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 Abstract: 

Water diffusion-weighted MRI is a very powerful tool for probing tissue microstructure, but 

disentangling the contribution of compartment-specific structural disorder from cellular 

restriction and inter-compartment exchange remains an open challenge.   

In this work we use diffusion-weighted MR spectroscopy (dMRS) of water and metabolite as 

a function of diffusion time in vivo in mouse gray matter to shed light on: i) which of these 

concomitant mechanisms (structural disorder, restriction and exchange) dominates the MR 

measurements and ii) with which specific signature.  

We report the diffusion time-dependence of water with excellent SNR conditions as provided 

by dMRS, up to a very long diffusion time (500 ms). Water kurtosis decreases with increasing 

diffusion time, showing the concomitant influence of both structural disorder and exchange. 

However, despite the excellent experimental conditions, we were not able to clearly identify 

the nature of the structural disorder (i.e. 1D versus 2D/3D short-range disorder).  Measurements 

of purely intracellular metabolites diffusion time-dependence (up to 500 ms) show opposite 

behavior to water, with metabolites kurtosis increasing as a function of diffusion time. We 

show that this is a signature of diffusion restricted in the intracellular space, from which cellular 

microstructural features such as soma’s and cell projections’ size can be estimated. Finally, by 

comparing water and metabolite diffusion time dependencies, we attempt to disentangle the 

effect of intra/extracellular exchange and structural disorder of the extracellular space (both 

impacting water diffusion only). Our results suggest a relatively short intra/extracellular 

exchange time (~1-50 ms) and short-range disorder (still unclear if 1D or 2D/3D) most likely 

coming from the extracellular compartment. 

This work provides novel insights to help interpret water diffusion-time dependent 

measurements in terms of the underlying microstructure of gray matter and suggests that 

diffusion-time dependent measurements of intracellular metabolites may offer a new way to 

quantify microstructural restrictions in gray matter. 

Abbreviations: 

CSF: cerebrospinal fluid 

  



1. Introduction 

Diffusion-weighted MRI (dMRI) is a valuable radiological tool to non-invasively 

quantify the brain structure at the cellular scale, the so-called microstructure (Alexander et al., 

2019; Jelescu et al., 2020; Novikov et al., 2019). Among the different dMRI approaches 

investigated in the past decades, measurements of the diffusion-time (td) dependent dMRI 

signal have been shown to provide information on the brain tissue inter-compartmental 

exchange (Hill et al., 2021; Jelescu et al., 2022; Nedjati-Gilani et al., 2017; Nilsson et al., 2009; 

Olesen et al., 2022; Stanisz et al., 1997; Zhang et al., 2021), structural disorder (Novikov et al., 

2014; Palombo et al., 2013; Palombo, Ligneul, et al., 2018) and the restricted environment 

where the molecules diffuse over ~1-100 µm (Assaf & Cohen, 2000; Does et al., 2003; 

Drobnjak et al., 2010; Jespersen et al., 2018; Palombo et al., 2016; Panagiotaki et al., 2012).  

In particular, it has been shown that measurements of the td-dependence of water 

diffusivity (Aggarwal et al., 2012; Arbabi et al., 2020; Baron & Beaulieu, 2014; Does et al., 

2003; Wu et al., 2014), DW(td), and kurtosis (Aggarwal et al., 2020; Lee et al., 2020; 

Pyatigorskaya et al., 2014; Wu et al., 2018), KW(td), provide unique quantitative insight into 

these tissue properties. Varying the td allows probing different length scales and thus assessing 

the spatial heterogeneity of the cellular microenvironment. For instance, at short td, obtained 

with the oscillating gradient spin echo (OGSE) sequence, a large DW variation as a function of 

the oscillating-gradient frequency (inversely proportional to td) was measured in cell-dense 

regions compared to other regions of the mouse brain, which is thought to reflect, among other 

things, restricted diffusion on a length scale of a few micrometers, thus in the order of the cell 

nucleus size (Aggarwal et al., 2012). At longer td, which can be probed using, for example, 

pulsed gradient spin echo (PGSE), the length scales probed are more on the order of tens of 

micrometers. For such td, DW and KW are sensitive to demyelination in white matter (Aggarwal 

et al., 2020) or to 1D structural disorders associated with neurites in gray matter (GM) (Lee et 

al., 2020; Novikov et al., 2014), but it has also been shown to be influenced by exchange 

(Jelescu et al., 2022; H. Li et al., 2017; Olesen et al., 2022; Yang et al., 2018), and disentangling 

the different contributions remains complex. Most importantly, some exchange regimes can 

also influence KW(td), as shown by numerical simulations (Aggarwal et al., 2020): increasing 

the diffusion time will result in increased KW until td approaches a characteristic time 

corresponding to a diffusion length comparable to the typical (permeable) restriction size; for 

longer td, KW will then decrease due to exchange, with a slope which is steeper as exchange 



gets faster (i.e. higher permeability). However, as valuable as these simulations are, they do 

not fully mirror the true structural complexity of the GM tissue, in particular the structural 

disorder of the intra- and extracellular space. Disentangling compartment-specific structural 

disorder from inter-compartment exchange, either experimentally or in simulations, remains 

very challenging.   

In contrast and complementary to water, diffusion measurements of purely intracellular 

metabolites by diffusion-weighted MRS (dMRS) offer information about the brain 

microstructure that is specific to the intracellular space and is not affected by inter-

compartmental exchange (Assaf & Cohen, 1999; Palombo, Shemesh, et al., 2018; Ronen & 

Valette, 2015). Some brain metabolites are also preferentially compartmentalized within 

neurons, such as N-acetyl aspartate (NAA), and glial cells, such as myo-inositol (Ins), 

providing a probe of neuronal or glial structure, and can, for example, be used to estimate 

neurite radii and intracellular diffusivity (Ligneul et al., 2017; Palombo, Shemesh, et al., 2018). 

Interestingly, td-dependent dMRS is an efficient tool for probing complex GM cell 

microstructure, as it was shown that dMRS is sensitive for example to spines and leaflets 

density (Palombo, Ligneul, et al., 2018) and cellular processes branching (Palombo et al., 

2016). Specifically, td-dependence of metabolite diffusivity DM(td) and kurtosis KM(td) is 

expected  to be influenced by features of the cellular structure at different length scales, but 

without influence of extracellular space or exchange with extracellular space (Ianus et al., 

2021). Micrometric restriction (soma and projection size) or exchanges between soma and 

projection (Ianus et al., 2021) could be all specific information of the intracellular environment. 

DM(td) and KM(td) would thus provide valuable and complementary information to water to 

investigate GM. By comparing the td-dependent diffusivity, DM(td), and kurtosis, KM(td), of 

intracellular metabolites with DW(td)-KW(td) one can potentially separate and quantify the 

relevant mechanism(s) driving each td-dependency in GM. 

The aim of the present work is to shed some light on the role of exchange, structural 

disorder and restriction in GM, by exploiting the complementary information of DW(td)-KW(td) 

and DM(td)-KM(td) measured by dMRS. More specifically, it aims at: 

(I) revisit water diffusion time-dependence DW(td)-KW(td) with excellent SNR 

conditions as provided by dMRS (i.e. measured in a large volume) and up to very long td (500 

ms) 



(II) report for the first time, to our knowledge, intracellular metabolite diffusion time-

dependence DM(td)-KM(td) up to very long td (500 ms) to determine the signature of intracellular 

diffusion 

(III) combining results from (I) and (II) to try to disentangle the effect of exchange and 

the signature of the extracellular diffusion.  

  

2. Material and methods 

2.1. dMRS acquisition 

2.1.1. Ethics approval, scanner and sequence 

All experimental protocols were reviewed and approved by the local ethics committee 

(CETEA N°44), and authorized by the French Ministry of Education and Research. They were 

performed in an approved facility (authorization #B92-032-02), in strict accordance with 

recommendations of the European Union (2010-63/EEC). All efforts were made to minimize 

animal suffering, and animal care was supervised by veterinarians and animal technicians. 

Mice were housed under standard environmental conditions (12-hour light-dark cycle, 

temperature: 22 ± 1 °C and humidity: 50%) with ad libitum access to food and water. 

Experiments were performed on an 11.7 T BioSpec Bruker scanner interfaced to 

PV6.0.1 (Bruker, Ettlingen, Germany). A quadrature surface cryoprobe (Bruker, Ettlingen, 

Germany) was used for transmission and reception. Wild-type C57BL/6 mice were 

anesthetized with ~1.6% isoflurane and maintained on a stereotaxic bed with one bite and two 

ear bars. Throughout the experiment, body temperature was monitored and maintained at ~36 

°C by warm water circulation. Breathing frequency was monitored using PC – SAM software 

(Small Animal Instruments, Inc., Stony Brook, NY). The sequence used for all acquisition was 

a diffusion-weighted stimulated-echo sequence (Ligneul et al., 2017) followed by a LASER 

localization (STE-LASER). Echo time was set to TE = 33.4 ms (including the 25-ms LASER 

echo time) and was held constant for each acquisition. Repetition time was set to TR = 2500 

ms. The duration of the pulsed diffusion gradient was set to δ = 3 ms. Diffusion gradients were 

separated by the delay ∆, which was varied according to the protocol described in the next two 

sections. In addition, a VAPOR water-suppression module supplemented by an additional 21-



ms hermite inversion pulse inserted during the mixing time was used for metabolite acquisition, 

respectively. 

2.1.2. Water acquisition 

Water diffusion was measured in four mice. A spectroscopic volume of interest (1.5 × 

0.8 × 2 mm3 = 2.4 µL) was placed in the hippocampus, in such a way that it consisted almost 

exclusively of gray matter (no visible white matter, and CSF contamination <<1%). For each 

delay  = 21.8, 31, 43.5, 101, 251, 501 ms i.e. resulting respectively in diffusion time td = 20.8, 

30, 42.5, 100, 250, 500 ms, attenuation was measured for b = 0.2, 0.7, 1.2, 2.0, 2.5 ms/µm² 

along one fixed direction, with 16 repetitions. 

 

2.1.3. Intracellular metabolites acquisition 

Metabolite diffusion was measured in seven mice. A spectroscopic voxel (7 × 1.5 × 3 

mm3 = 31.5 µL) covering the two hemispheres was centered in the hippocampus so that CSF 

contamination was minimal. Voxel composition (gray matter~94%, white matter~5% and 

CSF~1%) was estimated a posteriori on anatomical images acquired with a RARE sequence 

with TE/TR=30/2500 ms, 78.1-µm isotropic resolution and 0.5-mm slice thickness, using 

manual segmentation with the Fiji distribution of the ImageJ software, in the whole volume. 

For each delay  = 43.5, 101, 251, 501 ms i.e. resulting respectively in diffusion time td = 42.5, 

100, 250, 500 ms, attenuations of N-acetylaspartate (NAA), choline compounds (tCho), 

creatine + phosphocreatine (tCr), inositol (Ins), taurine (Tau) were measured for b = 0.2, 1.0, 

2.0, 3.2, 4.5, 6.0, 8.0 ms/µm² along one direction. Two blocks of 32 repetitions interleaved 

between each td and b value were acquired for td = 42.5, 100, 250 ms and three blocks of 32 

repetitions were acquired to improve the SNR for td = 500 ms. 

  

2.2 Data processing and analysis 

2.2.1. Data processing 

Individual scans were frequency- and phased-corrected before averaging. For water 

acquisitions, the integral of water peak was computed on a 0.5-ppm window centered on the 



peak maximum at each b and td. For metabolites, each spectrum was analyzed with LCModel 

(Provencher, 2001). Experimental macromolecule (MM) spectra, acquired for each td using a 

double inversion recovery module (TI1 = 2200 ms and TI2 = 770 ms), at b = 10 ms/µm², were 

included in LCModel basis-sets containing simulated metabolite spectra. 

 2.2.2. Data Analysis 

Remaining within these predefined b-value range (according with the convergence 

radius of the cumulant expansion (Frøhlich et al., 2006) for one hand water and other hand 

metabolites, which exhibit about four times slower diffusivity than water), for each td, the 

diffusion weighted signal S as a function of b was fitted with a non linear least square method 

implemented in Matlab’s ‘lsqcurvefit’ function to estimate the td-dependent apparent 

diffusivity of water or metabolite (DW/M(td)) and kurtosis (KW/M(td)), using equation 1 (Jensen 

& Helpern, 2003), for each td. 

𝑆𝑆(𝑏𝑏)  =  𝑆𝑆(0)  ×  𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏𝑏𝑏 + 1/6 𝐾𝐾𝐾𝐾2𝐷𝐷2)  [1] 

  

  

3. Results & discussion 

3.1. Revisiting water diffusion time-dependence: which power law describes water td 

dependence? 

Methodological considerations 

The STE-LASER sequence provides a good water signal even at a long diffusion time 

and a high b value, allowing DW and KW to be evaluated over a wide range of diffusion times 

[20.8; 500]  ms and reaching a fairly long diffusion time (td~500 ms), longer than in previous 

studies using PGSE sequence (Jelescu et al., 2022; Lee et al., 2020). With respect to attenuation 

(Fig.1B), the curvature of signal attenuation clearly attenuates with increasing diffusion time, 

approaching but not reaching near mono-exponential diffusion at long diffusion time (K~0.3). 

The model given by equation [1] fits the attenuation of water well (as shown for one mouse on 

Fig.1B), and this protocol provides a small inter-animal distribution of diffusion parameters 

(DW and KW), with a standard error of the mean between mice of 2% at shortest td and ~15% 

at longest td for DW and ~2% for KW. 



Regardless of the precise time-dependence, average DW estimated in this study are in 

the same order of magnitude as ADC measured in rat (Jelescu et al., 2022) and mouse GM 

(Aggarwal et al., 2020; Zhang et al., 2021), and slightly lower than the ADC in human brain 

(Lee et al., 2020). KW is also in the same order of magnitude as in previous studies (Jelescu et 

al., 2022; Lee et al., 2020). This spectroscopic acquisition using the STE-LASER sequence is 

therefore in good agreement with the literature.  

 

DW and KW decrease at increasing td 

Both DW and KW are time dependent (Fig1.C-D), over the whole td range. DW decreases 

significantly (~12% difference with an F-test (F(5, 15) = 31.102  , p< 0.001) for a Repeated 

Measure ANOVA), reaches a plateau ~0.5 µm²/ms, when DW tends to the tortuosity asymptote. 

(Fig.1C). KW also decreases (~50% with an F-test (F(5, 15) = 13.321, p< 0.001) for a Repeated 

Measure ANOVA) and approaches ~0.3 (Fig.1D), as the diffusion time increases, consistent 

with the diffusion not being Gaussian even at the longest diffusion time probed in this 

experiment. Given the composition of the water spectroscopic voxel used (nearly totally GM), 

we are also confident that the presence of multiple T1 pools, or exchange between multiple T1 

pools during TM, are very unlikely to bias our diffusion measurements (Fig.S1). Furthermore, 

by plotting log S(b = 0) = f(TM) (not reported), TM being the mixing time, we did not observe 

multiple T1 pools that could bias the signal, or diffusivity estimates as a function of td. 

The main difference from previous results (Jelescu et al., 2022; Lee et al., 2020) is in 

the DW time dependence. On the one hand we measured a significant decrease in DW (from 

0.62 to 0.57µm²/ms) over the td range 20-42.5 ms, while on the other hand (Jelescu et al., 2022) 

and (Lee et al., 2020) report an almost constant DW over this same td range in rat cortex and 

hippocampus and over a td range 20-100 ms in human cortical GM, respectively. On closer 

inspection, the ~0.05-µm²/ms difference measured in our study is within the range of inter-

animal variability reported in these other studies, which may explain the lack of significant 

difference in these other studies. 

A decrease in DW and KW over the entire td range suggests a nontrivial influence of 

microstructure, such as structural irregularities, and therefore the diffusion cannot be 

considered Gaussian, even at the longest diffusion time measured in this experiment. Moreover, 



these observations may also indicate an influence of the exchange between the intracellular and 

extracellular spaces, or a contribution of the two phenomena, structural disorder and exchange. 

 

Structural disorder  

According to the literature (Lee et al., 2020; Novikov et al., 2014) intra-compartmental 

diffusion can be influenced by structural disorder, and thus the assumption of Gaussian 

diffusion is broken. In particular, works based on coarse-graining approach have shown that 

DW(td) and KW(td) can reflect different classes of structural disorder in 1D, 2D or 3D (Lee et 

al., 2020; Novikov et al., 2014). Therefore, we compared different functional forms to fit the 

data and identify which structural disorder might dominate the water behavior.  

First, three models were applied to determine whether 1D or 2D/3D structural disorder 

could dominate. Based on (Lee et al., 2020; Novikov et al., 2014), we consider models given 

by  

𝐷𝐷(𝑡𝑡𝑑𝑑) =  𝐷𝐷∞ + 𝐶𝐶𝐷𝐷 𝑡𝑡𝑑𝑑
−𝜃𝜃  [2] 

𝐾𝐾(𝑡𝑡𝑑𝑑) =  𝐾𝐾∞ + 𝐶𝐶𝐾𝐾 𝑡𝑡𝑑𝑑
−𝜃𝜃   [3], 

with the constants CD , CK , 𝐷𝐷∞ =  lim
𝑡𝑡𝑑𝑑→∞

𝐷𝐷 and 𝐾𝐾∞ =  lim
𝑡𝑡𝑑𝑑→∞

𝐾𝐾 left as free parameters to be 

determined by fitting the experimental data and setting the “universal” dynamical exponent θ 

= (p+d)/2 to 0.5 (representing 1D structural disorder with a dimensionality d = 1 and a structural 

exponent p = 0, which determines the structural universality class) and 1 (representing either 

2D/3D structural disorder, with either p = 0 and d = 2 corresponding for example to random 

discs or p = -1 or d = 3 corresponding for example to random rods), respectively (Fig.2A-B). 

In gray matter, neuronal and glial cell soma, represented as spherical objects with ~5-8-µm 

radii, can also induce a 1/t power law decay of DW(td)/KW(td)  for long diffusion times td >> 

R²/D0. If water probes an extracellular space mostly comprised of randomly oriented fibers, 

DW(td) and KW(td) may also exhibit a logarithmic singularity of the form ln(td/tc)/td at long td 

(Burcaw et al., 2015). Hence, we also consider the alternative model  

A (ln(td/tc))/td  + B,  [4] 

with A a coefficient proportional to the universal dimensionless tail ratio, and B a coefficient 

corresponding to the long time limit (Fig.2C).  



Visually, it is not clear whether DW and KW follow a power law with exponent θ = 0.5, θ = 1 

or equation [4]. The results of the fit with the specific 1D structural disorder form are not too 

different from the results of the fit with ln(td/tc)/td, according to cAIC that is low for both 

models. In addition, it is not clear that DW and KW follow exactly the same law. At this stage, 

it is therefore difficult to determine whether one or the other form of structural disorder 

dominates. 

To go further, a model with exponent θ in equation [2] and equation [3] left as an 

additional free parameter to be determined from the data was used to fit DW and KW (Fig.3). 

The fit gives θ = 0.2 ± 0.2, (which is closer to 0.5 than 1), and the universal dimensionless tail 

ratio ξ = 𝐶𝐶𝐾𝐾/(𝐶𝐶𝐷𝐷/𝐷𝐷∞) = 1.3 ± 0.2 (which is close to 2). Values of θ ~0.5 and ~2 are expected 

for 1D short-range structural disorder (Lee et al., 2020; Novikov et al., 2014). We also found a 

tail ratio of ~2 regardless of the model used for fitting, with a best precision. Fit with free 

exponent is less accurate because of the small number of td.  

 

 

3.2. Unique td dependence of metabolite diffusion in the intracellular space 

Methodological considerations 

Spectra acquired in the hippocampal voxel have a good signal-to-noise ratio (>20 for 

NAA for the longest td and highest b value) even at the longest diffusion times and highest b 

values (Fig.4) and the LCModel analysis (not shown here) is robust (CRLB ~2% for all 

metabolites even at the longest diffusion time and highest b value) and we find a correct 

estimate of S/S0 with low inter-animal variability. The model given by equation 1 also fits the 

data well for each metabolite and animal (Fig.4).  

 

DM decreases and KM increases 

For each metabolite, with the exception of Ins, the inter-animal estimate of DM and KM 

is relatively consistent between animals with a standard error of the mean of less than 9% for 

DM and 30% for KM (Fig.5). DM decreases to a plateau of ~0.08 µm²/ms for NAA, Glu, tCr, 

and Tau, and ~0.06 µm²/ms for tCho and Ins with increasing td for all metabolites, and the DM 



estimate is clearly in agreement with previous results (Palombo et al., 2016).  Despite the low 

number of td, imposed by an in vivo experimental setup, statistical analysis with a paired sample 

t-test shows a significant increase in KM and decrease in DM for each metabolite, with at least 

a power of 0.7 for our sample size N=7. The diffusivity of predominantly intra-glial metabolites 

(Fisher et al., 2002) is lower than that of other metabolites. These differences are also noticeable 

in the estimate of KM, which increases with td for NAA, Glu, tCr, and Tau and tends almost to 

a plateau ~2.3-2.5 while Ins and tCho remain almost constant ~1.5.  

Such an increase in K is expected for diffusion in a restricted environment and thus 

strongly affected by the microstructure, in agreement with the numerical simulations of (Ianus 

et al., 2021), which account for restriction in soma, exchange between soma and cellular 

processes and cellular processes branching. The differences on the diffusion parameters 

observed between glial and neuronal cells are therefore not surprising because of the rather 

different morphology of these two cell types (Palombo, Shemesh, et al., 2018). Besides the 

high sensitivity of these dMRS methods for probing microstructure, already reported in 

previous studies (Ligneul et al., 2019), this work shows that even at lower b values (≲10 

ms/µm²), suitable for the validity range of the kurtosis representation, different cell 

microstructures can be distinguished. dMRS thus appears a powerful tool to probe the cell 

morphology with potential feasible translation to in vivo human measurements, using also 

clinical scanners with relatively low maximum gradient strength (~60-80 mT/m). 

 

Intracellular metabolites as endogenous probe of the intracellular microarchitecture  

To go further, we therefore proposed to evaluate the influence of the restricted 

environment on diffusion by fitting to DM(td) and KM(td) a simple model representing the 

intracellular compartment through the soma and projections formed by 20% spheres and 80% 

randomly oriented cylinders. Due to the low number of measurements, this ratio is imposed to 

avoid overfitting the model. Using an in-house iterative algorithm, the model was fitted to the 

DM and KM of mostly intra-neuronal (NAA and Glu) and predominantly intra-glial (tCho and 

Ins) metabolites (Fisher et al., 2002; Gill et al., 1989; Griffin et al., 2002; Urenjak et al., 1993), 

to extract radii from the soma and projections of (hypothetical) neuronal and glial cells, 

respectively (Fig.6). First, this restriction model appears to be suitable for describing the 

behavior of DM(td) and KM(td). For neuronal cells, this model gives estimates with low standard 



error of the radii of spheres and DM(td = 0), and the estimates are consistent with previous 

results, whereas the radii of cylinders are rather poorly estimated. For intra-glial metabolites, 

the uncertainty in the sphere and cylinder radii is high and the estimate is overestimated, but 

the DM(td = 0) is consistent with the literature in normal mouse GM (Ligneul et al., 2019; 

Palombo et al., 2020). Of course, the aim of this work is not to propose a new model for 

estimating biophysical parameters, but these results suggest that even such a simple model, like 

SANDI (Palombo et al., 2020), describes metabolites data well.  

  

In conclusion, the td-dependent diffusion of intracellular metabolites is dominated by 

restriction in the intracellular space, in line with previous study with various dMRS method 

(Assaf & Cohen, 1999; Kroenke et al., 2004; Ligneul et al., 2017; Shemesh et al., 2014, 2017; 

Valette et al., 2018; Vincent et al., 2020) and it is not surprising that it is clearly influenced by 

cell morphology (cell projection size and soma size at least). Importantly, as KM does not 

decrease at increasing td, no signature of 1D structural disorder along the neurites is observed 

for the metabolites, in contrast with what has been speculated for intracellular water. The td 

dependence of metabolite diffusion seems thus clearly more specific to cell morphology than 

water.  

  

3.3. Intracellular metabolite diffusion to highlight the role of exchange in water diffusion 

time-dependence 

It is insightful to examine water and metabolites results in the light of the work of 

Aggarwal et al. (Aggarwal et al., 2020). Our experimental results about intracellular metabolite 

kurtosis time-dependence, i.e. kurtosis increasing with td, are in line with the behavior 

simulated for long exchange times in (Aggarwal et al., 2020). In contrast, water kurtosis time-

dependence exhibits the opposite behavior, which is in line with the behavior expected for a 

system with significant exchange in (Aggarwal et al., 2020). This strongly suggests fast water 

exchange relative to the diffusion times used in the present study, which is in agreement with 

previous works suggesting short exchange time (Jelescu et al., 2022; Lee et al., 2020). The 

influence of such fast exchanges is also suggested in our estimate of the free exponent, θ = 0.2, 

found in Fig.3, which is close to that found by Jelescu et al. when they fitted their simulated 



exchange-driven K for a short exchange time ~25 ms, with the same power-law decay with a 

free theta exponent.  

To provide a quantitative estimate of exchange time for our experimental conditions, we fit 

an increasingly used (Fieremans et al., 2010; Jelescu et al., 2022; Jensen, 2023; C. Li et al., 

2023; Moutal et al., 2018; Olesen et al., 2022; Zhang et al., 2021)  model of exchange: the 

Kärger Model 

𝐾𝐾(𝑡𝑡𝑑𝑑)  =  𝐾𝐾0  2 𝑡𝑡𝑒𝑒𝑒𝑒
𝑡𝑡𝑑𝑑

 [1 − 𝑡𝑡𝑒𝑒𝑒𝑒
𝑡𝑡𝑑𝑑

(1 −  𝑒𝑒− 𝑡𝑡𝑑𝑑
𝑡𝑡𝑒𝑒𝑒𝑒)] [5] 

𝐾𝐾(𝑡𝑡𝑑𝑑)  =  𝐾𝐾0  2 𝑡𝑡𝑒𝑒𝑒𝑒
𝑡𝑡𝑑𝑑

 [1 − 𝑡𝑡𝑒𝑒𝑒𝑒
𝑡𝑡𝑑𝑑

(1 −  𝑒𝑒− 𝑡𝑡𝑑𝑑
𝑡𝑡𝑒𝑒𝑒𝑒)]  +  𝐾𝐾∞   [6] 

to the data for the longest diffusion time [42.5; 500] ms, to satisfy one of the 

assumptions of the Kärger model, i.e. constant DW(td) (Fig.7). The estimated exchange time is 

very imprecise and spans hundreds of ms: from 46 (±412) ms (using equation [6]) to 196 (±238) 

ms (using equation [5]). Regardless of the poor precision despite high data quality, the 

contradiction with the previous estimate of exchange time shorter than ~25 ms (as discussed in 

the previous paragraph) might be due to the fact that the assumptions behind the Kärger Model 

are not satisfied. According to Fieremans et al. (Fieremans et al., 2010), the non-applicability 

of the Kärger Model suggests that the membrane between the intracellular and extracellular 

spaces is too permeable to allow for an accurate description using the Kärger Model. Other 

recently proposed models of exchange are NEXI (Jelescu et al., 2022) and SMEX (Olesen et 

al., 2022); both based on the same modified Kärger Model to account for potential exchange 

between neurites and extracellular space. Fitting NEXI/SMEX to the water data as a function 

of b value (for extra b values up to 6 ms/µm²) and diffusion time (Fig.8) yields once more very 

imprecise estimates of exchange time: 1.7 (±4.9) ms (other model parameters estimates are: 

intraneurite diffusivity 1.56±1.28 µm²/ms; extraneurite diffusivity 0.75±1.10µm²/ms and 

neurite signal fraction 0.64±0.52). Although imprecise, the NEXI/SMEX estimate of exchange 

time is more in agreement with the evidence of exchange time shorter than 10 ms discussed in 

the previous paragraph and supported by recent works (Cai et al., 2022; Olesen et al., 2022; 

Williamson et al., 2019, 2020, 2023). 

  



In conclusion, this spectroscopic measurements with lower variability and over a wider 

range of td than the previous studies (Jelescu et al., 2022; Olesen et al., 2022) corroborate the 

influence of exchange on water diffusion as a function of time (in vivo in the mouse GM). The 

comparison of the very different functional forms of the measured DW(td)-KW(td) and purely 

intracellular DM(td)-KM(td) supports the hypothesis that the signature of 1D or 2D/3D short 

range structural disorder observed for DW(td)-KW(td) might mostly come from the water 

diffusion in the extracellular space, which “contaminates” the whole water pool signature due 

to fast exchange and hence hides intracellular signature. Our measurements reinforce the need 

for a model describing the td-dependence of diffusion in GM, with specific signatures in intra- 

and extracellular compartments and inter-compartmental exchange, to precisely evaluate how 

exchange can mask the signatures of intracellular space.  

 

4. Limitations 

The range of td values over which we were able to carry out our measurements remains rather 

restricted, even if it is the widest ever probed in this type of in vivo measurement. On the one 

hand, a constraint linked to the duration of the spoiling gradient applied during the mixing time 

in this sequence (Ligneul et al., 2017), prevents us from having access to smaller td values. 

With a shorter td we could observe the inflection point of the time-dependent kurtosis of water, 

which could help determine the average permeability. Future work could try to combine OGSE 

and PGSE measurements to try to characterize the time dependence at shorter td. On the other 

hand, the increase in td is limited by the SNR, which becomes too low beyond 500 ms. Among 

other things, this increase could allow us to better discriminate which class of structural 

disorder dominates, which would be a first step towards disentangling the different 

contributions of exchange and structural disorder. 

Our aim here is not to propose a new modeling method, but to present experimental data that 

could support theoretical models to better describe gray matter. We have chosen to place 

ourselves in a diffusion regime suited to a representation with the cumulant exponent, which 

seems quite sensitive to exchange. Nevertheless, with our experiments we were not able to 

precisely determining the exchange time in gray matter (using currently available biophysical 

models, i.e. Kärger model and NEXI/SMEX), and to determine the influence of structural 

disorder on the water diffusion properties. The complexity of both exchange mechanisms (e.g. 



multiple exchange times) (Nilsson et al., 2013) and microstructure (e.g. glial and neuronal cells 

and complex extracellular space) (Palombo et al., 2020)  will need to be taken into account in 

future work to disentangle the contributions of exchanges and structural disorder. Towards this 

goal, future work could harness advanced computational modeling tools for gray matter 

microstructure simulations (Callaghan et al., 2020; Palombo et al., 2016, 2020).  

We also chose a smaller voxel size for water, in order to focus only on gray matter without 

multiple compartment effects that can complicate interpretation of the td dependence of the 

diffusion and to be in  conditions similar to those encountered in the literature for segmented 

images of rodent brain (Jelescu et al., 2022). In particular, in this voxel, we minimize the 

contribution of CSF and white matter. For metabolites, we have no choice to take this large 

voxel to have sufficient signal at long diffusion time, however the contribution of CSF and 

WM remains small (respectively ~5% and 1%), which can certainly have a negligible impact 

on our results. Indeed, we did not notice a strong signal attenuation at low b which would have 

suggested a high CSF contribution whatever the metabolite. This is in line with measurements 

carried out by Lundell et al. (Lundell et al., 2021) in the human brain, where they noted that 

for a CSF contribution of ~2% there was no visible effect on diffusion, whereas for a 

contribution of ~10% there was. Finally, by fitting a bi-exponential model to log(S0) as a 

function of mixing time, only a small fraction of the short T1 component was estimated, 

suggesting that signal is not affected by multi-T1 pool, and certainly not influenced by short T1 

of WM.  

In this work we focused on healthy mice; future work will explore the ability of combined 

DW/M(td)-KW/M(td) to characterize pathological microstructural changes. Moreover, it could be 

informative to extend in future work the investigation of DM(td)-KM(td) to also metabolites that 

are in both intra- and extra-cellular space and potentially in exchange. Further extension of this 

work will include measurements in humans to assess the feasibility and translatability of this 

approach. 

  

5. Conclusion 

This experimental study proposes for the first time a comparison of the td dependence of the 

diffusion of two different endogenous probes, water and intracellular metabolites. The 

information provided by these two sets of td-dependent acquisitions is complementary, 



especially since they probe different compartments of the GM. In particular, the td dependence 

of water diffusion is mainly dominated by short-range structural disorder in the extracellular 

space and rapid exchanges between intra- and extracellular spaces, whereas the td dependence 

of intracellular metabolite diffusion is more specific to restriction within the intracellular space. 

Other underlying features could be further investigated to fully decipher the sources 

contributing to total kurtosis (beading, undulation, …), as already proposed by Shemesh Lab 

(Alves et al., 2022; Henriques et al., 2020). Nevertheless, these new results help interpret D(td)-

K(td) measurements in terms of the underlying microstructure of GM and suggest that D(td)-

K(td) measurements of metabolites may offer a new way to quantify microstructural restrictions 

in GM. 
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Figures 

 

Fig.1: Water signal data. A. Voxel of interest, for water acquisition. B. Example of water signal 

attenuation acquired at two different td on one mouse and fits with the kurtosis representation 

[1] (lines). C. Mean diffusivity and standard error of the mean over four mice. D. Mean kurtosis 

and standard error of the mean over four mice. 

  

  

 

Fig.2: DW(td) and KW(td) averaged over four mice and different functional forms fitted to these 

data. A. The 1D structural disorder form is correctly fitted to D and K. B. The 2D structural 

disorder form does not fit well to the data, with the highest AIC for D and K. C. The 2D 

functional form in the limit of θ = (p+d) / 2 = 1 fits the data with a cAIC close to the cAIC 

estimate for the 1D structural disorder form. The dimensionless ratio ξ = 𝐶𝐶𝐾𝐾/(𝐶𝐶𝐷𝐷/𝐷𝐷∞) ~ 2 

whatever the functional forms fitted to these data, which is compatible with pure 1D structural 

disorder (ξ = 2). 



 

Fig.3: DW(td) and KW(td) averaged over four mice and fit with structural disorder model. Joint 

fit of a power-law decay with a free exponent theta to DW and KW, with the same free exponent 

theta. 

 



 

Fig.4: Example of spectra and attenuation curves for each metabolite as a function of diffusion-

weighting b acquired on one mouse for two different diffusion times in a voxel around 

hippocampus (image). 

  



 

Fig.5: DM (left panel) and KM (right panel) averaged over seven mice as a function of diffusion 

time. For each metabolite, DM decreases and KM increases. 

  



 

Fig.6: Fitting of a biophysical model to predominantly intraglial (upper panel) or preferentially 

intraneuronal (lower panel) metabolite data. The biophysical model is a very simple model 

composed of 80% isotropically distributed cylinders and 20% spheres, representing projections 

and soma, respectively. 

 

 



 

 Fig.7: Fit of the Kärger model (equation [5]) and the constant-modified Kärger model 

(equation [6]) to the KW data for td ∈  [42.5; 500 ms], where DW(td) is nearly constant. 

 

Fig.8: Fit of the water signal (log(S)) as a function of b up to 6 ms/µm² with the NEXI/SMEX 

model. 
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