1 if the internal counter
reaches the high threshold, and set to zero if the internal
counter reaches the low threshold.

Up-down counters can be symmetrical or asymmetrical
depending on whether its internal counter increases and de-
creases its value at the same rate, not limited to linear-
based functions. Up-down counter filtering is proposed as a
post-processing stage to reduce the influence of intermittent
changes in the output of the ML model; the UPC detection
threshold is set to 1.

For the discrete time fault detection algorithm proposed in
subsection IV-D, a considerable percentage of false positives
and false negatives is expected, considering that a significant
amount of non-faulty data was left out of the baseline due to
the size constraint imposed by the data balancing requirement.

V. RESULTS

Previous sections explained different techniques, which
combined established a Machine Learning training and val-
idation process through methods that were required due to
the constraints of the case study addressed. This section is
dedicated to the main results of the FDI system designed and
its validation.

A. Rolling time window analysis and abrupt failures
detection

Outlier detection by applying heuristic rules allowed the
identification of several windows to avoid during baseline
creation. Table I summarises the outlier detection results for
the parameter sweep of window width and outliers threshold.

Outliers threshold [%]
Window 10 30 50 70 90 100
1 hour 0.50 0.50 0.50 0.47 0.47 0.47 Windows
6 hours 0.60 0.54 0.49 0.44 0.39 0.37 with

12 hours 0.68 0.56 0.48 0.40 0.33 0.38 outliers
1 day 0.79 0.60 0.45 0.34 0.26 0.23 [% of total]

TABLE I
PERCENTAGE OF WINDOWS IDENTIFIED AS ’WITH OUTLIERS’ FOR

DIFFERENT WINDOW WIDTHS AND OUTLIERS THRESHOLD

Frozen windows were tagged using a window width param-
eter sweep and determining the percentage of frozen windows
from the existing total. Using a window width of 1 hour, 2%
of the total data was identified as frozen. For a 6-hour window
width, 1.07% of the total data was identified as frozen. For a
12-hour window width, 0.84% of the total data was identified
as frozen. And for a 1-day window width, 0.79% of the total
data was identified as frozen.

B. Identification of incipient failures, baseline creation
and ML dataset definition

As expected, comparatively few individual observations of
incipient failure were obtained compared to the available data
set. Tagging existing data with known incipient failures is the
cornerstone for creating a baseline. As the baseline needs to be
as balanced as possible, samples of healthy sensor data were
selected to create a balanced baseline. Table II summarises
the created data set based on a rigorous data inspection. The
baseline combines both data in failure and healthy data, and
individual registers are labelled to be used either for training
or validation purposes.

Panel type Registers Registers Faulty
count in fail data [%]

Plate Cooler A 21,500 11,732 54.56
Plate Cooler B 648 264 40.74
Plate Cooler C 10,512 5,424 51.59
Plate Cooler D 5,136 2,592 50.46
Waffle Cooler 7,056 4,128 58.50

Total 44,852 24,140 53.82

TABLE II
BASELINE REGISTERS COUNT, REGISTERS IN FAIL COUNT AND

PERCENTAGE OF REGISTERS LABELLED AS IN FAILURE

The baseline data set size is constrained by the number of
identified incipient failures. The baseline data set constructed
contains a total of 44,852 individual registers, which represents
the 0.08% of the available data.

By applying the algorithm described in subsection IV-D
different data sets were obtained, one per window width. Each
data set register includes 5 individual medians, 5 individual
variances, 5 individual slopes and 10 correlations.
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The population sample equation from subsection IV-D and
data from table II were used to determine the minimum
number of registers required to label a whole window as in
failure. For PC A to C and WC the same minimum failure
registers count is required to label the window as in failure. For
a window width of 1 hour, 4 faulty registers are the minimum
count to label the window as in failure; 20 registers for a
window width of 6 hours; 32 registers for a window width
of 12 hours, and 78 registers for a window width of 1 day.
For the specific case of the PC D there’s only one different
minimum count, 49 faulty registers are the requirement for a
width window width of 1 day.

With the given rules, any time window having a faulty
register count above the fore-mentioned thresholds is labelled
as in failure. Table III summarises the resulting faulty window
count for each time window width and panel type.

Window Window Windows Percentage faulty
width count in fail windows [%]
1 hour 44,848 24,079 53.69
6 hours 44,828 23,713 52.89

12 hours 44,804 23,701 52.89
1 day 44,756 24,133 53.92

TABLE III
LABELS DATASETS FOR WINDOW WIDTH PARAMETER SWEEP

C. ML model training and tuning
Table IV summarises the results obtained from training

different ML models and using different rolling time window
widths.

ML model Window Sensitivity Recall Accuracy
width

1 h 0.9764 0.9809 0.9785
Random 6 h 0.9690 0.9821 0.9753
Forest 12 h 0.9897 0.9945 0.9920

1 d 0.9973 0.9974 0.9978
1 h 0.9693 0.0364 0.5326

Support 6 h 0.2803 0.9790 0.6148
Vector 12 h 0.3576 0.9591 0.6431

Machine 1 d 0.4574 0.9257 0.6762
1 h 0.9723 0.9798 0.9758

XGBoost 6 h 0.9506 0.9725 0.9611
12 h 0.9734 0.9884 0.9805
1 d 0.9973 0.9990 0.9980

TABLE IV
CENTRAL-COMPOSITE EXPERIMENT RESULTS

It is possible to observe from table IV that XGBoost for a
window width of 1 day shows the highest sensitivity, recall,
and accuracy among all performed experiments. Hyperparam-
eter optimization using the early stop technique [15] is used
to improve the model’s performance. Table V summarises
the performance of XGBoost models after hyperparameter
optimization.

The reader may observe that the four time window widths
have been kept during the hyperparameter optimization pro-
cess. This axis of the experimental result will be kept up
throughout the ML model development process to observe its
influence in the final results.

Window Sensitivity Recall Accuracy Final
width estimators

1 h 0.9856 0.9876 0.9876 481
6 h 0.9887 0.9887 0.9887 568
12 h 0.9972 0.9973 0.9972 754
1 d 0.9975 0.9994 0.9984 355

TABLE V
XGBOOST HYPERPARAMETER OPTIMIZATION RESULTS

D. Complete timeline validation and up-down counter

Full timeline data sets used for complete timeline validation
are defined around the Waffle Cooler [WC 42 B SE] and the
Plate Cooler [PC 28 A SW]. [WC 42 B SE] is the sensor with
the highest presence of incipient failures, having 28.78% of
its data with presence of such failures in the measured values;
sensor [PC 28 A SW] has 0.5% of its data with presence of
incipient failures.

The algorithm depicted in subsection IV-D is applied for
different window widths, and the corresponding trained XG-
Boost model is used to detect incipient failures. Table VI
compiles the performance metrics results for the complete
timeline validation using the neighbourhood around the panel
[WC 42 B SE] as an example.

Window
width Sensitivity Recall Precision

1 h 0.4627 0.9459 0.8061
6 h 0.4794 0.9535 0.8163

12 h 0.5168 0.9243 0.8064
1 d 0.4980 0.7906 0.7059

TABLE VI
FULL TIMELINE VALIDATION RESULTS

A significant sensitivity drop is evidenced, suggesting a
difference between the traditional hold-out validation carried
out during the ML model training process and how the model
would perform with online discrete time data input (full-
time validation). Visual inspection of predicted labels reveals
intermittence in the model’s output, as shown in the example
of Fig. 8 for predictions in a two-day lapse during the year
2017.

2015-01-15 2015-01-16 2015-01-16
Date and hour

0

1

In
 fa

ilu
re Expected

Predicted

Fig. 8. Comparison of predicted vs. expected labels by ML model

Symmetrical and asymmetrical up-down counters were
tested as a post-processing stage to reduce the prediction
intermittence. Unit linear increase and decrease rates are
selected for the UPC internal counter, with an initial value of
0. The low threshold value is set to 0 and the high threshold
value is chosen by a parameter sweep. An asymmetrical filter
instantly increases or decreases the internal counter to its limit
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value, while the opposite internal counter change rate is kept
linear with unit value.

Figures 9 and 10 illustrate the change in sensitivity and
recall, respectively, for the fault detection process by including
a symmetrical up-down counter after the ML model prediction.
A High threshold value parameter sweep is performed and
results are grouped by rolling window width for performance
comparison purposes.
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Fig. 9. Fault detection sensitivity using symmetric up-down counter
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Fig. 10. Fault detection recall using symmetric up-down counter

Overall, detection sensitivity improves considerably with
the addition of the up-down counter, almost doubling their
original values. As for detection recall, a slight performance
reduction occurs when the up-down counter is used. Similar
improvement was noted for the different time window widths,
being a 6-hour window width the case with the highest overall
sensitivity and recall among all scenarios. The most suitable
model is chosen by selecting an appropriate high threshold
value with the most balanced trade-off between detection
sensitivity and recall scores.

Numerical data of the plotted results suggest that the best
performance is obtained for a high threshold value of 5 and
a window width of 6 hours. Sensitivity was rated at 69.17%
for the complete timeline validation of the Plate Coolers and
80.77% for Waffle Coolers; sensitivity results for Plate Coolers
and Waffle Coolers are 88.07% and 76.92% respectively.

VI. FINAL MODEL GENERATION PROCESS

The final model has a 5-stage architecture, which starts with
combining data from neighbouring thermocouples into one
time window at a time (from now on called segment) from the
initial 322 columns data set. Second, the existence of abrupt
failures is evaluated in the segment via the heuristic rules; the
whole segment is labelled as ’abrupt failure’ if abrupt failures
are detected and the process starts over with the next segment.

Segments free of abrupt failures are considered in the third
stage of the process (feature extraction), which computes
the features as discussed in subsection V-C and injects the
computed values into the trained XGBoost model (i.e. the
fourth stage). In the fifth and last stage, the ML model outputs
are fed to the symmetrical UPC, finally detecting incipient
failures.

For each individual segment, the sequential five-stage model
computation process, which includes the ML model for incip-
ient failure detection and the UPC, can be considered as O(1)
time complexity. The segment’s shape is fixed, and the UPC’s
internal counter’s value changes only based on the most recent
input value.

One limitation of our approach is its reliance on expert
knowledge to both generate a baseline and to verify its perfor-
mance. Similar to other data-driven approaches, data labelling
and data engineering is required; for this industrial process,
additional process verification is required from planned main-
tenance and repairs to the oven. Another limitation arises
from edge cases related to potentially missing sensors or
faulty sensors reporting abrupt failures, reducing the number
of available sensors in a neighbourhood, potentially missing
incipient failures.

VII. CONCLUSIONS

A data-driven fault detection and isolation (FDI) model for
incipient failures in an industrial thermocouple network was
achieved, with a detection accuracy of up to 80% of faulty
time windows. The model includes a detection stage for abrupt
failures using rolling windows, a features computing stage, a
detection stage for incipient failures using an ML model, and
a post-processing stage using a symmetrical up-down counter.

A methodology to create a balanced baseline of abrupt
and incipient failures based on heuristic rules and expert
knowledge was introduced. This methodology allowed us to
process sensor measurements from an industrial furnace with a
complex thermocouple network and a lack of operational logs.
The methodology used the concept of physical redundancy
approximation by using measurements from neighbouring
sensors.

Different models were tested with a range of time window
widths to get the highest sensitivity and recall metrics. A
time window of 6 hours produced the highest sensitivity and
recall over the entire dataset. Results were improved further
by implementing a symmetric up-down counter to post-process
the outputs of the model and improve predictions.

Future work will explore different data-driven models with
alternative approaches for FDI to look for improved accuracy
and better capability for handling highly unbalanced data.
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