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Figure 1. Examples of virtual try-on manipulations using ucVTON on in-the-wild real images. Orange box: style control; Green box:
texture control; Blue box: design elements control.

Abstract

In this paper, we propose a novel virtual try-on from un-
constrained designs (ucVTON) task to enable photorealistic
synthesis of personalized composite clothing on input hu-
man images. Unlike prior arts constrained by specific in-
put types, our method allows flexible specification of style
(text or image) and texture (full garment, cropped sections,
or texture patches) conditions. To address the entangle-
ment challenge when using full garment images as condi-
tions, we develop a two-stage pipeline with explicit disen-
tanglement of style and texture. In the first stage, we gen-
erate a human parsing map reflecting the desired style con-
ditioned on the input. In the second stage, we composite
textures onto the parsing map areas based on the texture in-
put. To represent complex and non-stationary textures that
have never been achieved in previous fashion editing works,
we first propose extracting hierarchical and balanced CLIP
features and applying position encoding in VTON. Exper-
iments demonstrate superior synthesis quality and person-
alization enabled by our method. The flexible control over
style and texture mixing brings virtual try-on to a new level
of user experience for online shopping and fashion design.

* Corresponding author: hanxiaoguang@cuhk.edu.cn.

1. Introduction
Virtual try-on (VTON) systems have become indispensible
in the era of online clothing shopping and are an active area
of research in computer vision. As online shopping grows
increasingly ubiquitous in modern digital lifestyles, VTON
addresses a key limitation: the inability to physically try on
clothes prior to purchase. By enabling users to visualize
garments on their photos or avatars, VTON systems aim to
provide crucial visual information about fit and appearance.

Traditional VTON [2, 6, 7, 9, 11, 12, 18, 21, 22, 38, 39]
focuses on in-shop scenarios which create photorealistic vi-
sualization by generating images of individuals wearing ex-
isting retail garments. This is constrained by input person
and clothing images so that the person’s identity and ap-
pearance are retained and the generated clothing matches
the input. However, this constrained generation is also lim-
ited, as real-world online shopping behaviors often involve
a bit of design, with a desire to mix-and-match elements
from different garments. That is, users may wish to visual-
ize personalized composite clothing items, combining pre-
ferred style and texture aspects from separate pieces. En-
abling such controllable synthesis of new clothing on vir-
tual try-on remains an open challenge. FashionTex [19] pi-
oneered this strand by using a disentangled (style, texture)
representation to control the VTON synthesis. However,
despite its success, FashionTex is still constrained by the



type of its inputs: i) the style condition is limited to text
prompts, which are less accessible and inclusive to users
with dyslexia or other language barriers; ii) the texture in-
put is limited to small image patches, which cannot charac-
terize complex fabrics or patterns. Both constraints reduce
its real-world applicability.

In this work, we fill this gap by proposing a new
task called VTON from unconstrained designs (ucVTON),
which greatly relaxes the constraints mentioned above, en-
abling users to specify style via images, and texture via
full-garment images or swatches. Specifically, we expand
the allowable input types for increased flexibility: the style
condition can be a text prompt or an example garment im-
age; the texture condition can be a full garment, a cropped
section of a garment, or an image patch. This allows repre-
senting complex fabric textures across different scales and
spatial distributions, bringing fine-grained control of VTON
to a new level of synthesis quality and user personaliza-
tion. However, a significant challenge emerges when en-
abling style and texture inputs to be full garment images:
both inputs contain entangled style and texture features, and
the network can struggle to disentangle the irrelevant style
from the texture input and irrelevant texture from the style
input for proper re-composition.

Addressing this challenge, we propose a novel two-stage
style and texture disentanglement pipeline based on Stable
Diffusion [26], where the first stage explicitly learns to gen-
erate clothing styles in the format of a human parsing map
conditioned on a given style input; the second stage then
adds textures to the garment areas of the parsing map con-
ditioned on the given texture input. In addition, instead of
naively replacing the text CLIP features used in previous
methods with image CLIP features, we propose a novel ap-
proach based on our observation that the final-block CLIP
features are rich in semantics but lack low-level texture fea-
tures. Specifically, we propose to learn photorealistic tex-
ture features from the texture input through a hierarchical
and balanced combination of CLIP features from multiple
blocks of its Vision Transformer. Finally, we utilize posi-
tion encoding [30] to represent the spatial distributions and
scales of non-stationary input textures. This significantly
expands the space of possible texture inputs that can be
handled, which has never been achieved by previous meth-
ods. Extensive experimental results demonstrate the effec-
tiveness of our method. Our contributions include:
• We introduce the novel task of virtual try-on from uncon-

strained designs (ucVTON), which significantly advances
the state-of-the-art by enabling photorealistic VTON
from diverse style (text prompts or garment images) and
texture inputs (full garments, cropped sections of a gar-
ment, or image patches).

• We propose a two-stage disentanglement pipeline that ex-
plicitly separates style generation and texture composi-

tion for controllable ucVTON from entangled inputs.
• We first propose a new hierarchical CLIP feature extrac-

tion and position encoding method to represent photoreal-
istic, non-stationary textures. This significantly expands
the diversity and complexity of synthesized textures that
has never been achieved by previous methods.

• Extensive experiments demonstrate that our method has
brought fine-grained control of VTON to a new level of
synthesis quality and user personalization.

2. Related Work

Image-based Fashion Editing. Given a human image
and some editing conditions, such as reference cloth im-
ages [5, 11, 14, 22, 37] or text descriptions of styles [1, 3,
15, 24, 34], image-based fashion editing aims to generate
a target image that satisfies the given conditions while pre-
serving the rest (e.g., identity, skin) of the original human
image. Examples of existing solutions include TextureRe-
former [31], which employs a multi-view, multi-stage syn-
thesis procedure to perform interactive texture transfer un-
der user-specified guidance; Text2Human [15], which im-
plements a two-step process using text descriptions to syn-
thesize human images from a given pose, focusing on cloth-
ing shapes and textures; FashionTex [19], which develops a
fashion editing module that harnesses both text and texture
inputs for multi-level fashion editing in full-body portraits.

In this work, we follow the multimodal setup of Fashion-
Tex [19] and take both text and example images as inputs.
However, unlike [19] which assumes the input texture to be
a small image patch (64×64) with stationary textures, we
have made significant improvements to the model to enable
it to handle unconstrained high-resolution garment images
with arbitrary textures, shapes, positions, and scales as in-
put. This allows for higher quality, flexibility and control
over the generated results compared to prior arts.

Diffusion Models. Diffusion models [13, 26, 28] are a ma-
jor type of deep generative models that exhibit robustness
and superior proficiency in handling diverse data modali-
ties [41]. Inspired by [23, 26, 40], numerous conditional im-
age generation works [10, 17, 25, 27, 32, 35, 36] have incor-
porated diffusion models into their methods. For example,
SGDiff [29] introduces a style-guided diffusion model that
combines text and style images to facilitate creative image
synthesis; Paint-by-Example [37] leverages self-supervised
training to disentangle and re-organize the source image and
the exemplar for more precise control in exemplar-guided
image inpainting; Multimodal Garment Designer [3] em-
ploys a latent diffusion model and multimodal conditions
such as text, pose map, and garment sketches for fashion
editing. Their impressive results demonstrate the power of
diffusion models as a solution for high-quality, controllable
image generation and editing tasks.



Method Ctext
s Cimg

s Cpatch
t Cimg

t

Texture Reformer[31] ✕ ✕ ✓ ✓
PIDM[4] ✕ ✕ ✕ ✓

FashionTex[19] ✓ ✕ ✓ ✕
Text2Human[15] ✓ ✕ ✕ ✕
DCI-VTON[11] ✕ ✓ ✓ ✕

Ours ✓ ✓ ✓ ✓

Table 1. Comparison with SOTA methods on input types allowed.

3. Background and Problem Definition
Traditionally, virtual try-on can be defined as:

Î = VTON(I,G) (1)

where I denotes the input image of a person, G denotes the
garment image to be virtually worn, Î is the output image
showing the person wearing garment G. Although straight-
forward, this definition is limited because it requires a com-
plete garment image G with a fixed combination of cloth-
ing style and texture. This contradicts people’s imagina-
tion ability to envision wearing a particular clothing style
with different textures. Addressing this limitation, Fashion-
Tex [19] pioneered in disentangling G into style condition
Ctext

s and texture condition Cpatch
t and have:

Î = VTON(I, {Ctext
s , Cpatch

t }) (2)

where Ctext
s is a text prompt describing the garment style

and Cpatch
t is a small image patch describing the local tex-

ture of the garment. Despite its success, FashionTex is con-
strained by the type of inputs in that: i) the style condition
is limited to text prompts Ctext

s , which are less accessible
and inclusive to users with dyslexia or other language bar-
riers; ii) the texture input is limited to small image patches
Cpatch

t , which cannot characterize complex fabrics or pat-
terns. These constraints reduce its real-world applicability.
For practical virtual try-on, users need more flexible condi-
tion types - the ability to specify style via images , and tex-
ture via full-garment images or swatches. To fill this gap, in
this work, we propose virtual try-on from unconstrained
designs (ucVTON):

Î = ucVTON(I, {Ctext/img
s , C

img/patch
t }) (3)

In this way, we expand the allowable condition types for
style and texture as follows: the style condition can be ei-
ther a text prompt or an example garment image, providing
more flexibility in specifying the desired design. The tex-
ture condition can be a full-garment image, a cropped sec-
tion of a garment, or an image patch, enabling the represen-
tation of complex textures at varied scales and distributions.
This enhanced flexibility empowers users with finer-grained
control over both style and texture. Please see Table 1 for a
comparison of our ucVTON and SOTA methods.

4. Method

As mentioned above, to enable virtual try-on from uncon-
strained designs, we propose a novel two-stage pipeline
based on Stable Diffusion [26] to disentangle clothing types
(e.g., long sleeves) and textures from full-body human im-
age data (Sec. 4.1). In addition, to further improve the tex-
ture quality, we propose to learn photorealistic texture fea-
tures in a hierarchical and balanced way (Sec. 4.2). Finally,
to endow the model with the ability to learn non-stationary
textures as well as the scale and position of textures on the
input garment, we propose to incorporate a positional en-
coding module in our pipeline (Sec. 4.3). An overview of
our pipeline is shown in Fig. 2.

Definitions of Additional Symbols. In addition to the sym-
bols defined in Sec. 3, we have:
• Im: the clothing-agnostic version of I , which is generated

by i) masking the whole bounding box area of a garment
in I and ii) copy-pasting the hair area of I back on top.
These can be easily achieved using the parsing map of I .
Note that for lower garments, we ensure the bottom edges
of their bounding boxes always go down to the shoes to
avoid the leakage of garment length (e.g., short skirts).

• P(I), P(Im): the human parsing images of I and Im.
• D(I): the densepose image of I generated by applying

readily available methods [33] on the SHHQ dataset [8].
• P(Im,Cs): the output parsing map generated by inpaint-

ing P (Im) with the guidance of Ctext
s or Cimg

s .
• zpt , zit: the latent variable of output parsing P (Im, Cs)

and output human image Î .

4.1. Two-Stage Style and Texture Disentanglement

To make virtual try-on effective with unconstrained designs,
we need to disentangle their style and texture so that the
style of the texture-conditioning image Cimg

t (e.g., trousers)
and the texture of the style conditions Cimg

s / Ctext
s do not

affect the results. This is a challenging task for Stable Diffu-
sion [26], the foundation model we use, as the embeddings
generated by its CLIP encoder contain both style and texture
information of the input. To address this issue, we propose
a novel two-stage pipeline for style and texture disentangle-
ment, where the first stage aims to generate a parsing map
whose clothing style is determined by Cimg

s or Ctext
s , and

the second stage adds clothing texture conditioned on Cimg
t

to the garment areas of the parsing map. Note that we only
used Cimg

t during training and the learned disentanglement
allows for using Cpatch

t during inference.

Stage 1: Parsing-based Style Editing. Given the masked
clothing-agnostic human parsing image P (Im) and its cor-
responding densepose image D(I) where the arm or leg po-
sitions of I are provided, we aim to generate an output pars-
ing map P (Im, Cs) in which the relevant garment region of



Figure 2. Overall pipeline. Stage I: Given a clothing-agnostic parsing image P (Im) and its corresponding densepose image D(I), a style
condition Cs (text or image), this stage generates a parsing map P (Im, Cs) edited according to Cs. Stage II: Given a clothing-agnostic
human image Im, the parsing map P (Im, Cs) generated in Stage I, a garment texture condition Ct (image or patch), this stage generates
the final human image Î with its style specified by Cs and texture specified by Ct. Note that we only used Cimg

t during training and the
learned disentanglement allows for using Cpatch

t during inference. Flame symbol: “trainable”; Snowflake symbol: “freeze”.

P (Im) is edited according to Cimg
s or Ctext

s . Specifically,
we freeze the encoder E , decoder D and the CLIP encoder
of Stable Diffusion and finetune its U-Net component using
the inputs mentioned above. Note that we included an MLP
layer between the CLIP encoder and U-Net as an adaptor
to map the CLIP features to the garment style space. Fol-
lowing [26], we pass P (Im) and D(I) through the encoder
E and concatenate their embeddings with latent variable zpt
along the channel dimension as input to the U-Net and have:

ϵt = ϵθ([E(D(I)), E(P (Im)), zt], t, Cs) (4)

where Cs = MLP([Ctext
s , Cimg

s ]), the sizes of Ctext
s and

Cimg
s are 1× 768. During training, either Ctext

s or Cimg
s is

set to 0 to ensure that only one style signal is used as input.
Remark. Our parsing-based style editing module inherently
enables sequential editing by simply replacing P (I) with
the generated P (Im, Cs) and running the module again.
Additionally, in the special case when the source human is
wearing separate top and bottom garments, and the target
garment style is a dress or jumpsuit, the mask should cover
all garment parts to implement the editing properly.

Stage 2: Style-guided Garment Texture Inpainting. Us-
ing the edited human parsing map P (Im, Cs) obtained from
Stage 1 as a style guidance, we aim to inpaint the masked
region (mostly garment) of Im according to an input texture
reference Cimg

t . Specifically, we follow [26] and imple-

ment the inpainting by injecting the CLIP features extracted
from Cimg

t into the U-Net through cross-attention. How-
ever, a naive application of this approach does not work as
the final-block CLIP features are rich in semantics but lack
low-level texture, position and scale information. Address-
ing this issue, we propose the use of hierarchical and bal-
anced CLIP features (Sec. 4.2) equipped with position en-
coding (Sec. 4.3) to learn photorealistic and non-stationary
texture features, respectively:

Ct = Pe(MLP(H(Cimg
t ))) (5)

where H denotes the extraction of hierarchical CLIP fea-
tures, and Pe denotes the position encoding. We finetune a
Stable Diffusion [26] model for this stage as well and have:

ϵt = ϵθ([E(P (Im, Cs)), E(Im), zt], t, Ct) (6)

4.2. Photorealistic Texture Transfer

A core challenge in photorealistic texture transfer is de-
termining optimal image features to input into the U-Net.
A naive solution is to replace the text CLIP features used
in previous methods with image CLIP features as images
contain richer texture information. However, this does not
bring significant improvement as we observed that the low-
level texture cues are gradually washed away when pass-
ing through CLIP blocks (Fig. 3), and the resulting image
CLIP features also encapsulate only high-level semantics.



Figure 3. Visualization of clustered features from all 24 blocks of
CLIP’s Vision Transformer. Red: block id. The higher the block
in the hierarchy, the more semantic and less texture information it
contains. Please zoom in to see more details.

To solve this problem, we propose to counter the wash-away
effect and achieve photorealistic texture transfer by using
hierarchical and balanced CLIP features.

Hierarchical Texture Features. To incorporate low-level
texture features, we propose using features extracted from
all 24 blocks of CLIP’s Vision Transformer. To justify this
approach, we analyze these features by applying PCA (Prin-
cipal Component Analysis) to generate 24 feature maps of
size 16× 16× 3. The features are then classified into eight
categories through clustering. As shown in Fig. 3, there are
clear differences among the eight feature clusters, indicat-
ing that hierarchical texture features provide more thorough
information compared to using only the last block.

Balancing Texture Features. From Fig. 3, we observe that
the features within each category are similar, while there
are significant differences between categories. In addition,
we find that for texture transfer, both low-level features that
provide details and high-level features that provide seman-
tic guidance are required. To minimize redundancy and bal-
ance the contributions of different types of feature, we se-
lect the shallowest layer feature from each class as the rep-
resentative feature. Using this method, we obtain a repre-
sentative set of hierarchical CLIP features with dimensions
(257×8)×1024. These features are then transformed into
(257×8)×768 representations via an MLP layer before be-
ing fed into the U-Net.

In this way, we obtain a minimal and balanced set of fea-
tures Ct that span all levels of CLIP representations, thereby
producing photorealistic results.

4.3. Learning Non-stationary Texture Features

While CLIP features excel at generating stationary textures
like solid colors, they struggle with non-stationary patterns
like plaids, inaccurately capturing their scales and color
distributions. To address this, we add a positional encod-
ing layer Pe before feeding the CLIP features Ct obtained
above into the U-Net. The added positional information al-
lows for capturing intricate visual details like plaid scales
and color variations, markedly improving output quality.
Thus, this enhancement substantially improves the model’s
ability to represent non-stationary garment textures.

Figure 4. Comparison of our model on clothing style editing. We
use a garment image reference for better visualization.

5. Experiment
5.1. Experimental Setup

Datasets. While we evaluate our method on the Deep-
Fashion Multimodal [20], SHHQ [8] and VITON-HD [6]
datasets, we conduct the main experiments on the Deep-
Fashion Multimodal dataset to enable fair comparison, as it
serves as the primary benchmark across most state-of-the-
art approaches.

Implementation Details. [Stage 1] For the DeepFashion-
Multimodal dataset, we use both text and garment images as
style references. For the SHHQ and VITON-HD datasets,
which lack text annotations, we exclusively utilize images
as inputs. The training and testing resolutions are 512×256
and 1, 024× 512 for DeepFashion-Multimodal and SHHQ,
while we use 512 × 384 / 1, 024 × 768 for VITON-HD.
Each model is fine-tuned from a pre-trained stable diffusion
model [26] for 50 epochs with an initial learning rate of
1e−5. The classifier-free guidance scale is set to 8 for test-
ing. [Stage 2] We extract clothing from human images and
change the background pixel values to 255. The training
and testing resolutions match Stage 1. We fine-tune each
model for 100 epochs using the same learning rate as Stage
1. The guidance scale is set to 20 for testing.

5.2. Comparison with SOTA Methods

Style Prediction Accuracy. To facilitate a fair comparison,
we leverage text descriptions Ctext

s as style guidance and
evaluate all methods on 6 common clothing styles: “dress”,
“jumpsuit”, “short sleeve top and long pants”, “long sleeve
top and shorts”, “sleeveless top and a skirt”. As shown qual-
itatively in Fig. 4 and quantitatively in Table 2, our method
achieves significantly higher style prediction accuracy com-



Methods Accuracy ↑ M ↑ R ↑
FashionTex [19] 82.75% 3.47% 8.33%

Text2Human [15] 88.87% 7.64% 9.73%
Ours 92.35% 88.89% 81.94%

Table 2. Comparison for clothing style editing. ‘Accuracy’: The
quantitative comparison of whether the model succeeds in getting
the target cloth type. ‘M’ and ‘R’ : Two user studies to objectively
evaluate our methods compared to others on style fidelity and im-
age naturalness. ‘M’ stands for “Match”, i.e., how well the result
of a method matches the input style or texture; ‘R’ stands for “Re-
alistic”, i.e., how realistic the result of a method looks.

Texture patch Garment
Methods FID ↓ KID ↓ FID ↓ KID ↓

Texture Reformer[31] 28.43 5.74 26.99 16.02
Paint-by-Example [37] 28.73 6.33 27.47 5.89

PIDM[4] – – 23.90 4.40
FashionTex [19] 30.11 10.99 – –

Ours 21.25 0.22 22.41 0.81

Table 3. Quantitative Comparisons for garment texture transfer
task. The KID is scaled by 1000 following [16].

pared to prior arts. In particular, our approach proficiently
generates aligned images from text descriptions, whereas
Text2Human [15] and FashionTex [19] struggle to produce
the desired outcomes from the same textual inputs.

Texture Quality. In Table 3 and Fig. 5, we provide quan-
titative and visual comparisons under two different types of
texture input Cimg

t : garment texture patches and full gar-
ment images. Quantitatively, our method outperforms all
SOTA methods by a large margin. Qualitatively, when us-
ing garment texture patches as Cimg

t , Texture Reformer [31]
and FashionTex [19] results exhibit high texture similarity
to Cimg

t , yet lack realism as garments. When using full gar-
ment images as Cimg

t , PIDM [4] generates more garment-
like results, but fails to retain the clothing style of the input.
As for Paint-By-Example, it yields bad results on both patch
and image, possibly because it inherently lacks a focus on
clothing editing. However, our approach not only preserves
texture fidelity, but also produces realistic, natural-looking
human images in both cases.

User Study. We ran six user studies with 96 participants
across various identities and age groups to objectively eval-
uate our methods compared to others on style/texture fi-
delity and image quality. Similar to [42], the percentages
of each method being selected as the best one are shown in
Table 2 and Table 4, which shows that our method is chosen
as the best method by the majority of participants (larger
than 70 %) in all cases. More details about the user study
are included in the supplementary material.

Texture patch Garment
Methods M ↑ R ↑ M ↑ R ↑

Texture Reformer[31] 5.73% 1.56% 5.36% 2.98%
Paint-by-Example [37] 5.21% 6.76% 0% 4.17%

PIDM[4] – – 23.21% 16.66%
FashionTex [19] 1.56% 3.13% – –

Ours 87.5% 88.55% 71.43% 76.19%

Table 4. User studies to objectively evaluate our methods com-
pared to others at texture fidelity and image naturalness.

5.3. Ablation Study

5.3.1 Effectiveness of Two-stage Disentanglement

To demonstrate the effectiveness of our two-stage style and
texture disentanglement approach, we compare it to a one-
stage variant. Specifically, this one-stage variant concate-
nates the CLIP features for text style input Ctext

s and im-
age texture input Cimg

t , and integrates them into the U-Net
of Stable Diffusion using cross-attention. Importantly, our
two-stage approach enables image style input Cimg

s , which
is not possible with the one-stage variant due to the lack
of paired training data for different Cimg

s , Cimg
t . This lim-

itation significantly restricts the one-stage method’s appli-
cability in real-world scenarios. For a fair comparison in
the limited application scenario of text style input, we re-
move the hierarchical and balanced feature extraction, and
position encoding from our method and use only the last-
block CLIP feature of Cimg

t . As shown in Fig. 6, the one-
stage model can i) accurately capture textures but be influ-
enced by the style of the reference texture garment when
extracting style information; and ii) sometimes capture the
correct style but suffer from texture noise mentioned in the
text (e.g., plaid patterns). In contrast, our two-stage model
can perfectly decouple style and texture and produce highly
controllable and realistic results.

5.3.2 Effectiveness of Improved CLIP Features

To demonstrate the effectiveness of our hierarchical and bal-
anced CLIP feature extraction, in Table 5, we present a
quantitative comparison of our algorithm using CLIP fea-
tures from different categories. ‘ Specifically, ‘Single CLIP
feature” refers to using only the image CLIP feature, while
“layers 1 – n” indicates concatenating the shallowest fea-
ture of the first to nth category, forming a composite fea-
ture (Sec. 4.2). Experimental results show that using multi-
layer features significantly outperforms single-layer fea-
tures, with using shallowest feature of all 8 categories yield-
ing the best results. As Fig. 6 shows, compared to our re-
sults, garments generated using only the Single CLIP fea-
ture do not closely match the provided texture. In contrast,
our composite CLIP feature enables garment synthesis that
better preserves both global style and fine texture details.



Figure 5. Visual Comparison on garment texture transfer.

Figure 6. The ablation studies of our two-stage disentanglement
and hierarchical CLIP features. Ctext1

s : “He wears a short-sleeve
T-shirt with floral patterns.” Ctext2

s : “His shirt has long sleeves,
cotton fabric and plaid patterns.”

5.3.3 Effectiveness of Position Encoding

In Fig. 7, we conduct three experiments to analyze the effect
of position encoding, including: i) without position encod-
ing; ii) input different cropped areas from a single reference
garment Cimg

t with non-stationary textures; and iii) input
Cimg

t with the same pattern but at different scales. The re-
sults show position encoding significantly enhances the cor-
relation between the generated garments and provided tex-
tures. Specifically, it not only i) preserves the texture dis-
tribution (e.g., non-stationary) of Cimg

t effectively, but also
ii) enables generating results at different scales, introduc-

Method FID ↓ KID ↓
Single CLIP feature 24.57 4.57

layers 1 – 2 22.87 0.70
layers 1 – 4 22.99 1.04
layers 1 – 6 23.06 1.34
Ours (1 – 8) 22.25 0.22

Table 5. Effectiveness of hierarchical and balanced CLIP features.

ing greater flexibility. Overall, position encoding is crucial
for establishing spatial correspondence between input tex-
ture and output garments, enabling virtual try-on and fash-
ion design that adapt to various scenarios.

5.4. Applications

In-shop Virtual Try-on. We qualitatively compare our vir-
tual try-on results to state-of-the-art methods using in-shop
clothing images. As Fig. 8 shows, our approach achieves
comparable visual realism and clothing accuracy to recent
algorithms, as evidenced by the realistic rendering and natu-
ral fit of the virtually dressed person. This demonstrates that
our method can synthesize high-fidelity images of in-shop
clothing on people using only a single reference image.

Fashion Design. Beyond virtual try-on, our method can
also assist fashion design. As shown in Fig. 9, given a text
prompt specifying the clothing style, a base texture, and a
logo (we manually scale and place the logo into a proper
position of Im), our approach can generate realistic images
of a person wearing the described garment. This demon-
strates the versatility of our algorithm to not only virtually
dress people in existing clothing, but also create new outfit
designs from scratch. Our system has the potential to serve
as an inspirational tool for fashion designers by instantly
visualizing creative concepts.



Figure 7. The effectiveness of position encoding, where (b) and
(c) are the upper part and lower part of (a) respectively.

Figure 8. The comparison of virtual try-on based on in-shop cloth.

5.5. Limitations

We carefully examined our approach and identified the fol-
lowing limitations: i) The performance of our method re-
lies on the accuracy of the human parsing map P (I), which
can be less accurate for extreme cases such as low lighting
and severe occlusion. ii) Although being more general and
flexible, the disentanglement and recombination of fashion
elements enabled by our method inevitably contradict the
“warping” paradigm of traditional VTON methods. There-
fore, when VTONing full garments with structured patterns,
our method introduces additional logo and texture extrac-
tion steps that are slightly more complex than existing in-
shop VTON methods.

6. Conclusion

In conclusion, we have introduced the novel task of vir-
tual try-on from unconstrained fashion designs (ucVTON)
to enable flexible and photorealistic synthesis of personal-
ized composite clothing. Our key technical contributions
include a two-stage disentanglement pipeline to explicitly
separate style and texture when using full garment images

Figure 9. Fashion design results under different conditions includ-
ing style, texture, and design elements (e.g., logo).

as complex entangled conditions;a novel hierarchical and
balanced CLIP feature extraction module and position en-
coding to represent non-stationary textures for high-fidelity
synthesis, which significantly expands the diversity of al-
lowable style and texture conditions compared to prior arts.
Extensive experiments demonstrate the superiority of our
approach in photorealism, personalization, and fine-grained
controllability. The flexible mixing and matching of styles
and textures enabled by our work brings VTON to a new
level that benefits various real-world applications from on-
line shopping to fashion design.

Acknowledgements. The work was supported in part
by the Basic Research Project No. HZQB-KCZYZ-
2021067 of Hetao Shenzhen-HK S&T Cooperation Zone,
Guangdong Provincial Outstanding Youth Project No.
2023B1515020055, the National Key R&D Program of
China with grant No. 2018YFB1800800, by Shenzhen
Outstanding Talents Training Fund 202002, by Guang-
dong Research Projects No. 2017ZT07X152 and No.
2019CX01X104,by Key Area R&D Program of Guangdong
Province (Grant No. 2018B030338001), by the Guang-
dong Provincial Key Laboratory of Future Networks of In-
telligence (Grant No. 2022B1212010001), and by Shen-
zhen Key Laboratory of Big Data and Artificial Intelligence
(Grant No. ZDSYS201707251409055). It is also partly
supported by NSFC-62172348, 61931024 and Shenzhen
General Project No. JCYJ20220530143604010.



References
[1] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and

Amit Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing. In Proceedings of
the IEEE/CVF conference on computer Vision and pattern
recognition, pages 18511–18521, 2022. 2

[2] Shuai Bai, Huiling Zhou, Zhikang Li, Chang Zhou, and
Hongxia Yang. Single stage virtual try-on via deformable
attention flows. In European Conference on Computer Vi-
sion, pages 409–425. Springer, 2022. 1

[3] Alberto Baldrati, Davide Morelli, Giuseppe Cartella, Mar-
cella Cornia, Marco Bertini, and Rita Cucchiara. Multimodal
garment designer: Human-centric latent diffusion models for
fashion image editing. arXiv preprint arXiv:2304.02051,
2023. 2

[4] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal,
Rao Muhammad Anwer, Jorma Laaksonen, Mubarak Shah,
and Fahad Shahbaz Khan. Person image synthesis via de-
noising diffusion model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5968–5976, 2023. 3, 6

[5] Lele Chen, Justin Tian, Guo Li, Cheng-Haw Wu, Erh-Kan
King, Kuan-Ting Chen, Shao-Hang Hsieh, and Chenliang
Xu. Tailorgan: making user-defined fashion designs. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 3241–3250, 2020. 2

[6] Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul
Choo. Viton-hd: High-resolution virtual try-on via
misalignment-aware normalization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 14131–14140, 2021. 1, 5

[7] Haoye Dong, Xiaodan Liang, Xiaohui Shen, Bochao Wang,
Hanjiang Lai, Jia Zhu, Zhiting Hu, and Jian Yin. Towards
multi-pose guided virtual try-on network. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 9026–9035, 2019. 1

[8] Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin,
Chen Qian, Chen-Change Loy, Wayne Wu, and Ziwei Liu.
Stylegan-human: A data-centric odyssey of human genera-
tion. arXiv preprint, arXiv:2204.11823, 2022. 3, 5

[9] Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei
Liu, and Ping Luo. Parser-free virtual try-on via distilling
appearance flows. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
8485–8493, 2021. 1

[10] Vidit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Nicu
Sebe, Trevor Darrell, Zhangyang Wang, and Humphrey Shi.
Pair-diffusion: Object-level image editing with structure-
and-appearance paired diffusion models. arXiv preprint
arXiv:2303.17546, 2023. 2

[11] Junhong Gou, Siyu Sun, Jianfu Zhang, Jianlou Si, Chen
Qian, and Liqing Zhang. Taming the power of diffusion
models for high-quality virtual try-on with appearance flow.
arXiv preprint arXiv:2308.06101, 2023. 1, 2, 3

[12] Sen He, Yi-Zhe Song, and Tao Xiang. Style-based global
appearance flow for virtual try-on. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3470–3479, 2022. 1

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 2

[14] Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao,
and Jingren Zhou. Composer: Creative and controllable im-
age synthesis with composable conditions. arXiv preprint
arXiv:2302.09778, 2023. 2

[15] Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu,
Chen Change Loy, and Ziwei Liu. Text2human: Text-driven
controllable human image generation. ACM Transactions on
Graphics (TOG), 41(4):1–11, 2022. 2, 3, 6

[16] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. Advances in neural infor-
mation processing systems, 33:12104–12114, 2020. 6

[17] Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and
Jun-Yan Zhu. Dense text-to-image generation with attention
modulation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7701–7711, 2023. 2

[18] Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan
Choi, and Jaegul Choo. High-resolution virtual try-on with
misalignment and occlusion-handled conditions. In Eu-
ropean Conference on Computer Vision, pages 204–219.
Springer, 2022. 1

[19] Anran Lin, Nanxuan Zhao, Shuliang Ning, Yuda Qiu,
Baoyuan Wang, and Xiaoguang Han. Fashiontex: Control-
lable virtual try-on with text and texture. arXiv preprint
arXiv:2305.04451, 2023. 1, 2, 3, 6

[20] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xi-
aoou Tang. Deepfashion: Powering robust clothes recog-
nition and retrieval with rich annotations. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 5

[21] Davide Morelli, Matteo Fincato, Marcella Cornia, Federico
Landi, Fabio Cesari, and Rita Cucchiara. Dress code: High-
resolution multi-category virtual try-on. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2231–2235, 2022. 1

[22] Davide Morelli, Alberto Baldrati, Giuseppe Cartella, Mar-
cella Cornia, Marco Bertini, and Rita Cucchiara. LaDI-
VTON: Latent Diffusion Textual-Inversion Enhanced Virtual
Try-On. In Proceedings of the ACM International Confer-
ence on Multimedia, 2023. 1, 2

[23] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhon-
gang Qi, Ying Shan, and Xiaohu Qie. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023. 2

[24] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2085–2094,
2021. 2

[25] Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido
Gerig, and Peyman Milanfar. Multiscale structure guided
diffusion for image deblurring. In Proceedings of the



IEEE/CVF International Conference on Computer Vision,
pages 10721–10733, 2023. 2

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 2, 3, 4, 5

[27] Nirat Saini, Hanyu Wang, Archana Swaminathan, Vinoj
Jayasundara, Bo He, Kamal Gupta, and Abhinav Shrivas-
tava. Chop & learn: Recognizing and generating object-state
compositions. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 20247–20258,
2023. 2

[28] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2

[29] Zhengwentai Sun, Yanghong Zhou, Honghong He, and PY
Mok. Sgdiff: A style guided diffusion model for fashion
synthesis. arXiv preprint arXiv:2308.07605, 2023. 2

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[31] Zhizhong Wang, Lei Zhao, Haibo Chen, Ailin Li, Zhiwen
Zuo, Wei Xing, and Dongming Lu. Texture reformer: to-
wards fast and universal interactive texture transfer. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 2624–2632, 2022. 2, 3, 6

[32] Qiucheng Wu, Yujian Liu, Handong Zhao, Trung Bui, Zhe
Lin, Yang Zhang, and Shiyu Chang. Harnessing the spatial-
temporal attention of diffusion models for high-fidelity text-
to-image synthesis. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 7766–7776,
2023. 2

[33] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 3

[34] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu.
Tedigan: Text-guided diverse face image generation and ma-
nipulation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2256–2265,
2021. 2

[35] Yuliang Xiu, Jinlong Yang, Xu Cao, Dimitrios Tzionas, and
Michael J Black. Econ: Explicit clothed humans optimized
via normal integration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 512–523, 2023. 2

[36] Han Xue, Zhiwu Huang, Qianru Sun, Li Song, and Wenjun
Zhang. Freestyle layout-to-image synthesis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14256–14266, 2023. 2

[37] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin
Chen, Xiaoyan Sun, Dong Chen, and Fang Wen. Paint by
example: Exemplar-based image editing with diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18381–18391,
2023. 2, 6

[38] Han Yang, Ruimao Zhang, Xiaobao Guo, Wei Liu, Wang-
meng Zuo, and Ping Luo. Towards photo-realistic virtual
try-on by adaptively generating-preserving image content. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 7850–7859, 2020. 1

[39] Ruiyun Yu, Xiaoqi Wang, and Xiaohui Xie. Vtnfp: An
image-based virtual try-on network with body and clothing
feature preservation. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 10511–
10520, 2019. 1

[40] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 2

[41] Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin
Bao, Shaozhe Hao, Lu Yuan, and Kwan-Yee K Wong.
Uni-controlnet: All-in-one control to text-to-image diffusion
models. arXiv preprint arXiv:2305.16322, 2023. 2

[42] Luyang Zhu, Dawei Yang, Tyler Zhu, Fitsum Reda, William
Chan, Chitwan Saharia, Mohammad Norouzi, and Ira
Kemelmacher-Shlizerman. Tryondiffusion: A tale of two
unets. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4606–4615,
2023. 6

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	. Introduction
	. Related Work
	. Background and Problem Definition
	. Method
	. Two-Stage Style and Texture Disentanglement
	. Photorealistic Texture Transfer
	. Learning Non-stationary Texture Features

	. Experiment
	. Experimental Setup
	. Comparison with SOTA Methods
	. Ablation Study
	Effectiveness of Two-stage Disentanglement
	Effectiveness of Improved CLIP Features
	Effectiveness of Position Encoding

	. Applications
	. Limitations

	. Conclusion

