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ABSTRACT

Feedback control of nonholonomic systems has always bedhgonatic due to the non-
holonomic constraints that limit the space of possiblesystelocities. This property is
very basic, and Brockett proved that a nonholonomic syst@nmat be asymptotically
stabilized by a time-invariant smooth feedback. This thpsésents a novel way of con-
trolling a special class of nonholonomic Hamiltonian syste The basic idea is to split
the configuration coordinates in two; a primary part that viehvwio asymptotically sta-
bilize, and a secondary part that not necessarily has taabdized, but is useful when
controlling the primary part. The secondary partis introgkias the integral of so-called
kinematic inputs. The kinematic inputs have the properat they cannot change the
amount of energy in the system, i.e., the Hamiltonian fumis$ invariant with respect to
the kinematic inputs. The resulting nonholonomic Hamikonsystem with kinematic
inputs shares many of the properties of the classical Hamih system, and some of
the methods involved in controlling classical systems aowgd to also apply to the
augmented system. The extra degree of freedom providedetkiiematic inputs turns
out to be useful when stabilizing the nonholonomic systefithé system is properly
actuated it is possible to asymptotically stabilize theraniy part of the configuration
coordinates via a passive energy shaping and dampingimgdeedback. The feedback
is smooth and time-invariant, but since it does not asynatiy stabilize the secondary
part of the configuration coordinates, it does not violatedRett's obstruction.

The results from the general class of nonholonomic Hanidtoaystems with kinematic
inputs are applied to a real implementation of a four whessr&td, four wheel driven
nonholonomic robotic vehicle, where the velocity of theesiieg motors are assumed
to satisfy the conditions of proper kinematic inputs. Thegmsed controller is general
enough to achieve both global asymptotic stabilization pauth tracking for the robot.
To improve the operation of the closed loop system some sixies are provided: in-
tegral action for asymptotic stabilization under the inflce of disturbances, and an
adaptive damping scheme ensuring that the robot travelspatagefined speed when
tracking a path. Both of these extensions are defined in #medwork of Hamiltonian
systems.

vii
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CHAPTER]

INTRODUCTION

Throughout modern history agricultural research has baeah still is, an area of large
economic, environmental, and political interest, and itk introduction of state-of-
the-art technologies, innovative new tools for increasiregsize and quality of agricul-
tural outputs are emerging.

Agricultural science has in recent years made great adsamtéhe use of robotics in
agriculture. Farmers are already beginning to implemetutraated fruit pickers, weed-
ing vehicles, pigsty cleaners, and milking machines inrtheduction. These advances
are often governed by the need for more efficient productiethods, or methods that
reduce the strain on the environment or increases animé&ngelith more than 60%
of Denmark cultivated and a total sales profit of 88.3 billi2iK in 2000%, Danish agro-
nomic and horticultural knowledge is playing an importasiéron today’s international
agricultural scene.

IFromFacts & Figures, Agriculture in DenmariRublished by The Danish Agricultural Council, 2002



2 INTRODUCTION

1.1 The API Project - Background and Motivation

The acronym API stands féxutonomous Platform and Information system for registra-
tion of crops and weedsand it is a joint research project with the purpose of pyqiivig

a standalone system that is able to collect local data on ¢leel\and crop state in a field.
This data can then be used to build a map showing the spadtaibdition of crops and
weeds.

A detailed spatial weed map of a field is useful for the farmbemwplanning his field
treatment, since knowledge of the coverage of differentiggef weeds gives the farmer
the opportunity to mix an optimal herbicide agent. Using galade rate sprayer com-
bined with a positioning system the farmer is then able ta@ipedy apply the agent
in the right amounts at the right locations. And when coméidecrop treatment, the
map can be used for precise application of fertilizers angtmwal hisprecision spray-
ing/fertilizing, which is a subset of the broader terminolqggcision farming should
ultimately result in a reduction in herbicide and fertilizese and an increase in crop
quality and stability. Developing methods for generatiegpiled weed and crop maps
is therefore important for both environmental and econaeésons.

For crop and weed information gathering there alreadygzisange of different sensors
that can be mounted on tractors, combine harvesters, or lotinean operated machin-
ery. Gathering weed and crop information is a time consurtésg, and even if the
farmer uses a vehicle mounted sensor, data collection &lysione only in conjunc-
tion with sowing, spraying, fertilizing, or harvesting. ten this is either too early or too
late, as the crop treatment is most effective when the craps fust germinated. The
API project is therefore focused on an alternative methoglaiiering the data. In this
project the main platform for carrying the sensors into te&lfis a small autonomous
vehicle, from now on denoted the AV. See figure 1.1.

The AV is of a relatively small size with a sideways and fromtréar tread distance
of 1m and a total weight of approximatesOkg. The major benefit of the small size
and weight is that the tread pressure is decreased, as cednpih that of a tractor,
and the soil compaction and crop damage is hence greatlg@sduro accommodate
a large degree of freedom, the AV has been constructed asravfaael driven, four
wheel steered (4WD-4WS) vehicle. This gives the AV the gbit rotate around any
point and hence also drive sideways. The AV is designed ty eawy kind of sensor or
implement into the field; it might be vision sensors, likearadr infrared cameras, or it
might be sensors that need direct physical contact withdiiessich as soil sampling
equipment or soil compaction sensors. It has also beengdisduto put a mechanical
weeding implement on the AV, so that weeding can be done ofiythe
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Figure 1.1: The Autonomous Vehicle

The implement used in the API project is limited to a high teson color camera, and

a large separate part of the project is to develop robust atenpision algorithms to

identify a range of different weed species from color phoapys. Apart from the AV

itself and the primary sensor, the API project includes ormgenimportant segment.
With or without the implement the AV cannot complete the tafknapping a field by

itself. The project therefore also incorporates a baséstatypically located at the

farm, for job planning. The base station also handles higél sk management and
data handling, and it is the primary interface between theéa and the API. At the

base station the farmer can plan future tasks and studyrtang previous weed and
crop maps.

A typical field mapping job would progress as follows:

1. The farmer defines a new job and sets it up in the base swiftmare. The job
description includes, as a minimum, the boundaries of tHd f@e be mapped,
sowing direction, and information on the time of execution

2. The base station generates a grid of way-points in thesctifreld. The way-
points includes sample points that the AV must drive to ahe t& photo, and
intermediate navigation points that the AV should just pghssugh
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(a) Field traversal (b) Percentile weed coverage map.

Figure 1.2: Weed mapping

3. The AV is driven manually to the field, and a wireless cotiioeds established
with the base station

4. The AV then asks the base station to transmit the first waagtpand it is now up
to the AV to reach this point without damaging the crops. Wihéas reached the
point, and if it is a sample point, it sends a signal to the aqartedling it to take a
photo. The camera then takes a photo and transmits it bable toetse station for
further processing

5. The AV then asks for the next way-point, drives to it, andtooues in this manner
until the entire field has been traversed. Figure 1.2(a) show the traversal of
a (very small) field might look

6. The collected data is then processed, and a weed covesgismenerated. An
example of aweed map can be seen in figure 1.2(b). The map shewsrcentile
coverage of White Goosefoot on an imaginary field

Thus, when the farmer has driven the AV into the field, he cagdbabout it until
it has traversed the entire field and is ready to be taken hohte in-field driving
might last several hours, but because the AV is driving autaously, it will not be
considered as a time consuming operation for the farmerldBgi a system with so
much autonomy is not an easy task, and it is further comglithy the growth state in
the field. Gathering weed and crop information for sprayintedilizing must be done
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when the plants have just germinated, since spraying is eftesttive at this state of
growth. At this stage the weeds are most vulnerable, butestharcrops, and this raises
several interesting problems for the autonomy of the AVtihgtan autonomous vehicle
drive in a just germinated field imposes strict demands optéeision and execution of
the path planning algorithms and control laws to avoid uessary crop damage.

1.2 Delimitation of Study

As indicated in the previous section the development of tReddnsists of three distinct
tasks:

1. Development of the camera vision system
2. Development of the base station

3. Development of the AV

The first task was handed to researchers aDiéweish Agricultural Research Centat
Bygholm, where they have developed a method uattiyye shape modeling identify
different weed species from digital photos [57, 56]. Theagahidea is to build paramet-
ric models of the shape of each individual weed specie. Byging the parameters it is
possible to change main features of the shape, such as gstagth, number of leaves,
deformities, etc., and hence each model covers a largeioariaf each specie. Photos
gathered from a field is then analyzed; the first step is t@isadvery single weed and
crop plant, and the second is to match them with all the weedietsaintil a ‘best fit’ is
reached.

The second task was handed to researchers &¢épartment of Computer Scienae
Aalborg University. They have created an abstract modehefentire APl in order to
design a suitable base station system. The base statioimelsdes an efficient way of
generating sample points in the field based on a dynamic sagngtlategy, where the
sample grid is adapted to local variations, such as preljionsasured weed density, or
occurrence of special precarious weed species [59].

The third task was also handed to Aalborg University, buegearchers and students at
the Department of Control Engineering his thesis focuses on this task and on some of
the instrumentation and control aspects of the AV.

Developing and prototyping the AV has involved several peoand it has spawned
many sub-projects for students and researchers alike. Huhanical construction of
the frame and mounting of the motors was carried out at Rels&enter Bygholm, but
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everything else has been built, mounted, and tested by @€ppstly students) at the
department. This includes a power supply and safety systenstruction of hardware
interfaces for actuators and sensors, mounting of senandsdesign of a distributed
software testbed for developing and testing navigation@mdrol algorithms in real-
time. Pedersen et al. [50] and Nielsen et al. [45] gave a q@oneédescription of the
control system architecture on the AV. The vehicle in thege papers was a prede-
cessor to the current AV, but the system architecture has le¢evirtually unchanged
on the new vehicle. The system architecture was also thesfotMielsen et al. [44],
but only as an example when designing control architectiores generic autonomous
vehicles. Several papers have also been published on thlcaspects of the AV. An-
dersen et al. [3] introduced a robust nonlinear controlesgal on feedback linearization,
and Sgrensen [61] introduced a controller based on artificigntial fields. This was
extended to cover a more general class of systems in [62].

This thesis is specifically concerned with the software ammtrol aspects on the AV
with main focus on the control aspects. For proper operatiche field the AV has
to be able to converge to single way-points as dictated by#se station, and while
approaching the way-points, the AV has to drive along th@ coovs to minimize crop
damage. The control algorithms for the AV should hence be tabsolve the standard
problems of path tracking and asymptotic stabilization efleeled robot. The latter
imposes an interesting problem, since asymptotic connesg®ward a single point has
always been an intrinsic difficulty in the control of wheeletots.

1.3 Previous and Related Work

So what makes autonomous vehicles and mobile robots ditférem other electro-
mechanical systems? Mobile robots are often imposed withintegrable constraints
that cannot directly be used to reduce the dimension of theesy Consider the bead
on figure 1.3 moving along a fixed curved pattRif.
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The position of the bead can be described using Carte-
sian coordinates andy, but since the bead is constrained

to lie on the curve, one coordinate would suffice; the arc

length s along the curve, for example. This is an exam-

ple of an integrable constraint that can be used to reduce
the number of generalized coordinates of the system. A
non-integrable or nonholonomic constraint, on the other
hand, is defined as any constraint that cannot directly be
used to reduce the number of coordinates. Nonholonomic
constraints can have many different forms. They can be

r inequalities on the configuration space; if, in the previous

Figure 1.3: Bead moving example, the bead was constrained to lie on either side

along a fixed path of the curve. When working with vehicles the nonholo-
nomic constraints appear as constraints on the allowed di-

rection of system velocities. Consider an ideal free rgliitisk, for example; it would

be imposed with constraints that guarantee the disk nepsrsitieways and never does

a wheel-spin. These constraints are also known as fre@gdlind non-slipping con-

straints.

Ways of overcoming the obstacle of having nonholonomic tairgs in vehicle con-
trol have been studied extensively in the last decades, ratitei beginning, this was
more or less the only problem that was addressed. The olgedtiack then was, and
still is today, to develop tracking controllers and corlg that were able to asymptot-
ically stabilize the vehicle, but basically it was all absotving or working around the
problem of nonholonomicity. Brockett and Sussmann [14)vptbthat nonholonomic
systems could not be asymptotically stabilized by any simtinote-invariant controller,
and alternative approaches have been proposed ever sypieally with some kind of
switching involved making the feedback non-smooth or twvagant or both. A simple
and very famous example of this, which can be found in almagt@ok on nonlinear
systems, is the use of Lie brackets to parallel park a canidteécle. A more general
method for motion planning of driftless systems using Liadiets were proposed by
Lafferriere and Sussmann [39] who introduced a trajecteryegating algorithm based
on higher order Lie brackets. Many of the Lie bracket methaasnon-smooth switch-
ing between constant inputs, and to avoid this hard switcMuirray and Sastry [42]
proposed to switch between smooth sinusoidal inputs idstd&e steering were ba-
sically the same though. Other researchers worked on agpglvitching altogether,
and Barraquand and Latombe [5] introduced an optimal pathngr, where the input
switching was minimized, and Kanayama et al. [34] proposeedceking controller that
used a virtual robot moving along a predefined trajectoryeésrence. This strategy
required that the control actions for the virtual robot, afsb to some degree for the ac-
tual robot, were known beforehand, and undesired contoiklde avoided. Still using
a switching strategy Canudas de Wit and Sgrdalen [70] pexpaspiecewise smooth
controller that was able to exponentially stabilize a ndahomic system. The method
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was extended to trajectory tracking in [58]. Self-learndogtrol has also been used suc-
cessfully to control nonholonomic systems, and Nguyen ardtdM [43] used a neural
network to drive a truck-and-trailer system in reverse.

Most of the pioneering work from around 1990 was focused erkthematic part of the
vehicles. The kinematics of a vehicle is the relation betweslocities and configura-
tion coordinates, and this is typically where the nonhotaitwconstraints enter. Good
results were achieved with pure kinematic control as lonthasrobot was equipped
with powerful enough actuators, so that the velocities efribbot could be controlled
directly. This is usually the case for small robots, but witenrobots increased in both
size and weight the rigid body dynamics began to play an itaporole. Throughout
the nineties the major contribution to the work on contratmbile robots was the inclu-
sion of the natural dynamic part associated with rigid boatiom. The full dynamics
were already incorporated into the model of a general namtoohic system by Bloch
and McClamroch [10], and some considerations were givenailizability of the full
system. This work was further elaborated in [11]. Thuiloakt66, 67] introduced a
dynamic model for a general class of mobile robots. The agtalso looked at a feed-
back linearization scheme, where the dynamic part sudg#ajyed a significant role in
the physical understanding of the linearization. The kiagcopart of a mobile robot is
only feedback linearizable through a dynamic extensiod the dynamic part of the full
model is the natural choice. This was also exploited by Biand Lewis [22] who used
a backstepping technique together with a dynamic extertsiachieve path following
and stabilization about a desired posture. Apart from thiging the dynamics, much
of the work in the nineties was on improving existing metho@sdhavn and Egeland
[29] and Samson [51] proposed a unified approach to staliim@olonomic systems on
different forms, and Fukao et al. [26], Dong et al. [17], ametano et al. [55] proposed
adaptive control schemes for a robot with parametric uaggies. Many other methods
have been proposed in the last decade, but common to mangsef thethods is that it is
easy to loose track of the structural properties of the Uity physical systems; useful
structural properties that are inherent in mobile robotsiadeed all electro-mechanical
systems. Especially feedback linearization will ofterutei a complex controller, and
physical insight into the system is lost.

To keep and exploit some of the intrinsic structures of th&tesy, some researchers
have turned to new ways of representing general classesdf@mechanical systems.
A very useful one is the port-controlled Hamiltonian syst@PCHS) that is general
enough to describe almost any passive system (and hencemglrelectro-mechanical
system), while still capturing the inherent structured [93e PCHS is a generalization
of the classical Hamiltonian representation of dynamitesys. Apart from the intrinsic
symmetry, which the PCHS inherits from the classical Hamitin system, it is also
equipped with an input/output port, hence the tgromt-controlled The input/output
port has the feature that the product between input and bistplways power. The port
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is therefore often called power-port and the energy flowing into the system is exactly
the integral of this power-port.

Because the PCHS captures the physical structures, mahg pfaposed control meth-
ods for this kind of system have intuitive physical intetpt®ns. Terms likeenergy
shapingand damping injectiorare often encountered, and they are directly related to
physical laws, such as energy conservation and the laws tibmoEnergy shaping
refers to a method with which it is possible to add or subtsatificial potential energy
through feedback, thereby generating a closed loop systénshaped potential energy.
Damping injectiorrefers to increasing or decreasing the natural dampingeodyktem,
typically by a velocity feedback. These terms are all weka@ed by Ortega et al.
[49, 48] who introduced a generalterconnection and Damping Assignment - Passivity
Based Controlleror IDA-PBC, for the PCHS. In theory, the IDA-PBC is able towert
any well behaved PCHS into any other PCHS of the same ordprabstice though, the
structure and controllability of the original PCHS oftempibits this, but the IDA-PBC
can still lead to very useful results.

Many of the PCHS references already mentioned only deallwvaithnomic systems, but
the theory applies largely to nonholonomic systems as waii.der Schaft and Maschke
[54] introduced a PCHS description of a general nonholoe@ystem, and in [40] some
results were presented on stabilizing the nonholonomic®@thennouf et al. [36] also
described some preliminary results on asymptotic statitn by switching between
two different artificial potential energy functions in theezgy shaping feedback. Fuiji-
moto and Sugie [25] used canonical transformations tolgals nonholonomic PCHS,
and in [23] it was extended to trajectory tracking. Duindamd &tramigioli [18] used
energy considerations in a PCHS to accelerate a heavilyrtaudeated vehicle called a
‘snakeboard’. The notion afnergy shapingn a nonholonomic PCHS, which was used
in many of these references, is closely related to the natiatificial potential fields
(APF), which have also been used successfully for path pigrand control of mobile
robots [13, 1, 27]. An artificial potential field is basicalipother word for the resulting
potential energy irnergy shaping

1.4 Contributions of This Work

This thesis considers a class of nonholonomic Hamiltonyatesns that encompass the
AV and many other types of wheeled robots. Common to thestersgsis that the
total physical energy is invariant with respect to a partef¢onfiguration coordinates.
This lays the grounds for defining the so-callddematic inputghat can be used to
asymptotically stabilize the system if it is sufficientlytaated. The important difference
with this procedure, as opposed to many of the proceduresidded in the previous
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section, is that the resulting feedback is smooth and tiiaariant. This does not conflict
with the results by Brockett and Sussmann [14], becausedhtailed system is on a
slightly different form than the form used by Brockett. Theposed method is applied
to the AV and tested in practice and have shown to be effeétivdoth asymptotic
convergence to a single way-point and for general crop raeking. The controller for
the AV is further improved by including integral action toagantee asymptotic stability
under the influence of a constant disturbance; and an aéagdinping scheme used to
control the traveling velocity when tracking rows. All theprovements are given in the
context of Hamiltonian systems.

The main contributions are summarized here:

e A full dynamic model of the AV, which is suitable for control, is developed using
Lagrangian and Hamiltonian mechanics

e A verification of a simulation model is carried out from physical measunese
on the real AV, and the model is shown to capture the dynaniitiseophysical
system

e The introduction of so-callefinematic inputs in the framework of nonholo-
nomic Hamiltonian systems is shown to give new insight ind¢betrol and sta-
bilization of these systems. Kinematic inputs are able teallly change a subset
of the configuration manifold through their first derivativarthermore, the total
energy function must be invariant with respect to the kingeriaputs. With this
formulation, it is possible to set up sufficient conditiohattguarantee asymptotic
stability on the remaining part of the configuration mardfol

e A nonlinearpassivity based controlleris developed for controlling systems with
kinematic inputs. The controller is applied to the AV, aniigeneral enough to
handle both crop row tracking and asymptotic stabilizatibthe AV. Especially
the ability to asymptotically stabilize the system is a usééature, as this is a
general problem for nonholonomic systems. The controfp@liad to the AV is
further improved by two extensions. The first is integrai@tto eliminate the
effect of external disturbances, and the second is an agagéimping scheme
that enables velocity control when path tracking. Both esi@ns are given in the
framework of Hamiltonian systems

e A proof of conceptis presented by tests of the controller on the physical Vehic

Some of the results have already been presented and pubiisti@ee conference pa-
pers and one transaction paper that has been submittedbiication. Sgrensen [61]
focused on deriving a suitable model of the AV, and a pattktraccontroller was in-

troduced using APFs. In [62] the kinematic inputs were idtreed, and a controller
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for asymptotic stabilization of a class of nonholonomic Hénian systems with kine-
matic inputs was presented. The controller was appliedad\th and a successful test
on the physical system was also presented. Nielsen et dlpfddents some conceptual
pointers for design of embedded software for autonomouglssh Sgrensen et al. [63]
presents some additional results on a general nonholortgéamdltonian system and is
a summary of the results presented in the thesis at hand.

1.5 Thesis Overview

Chapter 2. Hardware and Software on the AV. This chapter gives a description of
the hardware and software on the AV. It can be read indepéiydesm the rest of the
thesis.

Chapter 3. Lagrange Model of the AV. Before turning to the problem of controlling
the AV a full dynamic model of the vehicle is developed in tthsipter. The model is de-
veloped using the Lagrangian equations for nonholonomeicted-mechanical systems.

Chapter 4. The Hamiltonian Formulation and Model Reduction. This chapter deals
with a general class of nonholonomic Hamiltonian systeramagmented with properly
definedkinematic inputs The chapter describes a method of eliminating the Lagrange
multipliers and thereby reducing the system.

Chapter 5. Reduction and Validation of the AV Model. The method described in
chapter 4 is applied to the model of the AV to arrive at a slgtatiodel for control. This
model is then verified based on measurements from physgtalies with the vehicle.

Chapter 6. Feedback Control of Systems with Kinematic Inpus. This chapter is de-
voted to developing a controller for the general class ofhredonomic systems with
kinematic inputs. The chapter focuses on energy shapingdantping injection to
achieve asymptotic stabilization of the system.

Chapter 7. Feedback Control of the AV. The controller developed in chapter 6 is
applied to the AV model. Several extension to the contrdlealso given, such as
general crop row tracking, crop row tracking with constagibeity, and integral action.

Chapter 8. Physical Tests. This chapter illustrates the results from several physical
tests with the AV and the applied controller.

Chapter 9. Conclusions and Future Work.Conclusion and final remarks.






CHAPTERZ

HARDWARE AND SOFTWARE ON THE AV

As mentioned earlier the main source of interest in thisithissthe development of
a working prototype of an AV, and this chapter describes sofme hardware and
software issues involved in this task. The prototype is taubed as a development
platform, and this has influenced both the mechanical desigrthe design of software
systems. The AV is constructed with a high degree of motiltyetting all of its wheels
be steerable and drivable, and this ‘over’ actuation of tekisle has two important
advantages: it enables the AV to minimize the damage to thgsdn the field, and it
gives the control designer an opportunity to test many diffecontrol strategies, as the
AV is able to emulate different steering methods, such asfadlel steer, front axle steer,
skid steer, etc. To relieve the control designer from hatinknow every little intrinsic
detail about the hardware on the AV a graphical control desigvironment has also
been developed. It includes an interface to the sensorsaudtars on the AV, and an
automated code generation feature that enables the cdesigner to build a feedback
controller in a graphical environment and then convert moexecutable program for
the AV.

13
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2.1 Hardware

As mentioned in the introduction, the idea behind the APjgmbis to have a small AV
drive along crop rows in a field, doing as little damage to tregps as possible. The
AV must be able to traverse many kinds of fields with crops fiedint growth stages,
but a typical working environment is a crop field with newlyrignated vegetation. At
this stage there is very little plant material to bind thd,smd just a little rainfall will
make the soil soft and muddy. The AV must therefore be equipgth a traction and
propulsion system that is powerful enough to drive the Avhiis Environment.

The crop and weed registration also puts constraints onitleeasid mechanical con-
struction of the AV. As the acronym implies, the APl iplatformcapable of carrying a
range of small implements into the field. These implemerdlude, but are not limited
to, passive sensors like CCD and infrared cameras, or maehanplements like weed-
ers and soil samplers. The AV must hence be constructed withgh room, clearance,
and mounting options for this variety of implements. A hidgecance is also necessary
when the AV has to operate in a field with a late crop growttestat

The AV also needs a high degree of maneuverability to be alriavigate a field without

damaging the crops. Most of the time the AV drives along a ecayp and this is a

relatively simple maneuver that can be accomplished by alsicar-like steering. But

the AV needs to do more complicated maneuver as well; it hbe tble to change crop
rows and to align itself to a given crop row, both in-field anldem reaching the end of a
crop row. Car-like steering is not a good choice in theseatittus as figure 2.1 shows.
The rear wheel tread deviates from the front wheel tread as as the vehicle starts
turning, and this results in crop damage by all four wheelgentrossing the row. To

minimize the damage, the AV must use a different steeringagmh with a larger degree
of maneuverability.

The most important requirements to the mechanical cortgtruare summarized below.
The AV must have:

1. Good traction

2. A powerful propulsion system

3. Alarge degree of maneuverability

4. High clearance

5. Mounting options for implements

6. Suitable for control inputs
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Figure 2.1: In-field crop row changing with car-like steering. The triglas marks areas
of crop damage

The last requirement should be evident in the design of atgnamous vehicle; there
must be a well defined interface between the physical comysrtd the AV and the
control system, and the actuation of the system must rehdesystem fully controllable.

2.1.1 AV Frame

To take the third, fourth, and fifth requirement into accoaimdl to give the AV a good
loading capability, it has been designed as a four wheekleshiith the wheels placed
at the corners of & x 1m square. This configuration enables the AV to drive along
crop rows planted with a relative distance of one meter (antager fraction thereof).
Figure 2.2 depicts a side view of the AV, and it shows the lavgeking area and high
clearance at the center of the vehicle together with thadttar shaped boom for im-
plement mounting. The symmetric structure of the wheel goméition makes the AV

stable under varying load conditions, because the weighhdmplement, if placed at
the center, will distribute evenly onto all four wheels.
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Figure 2.2: The AV right side view. 1: DC steering motors, 2: DC hub drivears

2.1.2 Steering System

As already noted, car-like steering is not the prime chofcgeering configuration for
the AV if the crop damage should be kept at a minimum. If, ondtireer hand, it is
possible to steer both the front and rear wheels of the welich synchronous manner
the wheel tread deviation between front and rear wheelsgehaand a crop changing
maneuver would look like the one shown in figure 2.3. The d@mndetween front and
rear wheel tread has been brought to zero, and sharper amgeoerally be carried out
with this steering configuration. Only having two treadsrabe crop rows, while also
intersecting the crop rows at a sharper angle, clearly esltihe damage.

The maneuver illustrated on figure 2.3 can be executed byamgle where thénstan-
taneous center of rotatioiCR) is located on a line passing through the center of the
vehicle, see figure 2.4. The ICR is defined as the point whexddhr lines perpen-
dicular to the wheels meet. The maneuverability of a froe&rwheel steered vehicle
has not really been increased when compared with the aastéering; the vehicle can
still only drive back and forth at an arbitrary rotation raide front+rear wheel steered
vehicle is not able to drive directly sideways, which is aiddsge maneuver when the
AV has to align itself to a crop row. Of cause, any car-like rant+rear wheel steered
vehicle can do sideways motion by a sequence of forward acldl@ad motions — much
like parallel parking a car. This is not an ideal motion in egfield though, where the
crops are planted very close together, and there is no roothése maneuvers. Pure
sideways movement and greater maneuverability can bewvachigy allowing all four
wheels to be steered independently. This allows the ICRetariywhere irR2, hence
allowing the vehicle to rotate around any point and to drideways. Rotation about
an arbitrary ICR is illustrated in figure 2.5. Sideways diiyican then be achieved by
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Figure 2.3: Crop row changing with front+rear wheel steer

o ICR

Figure 2.4: ICR of a front+rear wheel steer
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letting the ICR tend to infinity in the direction perpendiauto the desired sideways
motion. This steering configuration will henceforth be edlfour wheel steer (4WS).

Figure 2.5: ICR of a full four wheel steer

To achieve 4WS on the AV it is equipped with four steering atdts marked with (1)
on figure 2.2; one for each wheel. The steering actuator®areXC-motors that enable
each wheel suspension to be rotadéd° through a worm gear. Table 2.1 shows some
of the characteristics of the steering actuators. The 4V¢3Headded benefit that it can
be used to mimic any other steering method (car-like, froeds; skid steer, etc.), and
this feature is useful when testing and comparing motiortrobalgorithms for different
wheel steering configurations.

Manufacturer maxon motor
Model F 2260 (885)
Type Graphite brushes DC motor
Stall torque 1.67Nm
Assigned power rating 80W
Maximum efficiency 80%
Website htt p: //ww. maxonnot or. com

Table 2.1: The steering motors

2.1.3 Propulsion System

For driving in a muddy field with little traction it is desirkbto have a four wheel
drive (4WD) propulsion system on the AV. The 4WS of the AV pabsistraints on the
design of the propulsion system though. Because of the ertignt steering of each
wheel, it is not feasible to design a transmission systemggfvom a central propulsion
engine and passing through each steerable wheel susper@igwould result in a
complex mechanical construction of the suspensions, atldeasame time it would
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most likely result in a propulsion distribution that is diffit to control. A different
approach is to mount four independent propulsion motoextlirin each wheel, thereby
eliminating the need for a central transmission systenogkther. This is achieved on
the AV with the use of four brushless DC hub motors; one maliiteeach wheel,
marked (2) on figure 2.2. The motors are custom built for thebg\Heinzmann GmbH
(htt p: // hei nzmann. de). Unfortunately, the customization means that very ligle
known of the electrical and mechanical properties of theomspbut they are assumed to
exhibit linear behavior. The four hub motors allows us tosidar each wheel as a self
contained mechanical subsystem in the sense that only atriedé¢ power and signal
connection needs to pass through the wheel suspensioabthgreatly decreasing the
mechanical complexity of the overall system. The systemnise aimplified, from a
control engineering point of view, by the similarity of eaatmeel set and the useful
properties of having to control simple DC motors insteadmfexample, a central fuel
based propulsion system.

2.1.4 Sensors

The 4WD-4WS structure of the AV results in a highly actuated &ully controllable
system, but in order to be fully observable as well, it is imaot to identify the infor-
mation needed to describe the instantaneous state of thedMsasurroundings. First
of all, the absolute position and orientation is neededlaigeo the way-points received
from the base station. Knowledge of their time derivatives, the velocity and rotation
rate, is also imperative when it comes to good motion cowtrtie AV. Each particular
crop field might not be completely horizontal, so pitch antinformation is also useful
if any compensating for the effect of gravity is needed. Alstinformation is related
to the global state of the AV, but some local information otuator states is also nec-
essary. For steering the AV, information on the angulartpsbf each steering motor
is needed. And knowing the angular velocity of each indiaiditeering and propulsion
motor is useful for good low level motor control. To navigateng crop rows, the AV
also needs information on the position and orientation afget crop row. This is most
likely not available from the base station (depending ontwhfmrmation the farmer
collected when sowing the crop), so the AV needs some oth#radef obtaining the
information.

The necessary information is:

e The two dimensional position in world coordinates
e The two dimensional velocity in world coordinates

e Heading, pitch, and roll of the AV
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Rotation rate of the AV

Angular velocity of each propulsion motor

Angular position and velocity of each of the four steeringono

Location of a nearby crop row relative to the AV

This information is imperative for good control of the AV,cit must be available by
direct measurements or through an observer. To obtain fbemation, the following
range of sensors is equipped on the AV:

e A GPS receiverfor measuring position and velocity of the AV in world coordi
nates

A magneticcompass and tilt sensor$o measure the heading, pitch, and roll

A single axisfiber optic gyro for measuring the rotation rate about an axis per-
pendicular to the ground

e Tachometersin each propulsion motor for measuring the angular velocity

e Encodersin each steering motor for measuring the angular position

A ground speed radarfor measuring the forward velocity of the AV relative to
the ground

A crop row guidance camerafor measuring the offset and direction of a crop
row in front of the AV

Figures 2.6 to 2.8 shows the mounting locations of the sensor

GPS Receiver

The global positioning system equipped on the AV is a RealeTikimematics - Global
Positioning System (RTK-GPS). The RTK-GPS receiver is useagenerate a position
and velocity solution in world coordinates. The solutiorbased on signals received
from the GPS (and GLONASS when available) satellites tagrailith correctional in-
formation via a radio modem from a reference station. Theections are based on
information in the signals from the satellites and phasesmeaments on the modulated
signals themselves. By including phase measurements icotinections, it is possible
to achieve a precision of a couple of centimeters. More $ipations are summarized
in table 2.2. The high precision is important for the quakiyd repeatability of the
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Figure 2.6: The AV rear view. 3: GPS antenna, 4: Magnetometer and tilsges) 5:
Ground speed radar, 6: WLAN antenna. The joystick, moratad keyboard are used
for interfacing the on-board computer system

Figure 2.7: The AV rear instrument box. 7: Power supply, 8: LH Agro emieeldd
computers, 9: PC/104 main computer
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Figure 2.8: The AV front instrument box. 8: LH Agro embedded computérsliaxis
fiber optic gyro, 11: RTK-GPS receiver, 12: GPS radio modem

field mapping. Repeatability refers to the ability to rettwnthe exact same location
on a crop field several times, and good repeatability is is@fen the farmer wants to
see the temporal variation on a field or check the long tereceffof his applied crop
treatment.

Manufacturer JAVAD
Model Legacy-E
Type 40-channels dual frequency GPS+GLONASS receiver
RTK accuracy (horizontal) 15mm
Maximum sampling rate 10Hz
Website http://ww.javad. com

Table 2.2: The RTK-GPS

The GPS receiver is unfortunately a rather unreliable sefidte receiver is only able
to return a position if the antenna has line-of-sight witheaist four satellites. This is
usually not a problem in clear weather on an open field, bubas as the receiver is in
the vicinity of solid objects like buildings or trees, thegit@ning solution is often lost;
even thick clouds can severely degrade the performancesaktteiver. This problem
can partly be solved by relying on the rest of the sensorglieaal-reckoningonfigura-

tion during periods of GPS drop-outs. Dead-reckoning iga tesed when estimating
the position of a system based on integration of local memsents only. If the steering
position and angular velocity of each wheel and the origmaif the body of the AV is

known it is possible to estimate the trajectory of the AV frtme point where the GPS
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solution drops out. In the ideal situation, the dead-reagkpestimate would coincide
with the absolute position of the AV, but a dead-reckoningesieer is by construction a
divergentfilter. Uncertainties in the system, such as whlgebr biased measurements,
will eventually make the dead-reckoning position deviatarf the actual position. This
is illustrated in figure 2.9.

Dead-reckoning position

\

\

GPS drops out Actual position

N

Figure 2.9: Deviation in dead-reckoning

During short drop-outs of the GPS solution, the availapiiif the AV can be greatly

increased by applying dead-reckoning, but if the drop-subng, the dead-reckoning
will eventually become too unreliable. The AV will then hateestop until the GPS

receiver has reestablished a positioning solution. Theofisee rest of the sensors is
therefore twofold; they are used both for the full statenaation, when the GPS is
operational, and to help estimate the position of the AV wilead-reckoning.

Compass and Tilt Sensors

To obtain the global attitude (heading, pitch, and rollg &V is equipped with compass
and tilt sensors combined in a single housing. The housingpcises three magneto
resistive magnetic sensors and a two-axis liquid filledsgtisor to produce tilt compen-
sated attitude measurements. More specifications can bd fouable 2.3. Because of
the multitude of magnetic sensors, the compass can someatmgensate for magnetic
interference from ferrous metallic objects and stray mégfiields. This compensation
is by no means ideal, and the output heading from the compassreliable. It can,
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however, be combined with other measurements to yield a gsiimate of the heading.

Manufacturer Honeywell
Model HMR3000
Type Digital compass module
Heading accuracy 0.5°
Pitch/roll accuracy +4°
Maximum sampling rate 20Hz
Website http://ww. ssec. honeywel | . com

Table 2.3: The compass and tilt sensor

Fiber Optic Gyro

The primary output of the 1-axis fiber optic gyro is the anguklocity about an axis

perpendicular to the ground. See table 2.4 for more spetiifita The output is directly
related to the rate of change of the heading. The headingngsérom the compass
can therefore be reconstructed by integrating the measusnirom the gyro while

taking pitch and roll into account, but due to a temperatarging bias in the gyro, the
reconstructed heading will diverge from the actual heading compensation it present.
To solve this problem, the readings from the gyro and compas$e combined to give
a more reliable estimate on the heading.

Manufacturer KVH Industries
Model EeCore 2000 (RD2100)
Type Single-axis fiber optic gyro
Accuracy 0.014°/s
Bias stability over full temperature range 0.4°/s
Maximum sampling rate 10Hz
Website http://ww. kvh. com

Table 2.4: The fiber optic gyro

Propulsion Motor Tachometers

Each propulsion motor is equipped internally with a tachtanemeasuring the angular
velocity of each wheel relative to the wheel suspension. tAhhometer readings are
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used both for low level control of each actuator and for deszkoning where the dis-
tance traveled by each wheel can be calculated by integréttéitachometer readings.

Steering Motor Encoders

To measure the steering angles of the wheels each steeritty im@quipped with an
encoder. See table 2.5 for specifications. Combining thesesorements with the mea-
surements from the tachometers enables the calculatitre afitection of movement of
the AV relative to itself. The encoders are also used for kvel control of the steering
actuators.

Manufacturer maxon motor
Model HEDL 5540
Type Digital encoder
Accuracy 0.0144°/pulse (through worm gear)
Website http: //ww. maxonnot or. com

Table 2.5: The steering motor encoders

Ground Speed Radar

Using the Doppler effect the ground speed radar mountedereir of the AV is able

to measure the velocity relative to the ground. See tabléa? §pecifications. The use
of the radar is limited, because it only measures the alesdbungitudinal component
of the velocity. Hence, the radar output is zero if the AV isvitig sideways. The

primary reason for having the radar is to be able to estinteteotcurrence of wheel
slip by comparing the output of the radar with the output efftbur tachometers in the
propulsion motors.

Manufacturer DICKEY-john
Model RVSII
Type Ground speed radar
Accuracy 5% (0.53 — 3.2km/h)
3% (3.2 — 7.0km/h)
Website http://ww. di ckey-j ohn. com

Table 2.6: The ground speed radar
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Crop Row Guidance Camera

To obtain local crop row information the AV is equipped withceop row guidance
camera. See figure 2.10 and table 2.7 for specifications. @heer@ uses a vision
system to output the lateral offset of a crop row in its fieldiisfon.

Figure 2.10: ECO-DAN crop row guidance camera

Manufacturer ECO-DAN
Model 11-410-02-01
Type Single plant camera
Accuracy Imm + 0.5mm
Maximum sampling rate 25Hz
Website http://ww. eco- dan. com

Table 2.7: The crop row guidance camera

2.1.5 Computer System

To interface the different hardware components the AV isggapd with a computer sys-
tem that also handles internal coordination and exterrmaheonication tasks. The over-
all purpose of the computer system is to execute the motiatralcalgorithms needed
for autonomous driving. Even though no control algorithra haen introduced yet it is
possible to identify two distinct levels of control in the A44].

Low level motor control of each wheel set. The purpose of this control is to achieve
precise position, velocity, or torque control of each maiarthe AV. The low level
control closes loops around the motor hardware, and it sheeikun at a high sampling
rate at an order of magnitude td?Hz.
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High level motion control  of the AV body. This control handles the mutual coordina-
tion of all four wheel sets and the generation of positiohoeiy, or torque references
for the low level controllers. The high level controller sks the loop around the AV
body, which has a relatively slow response compared withrésponse of the motors.
Hence, the sampling rate of this control need not be as fasteasiotor control and is
of an order of magnitude dfo! Hz.

Not only do the two levels of control put different timing rdgements on the computer
system; the complexity of the controllers also puts requ@ets on the computational
power. The low level motor control is expected to consistinfpte, possibly linear
controllers, while the high level motion control is expette be more complex. Because
of this layered control structure, the computer system enAiiis distributed over five
separate computers:

e 4 small embedded computers for low level control. Markeddi)figures 2.7
and 2.8

e 1 powerful main computer for high level control and data camioation with the
base station. Marked (9) on 2.7

The Four Embedded Computers

The four embedded computers are manufactured by LH-Agrbtleay are small rugged
computers designed specifically for controlling farminglégations. They run a real-
time operating system and are equipped with several I/Gsgdortinterfacing sensors
and actuators. They also include a CAN-bus interface fdrtiew external communi-
cation. The primary task of the LH-Agro computers is to inmpént the fast local loops
around the motors, and each LH-Agro controls one propulai@hone steering motor.
Additional specifications can be found in table 2.8.

The Main Computer

The main computer on the AV is a standard PC/104 industrialpzger running Debian
Linux. This computer runs high level motion planning and rchation tasks, and it
interfaces a subset of the sensors. The PC/104 stack camprimain CPU module, a
power supply module, a RS-232 four port module for sensomsonication, a PCMCIA
module for a WLAN adapter, and a CAN bus module for commuimigawith the LH-
Agros. Additional specifications can be found in table 2.9.
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Manufacturer LH-Agro
Model IC28
Processor Infinion C167CR
Input ports 16 digital
2 analog

Output ports 6 digital
4 PWM

Communication ports 1 CAN
1 RS-232

Website http://ww. | h-agro.com

Table 2.8: The LH-Agro embedded computer

Module

CPU

Manufacturer

ICOP

Model

ICOP-6070

Website

http://ww.icop.comtw

Module

RS-232

Manufacturer

ICOP

Model

ICOP-1800

Website

http://ww.icop.comtw

Module

PCMCIA

Model

PCM-210A

Module

CAN

Model

PCM-3680

Table 2.9: The PC/104 stack
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2.1.6 Hardware Communication Structure

Figure 2.11 shows an overview of the hardware interconoesti Each sensor is con-
nected to the computer on which their output is first needdw tAchometers and en-
coders are connected to the LH-Agros, where they are uséldgdow level control, and
except for the ground speed radar, the rest of the sensodiraotly connected to the
PC/104. (The physical properties of the radar signal néeg¢ss the connection to one
of the LH-Agros, but the data is passed unused to the PC/T0ddh the CAN-bus.)
The joystick is used for manual driving.

WLW Sensor array
RS-232 | RTK-GPS
! Compass

I
RS.232 / Tilt-sensors
B PC/104 Lo
Joystick + ,’ Gyro
\

(2]
>
2 Crop row
z camera
®)
LH-Agro PWM Ground speed
embedded radar
computer
[
[
[
pwm < | | >
Propulsion Drive
Tachom. | 4 Encoder

Figure 2.11: Hardware communication structure on the AV
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2.2 Software

Once the hardware is mounted and connected to the compstensyhe next step is to
combine the data flowing through the system in a good nawigatid control scheme for
the AV. The software handles every aspect of communicatioihdata handling on the
AV; from interfacing sensors and actuators to scheduledgi@n of high level motion
control algorithms. The AV is intended to be a developmeatfptm for testing motion
control algorithms, and from a control engineering poinviefv, many of the software
aspects are not really of interest; the control enginedcatsneeds only to be served
the data that is available from the sensors, act on this daththen generate control
signals for the actuators. How the system actually intedabe sensors and actuators
is of less importance and should be encapsulated in a wguintrol development
environment. This section is focused on the developmentch &n environment for
testing motion control algorithms.

2.2.1 Overview of Major Software Components

In the previous section two levels of control were identifiedne was the low level
control of each motor, which is to be executed on the LH-Agamsl one was the high
level motion control of the entire AV, which is to be executad the PC/104. 1t is
assumed that good low level controllers can be designedrapgmented on the LH-
Agros once and for all, and the need for future changes indfieare is minimal. The

software on the PC/104, on the other hand, is assumed to benof@varying nature,
since it should be possible to test many different motiontrmdnpath following, and

trajectory tracking algorithms.

Figure 2.12 identifies the major software components on ¥eamd their mutual data
dependencies. Note that it is very similar to the hardwaer@onnection in figure 2.11,
because of the distribution of computer systems. At thethwfathe structure is the

PC/104 software that coordinates the motion of the AV. Ireotd do this, it has to have
access to the sensors, the joystick, and the LH-Agros thirthegCAN bus. The PC/104
software interfaces the sensors, and it closes the motiotnaidoop by sending refer-

ence signals to the motors through the LH-Agro software. Mdré&zing autonomously,

it makes sense to have the ability to interface the AV remyptednce the external PC.
From the external PC it should be possible to monitor the@natontrol software, trans-
mit new parameters, and start and stop the AV.

The data flowing between the components are as follows.
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Joystick
/
. T~ /pcroa

Software
N

LH-agro LH-agro LH-agro LH-agro
Software Software Software Software

Figure 2.12: Overview of software structure

PC/104+—— LH-Agros The LH-Agros receive position, velocity, or torque refezes
for the eight motors, and start and stop commands from th&@@C/They send back
tachometer, encoder, and ground speed radar readingsR€1t84. Any asynchronous
parameter changes for the LH-Agros software can also bebgehe PC/104.

PC/104—— Sensors At this interface, data is sent from the GPS receiver, gyom-c
pass, and crop row guidance camera to the PC/104, whichumreends any setup
information or polling requests to the sensors.

PC/104+—— Joystick The joystick is only to be used for manual driving, and under
these circumstances the state of the joystick is sent to@ieda.

PC/104+—— External PC Supervisory information on the state of the AV is sent from
the PC/104 to an external PC. In return, the external PC estatdend new parameters

for the controllers on the PC/104 and LH-Agros. Asynchranoommands, such as

starting or stopping a controller and changing between ralsavud autonomous mode,

can also be sent by the External PC.

Getting data to flow in and out of each subsystem is one thiangrdacting on the data
in an advanced motion control scheme is a completely diftassue. For the control
engineer the latter is, by far, the most interesting, buirtgs developed control scheme
is difficult if there is no well defined data flow infrastructéurTo relieve the control en-
gineer of knowing every little hardware and software detaithe AV and to generally
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ease the implementation of a designed controller, a graptantrol development envi-
ronment that encapsulates and hides all data communicatioime AV is a great help.
The desired features of a development environment for thesAV

A graphical user interface that gives easy access to seasdractuators

Automatic code generation and compilation based on thehgralty designed
controller

On-line graphical data representation and monitoring efdbsed loop system

e On-line changing of controller parameters

All of these features are embedded in the mathematical acdtauite Matlab/Simulink
through its toolbox Real-Time Workshop. They can be appitethe AV by tailoring
the PC/104 software to interface Real-Time Workshop.

2.2.2 Real-Time Workshop

The Real-Time Workshop (RTW) is a comprehensive Matlabifik toolbox that is
able to generate and compile code based on Simulink blogkatias. It is mainly used
for rapid prototyping on a variety of different operating®ms, and it can be extended
to fit more specialized systems, like the AV, as well. The sewode generated by RTW
isin C and can be extended by any additional custom writteoutce code. This feature
enables RTW to communicate with any hardware or softwarepoomant, as long as it
is accessible via C. RTW can generate generic executabéefoothe Linux operating
system, but without extensions it has limited hardwarefate capability. Since there is
a lot of specialized hardware on the AV, several issues hlas tesolved before enabling
the control engineer to design a controller through Sinkdind generate the appropriate
code automatically. The major issues are:

e RTW does not include an interface to the sensors, actuaiedsCAN bus on the
AV, and it must hence be extended in order to communicatetivithe components

e When generating code to the Linux operating system, RTW doetake timing
and scheduling into account. The resulting executablerwill‘as fast as possi-
ble’, not obeying the desired sampling frequency

Fortunately, the extensibility of RTW makes these issusslvable. The first issue can
be addresses directly by writing custom S-functions folusion in the Simulink dia-
gram. An S-function is a peace of C-code that defines how meatteomponents should



2.2. SOFTWARE 33

be interfaced in a format that RTW understands. The secaue is somewhat more
difficult to resolve. To understand this, it is necessaryotukicloser at how RTW gen-
erates the code. Figure 2.13 shows an overview of the coderaféon and compilation
procedure of RTW. When thieuild button in Simulink is clicked RTW generates pre-

Click Build
Button
Simulink Generate model.c

Template " Custom |
Makefile Makefile
model.mk

linux_main.c |

Figure 2.13: Code generation and compilation procedure of Real-Timekélup

liminary code from the Simulink model, including any customade S-functions. The
generated code is a basically a group of C-functions deagrtbe model. This includes
functions for calculating the model states at the next tins¢éaince, retrieving the output,
and so forth. How, and in which order, these functions adedas not included yet. The
next step is to generate a custom makefile for the target &daeu This is where RTW
is told which compiler to use and any options related to thamitation. The template
makefile also defines which file should be used to execute ttie tt@t was generated
in the first step. The file is typically a C source file that ird#s themain function in
which the functions from the code generation step are calléde right sequence. In
this example the file is calleldi nux _mai n. ¢, and it is included when compiling and
linking the executable. Thiei nux_mai n. c file also determines time of execution of
each iteration step of the model, and any operating systegifgptiming and schedul-
ing should be included in this file in order to iterate the matehe correct sampling
interval.
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In thel i nux_mai n. c file shipped with RTW there is no timing in the execution of
the model; the next iteration of the model is executed as ssahe previous one has
finished, resulting in an executable model that runs ‘asdagpossible’, thereby not
providing the correct sampling period. The problem has besolved by modifying this
file and inserting a timer that triggers the next iteratioritef model when the correct
amount of time has elapsed.

The executable file generated by RTW includes one more vesfuuslement. By de-
fault, RTW facilitates communication with the running extable through what is re-
ferred to asExternal Mode typically via a TCP/IP connection. When the executable
is started it registers itself on the network stack on thehimecand starts listening
for incoming connections. Anyone with the same Simulink elahd a running Mat-
lab/Simulink is then able to connect to the executable, ipexithat they are on the same
network. When a connection is made, itis then possible to vie-line data from within
Simulink and to upload new parameters to the running model.

When RTW is fully integrated with the PC/104 software it pdms the following intu-
itive work flow for the control engineer:

1. The engineer starts by designing and building a contrioll8imulink. The design
would typically be based on a mathematical model of the AV lamalvledge of
what sensors and actuators are present in the physicahsystew sensors and
actuators are interfaced is not of importance, since thigdden behind the user
interface and made available through appropriate Simudiokks

2. The next step is to test the controller on a simulation rhoidée AV. Figure 2.14
shows how this would appear to the engineer for a simple SiS@

2s+3 p| X = Ax+Bu >
s2+55+12 y = Cx+Du
Step Controller Plant Model Scope

Figure 2.14: Simple example of the Simulink user interface when sinmglati

3. When design requirements have been met the hardwarerdslilced into the
loop by exchanging the simulation model with a set of S-fiomcblocks, see fig-
ure 2.15. Executable code is then automatically generhteld, and downloaded
through the wireless network to the PC/104
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2s+3 r——1
——— —P»| actuator sensor P
s2+55+12
Step Controller S—-Functionl S—-Function Scope

Figure 2.15: Simple example of introducing hardware in the loop in Simtuli

4. The executable code is started and the engineer is abtanteect to it, monitor
the system, and upload new parameters on-line from withitusink running on
the external PC

2.2.3 PC/104 Software

The S-functions introduced in the previous subsectiomalBTW to interface any piece
of hardware or software that is accessible through C. Fotralling the AV the RTW
executable must know how to access the sensors, the CAN bdgha joystick. To
make these subsystems available, the following three drave identified:

1. Asensor driverthat handles the RS-232 interfaces to the GPS receiverytiog g
and the compass. The sensor driver must wait for incomingdata from the
sensors, interpret it, and make it available for the RTW aetadde. The sensor
driver must also handle any configuration of the sensorsettigh

2. ACAN bus driver that handles all data communication to and from the CAN bus.
It must transmit references generated by the RTW execudatoldisten to incom-
ing data from tachometers, encoders, and crop row camerake itavailable for
the RTW executable

3. Ajoystick driver that listens for incoming data from the joystick, intergrétis
data and makes it available for the RTW executable

The inter process communication between the drivers an&TWe¥ executable can be
handled in different ways. One option is to embed every path® drivers in the S-
functions used by RTW. This solution will ultimately mearathihe system will only
be able to run with a working RTW executable. Any external-Ratw programs will
then be unable to communicate with the hardware unless gbioggh RTW. Even
though Simulink and RTW are powerful tools they may not alsvag the most useful
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ones. When writing simple programs for the AV, such as tgstirdebugging programs,
it may be more convenient to access the drivers directlyuthina stand alone program.
To provide for a more flexible software structure the driveage been split into individ-
ual programs; all communicating through a segment of shaesdory. This allows any
other program (written in a language that supports comnatiic with shared memory)
to access sensors and actuators. A schematic illustratitve shared memory commu-
nication is shown in figure 2.16. The figure shows the flow ofsemlata and actuator

PC/104
Shared memory Senso
driver
5 RTW executable
k=] )
(o] c
£ oo - §
§ _ g ng_stick
a 3 river
[
CAN-bus
driver

Figure 2.16: Software components on the PC/104

references between the drivers and the RTW executable. eAfigilre shows, both the
RTW executable and the joystick generates actuator refesgibut they should not run
simultaneously. In general, the joystick is only used fonoel driving, while the RTW
executable is used for autonomous driving. Both are degpict¢he figure to illustrate
how the use of shared memory enables direct manual drivitigeoAV while bypassing
the RTW executable.

2.2.4 LH-Agros Software

When the actuator references have been generated by thesofin the PC/104 they
are transmitted via the CAN bus to the four LH-Agros embedutedputers. The LH-

Agro software then closes the fast local loops around eatlator and returns mea-
surements from encoders and tachometers to the PC/104.t8éring and propulsion
motors both exhibit simple first order linear behavior [7hdahe model used to de-
scribe them is the basic first order linear model of a DC masasteown on figure 2.17.
The parameters associated with the unloaded steering apdlpion motors were also
identified in [7]. They are summarized in table 2.10.



2.2. SOFTWARE 37

Vi inputvoltage

Vin 1 Te [ 1 w Te applied torque
_k_O# _O# & angular velocity
R, armature resistance
BN K;  torque constant
K. K. electromotive force constant
J moment of inertia of anchor
b coefficient of kinetic friction

Figure 2.17: First order motor model

Parameter | Steer | Propulsion
R, [ 1.43 0.017
K;/K. [Nm/A]/[Vs] 0.1 0.31
J [kg m?] 3.1-107* 0.18
b [N1ns] 0.003 0.37

Table 2.10: Parameters associated with the motors

The Steering Control Loop

To encapsulate the internal dynamics of the steering matdigidual position and ve-
locity controllers around each motor were designed by Bisgj&t al. [7] and imple-
mented in the LH-Agros. The position controller is a secordkolead-lag controller,
and it is used to precisely position each steering motor aingpe relative to the wheel
suspension. The velocity controller is a pure proporti@oaltroller and is used to rotate
each steering motor at a given angular velocity. The paséitd velocity controllers on
each wheel are not designed to run simultaneously, and titeodler used is determined
by the kind of reference transmitted by the PC/104. Thiscstine allows the designer of
the high level controller on the PC/104 to focus on genegatiosition or velocity ref-
erences to the steering actuators, while the actual refereeacking and the underlying
dynamics are encapsulated by the LH-Agros.

The Propulsion Control Loop

The custom built propulsion motors are already controligd/docity controllers em-
bedded inside each motor. According to the manufacturem@dgann GmbH) there
is a linear first order behavior from input voltage to angwiocity of the closed loop.
Measurements have shown that this claim is valid with theragsion that the controller
is just a simple proportional feedback. In this sense, tlop@rional feedback can be
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viewed as a scaling of eithdt;, K., or R,, and the closed loop can be viewed as a
linear DC motor with parameters shown in table 2.10. Thepatars are based on
measurements on the closed loop.

The propulsion motors should not be velocity controlleduifio, because the four ve-
locities of the propulsion motors are not independent —ragsyithat the AV should be
driven with the minimum amount of slippage. Imagine that Aweis driving along a
straight line on a flat field. Obviously, the angular velodfyach propulsion motor will
be identical if the AV drives without slipping; the velo@s of all wheels are determined
by the velocity of one. With the same velocity reference aallsép may occur if the
AV passes a bump or a depression in the field. If the motors@ntraled by setting
references to the applied torque on figure 2.17) instead the inputs are independent,
and slippage of the wheels will be reduced by the presenceatofral friction forces
between wheel and ground. In the proceeding chapters isisasd that the input to
the propulsion motors is the applied torque, where thefioilg simple trick is used to
approximate the corresponding input voltdge

R, R
Vm = 7 Te Ke .
K +( K )“’

Note that the value for the coefficient of kinetic frictibin table 5.1 only describes the
internal friction of the motor. There are other sources iotifsn as well, such as ground
friction and increased friction in the motor bearings assalteof the load on the wheels.
The parametel’ describes the total kinetic friction, but this parametes idifficult to
determine as it largely depends on various ground and soditons. No effort will be
taken to determine the exact valuebbfbut an approximate mean value B + R}%’

is assumed to be known for various environmental conditions



CHAPTER3

L AGRANGE M ODEL OF THE AV

In the Matlab/Simulink setup the interface to the AV corsistreference signals to the
motors and state information from the sensors. For contrgdgses, and to understand
the underlying dynamics of the AV, the connection from inpference signals to the
position and velocity of the AV is worth investigating, amdthis chapter a mathematical
model describing the motion of the AV is introduced. The Aéisject to free rolling
and non-slipping constraints that should be accountechftiie model, and it is there-
fore developed using the Lagrange’s equatitor nonholonomic systems with some
modifications due to the special 4WS structure of the AV. Témulting Lagrangian
model consists of a set of second order differential eqoatiescribing the motion of
the AV on its configuration manifold. On this form the equascre not suitable for
control, but they are the starting point for defining the Hésnian equivalent in the
subsequent chapter. The Hamiltonian equivalent, on ther didind, will be very useful
when turning to motion control of the AV.

IFor an introduction to Lagrange’s equation please refeppeadix A.

39
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3.1 Vehicle Definition

The AV consists of a rigid rectangular body frame and four elbe The wheels are
mounted at the four corners of the vehicle and are all bo#rabde and drivable. The
operational environment of the AV is assumed to be a hor@digld with a constant
height above sea level; the pitch and roll of the AV is hencgligible. The position
and orientation of the vehicle frame is defined on the madifel ¢ R? x S, and a
point on this manifold is denotegd € M. Consider a coordinate systef fixed to
the earth and with its axes pointing east and north. Theretbeist local coordinates
XV = [z1 z 0T with respect to theV-frame, as shown in figure 3.1. The figure
indicates that there also exists a second coordinate fiarfiged instantaneously at
the position and orientation of the AV. A poigton the manifold can be described in
both theA/- and theB-frame and are denoted" and\? respectively. For notational
convenience the superscript will often be dropped, andtifing else is statedy is the
coordinate representation in thé-frame.

Figure 3.1: Definition of the vehicle body frame coordinatdéis an inertial coordinate
frame fixed to the earth, anf; z»]7 is the position of the geometric center of the
vehicle. The geometric center coincides with the centeh@@PS antenna. A second
coordinate frame is fixed to the AV at the geometric centerisud@noted thés-frame.

0 is the rotation between th8- and the\/-frame

The position of the'th wheel is described by two anglgs and ¢;, as shown in fig-
ure 3.2. The figure also shows the torque inpytsandry,. The three constant param-
etersy;, x,, andr,, describe the mounting position and radius of each wheel.
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Figure 3.2: Definition of parameters and coordinates related toitiewheel (the figure
shows top and side views); defines the steering angle of the wheel relative to the AV
frame, andp; defines the angular position of the propulsion motgy. and 7, are the
input torques to the steering and propulsion motots.and ~; constitutes a constant
polar coordinate pair that defines the mounting position ¢ tvheel relative to the
geometric center of the A¥,, is the radius the wheel

With these definitions it is possible to define theg@ebdf configuration coordinates that
is able to completely describe the instantaneous configaraf the AV

X
qr = | 8], (3.1)
¢

with 3 = [B1 B2 B3 B4]T € S* and¢ = [p1 ¢2 ¢3 d4]T € S*. This is not a minimal
set though, and the next section describes constraintsmhatllow the number of
configuration coordinates to be reduced.

The setur of input torques to the system is defined as

ur = |:Tﬁ:| )
T

With 75 = [75, T8, T3, 76,7 € R*andry, = [14, Tps Tos Teull € R The alert reader
might have noticed that the inputs to the local steering metatrol loops are angular
velocity or position references and not torques. For nowdwer, it is assumed that the
inputs are all torques, as this will fit into the Lagrangiaanfiework. The consequence
of changing the input to velocities will be discussed latethis chapter.

For later use, it is also worthwhile to define the transfofarathat relates a velocity
vector described in coordinates related to Mdrame to the same vector described in
coordinates related to thé-frame. If the3-frame is considered to be instantaneously
fixed at[z; x5]7 and at a rotatiod the transformation is a simple rotation matrix

B =ROXY = XN =RT06)X5,
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with
cosf) sinf 0
R(f) = | —sinf cosf 0}, R™'(6) = R"(0).
0 0 1

¥V andy? denotes the same vector expressed in\thend theB-frame respectively.

Remark.Note thaty”" is notexpressed in the same coordinateg3s x' is expressed
in terms of the basis vectof¥/dz1, 0/0x2, andd/d0 that span the tangent space of
M aty. A

3.2 Constraints

The 4WS-4WD structure of the AV might give it a large degreerafhility, but the
motion of the AV is still not the motion of an unconstrainegidi body. The wheels of
the AV restricts the motion, and the direction of accelerais always determined by
the orientation of the wheels. The multitude of steerableeidimeans that they have
to be strictly coordinated for sensible driving. Imagineitaation where two wheels
are pointing north and two are pointing east. This is not aibéa configuration, and
it will ultimately result in sideways dragging of some of théeels and maybe even
physical damage the wheel suspensions. The insensibleyucation arises when the
instantaneous center of rotation is not uniquely defineccaRéhat the ICR is defined
as the point of intersection of the four lines perpendictdahe wheels, see figure 3.3.

Figure 3.3: The Instantaneous Center of Rotation

Only two wheels are needed to uniquely define the ICR, but mstcaints ensure au-
tomatically that the perpendicular lines from the two othdreels also intersects the
ICR. On car-like steered vehicles, where only the front &xkeerable, the mechanical
construction of the steering system will ensure that a umi@iR is always located on
the line extended along the rear axle. On the AV, on the otaredhit is up to the motion

control algorithms to ensure that the mechanical congtimieplaced by sensible steer-
ing references for all four wheels. In practice this can beedby letting two wheels,
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for example the two left side wheels, define the ICR. Basedein steering angles;
andgs the steering angles for the two right side whegélsdndg,) that renders the ICR
uniquely defined can be determined by

B cos (31 sin 35

(3 = arctan (sin(ﬁl ~ ) + cos i cos 52) , (3.2)
B sin 1 cos By

B4 = arctan (sin(ﬁl B2 + cos Br oo ﬁg) . (3.3)

Henceforth, it is assumed that the local position contropkaround the steering motors
on wheel 3 and wheel 4 are fast enough to guarantegthand 5, are always satisfy
(3.2) and (3.3).

Remark. Note that the ICR is not uniquely defined when the two perpandr lines
from wheel 1 and 2 coincide, i.e., wh¢h = 7/2 + nm, ¢ = 1,2, n € Z. All we
know is that it lies somewhere on the line passing througheivbhend 2. The problem
is overcome by using wheel 1 and 4 instead to define the ICR. AN

The mutual dependency between the steering angles is arpéxafra holonomic con-
straint on the general form [30]

f(qlaq27q37---at):05 (34)

A constraint on this form can be used to reduce the numbendigaation coordinates;
in this case from all foufs-angles to only3; andg,. (65 and 4 will be encountered
later, but are then considered as functiongpénd3, and not as an independent part of
the configuration coordinates.) Having introduced the tairg of a uniquely defined
ICR the set of configuration coordinatgs and inputsu have been reduced to

X
I = {ﬁ’] ,  up= {Tf] :
& [
with 3" = [81 B2]T andrs = [75, 78,]7 .

Not all constraints can be expressed on the form (3.4). Atcains might be expressed
by an inequality instead of an equality, or it might be expegsas a constraint on the
time derivatives of the configuration coordinates. If a ¢@ist is not expressible by
(3.4) it is said to be nonholonomic or non-integrable [4].r Bensible driving of the
AV the vehicle is imposed with the nonholonomic constraoftéree rolling andnon-
slipping The free rolling constrain means that no sideways velagitgny wheel is
allowed, and this is closely related to the existence of gumiCR; free rolling can
only be achieved if the ICR is unique. The non-slipping caaist, on the other hand,
means that the velocity of the point of contact between edubelvand the ground is
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always zero in the direction of the wheel. Both of these aqainsts are related to the
velocity of the system and cannot be described as holonoomistaints. Instead, they
are described by a set of nonholonomic constraints on tme for

AT(q)g =0, (3.5)

whereA(q) is ann x k matrix describingc constraints, and is the number of con-
figuration coordinates. The constraints are assumed todepéndent, i.eks < n and
rank(A(q)) = k.

To derive expressions of the constraints consider the itglotthe i'th wheel relative
to the5-frame

B _ |71 —kisiny;| 4 |1 0 —k;siny;| .
Wi = [xf] + [nicos% ] 0= [O 1 Kicos7; } X

According to the free rolling constraint this velocity vecshould point in the exact
same direction as the wheel, and according to the non-slipgonstraint, the velocity
of the contact point between wheel and ground should be aabhence the length of
the velocity vector should be equalitg ;.

Now, define two unit vectors in thB-frame. One along and one perpendicular to the
wheel
B _ |cospi B _ |—sinfi
Gl = {sin@-] ’ il = [ cos f3; ] '
If the velocity of the wheel is in the direction of the wheesktf the dot product between
w; andefl must equal zero. The free rolling constraint can hence beeegpd by

<wi, e >=0= [— sin3; cosfB; k;cos(y; — ﬁi)] )'(B, i1=1,2,

and expressing the constraints for all wheels inthérame yields

CLUBROY =0,  Ci(F) = | Snfr cosPimcos(i=m)| 36

—sinfy cosfB2 kacos(B2 —2)

Note that the constraint is only imposed on two of the wheHlthe ICR is uniquely
defined, and if two of the wheels satisfy the free rolling d¢oaist, then all wheels satisfy
the constraint. Hence there are only two independent cainssr

An expression for the non-slipping constraint can be delrinea similar fashion. If the
length of the velocity vectow? should be equal to,, ¢; the inner product betwean?
and the unit vector along the wheel should also be equal g

< wj, e >= Fuwdi = [cos Bi sinf;  kisin(y; — ﬁi)] Y5, 1=1,2,3,4.
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Expressing the constraints for all wheels in ffeframe yields

cosfr sinfy  kisin(Br —m)
Co(B)RO)X =rud,  Ca(B) = | gz o gz " :EE@ B 3 (3.7)
cos By sinfy kyesin(By —y4)

All four wheels are included since there is no direct relatietween the slippage of
each wheel and hence all four constraints are independeiec@ng the constraints
and expressing them on the form (3.5) yields

/vt — |C1B)R(0) :
AT(QT)qT = CQ(B’)R(@) 0 —ryl qr = 0.

3.3 Lagrange Model

Having defined the nonholonomic constraints the dynami¢eefV can be described
directly by applying Lagrange’s equation for nonholonomsystems (see appendix A
for an introduction to this equation)

d (0L\ 0L
- <a_q> % = AlQA+ U, (3.8)
AT (q)g =0,

where) € R¥ is a vector of Lagrange multipliers, adincludes the inputs and any
dissipation or friction forces in the system. The LagrandianctionL = T — U is
defined as the difference in kinetic enerjyand potential energy/ of the entire sys-
tem. Driving on a horizontal field the AV has no potential eyyebut if the field has a
slope, the potential energy will be nonzero. An exact exgioesof the potential energy
function is not available, but it is assumed that the enesgyfunction ofy and that it is
bounded from below

U: M—=R, U(x) > C.

The expression for kinetic energy, on the other hand, isiples® derive immediately;
it is a combination of translational and rotational enerf§the individual moving parts
of the AV. Assume that the following constants are known:
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my  Mass of AV body (excluding wheels)

Jy Moment of inertia of AV body (excluding wheels) about thesager-
pendicular to the ground and passing through the geomedritec of
the AV

m,,  Mass of each individual wheel

jw,s Moment of inertia of each wheel plus suspension aboupthetation
axes

Jjw,e Moment of inertia of each wheel about theotation axes

The total kinetic energy of the AV can then be expressed as

. 1 . . .
gy ir) = 5 [my (@} + ) + s 6?]
1 4 . .
+ 5w Z(I’l — kisin(y; + 0)0)? 4 (@2 + k; cos(y; + 0)0)?

i=1

4
1 ) )
_.w 7 92
+5J ,ﬁ;:l(ﬂ +0)

4
1. .
+ ijw,qﬁ E ¢12
i=1

The first element is the translational and rotational enefghe AV frame, the second
element is the translational energy of the wheels, the thiednent is the rotational
energy of the wheels about titerotation axes, and the fourth element is the rotational
energy of the wheels about tiierotation axes.

On a more compact matrix form the Lagrangian function is
1 i o
L(gp.dr) = 5 |X"RT(OMRO)X + Gup D_(5i +0)* + jued” é| — U,
=1

with a constant positive definite symmetric inertia matrix

4
my + 4my, 0 —My Y K siny;
i=1
M = 0 my + 4my, My Y Ki COS7Y;
i=1
4 . 4 ’ ’ 4
—My Y K SINY; My Y K COSYi  Jf 4 My Y K2
i=1 i=1 i=1

With the Lagrangian function defined the Lagrange equatiBrcan be partitioned into
three separate parts; each describing the dynamics ofriée plarts of the configuration
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coordinates

d <8L) OL _ RT(0)CT (8 + RT(0)CT (),

dt a 78)(

d (0L oL

) e

i 8_L 78_L77 R (3.9
o <8¢)) 8¢— TwA2 + T,

C1 (5/)R(9)X = 0,
Co(B)R(0)X — 10 = 0,

where)\; and\, are of appropriate size. Because the inpytsandr are generalized
forces acting directly on the generalized coordingieand¢ they are simply added to
the last two Lagrange equations.

There is a problem with the second equation of (3.9) thoughe ftational energy
about thes axes of all four wheels are included in the kinetic energydmly the torque
input to wheel 1 and 2 can change the energy. It was assumée jorévious section
that wheel 3 and 4 can be controlled in such a way thab 5, will always uniquely
define the ICR. But how does this affect the kinetic energyi® iBmot answered by the
Lagrange equations, and one has to look closer at the lootiotdoops of wheel 3 and
4 in order to find the answer. On the other hand, one has taeecthlat the rotational
energy of the wheels constitutes a very small part of theé kinatic energy. The mass
my of the AV body is approximatelg00kg, and at the relatively low speed ofn/s
the translational energy in the body frame alon&08J. Assuming that the wheels can
be regarded as solid disks the moment of inefjig of each wheel is approximately
0.5kg m?. Even with a fast turning rate afrad/s the total sum of the rotational energy
in the four wheels is only about]. Not very much compared to thg0J in the AV
frame.

Realizing that the rotational energy in the wheels only playery small role in the
overall Lagrangian function it is assumed that this parthef énergy can be neglected
all together and the model modified accordingly. Neglectirggrotational energy of the
wheels about the axes is equivalent to letting, s tend to zero, but this raises an issue
of controlling3’. Applying a torque to a body with zero moment of inertia worddult

in an infinite acceleration, in theory at least, of that bodg. overcome this problem
the steering motors are controlled by local velocity colieérs as already described in
chapter 2. By neglecting the dynamics of thengles they are no longer a part of the
generalized coordinates; instead, they are treated avérgang parameters that can be
manipulated directly through their first derivative. In thext chapter they will lay the
grounds for the formal definition dinematic inputs
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The resulting modified Lagrange equations are

d (5L) OL _ RT(6)CT (8)A + BT (O)CT (),

dt \ox ) oy

4 <8—L) _oL = —Twl2 + Ty

dt \o¢/) 0¢ ’ (3.10)
B =

C1(8")R(0)% =0,
Co(B")R(O)X — rwd = 0.

The model is still not useful for control. There are still tine undetermined Lagrange
multipliers that have to be eliminated. Fortunately, thelel@ontains more information
than is needed and can be reduced even further. The AV shewllb to follow crop
rows, navigate way-points, etc., which is related to thatjppsand velocity of the AV
frame. Knowing the exact angte of each wheel is therefore irrelevant. The velocities
é of the wheels are important though, since they contributeédinetic energy of the
system. Fortunately, the direct dependency afan be eliminated by using the non-
slipping constraint (3.7) that relatésto y. By exchangingb with Ly (B)R(0)x the
Lagrangian function becomes a functiomgfy andg’ alone °

L %) = 5 X" RYON (3RO - U(X),

with an augmented inertia matrix

N(B') = M+ 222 0T ()0 (8).

w

With this reformulated Lagrangian function the left handiesof the second equation of
(3.10) becomes zero and henge= Tiwm. Inserting this reduces (3.10) to

d (oL oL’ o7 T o T 7o L
7 (50) - G = REOCT @ + BT O)C] (3) 21
P (3.11)

C1(B)R(0)x = 0.

There is still the problem of eliminating;. This will be the topic of the next chapter,
which describes a general method of eliminating the Laggangltipliers. The method
is based on the equivalent Hamiltonian formulation of a ng@eeral system. Once the
multipliers have been eliminated the model can be verifiedan measurements on
the physical system. This is postponed until chapter 5. Tamilionian equivalent of
model (3.11) will also be the starting point for developimgtrol algorithms for the AV.



cHAPTER4S

THE HAMILTONIAN FORMULATION AND MODEL
REDUCTION

In the previous chapter the Lagrangian formulation of a meaal system was applied
to the AV. The resulting dynamic model is an example of a stath@onstrained La-
grangian model with the exception that a part offiit,can be controlled directly through
its first derivative. This phenomenon is formally introddée this chapter akinematic
inputsin the framework of general nonholonomic Lagrange systems.

Although the Lagrange equation is a powerful way of deriviing dynamic equations
of a mechanical system it is not well suited for control. Auiglent formulation of
the dynamics, which will be introduced in this chapter, is Hiamiltonian formulation
of the system. This formulation adds no new information ® g¢lgstem, and it is es-
sentially just a transformation of the coordinates of thgraage equation, but it has
a structure that makes is very useful for feedback contha; Hamiltonian function,
which is the dual of the Lagrangian function, can often belwsea Lyapunov function,
and basic theorems of passive and dissipative systems haateir@l application to the
Hamiltonian equation.

Feedback control will be postpone until chapter 6, and tleeigan this chapter is on
deriving a suitable Hamiltonian equation of a general systéth kinematic inputs. The

49
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undetermined Lagrange multipliers will still exist in theiltonian equivalent of the
original Lagrangian equation, and the last part of this téragescribes a method of
reducing the system by eliminating the multipliers.

4.1 The Constrained Tangent Bundle

Although the configuration manifold of the AV was introducedchapter 3 the full
configuration space has not yet been precisely defined. T$iggroand orientation of
the AV is describes by points on the configuration manit®d but this is not enough
to describe the instantaneous state of the system. Thersgide has a velocity, and we
need to choose a space in which both the position and veloaityeside. In mechanical
systems the natural choice is the tangent bundle, which eefinspace of velocities
associated to every point on the configuration manifold. dnhrolonomic systems the
space of velocities is further limited by the constraintsg #his is the background for
defining the constrained tangent bundle for a general nomloohic system.

Consider am-dimensional configuration manifol#f and a physical system with €

M describing its instantaneous configuration on the manifioéd the tangent space at

g be denoted;, M C R". Any vector¢ € T, M belonging to the tangent space is called
a tangent vector td1 atq, and the velocityj of the pointg is an example of an element
of the tangent space. The union of all tangent sp@tfé\/{ T, M is called the tangent
bundle of M and is denoted’ M. An element on the tangent bundle consists of a point
¢ and a vecto€ belonging to the corresponding tangent spacg at

(¢, &) € TM (2n-dimensional)

Now, consider a system imposed with a set of nonholonomistcaimts
AT (g)q =0,

whereA(q) is ann x k differentiable matrix of constant rarikdefiningk independent
nonholonomic constraints. The constraints limit the sedllmiwed velocities oY, M,
and the constrained tangent bundle is defined as a subset foflttangent bundle

Qe ={(q.4) € TM | A"(q)g = 0}.

4.2 Kinematic Inputs

As stated in the previous chapter the direct steering of theels lays the grounds for
defining the notion of kinematic inputs. The basic propefiye kinematic inputs is that
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they cannot directly change the amount of energy in the sydtee energy is invariant
with respect to the coordinates related to the kinematiatspThe formal definition of
the kinematic inputs of a mechanical system is as follows.

Definition 4.1. Consider a set of coordinates = [¢” »7]7 € M x R defining the
instantaneous configuration of a mechanical system. Asshbatethe/-dimensional
subset- of the coordinates can be controlled directly through thstfiime derivative by
an inputv, such that

r=v veT,RCR,

and that
oT
— = f i) € .,
5 =0 or  (g,9) €

whereT : Q. x R — RandU : M — R describe the kinetic and potential energy of
the system. Themis a kinematic input.

As a result of this definition it is possible to define the Lagyian equation of motion of
a nonholonomic system augmented with kinematic inputs

d (0L oL
=, (4.1)
A(g,m) =0,

with a Lagrangian functio.(q, ¢,7) = T(q,¢,7) — U(q), A € R¥, andu € R™. The
AV model (3.11) is an example of a system on this form. Notésthgallowed to change
the structure of both the constraint matrixand the input matrix3. The dependency
onrin A(gq,r) has an interesting effect on the shap&lf Changing- will also change
the space of allowed velocities, and the constrained tarigerle becomes dependent
onr

Q. = {(an) €ETM | AT(q,’r)q' = 0}

reR

The dependency on means that it is possible to change the shape of the coretrain
tangent bundle through= v, and this will prove to be a useful feature when controlling
such systems. Consider the union of all possible constiaimegent bundle§), =
U,er Q. ClearlyQ. C Q. for anyr € R, which implies that the reachable space of
the system can be increased by changingltimately, the system can be viewed as a
(nearly) unconstrained systentl, = M x R"
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4.3 The Hamiltonian Model

The Lagrangian formulation of the dynamics in (4.1) desgsithe motion of the sys-
tem in terms ofn second order differential equationsgnand the state of the system
is described by coordinategsand velocities; (for the moment is assumed to be con-
stant). The Hamiltonian formulation, on the other handksde describe the motion
of the system by2n first order differential equations i2n variables. One can argue
that the Lagrangian formulation already describedirst order equations if andg are
chosen as thén variables, but there exists a more suitable choice thatmalke the
system equations almost symmetric. This new set of vasatdenprises the original
generalized coordinatgsand a new:-dimensional generalized momentum

= —. 4.2
P= 54 (4.2)
The generalized momentum is said to lie in the cotangenespit1, which is denoted
p € T; M. The cotangent space @l is defined as the vector space of linear functions
f: T,M — R mapping elements on the tangent space to the real axis. kathe
fashion, as with the tangent bundle, the cotangent bundiéealefined as the union of
all cotangent spaces ont

T*"M= | T;M.

qeM

The dimension of cotangent bundle is the same as the dinreaktbe tangent bundle.

The procedure of switching frorty, ¢, ) in the Lagrangian formulation t@y, p, ) in
the Hamiltonian formulation is provided by the Legendrasfarmation that transforms
functions on a vector space (the tangent bundle) to fungtorthe dual vector space (the
cotangent bundle). A detailed discussion of the Legenamestormation and its use in
physical systems can be found in many books on mechanidelnsgsand mathematical
analysis, see for example [4]. In this setting the Legendresformation is used to
transform the Lagrangian function, which is a function oa thngent bundle, to a new
function on the cotangent bundle. The new function is the iHaman function

H(Qapv T) :qui L(q7Qar>a (43)
in which ¢ is expressed in terms ¢f by the relation (4.2). There is a simple physi-
cal relation between the Lagrangian and Hamiltonian fomgtiif the kinetic energy is
described by a quadratic functiongn
. 1. .
L(q7 q, T’) = iqTM(qv T)q - U(q)7

where M(q,r) is a positive definite inertia matrix. The generalized vejots then
related to the generalized momentum by

p=a—q=M(q7T)q & g=M"(q,m)p,
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and the Hamiltonian function becomes

H(q7p5r> :qu - L(Qaévr)

1 _
= 5p" Mg, m)p + U(9)- (4.4)
The first term is the kinetic energy described in the germzdlimomentum and the
Hamiltonian function is hence the sum of kinetic and potdrenergy, whereas the La-
grangian is the difference.

Having defined the Hamiltonian function the next step is taveéethe equations of mo-
tion of the system (4.1) on the cotangent bundle. The reguétguations for an ordinary
Lagrangian system without kinematic inputs is a basic tdsuin classical mechanics
and are referred to as the Hamiltonian equations of motianth& following theorem

shows, the same equivalent exists for systems with kinermgiuts.

Theorem 4.1. The systenf4.1) is equivalent to the system of first order Hamiltonian

equations
oH
gl [0 I||aq 0 0
[p]—[f o} o1 *{B@,m}“*[/x(q,r)} &
=, (4.5)
0H
= AT -
0 (q,7) o

whereH (¢, p,7) = pT¢ — L(q, ¢,r) is the Legendre transformation of the Lagrangian
function viewed as a function ¢f p = %_Z is the generalized momentum.

Proof. By definition, the Hamiltonian function is a function @f p, andr and the total
derivative of the function is
oTH oTH oTH

dH = d d
dq 7+t op P+

dr, (4.6)

but from the definition of the Hamiltonian function (4.3) wancalso write

OTL OTL OTL

dH = ¢"d Tdg — dqg — dg — d
g ap+p aq 9 q 24 4= 5
Tl Tl
=q¢Tdp — a—dq 9 dr. (4.7)
0 or
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and inserting this into (4.7) yields

T . T 8TL
dH = ¢ dp —[p — Alg,7)A = Blg,r)u]” dg — = =dr.
T
The Hamiltonian system (4.5) is obtained by matching territis (4.6). O

Remark.From the definition of the kinematic input it can also be cadeld from the
proof thatoH/0r = —OL/0r = 0. A

Remark.The drift vector field exhibits an almost symmetric struetwhich is evident
in any Hamiltonian system. It is perhaps more clear in thesital system, where
G = OH/0p andp = —9H/dq. The Hamiltonian system is said to haveymplectic

structure [4]. AN

Analogous to the definition of the constrained tangent beinel can also define the
constrained cotangent bundle for the Hamiltonian system

* . OH
Q. ={(¢,p) eT" M| AT(q,r)a— =0}
reR p

The Hamiltonian system (4.5) describes the motion of a aystih kinematic inputs
on the constrained cotangent bung@ie

4.4 Eliminating the Lagrange multipliers

The Hamiltonian equations still contain the undeterminadriange multipliers, and if
the model is to be used for control, the multipliers need telbeinated. This section
describes a method of doing this for a system on the form.(Z6¢ method is largely
based on the method described by van der Schaft and Maschiké(f it is extended
to cover systems with kinematic inputs as well. The basia ide¢o define a coordinate
transformatiorp — p, p = [p7 p2]7, wherep; is invariant with respect ta, and the
Hamiltonian function can be rewritten in terms@f-, andp; alone.\ then only affects
the dynamics o, which can be safely disregarded.

Remark. For convenience we use the following notation. Considern-atimensional
column vectorX (z), where each entry is a function of thedimensional vectot. The
partial derivative ofX with respect tac is defined as the matrix

0X1 0X4

Oz o 0T,
0X !
Oz X, . 0Xa
0z 0L
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If the constraint matrix4(q, r) is differentiable and rankl) = k there exists am x
(n — k) differentiable matrixS(q, r) of rankn — k& whose columns completely span the
kernel of AT (q, )

AT(q,r)S(q,r) =0 & kefA”(q,r)] =img[S(q,7)]. (4.8)

Define a diffeomorphic coordinate chan@ep) — (¢, p1, p2)
f)l ST(q7 T)
= . 4.9
[pJ [AT(q, P (4-9)

van der Schaft and Maschke [54] showed tg%t = 0 on{2}, but actually the Hamilto-
nian is completely independent pf as the folrowing theorem shows.

Theorem 4.2. Consider a Hamiltonian function on the for(d.4) and a coordinate
transformation(q, p) — (g, p1,p2) on the form(4.9), whereA(q,r) and S(q, r) satisfy
(4.8). In the new coordinates the Hamiltonian function is desediby

(g r.5) = 35 (5" @M@ NS@n) " h+ Ul (@10)

Proof. From the constraint we know thatc ker{A” (¢, r)]. Hence, from (4.8) it can be
concluded tha € img[S(q,r)], and there exists a set of— k independent signats
such that

q= S(Qa 7“)77-
The kinetic energy can then be written @s= 1n”'S"M Sn, and the Hamiltonian
function becomes

1
Hy(q,m,m) = 50" 8" (¢,7)M(q,7)S(¢,7)n + U (q)-
Using the definition of the generalized momentum we also kiinaw
p1=S"(q,r)p = S"(q,r)M(q,7)g = S (q,7)M(g,7)S(q, 7).

M(q,r) is positive definite, rankS(¢,7)) = n — k everywhere, and the square ma-
trix ST (q,7)M(q,7)S(g,r) is hence full rank and invertible. The Hamiltonian on the
constrained cotangent bundk can thus be described by (4.10). O

Remark. The Lagrange multipliers can be interpreted as the forcaisgharantee that
the nonholonomic constraints are always satisfied. On théhAy make sure that there
are no sideways displacement of the wheels and that themoadéesplacement of the
contact point between each wheel and the ground. In thisgbey are not doing any
work on the system. As the results show the constraint faacem the direction ofs,
but since the constraint forces cannot contribute to tred tatergy, it makes sense that
the Hamiltonian function is invariant with respectig A
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The next step is to derive the system equations in terms afdheHamiltonian function
and the new coordinates. The dynamics of the generalizedic@bes are

~ T 3 ~ T - r7
. _OH _ (‘91’1) OH (apQ) OH _ on. (4.11)

= =\ = = - — =S5 W T)——
1 dp op ) Op1 dp ) Op2 (4 T)apl

To find the expressions fgr we first derivep in terms of the new coordinates

p= _on + AN+ Bu
dq
oH aﬁl)T OH
=——|-—) —+ AN+ Bu
dq <0q op1
OH  [or T o
- _ = _ p' Sy .. Op” Sn—k _
5 |25 20 S | 5, + AN+ Bu

wheresS; denotes theé'th column of S(q, 7)

The time derivative of théth element of the new generalized momentgims

diery_ 705 . 105

¢ . T
Pri=— (Sfp)=p aqqﬂ) 5 VTSP
a8, 0H a8, OH r T OH
N et <l Vihded T _ 7 apt's, O Snk| 22 4 AN+ B
24 S@ﬁ1 +p 5 " +5; < 9 [ 7 B 95, + AN+ u)
d5; OH a8, OH
T Y1 T IS T 9Sn—k T Y94 T T
= ey S 25 g ... Lon-kg | ) — —er—— ' Bu.
(p aqS [p 6qS P =3, S}) ap1+p arv S; 34 + S; Bu
(4.12)

The two dynamic equations (4.11) and (4.12) do not depeneibthar\ norp,. The La-
grange multipliers have thus been eliminated, and the matiche constrained system
is described by (4.11) and (4.12). This leads to the follgtamiltonian system

. oH
g N 0 0
{51] = J(g,p1.7) [i}‘; + {ST(q,T)B(q,r)} u+ {Bv(q,ﬁl,r)} v,
p " (4.13)
(g, r,1) = 57 (8™ ()M (0,18 (0,1) ™+ Ula),

with interconnection matrix

o 0 S(q,r)
T@Pur) =1 _g7(q,r)  (=p71S1,S,)(@)), .|

]
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and kinematic input vector field

B'u(q,ﬁh 7’) = 5
T OSn_k
or

where[S;, S;](¢) denotes the Lie bracket &f and.sS; in g

05, 0S;
[Si, S1(q) = a—qj(q,T’)Si - a—q(q,r)sj-
Note thatJ(q,r) = —J(g,r). The symplectic structure of the original system has

hence been maintained in the reduced system.

4.5 Inertia Matrix Scaling

Although the Lagrange multipliers have been eliminated,rétduction scheme has in-
troduced the additional input term,v. The new input term is a result of the form of the
new inertia matrix of the new Hamiltonian function of the vedd system. The Hamil-
tonian functionH is still invariant with respect to but the inertia matrixs” M/ S might
not be. Hence, if the inertia matrix is changed by the kinériaput v the momentum
p1 must be changed accordingly f&f to be rendered invariant. This explains the input
term B, v, which acts directly of;.

The only difference between the unreduced system with katienmputs (4.5) and the
classical Hamiltonian system is the dependencyiorthe constraint and input matrices.
The similarity with the classical system is no longer asrmleith the introduction of the
extra input termB,v, but fortunately, the choice of(q, ) is not unique, and as the
following theorem shows, it is possible to eliminate tharteB,v by an appropriate
scaling of the inertia matri$” M S. By eliminating the extra input term, we will end
up with a system very similar to a classical Hamiltonian sgst

Theorem 4.3. There exists am x (n — k) matrix S;(q, ) of rankn — k that satisfies
AT (q,7)S;(gq,r) = 0 and the relation

SIT (Q7 T)M(% T)SI (qa T) =1, (4.14)

whereM (g, r) is a strictly positive definite symmetric inertia matrix bétsystenf4.5).
Using S = Sy in (4.13)eliminates the input vector field

B,(q,rm,p) =0. (4.15)
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Proof. Assume that there exists a matiS(q, r) that satisfies (4.14) and lét = S;.
Then the Hamiltonian function i& = 15751 + U(g), and from the definition of the

kinematic input we know thalH /dr = dp, /dr = 0 and hence
Op1 0

—_— = — T = =
5~ 5rC (¢,m)p = By(q,7,p) = 0.

To prove thatS; exists consider an x (n — k) matrix S(q, r) of rankn — k that satisfies
AT (q,7)5(g,7) = 0.

A(q,r) andS(g, r) constitutes a proper transform pair, but so déég ) andS(¢, )Y (g, ),

whereY (¢, r) is any(n — k) x (n — k) non-singular matrix. If we také; = ST then
(4.14) is satisfied if there exists &f(q, ) such that

YTSTMSY =1. (4.16)

The symmetric matrixs” M/ S is a congruence transformation df, and the positive
definiteness of\/ is hence maintained i87 M S. For a positive definite symmetric
matrix there always exists a diagonalization on the f&tfm/S = QTAQ, whereA

is a diagonal matrix composed of the strictly positive eiggues, and?) is a matrix
composed of orthonormal eigenvectors. Now chotise- (QTAzQ)~!, whereAz
denotes the diagonal matrix of square roots of the indididigeenvalues{ = A%A%).
Then (4.16) becomes

(QTAQ)TTQTAQQTAIQ) T = QTATIQQTAQQTATIQ = 1.

|
With the choice ofS = Sy, the system (4.13) is reduced to
d 7} 0
_ ~ Oq
[ﬁj =Japur) [g_H] - [ST(q,T)B(qw)] h
" (4.17)

r=wv,

~ _ 1~ B
H(q,pq) = §p1Tp1 +U(q).

4.6 Discussion

By eliminating the Lagrange multipliers, and after an ajppiate scaling of the inertia
matrix, the resulting system equations have been reduaesiytstem ofn — k first order
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Hamiltonian equations with a very simple Hamiltonian fuant plus thel original first
order linear equations for the kinematic inputs.

The only difference between the reduced system (4.17) atabsical Hamiltonian sys-
tem without kinematic inputs is the dependencyrain the interconnection and input
matrices. The passivity properties of the classical Hamiéin system therefore also
apply to this system, since fixingin (4.17) converts it to a classical system. Since the
Hamiltonian function in invariant with respect tothe passivity is also retained when
r varies. The introduction of the kinematic input means thatdirection of movement
can be changed without affecting the total energy of theesystnd without sacrificing
the useful passivity property.






CHAPTERD

REDUCTION AND VALIDATION OF THE AV M ODEL

The Lagrange model of the AV, which was derived in chaptes & $pecial case of the
general Lagrange model of a system with kinematic inputse fbe of the kinematic
inputs are played by the velocities of the steering motorshenAV, and an equiva-
lent Hamiltonian model of the AV can be obtained by applyihg teduction scheme
introduced in the previous chapter. This chapter introdube reduced Hamiltonian
equations for the AV, where the undetermined Lagrange pligdts have been elimi-
nated. With the Lagrange multipliers gone, and the AV equmtiwritten on a much
simpler form, the model is verified against measurementb@plysical system.

5.1 The Reduced Hamiltonian Equivalent

Before applying the reduction scheme to the AV Lagrange mademust first check
that the model has the correct structure. When compariid®n page 48 to (4.1) on

61
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page 51 it is evident that the AV Lagrange model is on the cofoem, with

Lw— L,

qa=X,

A— RTCT,

A= >\15

B+~ RTCQTL,
Tw

U= Ty,

re

v — (.

The second thing to check is whether or not the velocitiee®fteering motors satisfy
the conditions of proper kinematic inputs. According to digifin 4.1 on page 5% is

a proper kinematic input if both the kinetic energyand the potential energy are
invariant with respect t@' on the constrained tangent bunélle. The potential energy
U at a given pointinf2. is derived from the height above sea level (or any other eonst
reference point), and it is assumed to be completely indégerof3’. All that is left to
be checked is if the kinetic energy is also invariant withpees to3’. It is invariant if
the partial derivative of” with respect tq3’ is zero orf2,:

gﬁTi B aaﬁi GXTRT(Q)M(B/)R(9>X) =0, i=1,2 for  (x,X) €,

(5.1)

with the 3’ dependent inertia matrix/

M(F) = M+ 22203 (9)0o(8)

SinceM is constant, (5.1) reduces to checking whether

acT
06,

0C; RO =0, i=1,2 for  (x,%) €

i
(5.2)
is true. Consider the derivative of the first row@f denoted by, ; with respect tg3;

XTRT(0) Co(f') + C3 ()

802_]1
b
The right side is exactly the same as the first row'of see (3.6) in page 44. The rela-

tionship betweeid'; and the derivative of’; can be extended even further by looking at
all possible derivatives of the rows 6%, but this will not be shown here. It can easily

= [— sinfB; cosf1 kKicos(fB — 71)} .
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be verified that the derivative of any row 6% will result in a vector that is a linear
combination of the rows af’;, i.e.,

4
Ty
-5 = 05 Ch ke, a € R.
B =
Consider a vector that lies in the kernel of’;. This means that’; ;v = 0 and hence

also thatv lies the kernel of the space spanned by the derivativé$, ofFrom the free

rolling constraint we know thaRy € kefC;] C ker{%} on §2.. The multiplication

terms involving Ry and % in (5.2) vanish, and the equation is therefore trgeis
hence a proper kinematic input. Note that the equality vatllme true for an arbitrary
andy outsidef)..

Finding the Hamiltonian equivalent of the AV Lagrange moiehow done in three
steps; step one is to derive the unreduced Hamiltonian alguit/of the Lagrange model,
where the Lagrange multipliers are left untouched; the se&&bep is to find a matrix
S that can be used to reduce the system by elimination of theabgg multipliers;
the third and final step is to find a suitable positive definit@nm T (it turns out to
be a scalar function) that renders the new momengyrimvariant with respect to the
kinematic inputC.

Step 1. Finding the unreduced Hamiltonian equivalent

The Hamiltonian equivalent of the Lagrangian model (3.%$Xhtained by direct appli-
cation of theorem 4.1 on page 53. The Hamiltonian equival&tite AV model is

OH
X 0 I |ax 0 0
M - {1 o] [;Z_H " [RT(@)CQT@')%] o [RT(@)OW)] A
3=, (5.3)
OH
a_pv

0= Ci(B)R()
with p = RT(0)M (B8)R(6)x and Hamiltonian function

H(xp,5) = 5" IR ON(F) RO p+ UK.

The system defines the motion of the AV on the constrainedhgeta bundle

OH

Qo ={lx.p) eT"M| (ﬁ’)R(G)a—p =0}.
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Step 2. Eliminating the Lagrange multipliers

To apply the reduction method and eliminate the Lagrangéiptiers we need to find a
diffeomorphic change of coordinatgs = Y7'S”p andp, = C, Rp where

C1(B)R(O)S(x. 8) = 0. (5.4)

The two rows ofC; R defines two independent constraints on the three dimerisiona
manifold M. The kernel ofC; R is rlence one dimensional, and we are seeking a three
dimensional nonzero column vectsywhich spans this kernel. One choice is

S(x,B") = R"(0)S(8),
cos B2k cos(B1 — v1) — cos B1k2 cos(B2 — 72)

$(B') = | sin Bak1 cos(B1 — v1) — sin Bika cos(fBa — v2)
sin(f1 — B2)

S is nonzero (full rank) except whe#) = 7/2 + nr, i = 1,2, n € Z. See the remark
on page 43 on how to overcome this singularity. With tfliand Y = 1 it is possible

to write the system on the reduced form as in (4.13), but tisesgll the problem of an
undesired dependency between the new momentum and theadtinénput(.

Step 3. Making the new momentum invariant with respect to thekinematic input

To further reduce the system by the application of theore154= ST = RTYY has
to satisfy the equation

ST (. BVRT(O)M(B)R(0)S(x, ) = 1, (5.5)

which will makep, invariant with respect to the kinematic inputs.

To satisfy (5.5) a scalar nonzero functiinmust be chosen such that
=T M(B)Z(8) 2 (x. 8) = 1.
The choice ofY is obviously
_ 1
VET(B)M(8)S(6)

Having found anS(y, /') that satisfies (5.5) the coordinate transformagion p1, p2
is

T(5)

=T3S (B)R(O)p 1-dimensional
p2 = C1(B)R(O)p 2-dimensional
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and the reduced Hamiltonian equivalent of the AV Lagrangdehis

=00

P1

OH
ox
oH
Op1

- [B;()ﬁ’)] o (5.6)

3=,
with
. 0 RT(0)S(8)0(8)
1008 = |yt yme 0T,
By(8) = X(8)ST (8)CF (8)—,

Tw
~ 1

H(py) = 515%-

The original Lagrange model equations (3.11) have now beduaaed to a set of first
order equations. By using the nonholonomic constraintpthblem has been reduced
from a problem of solving three nonlinear second order difféial equations, four non-
linear first order equations, and two linear first order eiguat to a problem of only
four nonlinear first order equations and two linear first oelguations.

The system (5.6) is still highly nonlinear, however, andsieasy to lose track of the
physical interpretation of the different elements in thetegn. To gain some insight
into the physical nature of the system we look at two speeiaés where the system is
expected to demonstrate a simpler, maybe even linear, lmehav

Special case 1. Driving along a straight line

When driving along a straight line all the steering motoesfated at the same anglty,
and the ICR lies at infinity in the direction perpendiculathie direction of motion, see
figure 5.1.

The wheels are mounted at the corners ¢f>a 1m square, and the following relations
hold: k1 cosy1 — ko cosvye = 1 andky siny; — ko sinye = 0. In this configuration the
components of the model hence reduce to much simpler forms

cos? By 1
Y(Bo) = |sinBycosfFo | , T(Bo) = —,
I 0 cosﬂo\/mf+4mw+4j‘r”—f

COS ﬂo sin 6() R1 Sin(ﬂo — ’}/1)

Co(fo) = cosfBy sinfy kesin(By — y2)
20 cosfBy sinfy kzsin(By — v3)
[cos Bo  sinfy  kasin( )
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5o
7/
7

Figure 5.1: Driving along a straight linew; is the velocity in the direction of motion

The model (5.6) is then reduced to

cos(0 + (o) 1
X = |sin(0 + Bo) — 1,
0 \/mf 4+ 4dmy, + 4%
v (5.7)
< 1 - T
P = , .
\/mf + 4, + 4222 G2 Tw

The first equation describes how the AV moves in the diredfien3,. As expected,
there is no rotation of the AV, i.ef, = 0. The equation can be rewritten in terms of the
translational velocity, along the direction of motion

cos(0 + fo)
x = |sin(6 + Bo) | vs,
0

with p; andv, related by
1

Vg = -

D1 (5.8)

With this change of coordinates the second equation of &Zdmes

4 .
msl}szzﬁ, mS:mf+4mw+4]w—’¢,

r r
i—_1 W w

and we end up with a dynamic model that describes the actielead a massn, along
a line with a constant slogk+ 5y. m is the total mass of the AV plus the four moments



5.1. THE REDUCED HAMILTONIAN EQUIVALENT 67

of inertia of the rolling wheels translated to ‘masses’ tigh the wheel radius,,. Thus,
m, describes all the parts of the AV that are set in motion wherirdy along a straight
line.

Special case 2. Rotation about the geometric center

In this situation all the wheels are oriented so that the IER¢ated at the geometric
center of the AV. In this casg, = — > = 3w/4 and(, = — 33 = 7/4, see figure 5.2.

Figure 5.2: Rotating around the geometric centet. is the angular velocity about the
geometric center

As in the previous case the components of the model redugeadb simpler forms

1
=101, T = ,
_ ) 4
1 \/jf+(mw+3;#)zlf<a$
_—\/§ \/§ K1
C _ 7\/5 7\/5 K2
2 — \/5 /92 K3 ’
_\/5 \/§ R4
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and (5.6) is reduced to

0
. -1 )
x =10 P,

1 : ( J ¢) i 2

25+ (Mmy + ;U Rj
v =1 (5.9)

= —1 - Iiiqui.

\/jf + (Mg + j;”—j’)zzl:l K im1 W

As expected, there is no translational motion, iig.,= 5 = 0. The first equation
describes the rotation about the geometric center, andthéan rate is related to the
angular velocityw,. by

0
x=|0]| w,.
1
In this casep, is related tav, through the relation
—1 ~
Wr = - 1 p1.
Vi + (my + 22) 51 2

Using this coordinate transformation the second equati@.B) is reduced to

4 . 4

- RiTg,; - . Jw,¢ 2

JrWy Z:ZI o 5 Jr jf+(m'w+ T )izzlfiz-
The result is similar to that of the previous case, but thisetthe equation describes
an angular acceleration of a body with moment of inejtiaj,. is the total moment of
inertia of the AV about its geometric center plus the momenisertia of the rotating
wheels, first translated througf), to ‘masses’ at the wheel mounting points and then
translated through; to contributions to the total moment of inertia.

In each of the two special cases it is possible to relate thergéized momentur; to
either the translational or rotational velocity through gguare root of the mass or mo-
ment of inertia. This is only valid for pure translationabgpoure rotational movement,
and in general, when the AV is exhibiting both translaticenad rotational motiony; is

a combination of both.

5.2 Model Validation

The model (5.6) describes the dynamics of the AV with the mggion that all param-
eters in the model are constant and known. Most of the pammean be measured
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directly using a scale or a tape measure, but parameteis,asumoments of inertia
and friction coefficients, are somewhat harder to estinBased on empirical measure-
ments the values of the parameters used in the model haveebterated and they are
summarized in table 5.1.

Parameter Value Description
my kel 187 Mass of frame (*)
Jr [kg m?] 95 Moment of inertia of frame (*)
my  [kg] 10 Mass of each wheel
Jwe [kgm?] 0.5 Moment of inertia of a single wheel about the

¢ rotation axis

Ki [m] V0.5 Polar position of thé'th wheel relative to the
i [rad] T+ %(i—1) | geometric center of the AV,= 1,2,3,4
Tw [m] 0.23 Radius of wheels

Table 5.1: Directly measurable AV model parameters. (*) taken from [7]

To make the model complete, an estimate of the friction atefitt’ (see page 37) is
also needed. Recall that the physical input to the propulsiotors are not torques, but
voltagesV,, related tor, by

Ty, = Dl‘/m,Z - DQ(b/)éia 1= 1) 273547 (510)

with D, = K;/R, andD» (V') = K. K:/R,+V'. Dy is the voltage to torque relationship
of the motor at zero velocity, and an estimate/of was found by Bisgaard et al. [7].
The parameteD, captures both the electromotive force generated in the maoiany
kinetic friction affecting the motor. The internal kinefigction of the unloaded motor
was estimated by Bisgaard et al. [7], but it is assumed tleptbpulsion motors will
be subject to an increased friction from external sourcesndriving in the field. The
parametetD; is assumed to be equal for all four wheels.

Consider a situation where the AV is driving along a straigie as in special case 1.
Combining (5.8) with (5.10) and applying the same volt&geto all four wheels yields
the following linear first order system

4 Do(b'
Mgty = — (Dlvm _Dal )vs) . (5.11)

Tw Tw
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A similar approach can be taken for special case 2 where this Abtating about the
geometric center. In this case the first order system is

4
L. 1 K/»L'DQ(b/)
réor = — ;m (Dle e (5.12)
Figure 5.3 shows two measured step responses of the AV. Tedpoltage to the

propulsion motors are shown in the two top plots, and thetingwelocities are shown
in the bottom plots. The input to each experiment consistsvofidentical steps, and

Figure 5.3: Step response of special case 1 and 2

if the dynamics of the AV are linear, we would expect two idealtsteps on the output
as well. This is not the case though, as the first step in bagibréxents are lower than
the second step. This indicates that there are additiomabdeled non-linearities in the
system. This is most likely due to static friction, and thlsgherefore introduced in the
model by the following modified input torque

7o, = D1V, — Do(b) s — 75, (di, D1Vi,),  i=1,2,3,4,
where the static friction, is determined by
D1V, it S D1V, <4ro and ¢; =0,
Ts, =  SigN(D1 Vi )70 i oy D1Vim, > 4750 and ¢; =0,
sign(¢; ) Tso else
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When the AV is not in motion the net torque is zero until the lsggptorque from the
motors grows larger than the total static frictibryy. When the AV is in motion the static
friction in each wheel is constant in the opposite directibrotation. For simplicity the
static friction during motion, is assumed to be constant, positive, and identical for all
four wheels.

We are now ready to estimate the coefficiéht(b’) and the static frictiorrsy from
the step responses of figure 5.3. When the AV drives at constamzero velocity the
models (5.11) and (5.12) including static friction redutzes

Dy (V)

w

0=D1V,, — vs — SIgN(vs ) Ts0,

and

4 ) ,
0 Z Kj (D1Vm — er — Sigr(w7')7-30> .

r
i=1 w

These equations are linear equations in the two variabigs') and s, whenV,,,, vs,
andw, are known. Four steady state velocities can be read fromefigLy, and these
readings can then be used to do a simple least square appt@drnf D, (b') andrs.
The resulting values are shown in table 5.2. Note fafb’) will most likely change

Parameter | Value
D; [N/ V] 8.2
Dy(') [Nm/rad/s] | 6.5
Ts0 [Nm] 11.6

Table 5.2: Estimated friction parameters); is derived from the data in table 2.10 on
page 37).

from one ground/soil condition to the next. In these experita the AV was driving
on gravel ground, and the same is true for any subsequentiegres unless otherwise
specified.

With the estimates in tables 5.1 and 5.2 it is possible to @mthe step responses of
the physical system with those of the model. They are depictdigure 5.4, and the
model seems to capture the dynamics of the physical systeheitwo special cases
well. The rise times of the model and the AV also fits nicelyjekhindicates that the
estimated total mass and moment of inertia are correct.

To see how the model behaves in a more general setting thetaftphe model is
compared with that of the AV during@s test run where the AV is driven manually by
joystick. Figure 5.5 shows a block diagram of how the AV andiglalata are generated.
The inputsV,, andﬁ;ef are generated by the joystick. The salmgis passed directly
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Figure 5.4: AV and model step responses of special case 1 and 2

to all four propulsion motors, but since the model expects foput torques, they have
to be calculated based on the estimated paramélersD., and 7. Note that the
kinematic input, does not enter the system explicitly. The joystick genertite desired
steering angleﬁ;ef, and the software in the LH-Agros uses these referencesein th
angular position control loops. Becauédias been eliminated in the model equation
(5.6) it suffices to pass the measured steering ar@l&sthe model.

Figure 5.6 shows the inpit,, and the corresponding estimated torque infuto the
model. The input is by no means simple and should in that sexsige most of the
dynamics in the AV.

Figure 5.7 shows the measured steering angles fed into tldelmbooking closely at
the figure, it is possible to identify the varying ways the AVvhieing steered. Around
t = 11s, for example, the steering angles @ake= —/» and the AV is rotating around
an ICR that lies on the line passing through the side of the A¥tae geometric center.
A different mode of steering can be identified around 70s, wheref; = 3 = —7/2
and the AV is driving sideways with all four wheels fixed at #zne angle.

Figure 5.8 shows the resulting translational velocity £ /i? + #2) of the AV (mea-
sured by the GPS receiver) and the model. The model captueedyhamics of the
physical system well, even though there are some discréggsapetween the two graphs;
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, AV
ref_>
B/
1 X> X
1 76 | Model
v, — [} Dy OO
1 ¢

Doy

Ts((b; Dlvm)

Figure 5.5: Block diagram of the verification setup

0 10 20 30 401f [<] 50 60 70 80 90

Figure 5.6: Input voltage to the propulsion motors and the correspogdistimated
torque input to the model
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Figure 5.7: Measured steering angles

in the interval from 20 to 50 seconds the velocity seem to bi afbat the peaks. A
clearer picture is shown in figure 5.9 where a closeup of tiatrval is shown. Even
though the model fails to hit the peaks of the measured wglegiactly it still captures
the dominating dynamics of the system, and the discrepaatide peaks are not large
enough to invalidate the model.

The discrepancies between AV and model are even smallertuh@ng to the measured
and simulated rotational velocities. Figure 5.10 showsditetional velocities of the AV
(measured by the gyro) and model during the full test, anddigul1l shows a closeup
of the interval from 20 to 50 seconds.

Calculating the position and orientation of the AV based fmmodel is essentially a
guestion of integrating the dashed graphs in figures 5.8 ah@ but due to the dis-
crepancies between model and AV, the resulting modelediposind orientation are
expected to diverge over time from those measured by the @ES@mpass. Fig-
ures 5.12 and 5.13 shows the measured and simulated pagittborientation of the
AV. As expected, the position and orientation deviate oweet(even though it is dif-
ficult to see for the orientation), but the model still captuthe general behavior of the
AV, and the deviation can easily be eliminated by implenrené suitable observer for
the system. It is therefore concluded that the derived moidéle AV describes the real
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Figure 5.9: Measured and simulated translational velocity (closeup)
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Figure 5.10: Measured and simulated angular velocity of the AV
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Figure 5.11: Measured and simulated angular velocity of the AV (closeup)
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dynamics of the physical system to an extent that makes tliehsaitable for deriving
and simulating control algorithms for the AV.

20 T T T T T T

AV
15} ---Model -

10

Northing [m]

-5

-10F

1 1 1 1 1
Egsting 1] 1015

|
15515 10

Figure 5.12: Comparison between measured and simulated position
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Figure 5.13: Comparison between measured and simulated orientation



CHAPTERO

FEEDBACK CONTROL OF SYSTEMS WITH KINEMATIC
INPUTS

A general model of a nonholonomic Hamiltonian system witheknatic inputs was
introduced in chapter 4, and we now turn to feedback confritiat system. This chap-
ter focuses on asymptotic stabilization of the system bynsedienergy shapingnd
damping injection The two concepts are, in their simplest form, smooth timeariants
feedbacks, but Brockett and Sussmann [14] proved that $ntiooe invariant feedbacks
alone cannot asymptotically stabilize a nonholonomicesyst The system will, how-
ever, converge to an open subset of the configuration manjfdl]. The kinematic
inputs constitutes an additional degree of control, andelieputs can be used to force
the set of convergence to only containing a set of desirdutes¢guilibria and asymptotic
stability can be achieved.

The control methods described in this chapter are based ssivjig properties of dy-

namic systems, and a short introduction to the passivityagmh is valid before moving
to the control aspects.

79
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6.1 Passivity of Dynamic Systems

Consider the general nonlinear dynamic system

o- &= f(z,u) 7
y = h(z,u)

withz € X, u € Y ¢ R™andy € Y c R*. X is ann-dimensional manifold.

Define thesupply rates : &/ x ) — R and a continuous differentiabs#orage function

V : X — R*. Rt denotes all non-negative real vallies

Definition 6.1. The dynamic systeifi is said to bepassivewith respect to the supply
rate s if there exists a storage functidn, such that for any initial condition:(0) € X
and for allt; > 0 the passivity inequality is satisfied

oty

V(a(t)) — V((0) < / s(u(t), y(6))dt. (6.1)

0

This is a quite general definition of passivity, and for metbal systems it merely states
that the system is passive if the increase in stored eneogyifr= 0 to ¢t = ¢, is never
greater than the amount of energy supplied externally taykstem; the system cannot,
by itself, generate energy.

In electrical and mechanical systems a useful choice oag®function is usually the
total physical energy of the system, and the supply rateds tisually chosen to be
the instantaneous externally applied power to the systeme i@portant supply rate
is defined as follows. Consider an output space defined asuleofithe input space
Y =U*. Then we can define a supply rate

s(u,y) =y u.

This type of supply rate is encountered in many physicaksyst and it often has a clear
physical meaning. In electrical systemsaindy may be voltages and currents, and in
mechanical system andy may be generalized forces and velocities. Other choices of
inputs and outputs exist, but if the storage function is exergy the product between
input and output must equal power.

The passivity inequality (6.1) can also be written in terrhthe instantaneous change
of the storage function. Taking the time derivative on bades yields

V(x(t) < s(u(t), y(1)).

1The storage function only have to be bounded from below, fitloart loss of generality we assume that
it is strictly non-negative.
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This inequality states that the system is passive if the ohtehange of the storage
function at any given time instance is never larger than tipply rate. If the relation is

a strict equality the system is said to t@nservative This formulation of the passivity
condition can be directly applied to show that the Hamilmnsystem with kinematic
inputs (4.17) is a conservative system. Take the Hamiltofimction H as storage

function and look at the time derivative

T

: o foleg 0
7 | 94q q
i (5] (L]l
6}31 ~1
g
= 0 ~HSTBu.
op1
Defining the outpuy as
OH
=BTs— (=BTy),
y O ( q)
yields
H = y"u. (6.2)

Hence, with storage functioH the system is passive (and conservative) with respect to
the supply rate(u, y) = y*u with y defined as above. The choice of output may seem
random, but it usually has a clear physical interpretation.the AV, for example, the
inputs are the four propulsion motor torques and the outpuy, if defined as above,
turns out to be the angular velocitieof the propulsion motors. The supply rate is then
equal to the total power supplied by the propulsion motomnsceéSthe constraint forces
are not doing any work on the system, and since there are hanyeon-conservative
friction forces in the model, the supply rate is exactly dqaahe rate of change of total
energy of the AV.

6.2 Example of Passivity Based Control

The passivity of (4.17) does not automatically infer siébibf the system. The states
of a passive system will not grow exponential, but if the urtcalled system is conser-
vative, and has a nonzero initial momentum, the system wilen come to rest either.
Even if energy dissipation or non-conservative forces@reduced in the system there
is no guarantee that the system will come to rest at the dksgeilibrium. The equilib-
rium point, or set of equilibrium points, are given by the ima of the potential energy
functionU, and the equilibrium points may, or may not, coincide with thesired set
of equilibrium points. To solve the problems of having an esiced potential energy
function and the absence of energy dissipation, the cosoépbtential energy shaping
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Figure 6.1: A mass moving on a frictionless surface

anddamping injectiorare introduced. Before moving to the general situation, vet fi
consider the simple linear example in figure 6.1 of a massoving on a flat frictionless
horizontal surface.

The system can be written as a Hamiltonian system

il _[o 1][7], [o
pl — |-1 o] |em F|’
op
OH .
Y 8_p (=2),
1
H(p) = §m_1p27

wherez is the position of the mass along the horizongas the momentum of the mass,
andF’ is the applied input force.

Assume that we wish to asymptotically stabilize the systémhe originz = 0. De-
pending on the initial momentum, the mass will either move @nstant velocity along
the horizontal ifp(0) # 0, or it will stay at its initial position ifp(0) = 0. The lack of
potential energy in the Hamiltonian function means thatiaitial point on the horizon-
tal plane is an equilibrium point j5(0) = 0, but we are only interested in one:= 0.
To eliminate the rest we define a functibifz) that has a global minimum at= 0 and
the following control law

whereF is the new input. The feedback applies the negative gradfehe functionl/
to the mass, thereby always pulling the mass toward the ruimipsee figure 6.2.
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Figure 6.2: Energy shaping

The resulting closed loop Hamiltonian system with the nepuins

(=1%o )+ 2]

ol
Y ap’

_ 1

H(w,p) = 5m™'p* + U(x).

The system is of the exact same structure as before, but nttwashapedpotential
energy. Had there been amgal potential energy in the original system the shaped
potential energy would just have been the sum of the orige®llpotential energy and
the newartificial potential energy. Examining the new system we see that the on
equilibrium pointis(z, p) = (0, 0).

The system is still not asymptotically stable. Because @@y conservationf{ is
constant if ¥ = 0) the introduction of the artificial potential energy hasulesd in a
marginally stable system, which oscillates about the oriio make the system asymp-
totically stable the origin must not only be an equilibriuftioe system, but also an
asymptotically stable one. Take the positive definite Hamian functionH as a Lya-
punov function candidate. The function is positive defiitite. neighborhood of0, 0),
and the time derivative of it is

H=yF.
ChoosingF’ = —kqy, k > 0 rendersH < 0. The functionH is not identically

negative outside the origin, and we turn to LaSalles invexéaprinciple to determine
the asymptotic behavior of the system.
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kqt

Figure 6.3: Energy shaping + Damping injection
Theorem 6.1 (LaSalle’s Invariance Principle). Let Q) C D be a compact set that is
positively invariant with respect to
&= f(x),

wheref : D — R". LetV : D — R be a continuously differentiable function such that
V(z) <0in ). LetE be the set of all points if2 whereV (z) = 0. Let(@ be the largest
invariant set ink. Then every solution starting 1 approaches) ast — co.

Proof. See [35] O

We conclude that the system converges asymptotically ttatigest invariant set of the

system wherd! = 0, that is, wheni = 0. The set is identical to the single poit, 0)
and the origin is hence asymptotically stable.

This particular choice of is calleddamping injectionand in the simple example tte
feedback can be compared to the presence of a non-conselfvatiion force between
the mass and the ground, see figure 6.3.

The resulting closed loop system is

D-0 -k aE
H(zx,p) = %m_po + U(x).

The responses of the original system, the system with ersrgying, and the system
with both energy shaping and damping injection are showginé 6.4. The systemisin
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Original system

| | | 1 | | |
5 10 15 20 25 30 35 40

Original system + energy shaping
T T T T T T T

| | | 1 |
5 10 15 20 25 30 35 40

Original system + energy shaping + damping injection
T T T T T T T
5 — kg =0.5 —

———kg=4

Figure 6.4: Responses of the simple example

all three cases started with a nonzero momentum-at—5. As expected, the response
of the uncontrolled system in the top figure continues to grbeonstant velocity. In the
middle figure energy shaping is introduced, and the positimtonger grows linearly,
but oscillates around the origin. In the bottom figure dargpitjection is introduced
with two different damping coefficients, and the responsews/erge asymptotically to
zero at different rates; the higher the damping, the fabesystem settles.

If the potential energy function is defined as a quadratiction U (x) = ;kme, kp >

0, the total feedback i$" = —k,x — kq&. One could argue that this example is just
a complicated way of deriving a simple linear PD controllert the example is meant
as a brief introduction to the physical interpretation oémy shaping and damping
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injection. A PD controller is by construction linear, buetboncepts of energy shaping
and damping injection works equally well for a large clasaaflinear systems.

Remark.The damped system (6.3) is an example of a dissipative Hamial system.
A more general form is

OH

] BDq 0
[g]:[J—D] 5_1?1 +[B]u,
op
_ grof
= o

This system differs from the conservative Hamiltonian egsby the introduction of a
positive semi-definite damping matriX. The system still satisfies the passivity condi-
tion .
. H H
H=ylu— _(9 Da—
dp — Op

but it is no longer conservative. A

H < y"u,

6.3 Energy Shaping

To put the concept of energy shaping into a more general xowielook at the Hamil-
tonian system with kinematic inputs from chapter 4. Theeystquations are repeated
below for convenience

oH

[ﬁﬂ = J(q,p1,7) l;ﬁl

op1

Y= BT(er)S(CLT)

0
* [ST@,r)B(q,r)] B
oH (4.17)
o’

- 1 7.

with a skew symmetric interconnection matrix

T) = ~
© P =ST(g,r)  (=p{ " (q,7)M (a,7)[S:, 851(q)), ,
As already seen, the system is passive (and conservatitieyegpect to supply rate
s(u,y) = yTu and storage functiofl. That s,

H = ylu,
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and the set of equilibrium pointg, 5;) = 0 of this system with a fixed is {(¢,0) €
Qx| ST(q, r)%—g = 0}. The extreme points of the potential energy function areg-equ
librium points of the system, but so is any poinfor which the gradien%[q’ lies in the
kernel of ST. This is one of the direct consequences of having a nonhalimsys-
tem, and the problem will receive more attention later. Fawnve focus on shaping
the potential energy function so that the extreme pointe®fshaped potential function
coincides with a desired set of equilibrium points.

Suppose the point, or the set of pointk, that we want the system to approach can be
represented as local minima of a known potential function- U, whereU (q) is the
originalreal potential energy, ant (¢) is theartificial or shapingpotential energy of the
designers choice. Itis assumed that the artificial potefuiietion U can be designed in
such a way thal/ + U are strictly non-negative and that the set of extreme painig
comprises a closed set of minimum points. The(3gts then defined as

@ ={a@0 e D o

The object of energy shaping is to find a feedback that will &dtb the original po-
tential energy of the system, thereby shaping the totalrpiaie Maschke and van der
Schaft [40] proposed an input that shapes the potentiaggrfer nonholonomic sys-
tems without kinematic inputs, but it applies equally weli 8ystems with kinematic
inputs. Consider an input,; satisfying

_ST(qar)%_g = ST(Qar)B(%T)ues- (6.4)

Inserting the inputt = .5 + @ into (4.17) yields the modified Hamiltonian system

i e 0
|:]~)1:| = J(Q,T,pl) g_g + |:ST(q,7’>B(q,T):| u, (65)

whereH is similar to the originaF/, but now with shaped potential energy

H(%Tvﬁl) = I:I(Qaraﬁl) +U(q)

The set of equilibrium points of the new system has thus beedifred to include all
the minimum points of the desired potential function+ U

U +U)

Q=1{(a.0) € 2| $"(@.1) ",

=0} (6.6)
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6.4 Damping Injection

The introduction of artificial potential energy has not che@d the conservative nature of
the original system. The time derivative of the new storagefion A still equals the

supply rate, that isf = y”@. If we consider the new Hamiltonian function as a Lya-
punov function candidate the time derivative should be eeed negative to guarantee

asymptotic stability. The obvious choice of feedback thisitnender H non-positive is
o= —Ky, K >0, (6.7)

with K € R™*™, H only becomes negativeemdefinite, but from theorem 6.1 we
know that the system states will asymptotically convergéht largest invariant set
whereH = 0. The structure of the system implies thayif= 0 thenj, = 0, and the
largest invariant set is exactty.

The closed loop system with energy shaping and dampingtiofecan be written on
the simple form

. oH
_ d
[:q} = [J(g, 7, p1) — D(gq,7)] [6,3] , (6.8)
P1 91

0p1
with an unchanged interconnection matrixand a positive semi-definite dissipation
matrix

0 0
D(er) = |:0 ST(q,r)B(q,T)KBT((LT)S(qu)] .

Remark. The controlled system is an example of a non-conservativeljssipative,
Hamiltonian system. There was no energy dissipation in tiggnal system, but it was
introduced by feeding back the outputs. If the original egshad inherent dissipative
elements — like friction in mechanical systems or resistlegnents in electrical circuits
—they can usually be modeled by a similar dissipation mak@eding back the outputs
would then result in either an increased dissipatiafi if- 0, or a decreased dissipation
if K < 0. Aslong as the total resulting dissipation matrix is pesitsemi-definite the
system remains stable. A

6.5 Asymptotic Stability

So far, energy shaping and damping injection have transdrime original system into
a system that converges asymptotically to the(gefThis set contains the desired set
of convergencé),, but Q is generally larger tha,, which is a direct result of the
nonholonomic nature of the system. To visualize this cardide simple example of a
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Figure 6.5: A knife’'s edge moving in a potential field

knife’s edge with mass moving in a potential field, see figure 6.5. The knife's edge
is only allowed to move in the direction it is pointing, andsticonstraint renders the
system nonholonomic. The gray arrows in the figure reprasentegative gradients of
a potential functior/ that has a global minimum &2,.

Suppose the knife’s edge has negligible moment of inertiktlaat the rotation rate can

be controlled directly through its first derivative. We cBedhis as a kinematic input

0 = ¢ and choose = [z z»]T as generalized coordinates. The generalized momentum
is thenp = mg¢ and the Hamiltonian function is

1
H(q,p) = %pr +U(q).

The system is subject to the nonholonomic constraint

. [cos 0

sin@}v = [sinﬂ fcosﬂq'zo.

The unreduced system can then be written as a Hamiltoniaersys

oH 0
q_Ola—q+ 0
p|  |—I 0] ek sin 0

dp

—cosf
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\j

T1

Figure 6.6: Set of equilibrium points of the knife’s edge example

To eliminate the Lagrange multipliers we chod®@) = [cosf sin 0]7 and define the
new momentum

D1 = cosOpy, + sinfp,,.
This is exactly the momentum along the direction of motiamd avith this change of
coordinates the system can be rewritten on the reduced form

Lﬂ B [52(9) Séﬂ lzaﬂ |

op1
N s
H(q,p1) = 591 + Ula)-
Using (6.6), the set of equilibrium points is described by

Q={(¢,0) € Q} | [cosf sind] %—Iqj = 0}. (6.9)
At a fixedd the set is defined by the union of all points on the manifoldwsigsociated
gradients%—g that are perpendicular to the direction of motion. The sdlustrated in
figure 6.6 for a fixed.

Without changing the knife’s edge would move toward the intersection betwieen
own line of motion and? and not toward), as desired. In this simple example it is
easy to see what could be done to mékgan asymptotically stable equilibrium. We
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could for example use the kinematic input to make sure trmgtbdient%—g always lies

in the image ofS”. This is the same as saying that the knife’s edge should alvay
pointing in the same direction as the gradient. In this eXartig® only solution to (6.9)
would then be the trivial on%% = 0, and asymptotic convergence to the desired point
Qo is achieved.

The same rationale can be used for the general situation.

Theorem 6.2. Consider the feedback controlled syst@B). Letn be the dimension
of the configuration manifold and letS(q,r) be full rank and defined according to
(4.8). Furthermore, let the shaped potential enefdfy) + U(q) be a smooth function
whose extreme points only comprises a closed)gaif minima. If

U imgS(g. )] =R",  geM (6.10)
TER

there always exists a reference for the coordinateslated to the kinematic inputs
that renders the system asymptotically stabl®at

Proof. There has been made no assumptions on the si?égg@, and in general it
can lie anywhere ilR". If (6.10) is true it is always possible to find at least opehat
satisfies

oU+U) .

% €img[S(q,rq)] = keI’[AT(q,Tq)], q e M. (6.11)
Using thisr, as reference for the kinematic controlathe solution of (6.6) is the trivial
one, i.e,Q = Qo and asymptotic stability is achieved. O

From an energy perspective the situation can be interpasedllows. Consider the
gradient as a generalized forég (¢q) = fa(Ua—ZU). This is the force that pulls the
system toward the sé}y, but in order to do any work on the system the force has to lie
in the space of allowed velocities. The nonholonomic camstiforces will partially or
completely cancel it if it does not. Since the space of alwelocities is im§S (¢, )],
(6.11) implies that a nonzero generalized fofge(q) is guaranteed to do work on the

system and pull it toward).

The requirement (6.10) implies that a suitab)e€or ¢ € M is only guaranteed to exist
if it possible to go in any direction oy, M by changing-. The requirement is satisfied
for the simple knife’s edge example and also for the AV as walsee in the next

chapter. In the general situation though, the requiremerytmot be satisfied. Consider
for example a car like vehicle, where the angle of the stgeaixie is controlled by a

kinematic input. No matter how the steering wheels are tenthe vehicle cannot
drive sideways.
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6.6 Discussion

The general problem, when trying to asymptotically stabilionholonomic systems, is
that the constrained tangent space seldom ‘points in tie digection’. That is, it does
not point toward?, but toward the bigger s€p that includes),. By introducing the
kinematic inputs we are able to redirect the constrainegdanspace so that it always
points toward.

In chapter 4 we defined the kinematic inputs as time derigatdf a part of the configu-
ration coordinates, but the inputs could have been intredas external inputs as well.
However the inputs are introduced they have to sal%fy: 0. The trick is to leave
the coordinates that we wish to control as regular gene@l@ordinates and use the
part related to the kinematic inputs to stabilize.e., stabilizingr is of no concern and
they are used only as a tool to stabilizelf U + U is a smooth function and is full
rank for anyg andr, and if each entry irf' is a smooth function, then the referenegs
will also be smooth functions, and it is possible to desigmath time-invariant feed-
backs for the kinematic inputs. The energy shaping and dagripjecting feedback is
also smooth and time-invariant, and this implies that weshashieved global asymp-
totic stability of a nonholonomic system using a smooth timariant feedback. This
is notin contradiction with the results by Brockett and Sussmdmt} \vho proved that
a nonholonomic system cannot be asymptotically stabiliged smooth time-invariant
feedback. In systems with kinematic inputs we only considgmptotic convergence of
the ¢ coordinates and not thecoordinates related to the kinematic inputs. Controlling
ther coordinates is used to asymptotically stabilize gfmordinates, but oncge Qg
the references to the kinematic inputs are undefined, ondliébe defined by the di-
rection of the gradient when close €, i.e., the final position of is determined by
the initial configuration of the system. Of causezan be changed to any value by the
kinematic input whery € @y, since changing will not changeg, but this involves a
non-smooth switching. In this sense the feedback algorfthesented in this chapter
does not violate the results by Brockett and Sussmann [14].

The passivity of the closed loop system implies that it is atgustly stable with respect
to parameter variations in the inertia matrix (these arerottte parameters that are hard-
est to estimate). As long as the net damping is positive thailttanian function will
decrease, and the system will eventually stop when all tieeggrhas been dissipated.
The performance, on the other hand, will most likely be $mexil, since it is determined
by the shape of the potential shaping function, which shbeldesigned with the esti-
mated inertia matrix in mind, i.e, the rate of convergeneeata (), is determined by
the steepness of the shaping function. This is an issue #satrdes some future atten-
tion, but it will not be considered further in this thesis.wibuld require that a general
definition of performance in Hamiltonian systems is devethpor at least a definition



6.6. DISCUSSION 93

that can be applied to nonholonomic Hamiltonian systemh withtematic inputs, but
performance is an issue that is generally difficult to hafoli@onlinear systems.






CHAPTER {

FEEDBACK CONTROL OF THE AV

The energy shaping and damping injecting feedbacks will bevapplied to the AV.
Under normal operation the AV receives a set of way-poirnas ithhas to reach in se-
guence. When driving in between way-points the AV has to diittess damage to the
crop as possible. This implies that is should follow the amps and the wheels should
follow the space between the crop rows.

The method introduced in the previous chapter is used to ptivally stabilize the
AV toward either a single (way-)point or a path (crop row) re field. Both kinds of
convergence can be achieved with the same controller bygatgithe shape of the po-
tential energy. In the simple linear example introduced aggp81 the energy shaping
and damping injecting feedback, with an appropriately ehqsotential, led to a simple
PD controller. For nonlinear systems the resulting cotgratill in general be nonlin-
ear, but some of the intrinsic features and limitations dhedr PD controller are still
present. One major limitation is the absence of integrabactnd small disturbances
may lead to situations where the asymptotic behavior isregvdegraded. This chapter
presents a solution to this problem by introducing an adiddi integral state on the AV.
The new state does not integrate the position error direaflya normal integral state
would do. Instead it integrates the potential energy, whietans that it can be included
directly in the Hamiltonian framework. The energy shapind damping injecting con-

95
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troller is by definition a position controller, but there mag/practical considerations that
puts restrictions on the allowed velocity of the AV as welb &ccommodate for a cer-
tain degree of velocity control an extension is introduded tises a velocity dependent
damping to control the velocity of the AV.

7.1 Energy Shaping and Damping Injection

In this section a energy shaping and damping injecting faekifor the AV is introduced.
For convenience, the reduced Hamiltonian model of the Avhfathapter 5 is rewritten
below

' OH
x| _ |2 |
L’él] J(x,ﬁ)[g_g +{B¢(ﬁ’)} ”
y_c - (7.1)
v=Bl#) g (=)
N(ﬁl)zéﬁi
with
o 0 RT(0)2(8)Y(6)
J(x,8") = —Y (85T (B )R(6) 0 |

By(8) = (857 (8)CT (8) —

Tw

Since the AV is assumed to be driving on a horizontal fieldpgginot have any initial
potential energy. Suppose we want the AV to converge asytinally to a set), defined
as the set of minimum points of a potential function

ou

For simplicity it is assumed tha}, is a closed connected set, and thahas no other
extreme points than those .

First of all, we wish to add the artificial potential eneflgyo the system by means of an
energy shaping feedback, because we know that the systétmevilconverge to a set
that include<),. We are therefore looking for a feedback; that satisfies (6.4), or in

the AV case, a feedbacl ., that satisfies

ov _ !

Y(B)2T(B)CF (B')—T4pes- (7.2)

~Y(F)ET(B)RO) G -
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The relation constitutes one equation with four unknowrd aome additional con-
straints between the four wheel torques have to be intratimoarder to solve the equa-
tion. Because of the non-slipping and free rolling constsgithe AV can, in theory,

be driven by one propulsion motor only. A solution to (7.2)tierefore to set three of
the wheel torques equal to zero and solve for the last ones dthiiously puts an un-
necessary high strain on this single motor. Another satugdo let all four propulsion

torques be equal. Both solutions share the property thdabthjee vector can be written
as

Tp,es = XTsa (73)

wherer, is a scalar, and is a 4-dimensiondbrque distributiorvector. X = [1 0 0 0]
in the case of driving the AV with only the torque to the firstereth andX = [1 11 1]7
if all four torques are equal. Combining the constraint #&h (7.2) results in an
equation with just one unknown, and the solution is

rX7(8)R(6) 00
DT(B)CT ()X Ix
The vectorX must be chosen such that the denominator is nonzero. Thestdistribu-
tion vector does not necessarily have to be constant, arettioa 7.2 a varyind{ (5’),
which minimizes the instantaneous electrical power segpio the propulsion motors,

is found. Note that the choice &f has no influence on the motion of the system, and for
now it is just assumed that ax that renders the denominator of (7.4) nonzero exists.

Remark. The derivation of this energy shaping feedback could haes lukerived by

physical consideration alone without the help of (7.2). §ider two almost identical
AVs; one (system 1) is actuated at the wheels, as is the cdlsaeheireal AV, and one
(system 2) is actuated by applying a fotEe and a torque, at the geometric center.
See figure 7.1.

(7.4)

Tpes = —

The configuration of the two systems are defined on the samé#atfthrand they are
both subject to the same nonholonomic constraints; the thithg separating them is
the point of entry of the inputs. The input space of system drisctly related to the
generalized momentupt the three dimensional vector describing the translatiame
rotational momentum of the AV.

What we aim to do, when shaping the potential energy of theshi find a feedback
that applies the negative gradient, viewed as a generdlized, of the desired potential
energy function. The negative gradient cannot directlypygiad to system 1, but it can
be applied directly to system 2. By setting

oU I
Fy=———, Fy = {Tg}

the potential energy of system 2 has been shaped. To shapadhgy of system 1 we
need to find an inputy that will make system 1 move along the exact same trajec®ry a



98 FEEDBACK CONTROL OF THE AV

(a) System 1 (b) System 2

Figure 7.1: Two methods of actuating of the AV

system 2. Without going into too much detail the dynamicsystesm 2 can be written
in the reduced Hamiltonian forn

oH

X n | ox 0 ou
= =J(x, M —.
) e [g_H s mn) 7
Equating this system with (7.1) and using (7.3) yields ietaf7.4). VAN

From (6.6) on page 87 we know that the conservative AV wittpskdeenergy has equi-
librium points defined by

o _
ox
Shaping the potential energy has not changed the conseryabperty of the AV, and

damping has to be introduced to guarantee €has¢ also an asymptotically stable set.
Using (6.7) the damping injection takes on the simple form

Q={0(x.0) € 2 | ST (B)R(®) 0}. (7.5)

Todi = —kay = —kad, kg >0,

Lit is a matter of exchanging the input vector figkf (6)CT (ﬁ’)%w of the unreduced system 1 with
that of system 2. The input vector field of system 2 is just thenfity matrix. System 2 is then reduced with
the coordinate transformation defined in chapter 5.
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with k4 € R. The damping injection is essentially just an addition afdtic friction in
the wheels with the same scalar friction coefficigptfor all four wheels. They do not
necessarily have to be equal, but they are chosen this waynfipticity.

Including both energy shaping and damping injection, thal feedback iss = 7. .. +
T4.4; @and the closed loop becomes

X =voes - (7.6)

D1

| — |
Qv |
?’|m Sz
_ 1

with a damping matrix

. [0 0
D(ﬁ)_ |:0 kquﬁ(ﬁ/)Bg(ﬁl)],

and a shaped Hamiltonian function

H(p1,x) = H(pr) + U (X).

7.2 Torque Distribution

The torque distribution vectoX was introduced as a prerequisite for solving (7.2). Al-
though the torque distribution vector is not unique, it lasatisfy the additional con-
straint of rendering the denominator of (7.4) nonzero. Téeaminator will become
zero (or very small) if the four motors counteracts each oti@onsider the situation
when the two front wheels are pointing straight ahead-€ 5, = 0), and the two rear
wheels are pointing in the opposite directigh (= 3 = =). If we choose an equal
torque distribution between the four wheéls= [1 1 1 17 the front and rear torques
will cancel each other, the denominator of (7.4) becomes, zamnd the torques grow
to infinity. To generate these torques the propulsion matansld have to draw an in-
finitely high current from the power supply, but physicalilations will most likely not
allow this. In this situation a torque distribution on therfoX = [1 1 —1 —1]7 would
be more appropriate. This example implies that a constagtigodistribution vector is
a poor choice in some situations, and it is more appropriatisé a varyingy; one that
always renders the denominator of (7.4) nonzero. An obvibagce is

X(8') = C2(B)5(8). (7.7)

As long asX is nonzero the denominator of (7.4) is also nonzero

2X = 0 at the singularity3; = 7/2 4+ nm, i = 1,2, n € Z The singularity can easily be avoided.
Please refer to the remark on page 43.
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The previous example also implies that the torque distidbutas an effect on the cur-
rent drawn from the power supply and hence the energy usdaehyropulsion motors.
Apart from rendering the denominator of (7.4) nonzero, tagipular choice of torque
distribution in has yet another useful property relatechelectrical power. Consider
the total instantaneous electrical power supplied to the oopulsion motors

whereV,,, is the input voltage applied to th&h motor, and/; is the resulting current
through the motor. The motors are modeled as first order D@mwoand the input
voltages needed to generate the desired torque at a partangjular velocity of each
wheel is

v, = Ja (7@. + b’gf)l-) + Ko,  i=1,2,34.
K
(See figure 2.17 on page 37 and the subsequent subsectioad&scription of the
parameters.) The currents are proportional to the effegiopulsion torques through
the motor torque constanf;

1 .
Iz:? (qui +b/¢i); i:15273a4'

t

The power can thus be rewritten as a function of the torquedtemwheel velocities

R L\ 2 . .
Pe == —= T i + b/d)l + b/¢$ + ¢i7—¢ia
; K2 ( ¢ )
or in matrix form
R, AT . e
=15 (% + b’¢) (T¢ n b’¢) + TG+ ¢Try. (7.8)

Note that in consistent unit&’, and K, are equal, i.e.,% = 1. (7.8) shows that the
total input power to the propulsion motors can be divided thiree distinct parts. The
first part is the power loss in the armature resistance of thers, the second part
is the power lost to friction, and the last part is the remagnpower transformed into
mechanical power. Suppose that we have designed an enegingland damping
injecting feedback with some arbitrary torque distribotieectorX

TSt RE - ouU
T =XSrery M FEg0
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The dependency ofi’ andy have been dropped for notational convenience. Inserting
the feedback into (7.8) yields

R roXTRF N[ ruSTRF :
P(X) = (xlwz 20 Lk Xz M —k
(X) K2 ( STCTX +( d)¢) ( STCTX +( d)¢)

LT o rwS T RF .
+0op P+ ¢ <XET02TX kdgb).
Suppose that we wish to find a vectirthat minimizes the poweP,. To find possible
candidates we first find the extreme points of the functiondlyiisg for X in %f;
0. P. is a rather lengthy term, but many of the terms vanish in thévaliéve. The
square elements ip, for instance, are independent&fand vanish. Next, consider the
elements involving

1

m(ﬂx. (7.9)

The individual elements af are not independent due to the nonholonomic constraints,
but they are functions of the single independent varigbl@ising (3.7) on page 45 and

(7.1))

. T
¢ = CaX—pr.
Tw
Inserting this into (7.9) yields
1 Y o . T
mﬁlaz Oy X =P

All the elements involving (7.9) hence vanish%%, and finding the extreme points of
P, reduces to finding the extreme points of the function

1

P(X)= sy
(BTC3X)

XTXx. (7.10)

P, is related to the power loss in the armature resistance, @&cowclude that this is
the only loss that can be minimized by a suitalile Taking the partial derivative with
respect taX and setting it equal to zero yields

Or: _ —CQE%XTX + X% =0
X (BTCTX) (BTCTX)

Multiplying with the scalar} (ETC’QTX)2 yields

—(% XTX+X =0,

STCTX
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which implies that a vectoX = c(>Y, ¢ € R\ () is an extreme point of%.. In fact,
any nonzero vectak in the set im@C>X] will result in a minimum value of?.. This
can be seen directly by inspection of (7.10). Start by chapairandonX € img[C>Y],

for exampleX = C2X. Any other vector in im§C5 3] can be reached by a subsequent
scaling of X, but this will not change the value @f., since the scaling factor will be
canceled by the division. Now consider a situation whEris rotated, so that it moves
outside imdC, Y], but still retains its length. The value of the factef X will remain
the same, whereas the value of the denomin@idrC? X )? will decrease, leading to
an increase of’, (and hence als#,). Any four dimensional vector can be reached by
first moving alongC> X followed by a rotation, and we conclude that a minimum value
of P.(X) implies thatX € img[C2X]. So by using the torque distribution vector (7.7)
the electrical power drawn from the power supply has beermized.

7.3 Convergence Toward€),

In section 7.1 a feedback, which asymptotically stabilihesAV toward the sef), was
introduced. This set is generally larger than the desire@gselue to the nonholonomic
nature of the AV. To guarantee asymptotic stability tow@gdwe need to find a suitable
reference for the kinematic inputs so that (6.11) is satlsfia the AV case it amounts
to solving forg’ in

ou

o € img[R" (0)2(8")] = kerlC1(3)R(0)],  x € M. (7.11)
This is solvable for any if the following statement is true (6.10)
J imglRT(0)S(8)] =R®, x € M. (7.12)
B/eSZ

The validity of the statement can be rephrased as followg: psssible to orient the
vector RT'Y: in any direction inR? by turning the wheels? We already know that the
velocity of the AV satisfiesy € img[RT%], and since the ICR of a 4WS vehicle can
be placed anywhere, any directionBA > x can be reached. (7.12) is hence true, and
there always exists at least one solution to (7.11).

The right side of (7.11) implies that
ou

Cl(ﬁ')R(ﬁ’)@ =0,

and written in details for thé&th wheel

. oU oU oU
—sin(f; + 9)8—3:1 + cos(fB; + 9)8—332 + ki cos(fB; — %‘)% =0.
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Using the cosine addition formula on the third term yields

oU oU
—sin(f5; + 9)8— + cos(B; + 0)=— D7s
oU
+ ki [cos(B; + 0) cos(0 + ;) + sin(B; + 0) sin(0 + ;)] — 50 =0.

Collecting terms of sines and cosines yields

ou

ou ou
sin(3; + 0) 8—$1 — ki sin(0 + ;) 00

89} = cos(f; +0) [G_U + kicos(0 +vi)—

>9.

and finally we have that

+ ki cos(f + ;)2

°°|% %Iq‘

0B; = arctan
gg Kisin(0 + i) g

This is equivalent to

BU —
8=/ ( gur | m%ﬁa) — 0, (7.13)
612

wheree; is a unit vector perpendicular to the line connecting thengetoic center of
the AV and the center of théth wheel, see figure 7.2. To achieve asymptotic conver-
gence taQ), the wheels should hence point in the directions of linearlmoations of a
translational force vector and four force vectors usestateadhe AV.

Whether or not it is possible to design steering controltbed guarantees that (7.13)
is always satisfied depends largely on the shape of the paltenergy function, physi-
cal saturation limits in the steering motors, and the v&joai the AV. Steep curvature
changes in the energy functiénwill result in fast changes of the desired steering an-
gles, but since the turning rate of steering motors are phifgilimited, the desired
steering angles may not be met. This is not a real problemgtioif the references
are not met the AV will converge to the 98t and on approach the AV will slow down
due to the damping. A slower moving AV leads to a decreasitgyoghchange of the
gradient direction and hence also the steering angle refese Even slow controllers
will eventually be able to meet the references.

Figure 7.3 shows a closed loop simulation with the energpisiggand damping inject-
ing controller. The simulation is an example of asymptotabgization of the AV at a
target pointyy using a simple quadratic potential shaping function

10 160 0 O

(x = x0)"Kp(x —x0),  xo=|-10], K,=|0 80 0],
™ 0 0 80
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12

i

2]

Figure 7.2: Unit vectors of rotating forces

and with damping constarf; = 8. The dashed lines in the figure represent contour
curves of ther, zo-components of/. This part of the function is not completely sym-
metric; it has a steeper descent alongthexis than along the,-axis, which explains
why the AV converges faster in the -direction than in the:o-direction. The AVs drawn

in the figure shows the position and orientation of the AV fegnry 2 seconds.

7.4 Disturbances and Integral Action

The energy shaping and damping injecting controller irteasame of the characteristics
of alinear PD controller. In the simple linear example ong@&t) the resulting controller
was in fact a linear PD controller when the potential energycfion was a quadratic
function, and without integral action the asymptotic cagesce of the linear system is
often sacrificed if there are external disturbances. Theessartrue for the AV where
external disturbances comprise unmodeled slopes in tlig tirkven soil tracks, rocks,
etc. Consider the same simulation as shown in figure 7.3hmitine the AV is driving
on a field with a slope. A° slope is modeled by a constant translational force pulling
the AV toward north-west, and the resulting simulation iowh in figure 7.4. The
gray AV represents the target configuration, but the AV stist of it by a few meters
because of the slope.
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Figure 7.4: Stabilization at a single point on a non-horizontal field.
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Figure 7.3: Stabilization at a single point
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The remainder of this section describes a method of intrioduntegral action into the
Hamiltonian formulation of the AV. The resulting closed powith integral action main-
tains the Hamiltonian structure and hence also the paggikdperty of the system. The
integral feedback that maintains the Hamiltonian strieehas itself a special structure,
and it has an interesting consequence for the stabilitye$iistem; because of the pre-
served passivity, increased feedback gains cannot diéatathie system. To relate this
to linear systems, the simple example of a mass moving onizdmal plane is revisited
at the end of the section.

Integral action is only considered when the AV has to cone¢aga single point, i.e.,
when the potential energy functidn has a single global minimum. In this situation
any unmodeled structures in the field, such as an unknowe stopks, or soil tracks,
may inhibit the asymptotic convergence. These unknownipalystructures can all be
modeled as additional unknown potential energy. So instédte Hamiltonian function
used to prove asymptotic stability in the ideal case, theidied Hamiltonian function
of the real system includes additional potential energy

(i) = 574+ U0 + Ual) (7.14)
|

H

Uq is the disturbance potential energy function capturinguthienown structures in the
field. The addition of the disturbance function means thaststem will not converge to
the minimum of the shaped potential enetgybut will instead converge to the minimum
of the total potential energ{y + U,. The introduction of an unknown potential can
either be introduced in the Hamiltonian function as in (7, b4 it can be introduced in
the closed loop system as an additional energy shaping term

oH

X — AN / ox | 0

To introduce integral action we are seeking an additionadifack that will make the
augmented system converge to the original desired)setWhen the AV is far away
from Qo integral action is not really necessary beca%%és generally much larger than

%, but when the AV approachég, the disturbance begins to dominate, and integral
action must be used to drive the last distanc&go To simplify the problem some as-
sumptions have to be made. Itis assumed that the disturismocsstant locally around

Qo in the sense th&i’aﬂxi is constant. This rules out some disturbances, such assstone
and other small structures, while larger structures, sgchranodeled slopes, are still
allowed. It is further assumed that the AV is sufficiently geed so when approaching
Qo it is driving slowly, and if a smooth well behavéd is used, the direction o@ﬂ is

also changing very slowly. Since the steering angles aieatefrom this direction, it is
assumed that’ is fixed during periods when integral actions is turned on.
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The first issue in the design of integral action is to decideanrappropriate quantity
to integrate. Suppose that the closed loop system (7.1%piriencing a nonzero dis-
turbance. After a while the system will stop, (= 0), where the artificial forceg—’i,
which should pull the AV toward), is canceled by the disturbance.

Pr = ~T()ET (@ VR(0) o — TS (3 R(0) 52 = 0.
X dx
The artificial force is a function of the generalized cooedésy and is related to the
error between the current configuration of the AV and therdddgiarget configuration
Qo; if U is a quadratic function of the gradient is proportional to the error. One choice
of integral state is therefore to define a state that is rélat¢he integral of the artificial
force and then feed back this state. Define the integral state

ou
r = —T (32T (B)R(O) —.
pr= =T3S (HROF
Inserting this into (7.1) yields yet another Hamiltoniaistgm
oH
X Ox 0 0
{pﬁ] = [Jr(x, ) = Dr(8)] | §2- | + [qu(ﬂ’)] o1 — {T(ﬁ’)ET(ﬁ)R(G)%I ,
D1 g_ﬁ 0 0
pr

(7.16)
wherery 7 is an additional input to be used for the integral state faelignowry, =
To.es T To,di + ’7'¢7[) and

[ 0 RE(O0)2(8)Y(5)  RT(O)S(8)Y(F)
Ji(x B) = | =X(B)ZT(B)R(0) 0 0 ;
=T (3T (5)R(0) 0 0

The upper right element of; has been set to the current value to maintain the skew-
symmetric property of the matrix. It does not change the dyina of the system because
6—11; = 0, but the skew-symmetric property will be useful in the finaked loop system.

To close the loop we need to feed back the integral stategwidlintaining the stability

of the closed loop system. It is a well known fact from linegstems analysis that an
integral feedback may destabilize the system if the intdgedback gain is too high.
Care should therefore be taken when choosing the feedbatK,ibis possible to find

a feedback that maintains the Hamiltonian structure angiyigsof the system we can
also prove that it is stable. Consider the feedback

o1 = —ka B (B)kr(p1 — pr), kr >0, (7.17)



108 FEEDBACK CONTROL OF THE AV

and the new Hamiltonian function

_ _ 1 ~ 1. 1 B _
Hr=H+ §k1(p1 —pr)’ = 51?? + §k31(p1 —pr)?+U(x).

With this feedback the closed loop system becomes

X 68}? 0
pr| =10 8) = Dr(8)] | 55t | — | T(8)ST(B)R(6) Tt
Pr %HI 0

PI

This system is again a Hamiltonian system with skew-symimigtierconnection matrix
Jr, a positive semi-definite dissipation matiiX;, and a new strictly positive Hamil-
tonian functionH;. The system is still stable, which can be seen by taliihgas a
Lyapunov function candidate, and looking at its time denea

T

8H] 8HI
o o O\
= of o I
Hy=— %31 Di(B) |5 | = —kquﬁ(ﬁ/)Bg(ﬁ/) (8—~) <0.
oH; oH; P
Opr opr

The system is stable, but does it still converge asymptbtitathe same set as before?
Application of theorem 6.1 on page 83 proves that the systemerges asymptotically

to the largest invariant set contained in the set of pointsref; = 0 = %’glf =0,0r
.k
p1 = 1+ kfpl'

Sincek; > 0 the relation implies thai, = p; = 0 in the set wheref{I = 0, and the
system converges to the following set on the constrainegetarbundle

Q= () € 0| 57 (F)REO) 5 =0, (7.18)
Note that the set of convergence is not exactly the same 8§ {i.this new sep; is
not necessarily zero. Imagine the case where there is natgatenergy in the system,
andp; is given an initial value different from zero. The lack of potial energy means
thatp; will never change from its initial value, ang will hence also remain constant
and nonzero in the set whef&;, = 0. If, on the other hand, the potential energy of the
system has only a single global minimum, then the set (7.08) @ontains the points
wherep; = 0. This can best be seen by contradictiong{f+# 0, thenx # 0. This
implies that ifU has only one minimum, then after a short while 0 and H; # 0.

The points wherg; # 0 do therefore not belong to an invariant set whéfe = 0.
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Figure 7.5: Stabilization at a single point using integral action

For practical purposes it is assumed that the set (7.18¥ickag with (7.5), because the
integral action is only to be used for asymptotic stabilmabf the AV at a single desired

configuration.

Figure 7.5 shows the same simulation as in figure 7.4, but nithvimtegral action. An
integral feedback gain df; = 0.01 has been used, and figure 7.6 shows the evolution
of the position and orientation errors of the simulation. akmid integrator windup,
the integral state is not updated, and the integral feedismalot switched on, until
the kinetic energy of the AV has reached a lower bound, |ixg|, < 1. This happens
aroundt = 34s, where integral action is turned on, and the AV is forced toverge

asymptotically toward the minimum @f.

Remark.Feeding back integral states in a control system can oftea &aestabilizing
effect on the closed loop system. It may therefore seemidéddghat the closed loop
system remains stable, ever¥kif is increased to an arbitrary high positive value. The
stability is maintained because the integral feedback/|7alko introduces an additional
damping, which is proportional tb;. To have a closer look at the effect of the inte-
gral feedback we return to the simple example from page 81méssm sliding on a
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V(@1 — 210)% + (z2 — 220)? [m]

[\

= !
O U= Ot
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Figure 7.6: Position and angular errors when stabilizing to a point ugintegral action

frictionless surface. The Hamiltonian representatiornefgystem is

[-15] |

5T — o

P 1 0 B_I;
1

H(p) = §m_1p2.

In the example an energy shaping and damping injecting egdvas introduced

F=-2
ox )

and the resulting closed loop system was

B-( B g

P

_ 1 _
H(z,p) = 5m 'p? 4+ U(a).

We now introduce the integral state

__9u
pr= oz’
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+

~—— —kq(1+mkp)s
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Figure 7.7: Closed loop of the simple example

and feed it back so that the total feedback becomes

ou
F=———kqt — kaki(p — p1)-

5y~ Fat — ka 1(p—pr)
Suppose that we wish to stabilize the moving mass at a refeneointr. The artificial
potential energy function to achieve this may then be chasén(z) = %kp(x —7r)?,
which has a single global minimumat= r. A block diagram of the closed loop system
is depicted in figure 7.7, and the transfer function fromneffiee to position is

X(s) kps + kakpkr

R(s)  ms3 + k(1 +mkp)s? + kps + kakpkr

To investigate the stability of the system we look at the Rartay

3 1 m_lkp
s2: m ™ kq(1 + mky) mflkdkpkl
kr
1. -1
s0 m_lkdkpk]

If the coefficients of the left column are all positive thetgys is stable. We immediately
see that as long ds,, k4, andk; are all positive the system is stable. So, in conclusion,
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we have designed a simple PID controller for the linear dasehy giving the controller
a Hamiltonian structure the closed loop system is alwaysestan theory, no matter the
size of the feedback gains. A

7.5 Path Tracking

The focus of this chapter has up until now been on stabiliigAV at a single tar-
get configuration, but the energy shaping and damping ingétedback can easily be
extended to path tracking as well. The first step toward pattking was already seen
in figure 7.3 on page 105, where the potential shaping funaetias designed to have a
steeper slope in the, -direction than thex,-direction, thereby forcing the AV to con-
verge faster in the;-direction. The simulation showed how it is possible to detime
path, along which the AV travels, by shaping the potentiargy function/. By con-
struction, the closed loop system will always be pulled taltthe minimum ofU/, and
convergence to a desired path can be achieved by desigr@rfgribtion such that the
path represents a set of low values. This is illustrated énfetlowing example, where
energy shaping is used to track a circular path.

7.5.1 Tracking a Circle

Consider the situation where the desired path is a circlbeén:1, x5-plane with center
at the origin and radiug). The initial position of the AV may be anywhere in the plane.
The goal of path tracking is then to force the AV to convergghtocircle and then track
it indefinitely. It is assumed that damping is already prégethe system (if not, it can
be injected) and that any disturbances can be neglectegirattaction is turned off. We
then seek a potential functidn, which is able to attract the AV to the circle, and when
on the circle, the function should be able to pull the AV al@ngo converge to the path
the following shaping function is constructed:

1
U(;:§Kc(r—r0)2, r? =22 422 K.>0.

The function is depicted in figure 7.8.

Starting anywhere in the, , x5-plane (except at the origin, which is a singular point and
should be avoided) the negative gradient of this functidhaiways pull the AV toward
the circle, which constitutes the set of minimalaf. Although the AV is expected to
converge to the circle it has not yet been defined how the Adlshmove when on the
circle. If U is used alone as shaping function the AV will simply drive éod/ithe point

on the path, which is closest to the initial position of the Avd eventually stop at this
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Figure 7.8: The potential functiod/., whose minima comprises a circle

point when all kinetic energy has been dissipated. Thistfands therefore not useful
by itself, and an additional potential has to be introduceddhieve tracking along the
path. If the AV is to drive clockwise along the circular pattetfollowing potential
function with a constant length gradient along the path isstmicted:

Ua - Ka’l/), Ka > 0,

wheret) = arctan 2 is the angle of the line connecting the origin of the x>-plane
with the AV. Note thaty) is not limited to0 < ¢ < m, but is allowed to evolve indefi-
nitely, as illustrated on figure 7.9.

The negative gradient of this function will always pull the i the clockwise direction
parallel to the tangent of the circle. By addibg and U, a new potential function

is constructed that pulls the AV toward and along the pathe @bmbined potential
function U, + U, is shown in figure 7.10. Just by looking at this figure one would
immediately expect the AV to exhibit some kind of circular vement in ther,, xo-
plane ifU is applied as shaping function. Figure 7.11 shows a sinuratf the AV with

U ="U.+U,, parameters, = 5, K. = 1600, K, = 16007, and a damping constant
of kq = 8.

The simulation shows the trajectory and position of the Bapart during a period

of 10s. The desired path is marked by a dotted line, and the dashesd iepresent
contour curves of the potential function. Initially, the A¥ started with zero velocity

at (z1,22) = (4,0). The figure shows how the AV converges smoothly to the path
and stays there for the remaining time. Only one revolussshiown, but the AV will in
principle continue due to the lack of a absolute minimum gngbtential function. Since
the damping is nonzero, the AV reaches a constant velocignwhe gradient of the
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Figure 7.9: The potential’, pushing the AV along the circle

Figure 7.10: Combined potential functiof, + U,
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Figure 7.11: Tracking the circle

potential function pulling it along the path is canceled bg tamping. The orientation
of the AV is constant during the simulation becatse independent of.

If the AV is supposed to stop at a certain point on the path thdignt along the path
should be designed so that it has constant length when the fa& away from the target
point, and when the AV approaches the point, the length ofithdient should decrease
and eventually vanish at that point.

It may seem illogical that there is no overshoot when the A the path. Indeed, a
free moving mass, or a rolling ball would oscillate aboutplaéh, but the nonholonomic
nature of the AV forces the momentum perpendicular to thé,pahich is generate
when approaching it, to be directed along the path insteadsi@er the gradient of the
potential function

o0 cos K, |~ sin v
— =K.(r—mrg) |sin¢| + — | cos¢
x 0 " 0

The gradient consists of two distinct parts; the first patticlv is perpendicular to the
circle and vanishes on the circle, and the second part, wkithngent to the circle
and have constant length on the circle. When the AV appr@aahd eventually hits
the path the gradient df points along the path. Since the direction of the gradient is
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used as reference for the steering motors the wheels argngpin the direction of the
tangent, and the AV cannot overshoot the path without viiodathe constraints. In the
practical case though, care should be taken when chooslngsvéor the constants in
the potential function. 1<, is very large compared t&, the direction of the gradient
will change very rapidly when the AV approaches the path, thedAV may be forced
to do an almos90° turn when it hits the path. If the velocity is high the resuliyrbe
sideways slip of the wheels, or even worse, the AV may rolrove

The potential function introduced here has effectivelyi@odd path tracking to a circle
inthex,, xo-plane, but there are still some issues that have to be ebkfore the path
tracking algorithm can be used for effective crow row trackiFirst of all, the control

of the orientation of the AV must be addressed. In the cirglengple the orientation
of the AV was left unchanged, but this is of cause not a good ifi¢he crop rows

should be left undamaged. This issue will be addressed iméhke subsection. The
second issue is related to the desirable traveling veldciting path tracking. The final
traveling velocity along the path is in the ideal case deieech by the length of the
gradient along the path and the amount of damping in thesydtethe non-ideal case
the velocity is also influenced by disturbances, such as awhkrslopes in the field,

unmodeled friction, etc. In subsection 7.5.3 an adaptivepgiag scheme is introduced
to address this issue and to achieve a great deal of velamityat along the path.

7.5.2 Inter Crop Row Potentials

In the example of tracking a circle the AV maintained a comistaientation, and at
certain points on the circle the wheels of the AV crossed #th.gf the path represents
a crop row this is not very desirable. The potential functignused to converge to
the circle was defined to have a minimum when the geometritecef the AV was
on the circle. When it comes to crop row tracking it makes nmsmese to define a
function, which has a minimum when the wheels are on the artgy row space instead.
Figure 7.12 shows a schematic drawing of what is defined amteerow potentials
(dashed graphs). Instead of the geometric center tracksirggée potential on the crop
row the left wheels should track the left inter row potenéiatl the right wheels should
track the right inter row potential.

To exemplify the inter row potential tracking the circledking example from earlier is
revisited. The left and right inter row potentials can nowdedined as follows. If the
AV is to drive clockwise along the circle the left wheels (veh& and 2) should track a
circle of radiusry + 0.5, and the right wheels (wheel 3 and 4) should track a circle of
radiusry — 0.5. Define the position of théth wheel relative to the center of the circles
as a two dimensional vectar;. Assuming that the center of the circle and the origin of
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Figure 7.12: Inter crop row potentials

the \/-frame coincide the vector is given by

o [xl + Rricos(y; + 9)}

T2 + Ky sin(vy; + 6) i=1,...,4.

The error between each wheel and the circle it has to tradhkeis|tv;| — (rg + dr;),
wheredr; = 0.5 for i = 1,2 (left wheels), andr; = —0.5 for i = 3,4 (right wheels).
Let us then define the total potential function as a sum of guaf these errors

4
_ 1 9
Uic - §Kc; (lwzl - (TO + 5Tz)) )
where K, is a design parameter. This function clearly has a minimurandll four
wheels are situated in the inter crop row space, though ttoesecannot vanish com-
pletely due to the curvature of the circle and the rigid badyrfe of the AV. To apply
the potential function in the feedback the gradient of thecfion must first be found

Wi _ . < Ol
- K. i — :
o = e olul = (o 6 T2

With

lwi| = /(21 + ki cos(yi + 0))? + (w2 + ki sin(v; + 6))2,
each individual element gf(” is
6|w1| -

or1  2|wl

2(xq1 + K4 cos(y; + 0)) = cos(Lw;),
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8|wl| o
where/w; denotes the angle of the vectoy. The third element of the gradient is

2(xg + Ky sin(y; + 60)) = sin(Lw;),

Ow;| 1
90 2w
+ 2(z2 + Ky sin(y; + 0))k; cos(v; + 0)]
= Ri[— cos(Lw;) sin(y; + 0) + sin(Lw;) cos(v; + )]
= —g;sin(y; + 0 — Lw;).

[2(:1:1 + ki cos(y; + 0))(—k; sin(y; +0))

The final gradient is then

4 cos(Zw;) & [-siny
Z |wi| — (ro + 614)) sin(Zw;) + =2 | cos
=1 —K; sin(’yi + 9 — 4wl) r 0

o0, obg
Bx o

(7.19)
Note thatl/, has been left unchanged from the previous example, as §sponpose is
to pull the AV along the circle. The major difference betwéleis gradient and the one
from earlier is the nonzero terf=, which has been introduced by using the inter row
potentials. Figure 7.13 shows a S|mulat|on using the imerpotentials with/’, = 300,
K, = 600rq, and a damping factor df; = 8. The AV is drawnls apart.

The simulation shows that the AV has started to orient itseifl the wheels no longer
crosses the path. The orientation does seem to lag behingtihwhen choosing a
relatively low valuedX .. By increasing it with a factof to K. = 1200 the lag is greatly
reduced as shown on figure 7.14. Unfortunately, the AV erpegs a huge attraction to
the path from its initial position, which results in a veryasp turn at high velocity when
the AV approaches the path. This is the drawback of only ltpeime design parameter
(K.) to determine the gain of the translational attraction ehth and the subsequent
tracking. The problem can be solved by using a lewwhen initially approaching the
path and then increasing. when on the path.

7.5.3 Adaptive Damping

In all the preceding tracking examples nothing has beewrdtabout the velocity of
the AV. The AV will eventually reach a constant velocity wheve gradient of the
potential energy is canceled by the damping, and in thebiy,steady state velocity
can be determined if the damping factor is known and there@disturbances. If there
exists specifications on desired traveling velocity aldreggath the gains in the potential
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Figure 7.13: Tracking the circle with inter row potentiald{. = 80)
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Figure 7.14: Tracking the circle with inter row potentialds. = 320)
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Figure 7.15: Velocity of the AV during path tracking with constant dangpin

energy function can be chosen accordingly. In practice ghpthe kinetic friction,
unknown slopes in the field, parameter variations, etcl, mfluence the velocity of
the AV, and an additional velocity feedback is necessargtoexe the desired velocity.
One option is to use a velocity feedback to increase or dsertba length of the gradient
along the path. In other words, let the gradient along tha patl the AV more if the
velocity is lower than the desired velocity, and pull it lésthe velocity is higher than
the desired velocity. This idea poses a basic problem tholiglgradient should still be
considered as a gradient of a potential energy functionjfahd length of the gradient
varies, the potential energy on the manifold also varies fasetion of velocity. This
means that the AV can generate its own potential energy, leg@dssivity property of
the AV has be lost. Another way of solving the velocity cohfpooblem, while still
maintaining the passivity property of the system, is to vidwy damping factor. The
damping factor can be varied, and the passivity maintaiasdpng as the damping
factor is positive. Consider an adaptive damping on the form

. 1 /

kd = ?(Ut — ’Ut())7 UVt = I’% + I’%,
d

kd == Sa(kd; kd,min)-

When the velocity of the AV diverges from the desired velpeif, the damping fac-
tor is either increased or decreased at a rate proportiontlet velocity error. T} is
the integration time. The second part is a saturation fonagnsuring that the damp-
ing is bounded from below by a positive constant minimum di@pg g ,i,. This is
introduces to guarantee that the system remains stable.

Figure 7.15 shows the translational velocity of the AV in teele tracking example
from before with constant damping factar = 8. The only difference from the previous
example is that the initial position of the AV is on the path.

Figure 7.16 shows the same simulation, but this time wittathegotive damping applied.
The integration time is set t§; = 0.1, the minimum damping t& ..., = 8, and the
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Figure 7.16: Velocity of the AV during path tracking with adaptive dangpin

desired velocity is set to;y = 1m/s for t < 10s and then changed tg, = 2m/s for
t > 10s.

The figure shows that the desired velocities are reachedmsetically with a consid-

erable overshoot in the beginning. If desired, the oversbao avoided by choosing a
more appropriate initial value df;. In this simulationk; = 8 att = 0s.

7.5.4 Putting it All Together

The combined feedback with energy shaping, damping imjecthtegral feedback, and
adaptive damping is

rsz(ﬁ)R(X) oU

™o =~ CaFIR(E) ST(3)CT (B)C2(8)2(67) dx (energy shaping)
— kad (damping injection)
— kB (8)k1(p1 — pr), (integral feedback)

with the derivative of;

and the adaptive damping coefficient

; 1 2
kd:fi(vtfvto), v = /&1 + 43

kq = salkq, ka,min)-
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Figure 7.17: Tracking four crop rows

Last, but not least, the references to the steering moters ar

o0 ,, o
Biref = arctan Jza + i cos(6 + i) 20
, 90 e sin(0+ ;) 28

Figure 7.17 shows an example simulation of a simple row treckperation, where
both crop row tracking and convergence toward single pa@irgsused. Along the four
crop rows parallel to the-axis and during the turn between point 1 and 2 the AV is
tracking the path using inter crop row potentials and a @origtull from the potential
function along the path. From point 3 to point 4 and again fpmimt 5 to point 6 the AV

is given a simple potential function with a single minimunpaint 4 and 6 respectively.
In the latter case the potential function includes an aolditi rotational potential that
forces the AV to execute @° rotation.

The translational velocity of the AV is shown in figure 7.1&eTfigure illustrates how
the adaptive damping effectively forces the AV to travehat desired speeds. Along the
four straight lines and the semicircle the desired speeeti®dm/s. During the point
stabilization between point 3 and 4 and again between p@ants® no desired speed is
set.

All the examples shown in this chapter are based on pure atronlof the AV. In the
next chapter the control principles will be applied to thal /.
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Figure 7.18: Translational velocity of the tracking example. The nurslmar top mark
the points in time, when the AV reaches the correspondingtybered way-points in
figure 7.17

7.6 Discussion

During modeling of the AV the Hamiltonian function played mcial part in defining
the dynamics, but in the energy shaping and damping ingdéedback it seems to
have completely vanished. The kinematic parts are stitetivethe form of the matrices
Cy(0), 2(08"), andR(#), but the inertia matrix is gone. The Hamiltonian functioredo
not enter the feedback explicitly, but implicitly throudtetdesign of the energy function
U. The shape and size of the shaping energy function shouldsigried with the inertia
matrix in mind to give the closed loop system a decent perémee; moving a huge mass
may require a steep potential energy function to perfornpery, while a small mass
may require a less steep function. In other words, the fedditself only guarantees
stability and does not take performance into account, aisdi to the designer df to
define the performance.

The performance of a dynamic system is related to the conééipte (just consider the
rise time and settling time of linear systems), and the “laflperformance in the feed-
back is also related to the ‘lack’ of time dependency wheckira, i.e., the AV is able

to track paths and not trajectories. Tracking paths is predeto tracking trajectories
in the application of the AV, since trajectory tracking ajotine crop rows implies that
we need to set the exact traveling speed of the AV at any poithe trajectory. Some
parts of the field may be difficult to traverse and the desirgldaity may not be met.

In these situations the AV is likely to fall behind the trajety, which can have undeter-
mined side effects. By using path tracking and adaptive dagnipstead, the velocity

of the AV is allowed to drop below the desired velocity withigacrificing stability and

convergence to the path.






CHAPTERS

PHYSICAL TESTS

The control algorithms derived in chapter 7 will now be apglto the physical system
with all its limitations such as noisy measurements, higinder dynamics, and actuator
saturation. Note that every graph and figure in this chagtéased on data collected
from the real system.

8.1 Convergence toward a Single Point

The first test is to see if the AV is able to converge asympaditi¢o a single point. The
following potential function is used

o 0 1600 0 0
U=50—x)"Kp(x=x0), xo=|[0 |, Ky=|0 1600 0 |,
T 0 0 1600

2

and the damping factor is fixed &; = 8. The AV is started from rest to the west of
the target at orientatiof(0) = 0. Figure 8.1 shows the path taken by the AV with this
potential function and with no integral actioh;(= 0). The AV is drawn for everys,
and the shaded AV shows the desired configuration at thettggg@he AV is instructed

125
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Figure 8.1: Converging to a single point

to stop when it reaches the target configuration, but witlategral action, the AV is
prevented from converging asymptotically due to a extedigtlirbances. Figure 8.2
shows the same test, but now integral action is turnedcpr=(0.001) when the AV is
within 5m of the target. In this case the AV smoothly converges to tisegrele target with
asymptotically vanishing errors. The errors for both thres@re shown in figure 8.3.

8.2 Tracking a Line

In this section the AV’s ability to track a single straightdiatzo = 0 at constant velocity
during various load conditions is tested. To track a lineAkes given the following
potential function

4
_ 1 .
U= iKC g (x2 + Ky sin(y; + 6) 752-)2—1((13:1,

i=1

with constantdy, = 320, K, = 1600, 9; = 0.5fori = 1,2, andj; = —0.5fori = 3, 4.
The first part of the potential function comprises four imaw potentials, one for each
wheel. Each potential is a quadratic function of the distdmetween théth wheel and
the linexs = ;. The second part of the potential gives the constant puligatbe line.

Figure 8.4 shows a test with a constant damping faicioe 7, i.e, there is no adaptive
damping. The figure shows that the AV quickly converges tqtith and stays there for
the duration of the test. Since there is no adaptive dampieggtis little control of the
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Figure 8.2: Converging to a single point with integral action
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Figure 8.3: Position and orientation errors with and without integradtaon
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Figure 8.5: Velocity of the line tracking test with constant damping

resulting velocity along the path. Figure 8.5 shows thedliaional velocity of the AV
as measured by the GPS receiver. In the beginning, when thie R away from the
path, the velocity reaches a maximum of aro@nd/s. This upper limit is determined
by saturation limits in the propulsion motors, and the AValess its maximum speed
due to a large contribution from the inter crop row potestialWhen the AV reaches
the path the inter crop row potentials vanish quadraticallyich explains the sudden
drop in velocity at around = 3.8s. After that, the AV continues along the path at a
constant velocity untit = 13s. At this point an external disturbance is introduces by
dropping a40kg anchor behind the AV, see figure 8.6. With a constant damgiotpf
the velocity of the AV drops slightly, which was expectedcsgrthere is no effort to
maintain a constant velocity.
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Figure 8.6: The40kg anchor used as external disturbance

The same teswith adaptive damping is shown in figures 8.7 and 8.8. An integnati
time of T; = 0.2 and a desired velocity af;y = 1m/s are used. The ability to track
the line is unchanged, but now the velocity stabilizes atsgred velocity and quickly
returns to it after introducing the disturbance at 17s. The oscillations front = 3s
tot = 7s are due to a relatively short integration tifig that makes the damping factor
kq fluctuate. The oscillations could have been avoided by dhgaslarger integration
time, but then the controller would not have been so quiclkeszh the desired velocity
when the disturbance is introduced. A better solution waeldo fix the damping factor
until the AV is close to the path and then turn on the adaptaraping, but this will not
be pursued further.

8.3 Tracking a Circle

We now turn to the physical implementation of the circle king example of sec-
tion 7.5.2. We wish to clockwise track a circle with raditygsand centered at the origin
of the N-frame. In the first test a potential function with inter rostentials is used (it
is the same function that was used to generate the gradid®) @n page 118)

4

U= %KCZ (lwi| = (ro + 0r4))* + Kat. (8.1)

i=1

ro is the radius of the circldw;| is the distance from the center of the circle to thie
wheel. Wheel 1 and 2 should track the inter row spacing oeltid circle, and wheel 3
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Figure 8.7: Tracking a line. Adaptive damping
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Figure 8.8: Velocity and damping values of the line tracking test with@td/e damping
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Figure 8.9: Tracking a circle. K. = 320, K, = 1600rg

and 4 should track the inter row spacing inside the cirade,dr; = 0.5 fori = 1,2 and
or; = —0.5 fori = 3,4. v is the angle of the line connecting the center of the circle to
the geometric center of the AV.

Figure 8.9 shows how the AV behaves with one choic&pfand K,. From an initial
position below the circle the AV quickly converges to thestdrand stays there with little
variation for the duration of the test. Because of the cumeabf the path the wheels
never hit the inter row spacing, and at the end of the testhwhe AV has reached
a steady velocity, the orientation of the AV is almost peifienlar to the tangent of
the circle. This deviation from the inter row spacing is doetlow K., and a better
inter row tracking can be achieved by increasiig(see for example the simulation in
figure 7.14 on page 119), thereby punishing deviations fiegririter row spacing more
severely. Unfortunatelyy. also determines the rate of translational convergenceeof th
AV toward the circle, and increasing. to much more thar00 will result in a huge
net pull of the AV, even at small errors. This, in turn, resdit jagged, hon-smooth,
and generally unwanted motion of the AV (the alm@&t turn on figure 7.14 is a good
example of this). Clearly, this is a drawback of using intev potentials, and a different
potential should therefore be used when tracking paths avitlrge curvature. One of
many options is the following function

1

U= 5K (r—r0)2+%K9 (0-(v+ g))2+Ka¢. (8.2)
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Figure 8.10: Tracking a circle. K. = 1280, Ky = 1600, K, = 16007¢

The first part has a minimum when the AV is on the circle, the@sdmart has a mini-
mum when the AV is oriented along the tangent to the circlé, tae last (unchanged)
part accounts for pulling the AV along the circle. With théraduction of the third
design parametéek’y the rate of convergence of the orientation and the positanbe
controlled independently. Figure 8.10 shows the behavitime®AV with this potential
function. With the additional design paramefg€y the AV is now able to smoothly track
the circle while maintaining an orientation along the tamtgs the circle.

Whether the inter row potential function (8.1) or the funat{8.2) is best suited depends
on the situation at hand. This example just illustratestth@motion of the AV it greatly
influenced by the structure of the potential function.

8.4 Putting it All Together

As a last test the different modes of operation — convergtneard a single point, track-
ing a line, and tracking a circle — are combined in a test wheréV drives along four

parallel lines. The test is the physical implementatiorhefsimulation in figure 7.17 on
page 122. Figure 8.11 shows the configuration of the AV duttiegest. The wheels of
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Figure 8.11: Tracking four crop rows in practice

the AV are kept well away from the crop row represented by treght lines, except at

the very beginning when the AV approaches the first row. Tisireleé speed was set to
1m/s along the rows and the semicircle between point 1 and 2, and:fig.12 shows

that it is precisely met.

8.5 Discussion

The tests shown in this chapter are all based on convergesteple geometric objects,
such as points, straight lines, and circles. The simpligithese objects facilitates easy
construction of the potential functidii, but a general path or crop row in a field may
comprise more than just lines and circles. On the other hand,should note that
the control algorithm does not need access to the complésapal function, but just
the gradient ofU at the instantaneous configuration of the AV on the manifditie
complete potential function may be difficult to generatetie general case, but the
gradient is easily reconstructed from local measuremsimtse the gradient represents
the positional error between the AV and the target path antpdihe crop row camera
(see page 26), for example, outputs the offset and orientatiror relative to a nearby
crop row and these two measurements can directly be retatbd gradient if the object
is to track the row.

From the tests shown in this chapter it is concluded thatebdlfack controlled AV be-
haves as expected from the simulation. Even with noisy sefeta. The data collected
from the sensors are in most cases unfiltered when entegrfgéldback loop. The only
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Figure 8.12: Translational velocity of the tracking example. The nurslmar top mark
the points in time, when the AV reaches the correspondingtybered way-points in
figure 8.11

exception is the estimated orientation of the AV, which i@ebination of the compass
reading and the integral of the gyro. By controlling the A\sbd on a dynamic model of
the vehicle, the dynamics of the AV itself acts as a kind oéfiliThe damping injecting

feedback, for example, is based on the measured velocity fhe GPS receiver. This
signal is quite noisy, but since it is passed through therahtlynamics of the AV the

resulting motion of the AV is still smooth.

What have been accomplished here is the design and implaticenof a smooth time

invariant controller for the AV that is general enough toldeih both asymptotic sta-

bilization and path tracking. A second and important propef the controller is the

absence of any singularities. It has a singularity wher= 3, = 7, but this is related

to the structure of the AV and not the controller. In [66] aelimization of a the same
type of robot was introduced, but it was also shown that thedliizing feedback is only
defined at a nonzero velocity. This is not a problem for pathking applications, but
for asymptotic stabilization some other method has to bdiegppmstead. By avoiding

linearization all together and exploiting the nonlineaustures of the AV the resulting
passivity based controller is defined for any configuratiod any velocity of the AV.



cHAPTERD

CONCLUSIONS AND FUTURE WORK

This thesis has focused on modeling and feedback controktd#ss of nonholonomic

systems. The major contribution has been the introducfign-@alled kinematic inputs

in the framework of Lagrangian and Hamiltonian systemsviBtes results on feedback
control of classical nonholonomic Hamiltonian systemsehlagen shown to be applica-
ble for this type of system as well, but the introduction afédinatic inputs has proved
to provide for the design of a global asymptotically statiilg feedback. The feedback
control of Hamiltonian systems with kinematic inputs hagmasimulated and tested
successfully on a real nonholonomic system. The systemestiun was a four wheel

steered, four wheel driven mobile robot (the AV) used forveying crops and weeds
in an agricultural field. For proper operation, the AV has ¢oable to asymptotically

stabilize itself and follow crop rows to minimize crop dareagoth of these operational
modes were provided by the proposed controller.

9.1 Summary of the Results

In chapter 3 a full dynamic and unreduced model of the AV waouced based on
the Lagrange equation for nonholonomic systems. The matidine AV was assumed

135
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to satisfy free rolling and non-slipping constraints, ahd appropriate expressions for
these nonholonomic constraints were incorporated in théethdSome considerations
were discussed where a part of the configuration coordirfitessteering angles) was
separated from the rest of the coordinates to lay the grofandfefining the notion of
kinematic inputs.

In chapter 4 the kinematic inputs were formally defined indbatext of general non-
holonomic Lagrangian systems. A kinematic input was defaedn input that could
control a subset of the configuration coordinates througfirist time derivative. Fur-
thermore, the total physical energy of the system had to weriamt with respect to
this subset. The link between a Lagrange system with kinermgduts and the corre-
sponding Hamiltonian system was also given in this chajpted, a reduction scheme
that eliminated the Lagrange multipliers was introduceble Teduction scheme was a
coordinate transformation based on results by van der SahdfMaschke [54], and it
was shown that the reduction also applied to systems wimkatic inputs. The reduced
system was again a Hamiltonian system, but with an additiopat that was a result of
including kinematic inputs. Finally, this chapter intradd an additional constraint on
the coordinate transformation that was able to eliminageattiditional input. The final
reduced system was on a simple form that made it particulse§ul for control.

The results from chapter 4 was applied to the model of the A¢hapter 5. It was
first checked that the steering angle velocities of the AVenfatly qualified kinematic
inputs. Once this was established the reduction schemeppdieé to the model. The
resulting model was then validated based on measuremettts ozal AV, and the model
was seen to precisely predict the behavior of the real system

Chapter 6 dealt with feedback control of the reduced nomtmidc Hamiltonian system
with kinematic inputs. The object was to asymptoticallybdize the system at a desired
closed set), on the configuration manifold. The 3@t was defined as the set of minima
of a potential energy function. An energy shaping and dampijecting feedback was
introduced, and the closed loop dissipative system wasshmaonverge to an open set
Q. The set) containedd,, but was generally larger, and asymptotic stability toward
Qo was not yet achieved. This was where the kinematic inputsdato play. By
designing a proper feedback for the kinematic inputs it wassible to force the s&}

to only contain®),, and asymptotic stability was achieved. A feedback for thehatic
inputs was not guaranteed to exist, so a sufficient conditioexistence was also given.
The condition was satisfied for the four wheel steered AV atierosystems with a
similar degree of mobility.

The feedback was applied to the model of the AV in chapter 7ietdya closed loop

dissipative system that enabled global asymptotic stahibn at an arbitrary position
and orientation on a horizontal field. While the four wheelestmade it possible to
asymptotically stabilize the AV, the four wheel drive supglthe freedom to define the
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propulsion torque distribution between the four DC drivetons. Many torque distribu-
tions were possible, and a distribution that minimized tleeteical power input to the
motors was proposed.

The energy shaping and damping injecting feedback was bstaartion very similar
to a PD controller for a linear system, and it inherited sorhthe same limitations; if
there were external disturbances to the system the asyimptability was sacrificed.
To solve this problem integral action was introduced to dé#l constant disturbances,
such as non-horizontal fields, soil tracks, rocks, etc. Titegiral feedback was chosen
such that the closed loop system was again on a Hamiltoniam. f8y imposing this
structure on the feedback the system was guaranteed tolide, steen when choosing
high feedback gains.

Asymptotic stabilization of the AV was not enough for propperation in the field. The
AV also had to be able to track crop rows. This was achieveddsygting a potential
energy function, where the path was represented by a clefaltey in the function.
This function was then fed back through the energy shapiedfdack, and path tracking
were achieved with the same controller structure. Wheretiray along the path, the
velocity of the AV was determined by the steepness of themistieenergy function and
the amount of damping, and to give the system a certain degnesocity control, an
adaptive damping scheme was introduced. By changing th@idgnt was possible to
control the steady state velocity without sacrificing thefukdissipative property of the
closed loop system.

The proposed feedbacks were tested on a simulation moded &i in chapter 7, and in
chapter 8 they were tested on the real AV, which was subjeetkmown disturbances,
actuator saturation, unmodeled dynamics, etc. The clasga dystem was proved to
perform as expected with very little discrepancies betweahand simulated outputs.

9.2 Recommendations for Future Work

Three important issues that have not received attentiohdrthesis are worth noting
here. These include both practical issues and problems ofa tineoretical nature.

1. To be able to asymptotically stabilize a nonholonomic H@mmian system with
kinematic inputs condition (6.10) on page 91 should be féadis It is easily
checked for the AV, but in general, checking the validity lniEtcondition is not
an easy task. A local proof is easy to find based on the invarsgibn theorem,
but this must be extended to a global proof if we wish to préneexistence of a
global asymptotically stabilizing feedback.
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2. There has been very little attention on the performandtleetlosed loop system,
and any performance requirements have been left to be ezbbivthe designer of
the potential shaping function. An unambiguous concepéediggmance is always
difficult to define for nonlinear systems, but the Hamiltangructure might help.
In the authors opinion it would be worthwhile to constructigable performance
index so that energy shaping and damping injecting feedi¥ackhe AV could be
evaluated for performance. Or an index that allows for aitptale comparison
between the passivity based controller presented herexastthg controllers for
vehicles of the same type.

3. The simulation model of the AV was a set of continuous déféial equations,
and simulation was done based on a high-order numericajretien method.
The physical implementation of the feedback, on the othedhaas based on an
less precise approximation where the inputs to the actsiatere passed through a
zero-order hold filter. This had no visible effect on the tssince the sampling
period was short. Increasing the sampling period will alireestainly have a
detrimental effect on the stability and performance of flosed loop system, and
it should be further investigated just how far we can pushsygem without
destabilizing it.



APPENDIX A

HAMILTON 'S PRINCIPLE AND LAGRANGE’S
EQUATION

This appendix gives a short introductiont@amilton’s principle of least actiomand is
based on excerpts from the two books [30] and [41]. Hami#t@ninciple is a very basic
principle, and it applies to a wide range of physical systelawton’s laws of motion
are just one example of equations that can be deduced franptiniciple. Because of
the generality of Hamilton’s principle it is well suited t@ihdle mechanical systems
with nonholonomic constraints, and in the end of the chatieprinciple will be used
to derive the extended Lagrange’s equation for nonholonasystems.

A.1 Lagrange’s Equation

We start by introducing Hamilton’s principle for a consdiv@ unconstraineanono-
genicsystem and use it to derive the classical Lagrange’s equéakioe term monogenic
indicates that all forces acting on the system are genebgtadingle potential function,
and this function is only depending on the position coortia®f the system (consider
for example a mass moving in a gravitational field). The pasiand velocity of the
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system are described by the generalized coordingted= 1,2, ..., n and their corre-
sponding generalized velocities ¢ = 1,2, ..., n. For the time being it is assumed that
the system is holonomic, which implies that the andg;s are independent. Constraints
on theg;s will be introduced later when moving to nonholonomic sgste Hamilton's
principle states that the motion from timeto timet, is such that the line integral

to
1:/ Ldt, L=T-U0,
ty

is stationary for any arbitrary variations of the corredtydaetweent; andt, — provided
all these variations vanish at andt,. The scalar functiod(q1, ..., Gn, 1, -+, qn,t)

is called the Lagrangian function and is defined as the @iffee between kinetic energy
T and potential energy.

Stationarity of a line integral implies that the integrabrd the correct path has the
same value as the integral along any neighboring path tanifitist order. Consider the
variations in the coordinates

q1 (t, Oé) = q1 (t, 0) + an (t),

gn(t, @) = gn(t,0) + an, (1),

where they;s are arbitrary independent function with the only conatsaihat they van-
ish att; andt, and that they are continuous through their second deraafiihe line
integrall is stationary if thevariation of I is zero

5]5/:2L(ql,...,qn,q'l,...,qn,t)dt0. (A.1)
The variation off is defined as a1
01 = —~da,
and (A.1) is '
5 = / Z <gi ‘;‘z gg g?; da> dt = 0. (A.2)

Integrating the second term by parts

/b L 0d; ,, _ [9L 0a:]" _ /” 0gi d (OLY
o 0G0 |0¢; 0a ], J,, Oadt \ g '

Because); vanishes at the end points the first term is zero and (A.2)rbheso

't oL d 0L
51/tl ;(a% 393 >5qldt 0, (A.3)
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where the variation ovirtual displacemenof ¢; is

0q;
0q; = do.
4 8aa

The term virtual displacement refers to an infinitesimaptiisement of the configura-
tion coordinate consistent with any forces and constraimg®sed on the system at time
instancet. For the time being we only consider unconstrained movenentater in
this appendix nonholonomic constraints will be introduogtich will limit the set of
possible displacements. The displacement is called Virougistinguish it from an ac-
tual displacement occurring in a time intervit during which forces and constraints
may change.

Since they;s are independent (no constraints), the virtual displacesde;s are also
independent. The condition thaf = 0 implies that each coefficient to tldg;s vanish
separately. This implies that

d oL  OL
dtaqZ 8(]1' o

i=1,2,...,n. (A.4)

This is the well known Lagrange’s equation for a consereationogenic system.

As a control system the basic Lagrange’s equation is ot litse, because it does not
provide any controllable inputs to the system. In the monéggystem is was assumed
that all the forces in the system was derivable from a singtemtial function/, which
only depended on thgs. That is

- ou
Qi - _aqza

and Lagrange’s equation can be rewritten as

dor or
dt 9q¢;  0q;

= Qi, i=1,2,...,n.

WhetherQ); is an internal force of a system with = 7' — U, or an externally applied
generalized force to a system with no potential enefgy-(T"), the motion of the system
will be the same. We conclude that if the forces acting on yiséesn consists of both an
internal part derived from a potential function and an exdépart@;, then Lagrange’s
equation can be extended to cover system with externalsrgssvell

doL oL
dt 0q¢;  0q;

=Qi i=12,....,n. (A.5)

1We use thdundamental lemmaf the calculus of variations. The lemma states thgffiﬂ\/l(m)h(x)dm =
0, Vh(x) with continuous second partial derivatives, thef{z) = 0 [4].
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A.2 Extension to Nonholonomic Systems

In the step going from (A.3) to Lagrange’s equation (A.4) @snassumed that the virtual
displacement§q; were all independent, but this is not true for nonholonorystems. A
system is nonholonomic if there exists constraints thahotibe expressed as holonomic
constraints between the configuration coordinates, as in

flar,...,qn,t) =0. (A.6)

In many applications (including mobile robots) nonholonoronstraints are encoun-
tered as linear relationships between the differentiath®d; s

> andg; + apdt =0, (A7)

wherel = 1,...,m indicates that there may be more than one constraint. Nate th
the a;;s anda;; may depend on both time and the generalized coordinatesetBoas
the constraints can be integrated to yield constraints eridim (A.6), but then it is a
holonomic constraint. From the definition of the virtualgécement the nonholonomic
constraints can be viewed as constraints onthe

> aidg = 0. (A.8)

The virtual displacements are hence no longer independedtye need to reduce the
n equations of (A.3) to independent ones. The trick to do thisiintroducd_agrange
undetermined multiplierdf (A.8) holds, then it is also true that

N aidg =0

for some undetermined quantitigag, [ = 1,...,m. Summing ovel and integrating
the result front; to ¢, yields

ta
/ Z)\lali6%’dt = 0.
oy

This equation can then be added directly to (A.3)

2 oL d oL
I= - | dqidt = 0. A
=) E(aqi TERDY A) bt = 0 (9

Thedg;s are still not independent though. The fitst m equations may be chosen inde-
pendently, but the remaining are fixed by (A.8). The Lagrange multipliers, however,
are still at our disposal. Suppose that we choose\thasuch that

oL d oL
- — Aag; =0, j=mn — 1,...,n. A.10
9q 4194, + ; 1a1; =0 i=n—m-+ n ( )
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With the \;s determined we know that the lastequations of the sum in (A.9) are all
zero, but we still have to satisfy

/tzz OL  d dL
tn S\ 0¢  dt g

The onlydg;s involved are the independent ones, and we conclude ttsasittisfied if
and only if

+Z)\lali>5qidt0, t1=1,...,n—m.
1

oL d OL
—— Ny =0,
oq  di og; + zl: ag

(again using thdundamental lemm)a Combining (A.10) and (A.11) and adding an
external input by the same reasoning, which led to (A.5), me @p with the final La-
grange’s equation for nonholonomic systems

(A.11)

doL
dt g

oL .
8—%:;)\1(1”+Q1-, i=1,...,n. (A.12)

This is not enough to describe the motion though. We haveduotred then Lagrange
multipliers, which are generally functions of the coordesand time, and hence in-
creased the system to havifg + m unknowns, but the Lagrange’s equations (A.12)
only gives a total of second order differential equations. The laséquations are em-
bedded in the constraint equations (A.7), but this time @meyconsidered as first order

differential equations
E aiiqi +aix = 0.
%

The two sets of equations (A.12) and (A.13) can be also béemrdn a more compact
matrix form

(A.13)

d oL 0L

L9 T8 AT (g, )N

390 (. )X +Q,

with
(a1 Q1 A1
g= 1|1, Q@=]": A=,

Ldn Qn Am
[a11 am1 ait
_aln Amn Amt
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