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Abstract

Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria 
colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges 
and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human 
immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium 
Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth 
kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infec-
tion of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, 
PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a math-
ematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to sub-
inhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model 
further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, 
these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population 
turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where 
such ecological dynamics may be slower.

INTRODUCTION
For opportunistic pathogenic bacteria colonizing from environmental reservoirs, the human host likely represents a hostile 
and stressful novel environment, albeit one rich in resources. In particular, many infection sites contain elevated amounts of 
reactive oxygen species (ROS) generated by the host inflammatory response, including both acute [1] and chronic infections 
[2]. A variety of host cells, including macrophages and neutrophils, produce ROS at infection sites [3]. Recent studies also 
show that ROS generated by neutrophils is further enhanced in the lungs of COVID-19 patients [4], potentially causing 
post-COVID bacterial secondary infections to experience even greater ROS stress [5]. Hydrogen peroxide is one of the key 
ROS produced by host cells, and it is also commonly present in the natural environment [6–8]. Many microbes generate 
hydrogen peroxide during competitive interactions [9, 10], and it is frequently used in disinfectants for cleaning surfaces 
[11]. Hydrogen peroxide causes damage to bacteria by reacting with iron centres in microbial enzymes and by forming toxic 
hydroxyl radicals through the Fenton reaction [12]. Additionally, the Fenton reaction is affected by environmental pH [13], 
which varies in vivo [14].
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Pseudomonas aeruginosa is widespread in the natural environment [15] and causes a range of opportunistic infections, 
including the airways of people with cystic fibrosis (CF) [16, 17] and bronchiectasis [18]. P. aeruginosa has a large, flexible 
genome [19] encoding multiple global regulatory and quorum-sensing (QS) systems that enable it to respond to changing 
physiological conditions [20, 21], including exposure to ROS [22]. P. aeruginosa encodes several catalases and peroxidases 
to protect cells from oxidative stress. KatA is a constitutively expressed extracellular catalase, whereas KatB production is 
induced by hydrogen peroxide and KatC production by temperature [23]. Peroxidases such as glutathione peroxidase (Gpx), 
thiol peroxidase homolog (Tpx) and alkyl hydroperoxide reductase (AhpC) are also believed to enhance P. aeruginosa toler-
ance against ROS, including H2O2 [23, 24]. OxyR is the central regulator for hydrogen peroxide detoxifying systems, including 
controlling catalase expression, with additional layers of regulation by quorum-sensing systems, lasRI/rhlRI [25, 26], and 
the stringent response regulator DksA [27]. Importantly, different strains of P. aeruginosa exhibit different basal levels of 
expression of the main catalase gene, katA, resulting in differences in susceptibility to hydrogen peroxide. For instance, 
among the commonly used lab strains, PA14 exhibits lower katA expression and higher hydrogen peroxide susceptibility 
than PAO1 [23, 28].

The impact of variation in hydrogen peroxide susceptibility between diverse P. aeruginosa strains on population dynamics 
under sustained oxidative stress in not well understood. Here, we quantified the effect of hydrogen peroxide on the growth 
kinetics of three P. aeruginosa strains, specifically the lab strains PA14 and PAO1, and a clinical strain previously isolated 
from a CF chronic lung infection, LESB58. We next tracked the longer-term population dynamics of PAO1 and PA14 with 
or without sustained subinhibitory hydrogen peroxide at two pH levels representative of the range of pH-levels in lung 
sputum [14, 29], and create a mathematical model parameterized for this system. We show, unexpectedly, that LESB58 is 
highly susceptible to hydrogen peroxide despite having been isolated from a chronic CF lung infection, an environment 
where ROS-levels are likely to be elevated. We further show that sustained oxidative stress drives population extinction of 
PA14 but not PAO1, consistent with PA14’s higher susceptibility to hydrogen peroxide. We show that PA14 serially passaged 
in elevated levels of H2O2 did increase in their ability to grow under oxidative stress conditions, but not to the extent of 
wild-type PAO1, and sufficiently only to delay but not prevent extinction. Using the mathematical model, we further show 
that oxidative stress driven extinctions are more likely in systems with higher population turnover, potentially explaining 
why highly susceptible strains, such as LESB58, persist in chronic infections despite the high levels of ROS.

METHODS
Bacteria and culture condition
We used the P. aeruginosa strains PAO1, PA14 and LESB58. PAO1 was originally isolated from a hospital in Australia in 
1955 [30], with subsequent adaptation under laboratory conditions [31, 32]. PA14 was isolated from a burn wound in a 
hospital in 1977 [33] but its high virulence to plants suggests it may have originated from a plant or soil environment [34]. 
Liverpool Epidemic Strain LESB58 was isolated from a CF lung infection [35]. Bacteria were grown in a defined medium 
mimicking CF sputum, Synthetic Cystic Fibrosis Sputum Medium (SCFM, pH=6.8) [36] and various modified versions of this 
medium designed to mimic environmental stresses experienced during infections. For the H2O2 susceptibility experiments, we 
supplemented the SCFM with various concentrations of H2O2 to create an oxidative stress gradient (concentrations of H2O2 
were approximately as follows: 0, 0.03, 0.06, 0.12, 0.24, 0.5, 1, 2, 4, 8, 16, 31, 63, 125 mM). For the serial passage experiment, 
we supplemented SCFM with either H2O2 to reach a final concentration of 2 mM (SCFM-Ox), 1 M HCl to adjust pH to 5.4 
(SCFM-Ac), or both H2O2 and 1 M HCl to achieve a final concentration of 2 mM H2O2 and pH to 5.4 (SCFM-Ox-Ac). Certain 
ingredients, H2O2, HCl and a final concentration of 3.6 µM Fe(II), were added freshly and filter sterilized on the day of use. To 
compare growth in SCFM with lab broth, we also tested the growth kinetics in King’s B medium (KB) [37]. Overnight cultures 
were incubated in 200 µl of medium in wells of 96-well plates at 37 °C in a humidity-controlled incubator, with 80 % humidity.

Growth kinetics to assess H2O2 susceptibility
All growth kinetics were set up from bacterial overnight cultures (inoculum optical density OD=0.7~0.9) by transferring 
1 % of these cultures into wells of 96-well plates containing 200 µl of medium. Then, 96-well plates were sealed using gas-
permeable membranes (Breathe-Easy sealing membrane, Sigma-Aldrich, USA) to avoid cross-contamination during shaking. 
Growth kinetics were measured using a microplate reader (LogPhase 600, Biotek, USA) measuring absorbance at 600 nm 
every 20 min. Bacteria were grown under shaking (orbital, 800 r.p.m.) at 37 °C for 24 h. We performed six replicate growth 
curves per strain (PAO1, PA14, LESB58) across a gradient of oxidative stress levels.

Serial passage experiment
Nine independent colonies each of PAO1 and PA14 were picked and resuspended in phosphate-buffered saline (PBS) and 
inoculated into fresh SCFM media and grown overnight. About 107 cells per overnight culture were used to found one of 
nine independent replicate populations in each of four selection treatments, which were SCFM, SCFM-Ox, SCFM-Ac, 
SCFM-Ox-Ac. Replicate populations were propagated by 1 % daily serial transfer for 12 days (~80 generations) in 96-well 
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plates wherein each well contained 200 ul of the relevant medium. Cultures were grown for at least 22 h between transfers. 
Before each transfer, a point reading of absorbance at 600 nm was measured using a microplate reader (LogPhase 600, Biotek, 
USA). Population samples were stored daily for 7 days and every 2 days thereafter as glycerol stocks at −80 °C.

Growth kinetics of evolved PA14
Because we observed population extinctions of PA14 in the SCFM-Ox serial transfer experiment, we tested the growth responses 
of each replicate PA14 population from the SCFM and SCFM-Ox treatments sampled on days 4, 6 and 8. We obtained 24 h 
growth kinetics for six random clones per population grown either in SCFM or SCFM-Ox growth media using a microplate 
reader (LogPhase 600, Biotek, USA) measuring absorbance at 600 nm every 20 min. Bacteria were grown under shaking (orbital, 
800 r.p.m.) at 37 °C for 24 h.

Statistical analysis
Growth kinetics were analysed using R (4.2.0) where the maximum growth rate (Absorbance ‍×‍ h−1), maximum absorbance as 
endpoint population density, integral (area under the growth curve), and lag time were determined using the same method as 
a previous study [38]. Lag times longer than 24 h were recorded as 24 h rather than an infinite value for the statistical analysis 
if not specified. In addition, the growth rate was also calculated using R function ‘all_splines’ from the package ‘growthrates’ as 
the maximum intrinsic growth rate (mumax) from the smoothed curve. Statistical analysis including t-test, analysis of variance 
(ANOVA), analysis of covariance (ANCOVA), survival analysis, linear mixed-effect model, principal component analysis (PCA) 
and data visualization was performed in R (4.2.0). Linear mixed-effect model of phenotypic adaptation of PA14 to SCFM or 
SCFM.Ox was run with lineage as random effect. Evolution trajectory analysis followed a previous statistical model of multivariate 
phenotypic change trajectory analysis [39].

Mathematical model
To better understand our experimental results, we modified an existing model of bacterial growth to include variable susceptibility 
to oxidative stress. We simulated bacterial growth using the Baranyi and Robert model (1994) [40] in Matlab R2022a, adding a 
new term to describe susceptibility to H2O2:

	﻿‍
dN
dt = g(N, t,K, rmax, l)× (1− β × cH2O2 )‍� (1) 

	﻿‍
dcH2O2

dt = −Kcat × ρ× cH2O2

Km + cH2O2

× N− b× cH2O2‍� (2)
Equation 1 is the growth rate of bacteria and equation 2 is the decomposition rate of H2O2 in the bacterial culture. Among these 
equations, N represents the abundance of bacteria, t is time, K is the maximum capacity, rmax is the maximum growth rate, is 
the lag time, where g(N,t,K,rmax,l) is the Baranyi and Robert logistic growth model with lag phase [40], β represents the bacterial 
growth inhibition triggered by H2O2, cH2O2 represents the concentration of H2O2. In equation 2, Km is the Michaelis constant and 
Kcat is the maximum rate of catalase degradation for the amount of catalase generated by a unit of bacteria, ρ, and multiplied by 
the amount of bacteria present in the culture, N; b is the self-decomposition rate of H2O2 at incubation temperature 37 °C. To 
explore the impact of H2O2 on bacterial ecological dynamics, we took the bacterial growth inhibition triggered by H2O2, β, and the 
amount of catalase generated by a unit of bacteria, ρ, from the growth of PA14 as a baseline (Table S1, Figs S1 and S2). We then 
varied them by simultaneously multiplying β and dividing ρ by the same value, which is reported as a fold change in sensitivity 
to H2O2 relative to PA14. Using this differential equation model, we also simulated a 1 % daily serial transfer experiment varying 
the concentration of H2O2 and the sensitivity of bacteria to H2O2 stress, enabling us to generalize our findings across a wider 
range of values than was possible experimentally. The extinction rate is defined as the reciprocal of the day on which extinction 
occurred, with a maximum value, 1, suggesting an immediate extinction on the day of inoculation and a minimum value, 0, as 
survival after the 12 day transfer. The mathematical model is parameterized based on experimental bacterial growth in this study 
and other references (see Table S1, available in the online version of this article). To further investigate the mismatch in extinction 
rate between our first simulation and serial passage experiment, we modified the sensitivity of the strain to H2O2 beginning on 
day 6 to account for evolution using parameter values matching the measured bacterial growth kinetics of evolved PA14 (see 
Fig. S3). We then performed additional simulations wherein we systematically varied the serial transfer dilution rate to mimic 
different levels of population turnover to explore how this affected extinction rate.

RESULTS
Diverse P. aeruginosa strains vary in their susceptibility and growth responses to H2O2

The response of growth in different H2O2 concentration varied across strains (Fig. 1; mixed-effect model, three-way interaction 
between time, H2O2 concentration and strain with absorbance as response variable, χ2

2=10.928, P=0.0042). Lag phase, but not 
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maximum growth rate or maximum population density, was significantly affected by H2O2 concentration in a strain-specific 
manner (nongrowing populations excluded, two-way ANOVA, H2O2 concentration by strain interaction, lag phase: F2,213=3.756, 
P=0.0249; maximum growth: F2,213=2.879, P=0.0583; maximum optical density: F2,213=1.290, P=0.2774). Specifically, increasing 
concentration of H2O2 progressively extended lag phase, eventually completely supressing growth, and this effect was strongest 
in LESB58 and weakest in PAO1. Accordingly, the degree of growth inhibition by H2O2 at 24 h varied among strains (two-way 
ANOVA, endpoint OD, F2,242=95.623, P<0.0001), with LESB58 being the most susceptible, followed by PA14, while PAO1 was 
the least susceptible. Together these data show that P. aeruginosa strains differ significantly in their susceptibility and growth 
response to oxidative stress.

Contrasting ecological dynamics of PAO1 and PA14 under sustained oxidative stress
To investigate whether differences in short-term susceptibility to H2O2 predict longer-term population survival under sustained 
oxidative stress, we performed a serial passage experiment wherein PAO1 and PA14 were propagated with or without subinhibi-
tory H2O2 at two pH-levels (6.8 and 5.4) representative of the range that can be observed in lung sputum [14, 29]. Whereas 
PAO1 populations survived under all conditions, population extinctions were observed for PA14 under oxidative stress  
(Figs 2 and 3a, b, χ2

1=35.6, P<0.0001) with more extinctions occurring in neutral compared to acidic pH conditions (χ2
1=33, 

P<0.0001). Accordingly, end-point population densities differed significantly across strains and treatments (Figs 2 and 3a) (two-
way ANOVA, F10,102=36.575, P<0.0001). Together these data show that higher susceptibility to oxidative stress reduced longer-term 
population survival at subinhibitory levels of H2O2 and that this effect was exacerbated at higher pH for PA14.

Modelling shows that short-term susceptibility predicts extinction dynamics
To better understand the contrasting ecological dynamics of PAO1 and PA14 under oxidative stress and to generalize our find-
ings across a wider range of parameters we modified an existing mathematical model of bacterial growth [40]. We modelled 
bacterial populations growing under a serial passage regime allowing growth to be a function of the concentration of hydrogen 
peroxide to model variable susceptibility, as we observed in the growth kinetics (parameters and simulations of growth compared 
to experimental data are shown in the Supplementary Material 1). Consistent with our serial transfer experimental results, 
the model predicts that the probability of population extinction increases as a function of bacterial sensitivity to H2O2 and the 
environmental concentration of H2O2 (Fig. 4). Parameterizing the model for ancestral PA14 (Fig. S1), shows that subinhibitory 
levels of oxidative stress are sufficient to cause population extinction because the population growth is insufficient to overcome 
the 1 : 100 daily serial dilution (Fig. S2). Interestingly, however, our model predicts faster PA14 extinction than observed in the 
serial passage experiment, with extinctions 3 days earlier (Figs 2 and S2b). This mismatch suggests that the PA14 populations 
may have adapted to the oxidative stress conditions to prolong persistence, albeit not sufficiently to prevent eventual extinction.

Adaptation of PA14 to subinhibitory H2O2

The mismatch between our modelling and experimental results suggests that PA14 populations in SCFM-Ox may have adapted 
to the oxidative stress conditions. To test this, we measured the 24 h growth kinetics in SCFM and SCFM-Ox media of PA14 
colonies isolated on days 4, 6 and 8 of the serial transfer experiment from replicate populations within the SCFM and SCFM-Ox 
treatments. The phenotypic evolutionary trajectories of populations selected under these contrasting treatments differed both in 

Fig. 1. Hydrogen peroxide (H
2
O

2
) has differential effects on growth of P. aeruginosa isolates PAO1, PA14 and LESB58. Higher concentrations of H

2
O

2
 

have a greater inhibitory effect on growth. Solid lines indicate the average of optical density at 600 nm (OD600) and ribbons indicate the standard error 
across six replicates; dashed lines indicate growth kinetic in KB medium of each strain. Colours denote the concentration of H

2
O

2
 in SCFM as explained 

in the visual key.
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terms of direction and rate (Fig. 5a; trajectory analysis, ptreatment <0.001, ptime=0.002, and pinteraction <0.001). Indeed, whereas PA14 
selected in SCFM-Ox acquired a shortened lag time in the SCFM-Ox test media, the opposite pattern occurred in PA14 selected 
in SCFM (Fig. 5b, d; mixed-effect model, interaction by day by treatment, for relative lag time χ2

1=14.096, P=0.0002, for relative 
maximum OD χ2

1=19.856, P<0.0001). In contrast, PA14 selected in SCFM acquired an increased maximum growth rate in SCFM, 
which did not occur in PA14 selected in SCFM-Ox (Fig. 5c; mixed-effect model, χ2

1=4.2201, P=0.0399). These data suggest that 
PA14 adapted to oxidative stress in the SCFM-Ox treatment by reducing lag time, but, conversely, that adapting to SCFM per se 
increased susceptibility to oxidative stress, suggesting an evolutionary trade-off.

Fig. 2. Contrasting population dynamics between PA14 and PAO1 strains. Population density over time in a 12 day serial passage determined by optical 
density.

Fig. 3. Contrasting population dynamics between PA14 and PAO1 strains. (a) Optical density at the end of the 12 day passage. NC indicates the negative 
controls. (b) Proportion of surviving replicates per treatment over time. Plot panels are faceted by treatment as denoted by labels. Colours denote 
bacterial strains PAO1 (orange) and PA14 (blue) or negative controls (light blue).
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Modifying the model to reflect evolutionary changes in susceptibility
To test if the experimentally observed adaptation of PA14 to oxidative stress could explain the mismatch between the extinction 
dynamics in our model versus experimental results, we re-ran the model with two stages, where the later stage that began on 
day 6 had parameters matching the growth kinetics of adapted strains (Fig. S3). The new growth kinetic parameters prolonged 
population survival in the model, and substantially improved the fit of the temporal dynamics between the simulation and the 
experiment (Fig. 2 lower-right and Fig. 6a). This suggests that the acquired reduced susceptibility to ROS was sufficient to delay, 
but not to prevent extinction.

Generalizing the model for a wider range of population turnover rates
It is likely that population turnover rates in chronic CF lung infections are not as high as those in our serial transfer experiment, 
which we predicted may help to explain why the clinical strain we tested, LESB58, has not evolved reduced susceptibility to 
oxidative stress despite prolonged exposure to ROS from host immunity. Using our mathematical model, we varied the dilution 
rate per serial transfer to mimic systems with different population turnover rates. Indeed, lower serial dilution rates, and thus 
lower rates of population turnover, do enable more highly susceptible bacterial populations to survive at higher environmental 
concentrations of H2O2 (Fig. 6b).

DISCUSSION
Upon colonizing a human host, opportunistic bacterial pathogens are likely to experience a challenging and stressful environ-
ment, but our understanding of how these stressors impact eco-evolutionary responses of bacterial populations is limited. 
Here we show that strains of P. aeruginosa vary in their susceptibility to oxidative stress. Increasing concentrations of hydrogen 
peroxide progressively extended lag-phase, eventually completely suppressing bacterial growth. It is probable that this effect 
reflects the differential expression of oxidative stress defence mechanisms among these strains, affecting their ability to detoxify 
their environment, which is consistent with known differences in katA expression between PAO1 and PA14 [23, 28]. The much 
higher sensitivity of LESB58 is less well explained from a mechanistic perspective. One possible explanation is that hydrogen 
peroxide may trigger prophage induction in LESB58 [41]. Hydrogen peroxide is a well-known inducer of the phage lytic cycle 
[42–45] and the LESB58 genome contains five active prophages that are known to retain lytic activity during chronic CF lung 
infection [46]. More detailed mechanistic analysis will be required to determine the molecular mechanism causing the vari-
able sensitivity to hydrogen peroxide across strains. We further show, using a combination of serial transfer experiments and 
mathematical modelling, that short-term susceptibility to oxidative stress predicted long-term survival of populations against 
sustained exposure to subinhibitory oxidative stress. However, rapid phenotypic evolution of reduced susceptibility to oxidative 
stress in PA14 altered these population dynamics, prolonging survival of populations but ultimately was insufficient to prevent 
extinction, which is consistent with previous studies in E. coli [47, 48]. This heritable change in susceptibility to oxidative stress 
could be due to mutation [26, 49] or phenotypic plasticity [50, 51]. Finally, using our mathematical model we predict that the 

Fig. 4. Extinction rate is shown in colours plotted as a function of fold change of sensitivity to H
2
O

2
 relative to wild-type PA14 and the concentration of 

H
2
O

2
 in a mathematical model with a 1 : 100 serial daily transfer.
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rate of population turnover is critically important in determining whether oxidative stress causes population extinction, with 
lower population turnover promoting survival of more highly susceptible strains.

By quantifying how oxidative stress impacts bacterial growth kinetics, we were able to understand how oxidative stress affects 
the longer-term ecological dynamics of bacterial populations. We show a critical interaction between ROS-mediated growth 
inhibition, through extending lag phase, and the rate of population turnover, that together control extinction probability. As 
a consequence, even subinhibitory levels of ROS can drive extinction of bacterial populations in environments or niches with 
higher population turnover. The actual level of ROS experienced by bacteria in the respiratory tract is unclear due to challenges of 
accurately quantifying this in situ, however it is likely to vary between body sites and even spatiotemporally within organs [52–55]. 
We predict, therefore, that ROS defences may be more effective at lower concentrations in host niches with higher turnover, such 
as the bladder or gut [56, 57]. In contrast, in chronic lung infection it is likely that P. aeruginosa experiences relatively lower rates of 
population turnover [58, 59], which may result in reduced selection to maintain potentially costly low-level sensitivity to oxidative 
stress [60, 61]. Although we did not assay enough strains to test this hypothesis, our data are consistent with this idea: LESB58 
(isolated from a chronic infection [35]), is far more susceptible to oxidative stress than either PAO1 or PA14 (isolated from acute 
infections [30, 33]). Note that this is not sufficient evidence to show that P. aeruginosa phylogroups vary systematically in their 
oxidative stress sensitivity. More work will be needed to quantify susceptibility to oxidative stress across diverse P. aeruginosa 
strains isolated from a wider range of niches.

Our findings add to a growing body of studies combining ecological modelling and experiments that show the importance of 
accounting for phenotypic evolutionary dynamics to fully understand the dynamics of bacterial populations [62–66]. Here, 
acquisition of reduced susceptibility to oxidative stress by PA14 prolonged population survival. Our analysis of adapted phenotypes 
further revealed a potential evolutionary trade-off between adapting to oxidative stress and adapting to the sputum-mimicking 
medium. Such trade-offs are consistent with previous findings that adaptation to stressors can have costly pleiotropic effects on 

Fig. 5. Phenotypic adaptation of evolved PA14 varies across treatments. (a) PCA analysis of phenotypic growth parameters of evolved PA14 clones 
relative to wild-type PA14. Closed circles represent the mean of six clones per population on day 0 (white), 4, 6 (grey) and 8 (black); open circles show 
individual clones evolved in SCFM (blue) or SCFM_Ox (green). Variables are coloured from black to light grey indicating their weighting and positioned 
by their direction with a suffix indicating whether determined experimentally without (SCFM) or with H

2
O

2
 (SCFM_Ox). (b, c and d) The relative growth 

parameters of highest weight in each direction from the PCA analysis of either evolved PA14 clones from SCFM (blue) or SCFM_Ox (green) treatments 
or wild-type PAO1 (orange), with dashed line at value 1.0 indicating equality with ancestral PA14.
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bacterial growth in stressor-free environments. For instance, oxidative stress selects for mutants upregulating the wsp system, 
resulting in rough small colony variants (RSCVs) that grow slower in the absence of exogenous ROS [49]. Acquired resistance 
to antibiotics is also usually costly in the absence of drug [67, 68]. Adaptation to other environmental stressors including soil 
nickel, detergent and osmotic stress suggests a trade-off between adapting to the stressor and normal growth rate in a stressor-free 
environment [69]. Fitness trade-offs between contrasting environments are likely to drive the evolution of specialists, here leading 
to variants that are good at exploiting the sputum environment or at resisting ROS, but which cannot do both. This may limit the 
success of low-sensitivity variants, if levels of oxidative stress are variable in space or time at host infection sites.

Oxidative stress is an important component of host defence against infecting pathogens, but, as shown here, susceptibility to 
oxidative stress varies greatly between P. aeruginosa strains. Our data suggest that such variation in susceptibility to oxidative stress 
may be explained by differences in population ecology among host niches and/or by evolutionary trade-offs whereby adaptation 
to oxidative stress constrains adaptation to the other components of the within-host environment or vice versa.
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Fig. 6. Population dynamics and boundaries of extinction events in the mathematical model. (a) Simulation of population density in a 1 : 100 serial 
passage parameterized for ancestral PA14 (top panel; fold change in sensitivity to H

2
O

2
 relative to PA14=1) or evolved PA14 (bottom panel; fold change 

in sensitivity to H
2
O

2
=0.96; from day 6). (b) Boundaries of extinction events at different serial dilution rates shown in colours plotted as a function of fold 

change in sensitivity to H
2
O

2
 relative to wild-type PA14 and the concentration of H

2
O

2
.
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