
 

  

 

Aalborg Universitet

Feedback Control of a Class of Nonholonomic Hamiltonian Systems

Sørensen, Mathias Jesper

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sørensen, M. J. (2005). Feedback Control of a Class of Nonholonomic Hamiltonian Systems. Aalborg:
Department of Control Engineering, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2017

http://vbn.aau.dk/en/publications/feedback-control-of-a-class-of-nonholonomic-hamiltonian-systems(fdea64a0-f595-11da-9980-000ea68e967b).html


Feedback Control of a Class of
Nonholonomic Hamiltonian Systems

Ph.D. Thesis

Mathias Jesper Sørensen

Department of Control Engineering
Institute of Electronic Systems

Aalborg University
Fredrik Bajers Vej 7, DK-9220 Aalborg Ø, Denmark.



ISBN 87-90664-28-0
August 2005

Copyright 2002-2005c©Mathias Jesper Sørensen



PREFACE

This thesis is submitted as partial fulfillment of the requirements for the Doctor of Phi-
losophy at the Department of Control Engineering at the Institute of Electronic Systems,
Aalborg University, Denmark. The work has been carried out in the period from August
2002 to August 2005 under the supervision of Associate Professor Tom Søndergaard
Pedersen.

Aalborg, August 2005 Mathias Jesper Sørensen

iii





ACKNOWLEDGMENT

Three years have passed since the beginning of this venture and you are now holding
the final outcome. It has been a great experience; at times frustrating, at times the
most interesting thing in the world. Nevertheless, it has been a great personal learning
experience for me, but this thesis could not have been completed without the help from
all the people who have supported me during the past three years and during my time as
a student at the Department of Control Engineering.

I would like to thank my supervisor Tom S. Pedersen for keeping my head above water
with his support and guidance during the past three years. A special thanks goes to the
rest of the ‘team’: Jan Dimon Bendtsen for his great and contagious enthusiasm, Palle
Andersen for his thorough and well places questions, which has lead to many interesting
discussions, and Jens Dalsgaard for his practical help. I would also like to thank all the
students who have worked on building the AV robot. Without you it would still have
been stuck in the laboratory. A very broad thanks to everybody at the Department for
upholding what I find to be a superb social atmosphere. Keep itup in the future!

During spring 2004 I was a guest at the Control Laboratory at Twente University, and
I would like to thank Professor Stefano Stramigioli, Carla Gouw-Banse, and every one
(there are too many to mention) at the Control Laboratory forwelcoming me and making
my stay a very pleasant one. And to everyone who lived in Macandra during spring 2004;
I wish you all a bright future.

Finally, I would like to thank Pernille Dahl for always supporting me, even when we
have been on different continents, and for bearing with me and my absent-mindedness
during the past months.

v





ABSTRACT

Feedback control of nonholonomic systems has always been problematic due to the non-
holonomic constraints that limit the space of possible system velocities. This property is
very basic, and Brockett proved that a nonholonomic system cannot be asymptotically
stabilized by a time-invariant smooth feedback. This thesis presents a novel way of con-
trolling a special class of nonholonomic Hamiltonian systems. The basic idea is to split
the configuration coordinates in two; a primary part that we wish to asymptotically sta-
bilize, and a secondary part that not necessarily has to be stabilized, but is useful when
controlling the primary part. The secondary part is introduces as the integral of so-called
kinematic inputs. The kinematic inputs have the property that they cannot change the
amount of energy in the system, i.e., the Hamiltonian function is invariant with respect to
the kinematic inputs. The resulting nonholonomic Hamiltonian system with kinematic
inputs shares many of the properties of the classical Hamiltonian system, and some of
the methods involved in controlling classical systems are proved to also apply to the
augmented system. The extra degree of freedom provided by the kinematic inputs turns
out to be useful when stabilizing the nonholonomic system. If the system is properly
actuated it is possible to asymptotically stabilize the primary part of the configuration
coordinates via a passive energy shaping and damping injecting feedback. The feedback
is smooth and time-invariant, but since it does not asymptotically stabilize the secondary
part of the configuration coordinates, it does not violate Brockett’s obstruction.

The results from the general class of nonholonomic Hamiltonian systems with kinematic
inputs are applied to a real implementation of a four wheel steered, four wheel driven
nonholonomic robotic vehicle, where the velocity of the steering motors are assumed
to satisfy the conditions of proper kinematic inputs. The proposed controller is general
enough to achieve both global asymptotic stabilization andpath tracking for the robot.
To improve the operation of the closed loop system some extensions are provided: in-
tegral action for asymptotic stabilization under the influence of disturbances, and an
adaptive damping scheme ensuring that the robot travels at apredefined speed when
tracking a path. Both of these extensions are defined in the framework of Hamiltonian
systems.
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CHAPTER1

I NTRODUCTION

Throughout modern history agricultural research has been,and still is, an area of large
economic, environmental, and political interest, and withthe introduction of state-of-
the-art technologies, innovative new tools for increasingthe size and quality of agricul-
tural outputs are emerging.

Agricultural science has in recent years made great advances on the use of robotics in
agriculture. Farmers are already beginning to implement automated fruit pickers, weed-
ing vehicles, pigsty cleaners, and milking machines in their production. These advances
are often governed by the need for more efficient production methods, or methods that
reduce the strain on the environment or increases animal welfare. With more than 60%
of Denmark cultivated and a total sales profit of 88.3 billionDKK in 20001, Danish agro-
nomic and horticultural knowledge is playing an important role on today’s international
agricultural scene.

1FromFacts & Figures, Agriculture in Denmark.Published by The Danish Agricultural Council, 2002
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2 I NTRODUCTION

1.1 The API Project - Background and Motivation

The acronym API stands forAutonomous Platform and Information system for registra-
tion of crops and weeds, and it is a joint research project with the purpose of prototyping
a standalone system that is able to collect local data on the weed and crop state in a field.
This data can then be used to build a map showing the spatial distribution of crops and
weeds.

A detailed spatial weed map of a field is useful for the farmer when planning his field
treatment, since knowledge of the coverage of different species of weeds gives the farmer
the opportunity to mix an optimal herbicide agent. Using a variable rate sprayer com-
bined with a positioning system the farmer is then able to precisely apply the agent
in the right amounts at the right locations. And when considering crop treatment, the
map can be used for precise application of fertilizers and water. Thisprecision spray-
ing/fertilizing, which is a subset of the broader terminologyprecision farming, should
ultimately result in a reduction in herbicide and fertilizer use and an increase in crop
quality and stability. Developing methods for generating detailed weed and crop maps
is therefore important for both environmental and economicreasons.

For crop and weed information gathering there already exists a range of different sensors
that can be mounted on tractors, combine harvesters, or other human operated machin-
ery. Gathering weed and crop information is a time consumingtask, and even if the
farmer uses a vehicle mounted sensor, data collection is usually done only in conjunc-
tion with sowing, spraying, fertilizing, or harvesting. Often this is either too early or too
late, as the crop treatment is most effective when the crops have just germinated. The
API project is therefore focused on an alternative method ofgathering the data. In this
project the main platform for carrying the sensors into the field is a small autonomous
vehicle, from now on denoted the AV. See figure 1.1.

The AV is of a relatively small size with a sideways and front to rear tread distance
of 1m and a total weight of approximately230kg. The major benefit of the small size
and weight is that the tread pressure is decreased, as compared with that of a tractor,
and the soil compaction and crop damage is hence greatly reduces. To accommodate
a large degree of freedom, the AV has been constructed as a four wheel driven, four
wheel steered (4WD-4WS) vehicle. This gives the AV the ability to rotate around any
point and hence also drive sideways. The AV is designed to carry any kind of sensor or
implement into the field; it might be vision sensors, like color or infrared cameras, or it
might be sensors that need direct physical contact with the soil, such as soil sampling
equipment or soil compaction sensors. It has also been discussed to put a mechanical
weeding implement on the AV, so that weeding can be done on thefly.
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Figure 1.1: The Autonomous Vehicle

The implement used in the API project is limited to a high resolution color camera, and
a large separate part of the project is to develop robust computer vision algorithms to
identify a range of different weed species from color photographs. Apart from the AV
itself and the primary sensor, the API project includes one more important segment.
With or without the implement the AV cannot complete the taskof mapping a field by
itself. The project therefore also incorporates a base station, typically located at the
farm, for job planning. The base station also handles high level task management and
data handling, and it is the primary interface between the farmer and the API. At the
base station the farmer can plan future tasks and study current and previous weed and
crop maps.

A typical field mapping job would progress as follows:

1. The farmer defines a new job and sets it up in the base stationsoftware. The job
description includes, as a minimum, the boundaries of the field to be mapped,
sowing direction, and information on the time of execution

2. The base station generates a grid of way-points in the current field. The way-
points includes sample points that the AV must drive to and take a photo, and
intermediate navigation points that the AV should just passthrough
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Figure 1.2: Weed mapping

3. The AV is driven manually to the field, and a wireless connection is established
with the base station

4. The AV then asks the base station to transmit the first way-point, and it is now up
to the AV to reach this point without damaging the crops. Whenit has reached the
point, and if it is a sample point, it sends a signal to the camera telling it to take a
photo. The camera then takes a photo and transmits it back to the base station for
further processing

5. The AV then asks for the next way-point, drives to it, and continues in this manner
until the entire field has been traversed. Figure 1.2(a) shows how the traversal of
a (very small) field might look

6. The collected data is then processed, and a weed coverage map is generated. An
example of a weed map can be seen in figure 1.2(b). The map showsthe percentile
coverage of White Goosefoot on an imaginary field

Thus, when the farmer has driven the AV into the field, he can forget about it until
it has traversed the entire field and is ready to be taken home.The in-field driving
might last several hours, but because the AV is driving autonomously, it will not be
considered as a time consuming operation for the farmer. Building a system with so
much autonomy is not an easy task, and it is further complicated by the growth state in
the field. Gathering weed and crop information for spraying or fertilizing must be done
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when the plants have just germinated, since spraying is mosteffective at this state of
growth. At this stage the weeds are most vulnerable, but so are the crops, and this raises
several interesting problems for the autonomy of the AV. Letting an autonomous vehicle
drive in a just germinated field imposes strict demands on theprecision and execution of
the path planning algorithms and control laws to avoid unnecessary crop damage.

1.2 Delimitation of Study

As indicated in the previous section the development of the API consists of three distinct
tasks:

1. Development of the camera vision system

2. Development of the base station

3. Development of the AV

The first task was handed to researchers at theDanish Agricultural Research Centerat
Bygholm, where they have developed a method usingactive shape modelingto identify
different weed species from digital photos [57, 56]. The general idea is to build paramet-
ric models of the shape of each individual weed specie. By changing the parameters it is
possible to change main features of the shape, such as growthstage, number of leaves,
deformities, etc., and hence each model covers a large variation of each specie. Photos
gathered from a field is then analyzed; the first step is to isolate every single weed and
crop plant, and the second is to match them with all the weed models until a ‘best fit’ is
reached.

The second task was handed to researchers at theDepartment of Computer Scienceat
Aalborg University. They have created an abstract model of the entire API in order to
design a suitable base station system. The base station alsoincludes an efficient way of
generating sample points in the field based on a dynamic sampling strategy, where the
sample grid is adapted to local variations, such as previously measured weed density, or
occurrence of special precarious weed species [59].

The third task was also handed to Aalborg University, but to researchers and students at
theDepartment of Control Engineering. This thesis focuses on this task and on some of
the instrumentation and control aspects of the AV.

Developing and prototyping the AV has involved several people, and it has spawned
many sub-projects for students and researchers alike. The mechanical construction of
the frame and mounting of the motors was carried out at Research Center Bygholm, but
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everything else has been built, mounted, and tested by people (mostly students) at the
department. This includes a power supply and safety system,construction of hardware
interfaces for actuators and sensors, mounting of sensors,and design of a distributed
software testbed for developing and testing navigation andcontrol algorithms in real-
time. Pedersen et al. [50] and Nielsen et al. [45] gave a conceptual description of the
control system architecture on the AV. The vehicle in these two papers was a prede-
cessor to the current AV, but the system architecture has been left virtually unchanged
on the new vehicle. The system architecture was also the focus of Nielsen et al. [44],
but only as an example when designing control architecturesfor a generic autonomous
vehicles. Several papers have also been published on the control aspects of the AV. An-
dersen et al. [3] introduced a robust nonlinear controller based on feedback linearization,
and Sørensen [61] introduced a controller based on artificial potential fields. This was
extended to cover a more general class of systems in [62].

This thesis is specifically concerned with the software and control aspects on the AV
with main focus on the control aspects. For proper operationin the field the AV has
to be able to converge to single way-points as dictated by thebase station, and while
approaching the way-points, the AV has to drive along the crop rows to minimize crop
damage. The control algorithms for the AV should hence be able to solve the standard
problems of path tracking and asymptotic stabilization of awheeled robot. The latter
imposes an interesting problem, since asymptotic convergence toward a single point has
always been an intrinsic difficulty in the control of wheeledrobots.

1.3 Previous and Related Work

So what makes autonomous vehicles and mobile robots different from other electro-
mechanical systems? Mobile robots are often imposed with non-integrable constraints
that cannot directly be used to reduce the dimension of the system. Consider the bead
on figure 1.3 moving along a fixed curved path inR

2.
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Figure 1.3: Bead moving
along a fixed path

The position of the bead can be described using Carte-
sian coordinatesx andy, but since the bead is constrained
to lie on the curve, one coordinate would suffice; the arc
lengths along the curve, for example. This is an exam-
ple of an integrable constraint that can be used to reduce
the number of generalized coordinates of the system. A
non-integrable or nonholonomic constraint, on the other
hand, is defined as any constraint that cannot directly be
used to reduce the number of coordinates. Nonholonomic
constraints can have many different forms. They can be
inequalities on the configuration space; if, in the previous
example, the bead was constrained to lie on either side
of the curve. When working with vehicles the nonholo-
nomic constraints appear as constraints on the allowed di-

rection of system velocities. Consider an ideal free rolling disk, for example; it would
be imposed with constraints that guarantee the disk never slips sideways and never does
a wheel-spin. These constraints are also known as free rolling and non-slipping con-
straints.

Ways of overcoming the obstacle of having nonholonomic constraints in vehicle con-
trol have been studied extensively in the last decades, and in the beginning, this was
more or less the only problem that was addressed. The objectives back then was, and
still is today, to develop tracking controllers and controllers that were able to asymptot-
ically stabilize the vehicle, but basically it was all aboutsolving or working around the
problem of nonholonomicity. Brockett and Sussmann [14] proved that nonholonomic
systems could not be asymptotically stabilized by any smooth time-invariant controller,
and alternative approaches have been proposed ever since. Typically with some kind of
switching involved making the feedback non-smooth or time-variant or both. A simple
and very famous example of this, which can be found in almost any book on nonlinear
systems, is the use of Lie brackets to parallel park a car likevehicle. A more general
method for motion planning of driftless systems using Lie brackets were proposed by
Lafferriere and Sussmann [39] who introduced a trajectory generating algorithm based
on higher order Lie brackets. Many of the Lie bracket methodsuse non-smooth switch-
ing between constant inputs, and to avoid this hard switching Murray and Sastry [42]
proposed to switch between smooth sinusoidal inputs instead. The steering were ba-
sically the same though. Other researchers worked on avoiding switching altogether,
and Barraquand and Latombe [5] introduced an optimal path planner, where the input
switching was minimized, and Kanayama et al. [34] proposed atracking controller that
used a virtual robot moving along a predefined trajectory as reference. This strategy
required that the control actions for the virtual robot, andalso to some degree for the ac-
tual robot, were known beforehand, and undesired controls could be avoided. Still using
a switching strategy Canudas de Wit and Sørdalen [70] proposed a piecewise smooth
controller that was able to exponentially stabilize a nonholonomic system. The method
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was extended to trajectory tracking in [58]. Self-learningcontrol has also been used suc-
cessfully to control nonholonomic systems, and Nguyen and Widrow [43] used a neural
network to drive a truck-and-trailer system in reverse.

Most of the pioneering work from around 1990 was focused on the kinematic part of the
vehicles. The kinematics of a vehicle is the relation between velocities and configura-
tion coordinates, and this is typically where the nonholonomic constraints enter. Good
results were achieved with pure kinematic control as long asthe robot was equipped
with powerful enough actuators, so that the velocities of the robot could be controlled
directly. This is usually the case for small robots, but whenthe robots increased in both
size and weight the rigid body dynamics began to play an important role. Throughout
the nineties the major contribution to the work on control ofmobile robots was the inclu-
sion of the natural dynamic part associated with rigid body motion. The full dynamics
were already incorporated into the model of a general nonholonomic system by Bloch
and McClamroch [10], and some considerations were given on stabilizability of the full
system. This work was further elaborated in [11]. Thuilot etal. [66, 67] introduced a
dynamic model for a general class of mobile robots. The authors also looked at a feed-
back linearization scheme, where the dynamic part suddenlyplayed a significant role in
the physical understanding of the linearization. The kinematic part of a mobile robot is
only feedback linearizable through a dynamic extension, and the dynamic part of the full
model is the natural choice. This was also exploited by Fierro and Lewis [22] who used
a backstepping technique together with a dynamic extensionto achieve path following
and stabilization about a desired posture. Apart from introducing the dynamics, much
of the work in the nineties was on improving existing methods. Godhavn and Egeland
[29] and Samson [51] proposed a unified approach to stabilizenonholonomic systems on
different forms, and Fukao et al. [26], Dong et al. [17], and Soetano et al. [55] proposed
adaptive control schemes for a robot with parametric uncertainties. Many other methods
have been proposed in the last decade, but common to many of these methods is that it is
easy to loose track of the structural properties of the underlying physical systems; useful
structural properties that are inherent in mobile robots and indeed all electro-mechanical
systems. Especially feedback linearization will often result in a complex controller, and
physical insight into the system is lost.

To keep and exploit some of the intrinsic structures of the system, some researchers
have turned to new ways of representing general classes of electro-mechanical systems.
A very useful one is the port-controlled Hamiltonian system(PCHS) that is general
enough to describe almost any passive system (and hence any natural electro-mechanical
system), while still capturing the inherent structures [53]. The PCHS is a generalization
of the classical Hamiltonian representation of dynamic systems. Apart from the intrinsic
symmetry, which the PCHS inherits from the classical Hamiltonian system, it is also
equipped with an input/output port, hence the termport-controlled. The input/output
port has the feature that the product between input and output is always power. The port
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is therefore often called apower-port, and the energy flowing into the system is exactly
the integral of this power-port.

Because the PCHS captures the physical structures, many of the proposed control meth-
ods for this kind of system have intuitive physical interpretations. Terms likeenergy
shapinganddamping injectionare often encountered, and they are directly related to
physical laws, such as energy conservation and the laws of motion. Energy shaping
refers to a method with which it is possible to add or subtractartificial potential energy
through feedback, thereby generating a closed loop system with shaped potential energy.
Damping injectionrefers to increasing or decreasing the natural damping of the system,
typically by a velocity feedback. These terms are all well described by Ortega et al.
[49, 48] who introduced a generalInterconnection and Damping Assignment - Passivity
Based Controller, or IDA-PBC, for the PCHS. In theory, the IDA-PBC is able to convert
any well behaved PCHS into any other PCHS of the same order. Inpractice though, the
structure and controllability of the original PCHS often prohibits this, but the IDA-PBC
can still lead to very useful results.

Many of the PCHS references already mentioned only deal withholonomic systems, but
the theory applies largely to nonholonomic systems as well.van der Schaft and Maschke
[54] introduced a PCHS description of a general nonholonomic system, and in [40] some
results were presented on stabilizing the nonholonomic PCHS. Khennouf et al. [36] also
described some preliminary results on asymptotic stabilization by switching between
two different artificial potential energy functions in the energy shaping feedback. Fuji-
moto and Sugie [25] used canonical transformations to stabilize a nonholonomic PCHS,
and in [23] it was extended to trajectory tracking. Duindam and Stramigioli [18] used
energy considerations in a PCHS to accelerate a heavily under-actuated vehicle called a
‘snakeboard’. The notion ofenergy shapingin a nonholonomic PCHS, which was used
in many of these references, is closely related to the notionof artificial potential fields
(APF), which have also been used successfully for path planning and control of mobile
robots [13, 1, 27]. An artificial potential field is basicallyanother word for the resulting
potential energy inenergy shaping.

1.4 Contributions of This Work

This thesis considers a class of nonholonomic Hamiltonian systems that encompass the
AV and many other types of wheeled robots. Common to these systems is that the
total physical energy is invariant with respect to a part of the configuration coordinates.
This lays the grounds for defining the so-calledkinematic inputsthat can be used to
asymptotically stabilize the system if it is sufficiently actuated. The important difference
with this procedure, as opposed to many of the procedures described in the previous



10 I NTRODUCTION

section, is that the resulting feedback is smooth and time-invariant. This does not conflict
with the results by Brockett and Sussmann [14], because the controlled system is on a
slightly different form than the form used by Brockett. The proposed method is applied
to the AV and tested in practice and have shown to be effectivefor both asymptotic
convergence to a single way-point and for general crop row tracking. The controller for
the AV is further improved by including integral action to guarantee asymptotic stability
under the influence of a constant disturbance; and an adaptive damping scheme used to
control the traveling velocity when tracking rows. All the improvements are given in the
context of Hamiltonian systems.

The main contributions are summarized here:

• A full dynamic model of the AV, which is suitable for control, is developed using
Lagrangian and Hamiltonian mechanics

• A verification of a simulation model is carried out from physical measurements
on the real AV, and the model is shown to capture the dynamics of the physical
system

• The introduction of so-calledkinematic inputs in the framework of nonholo-
nomic Hamiltonian systems is shown to give new insight in thecontrol and sta-
bilization of these systems. Kinematic inputs are able to directly change a subset
of the configuration manifold through their first derivative. Furthermore, the total
energy function must be invariant with respect to the kinematic inputs. With this
formulation, it is possible to set up sufficient conditions that guarantee asymptotic
stability on the remaining part of the configuration manifold

• A nonlinearpassivity based controlleris developed for controlling systems with
kinematic inputs. The controller is applied to the AV, and itis general enough to
handle both crop row tracking and asymptotic stabilizationof the AV. Especially
the ability to asymptotically stabilize the system is a useful feature, as this is a
general problem for nonholonomic systems. The controller applied to the AV is
further improved by two extensions. The first is integral action to eliminate the
effect of external disturbances, and the second is an adaptive damping scheme
that enables velocity control when path tracking. Both extensions are given in the
framework of Hamiltonian systems

• A proof of conceptis presented by tests of the controller on the physical vehicle

Some of the results have already been presented and published in three conference pa-
pers and one transaction paper that has been submitted for publication. Sørensen [61]
focused on deriving a suitable model of the AV, and a path tracking controller was in-
troduced using APFs. In [62] the kinematic inputs were introduced, and a controller
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for asymptotic stabilization of a class of nonholonomic Hamiltonian systems with kine-
matic inputs was presented. The controller was applied to the AV, and a successful test
on the physical system was also presented. Nielsen et al. [44] presents some conceptual
pointers for design of embedded software for autonomous vehicles. Sørensen et al. [63]
presents some additional results on a general nonholonomicHamiltonian system and is
a summary of the results presented in the thesis at hand.

1.5 Thesis Overview

Chapter 2. Hardware and Software on the AV. This chapter gives a description of
the hardware and software on the AV. It can be read independently from the rest of the
thesis.

Chapter 3. Lagrange Model of the AV. Before turning to the problem of controlling
the AV a full dynamic model of the vehicle is developed in thischapter. The model is de-
veloped using the Lagrangian equations for nonholonomic electro-mechanical systems.

Chapter 4. The Hamiltonian Formulation and Model Reduction. This chapter deals
with a general class of nonholonomic Hamiltonian systems are augmented with properly
definedkinematic inputs. The chapter describes a method of eliminating the Lagrange
multipliers and thereby reducing the system.

Chapter 5. Reduction and Validation of the AV Model. The method described in
chapter 4 is applied to the model of the AV to arrive at a suitable model for control. This
model is then verified based on measurements from physical test runs with the vehicle.

Chapter 6. Feedback Control of Systems with Kinematic Inputs. This chapter is de-
voted to developing a controller for the general class of nonholonomic systems with
kinematic inputs. The chapter focuses on energy shaping anddamping injection to
achieve asymptotic stabilization of the system.

Chapter 7. Feedback Control of the AV. The controller developed in chapter 6 is
applied to the AV model. Several extension to the controlleris also given, such as
general crop row tracking, crop row tracking with constant velocity, and integral action.

Chapter 8. Physical Tests.This chapter illustrates the results from several physical
tests with the AV and the applied controller.

Chapter 9. Conclusions and Future Work.Conclusion and final remarks.





CHAPTER2

HARDWARE AND SOFTWARE ON THE AV

As mentioned earlier the main source of interest in this thesis is the development of
a working prototype of an AV, and this chapter describes someof the hardware and
software issues involved in this task. The prototype is to beused as a development
platform, and this has influenced both the mechanical designand the design of software
systems. The AV is constructed with a high degree of mobilityby letting all of its wheels
be steerable and drivable, and this ‘over’ actuation of the vehicle has two important
advantages: it enables the AV to minimize the damage to the crops in the field, and it
gives the control designer an opportunity to test many different control strategies, as the
AV is able to emulate different steering methods, such as allwheel steer, front axle steer,
skid steer, etc. To relieve the control designer from havingto know every little intrinsic
detail about the hardware on the AV a graphical control design environment has also
been developed. It includes an interface to the sensors and actuators on the AV, and an
automated code generation feature that enables the controldesigner to build a feedback
controller in a graphical environment and then convert it toan executable program for
the AV.

13
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2.1 Hardware

As mentioned in the introduction, the idea behind the API project is to have a small AV
drive along crop rows in a field, doing as little damage to the crops as possible. The
AV must be able to traverse many kinds of fields with crops at different growth stages,
but a typical working environment is a crop field with newly germinated vegetation. At
this stage there is very little plant material to bind the soil, and just a little rainfall will
make the soil soft and muddy. The AV must therefore be equipped with a traction and
propulsion system that is powerful enough to drive the AV in this environment.

The crop and weed registration also puts constraints on the size and mechanical con-
struction of the AV. As the acronym implies, the API is aplatformcapable of carrying a
range of small implements into the field. These implements include, but are not limited
to, passive sensors like CCD and infrared cameras, or mechanical implements like weed-
ers and soil samplers. The AV must hence be constructed with enough room, clearance,
and mounting options for this variety of implements. A high clearance is also necessary
when the AV has to operate in a field with a late crop growth state.

The AV also needs a high degree of maneuverability to be able to navigate a field without
damaging the crops. Most of the time the AV drives along a croprow, and this is a
relatively simple maneuver that can be accomplished by a simple car-like steering. But
the AV needs to do more complicated maneuver as well; it has tobe able to change crop
rows and to align itself to a given crop row, both in-field and when reaching the end of a
crop row. Car-like steering is not a good choice in these situations as figure 2.1 shows.
The rear wheel tread deviates from the front wheel tread as soon as the vehicle starts
turning, and this results in crop damage by all four wheels while crossing the row. To
minimize the damage, the AV must use a different steering approach with a larger degree
of maneuverability.

The most important requirements to the mechanical construction are summarized below.
The AV must have:

1. Good traction

2. A powerful propulsion system

3. A large degree of maneuverability

4. High clearance

5. Mounting options for implements

6. Suitable for control inputs
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Figure 2.1: In-field crop row changing with car-like steering. The triangles marks areas
of crop damage

The last requirement should be evident in the design of any autonomous vehicle; there
must be a well defined interface between the physical components of the AV and the
control system, and the actuation of the system must render the system fully controllable.

2.1.1 AV Frame

To take the third, fourth, and fifth requirement into accountand to give the AV a good
loading capability, it has been designed as a four wheel vehicle with the wheels placed
at the corners of a1 × 1m square. This configuration enables the AV to drive along
crop rows planted with a relative distance of one meter (or aninteger fraction thereof).
Figure 2.2 depicts a side view of the AV, and it shows the largeworking area and high
clearance at the center of the vehicle together with the triangular shaped boom for im-
plement mounting. The symmetric structure of the wheel configuration makes the AV
stable under varying load conditions, because the weight ofan implement, if placed at
the center, will distribute evenly onto all four wheels.
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1

2

Figure 2.2: The AV right side view. 1: DC steering motors, 2: DC hub drive motors

2.1.2 Steering System

As already noted, car-like steering is not the prime choice of steering configuration for
the AV if the crop damage should be kept at a minimum. If, on theother hand, it is
possible to steer both the front and rear wheels of the vehicle in a synchronous manner
the wheel tread deviation between front and rear wheels change, and a crop changing
maneuver would look like the one shown in figure 2.3. The deviation between front and
rear wheel tread has been brought to zero, and sharper turns can generally be carried out
with this steering configuration. Only having two treads over the crop rows, while also
intersecting the crop rows at a sharper angle, clearly reduces the damage.

The maneuver illustrated on figure 2.3 can be executed by any vehicle where theinstan-
taneous center of rotation(ICR) is located on a line passing through the center of the
vehicle, see figure 2.4. The ICR is defined as the point where the four lines perpen-
dicular to the wheels meet. The maneuverability of a front+rear wheel steered vehicle
has not really been increased when compared with the car-like steering; the vehicle can
still only drive back and forth at an arbitrary rotation rate. The front+rear wheel steered
vehicle is not able to drive directly sideways, which is a desirable maneuver when the
AV has to align itself to a crop row. Of cause, any car-like or front+rear wheel steered
vehicle can do sideways motion by a sequence of forward and backward motions – much
like parallel parking a car. This is not an ideal motion in a crop field though, where the
crops are planted very close together, and there is no room for these maneuvers. Pure
sideways movement and greater maneuverability can be achieved by allowing all four
wheels to be steered independently. This allows the ICR to lie anywhere inR2, hence
allowing the vehicle to rotate around any point and to drive sideways. Rotation about
an arbitrary ICR is illustrated in figure 2.5. Sideways driving can then be achieved by
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Figure 2.3: Crop row changing with front+rear wheel steer

ICR

Figure 2.4: ICR of a front+rear wheel steer
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letting the ICR tend to infinity in the direction perpendicular to the desired sideways
motion. This steering configuration will henceforth be called four wheel steer (4WS).

ICR

Figure 2.5: ICR of a full four wheel steer

To achieve 4WS on the AV it is equipped with four steering actuators marked with (1)
on figure 2.2; one for each wheel. The steering actuators are four DC-motors that enable
each wheel suspension to be rotated360◦ through a worm gear. Table 2.1 shows some
of the characteristics of the steering actuators. The 4WS has the added benefit that it can
be used to mimic any other steering method (car-like, front+rear, skid steer, etc.), and
this feature is useful when testing and comparing motion control algorithms for different
wheel steering configurations.

Manufacturer maxon motor
Model F 2260 (885)
Type Graphite brushes DC motor
Stall torque 1.67Nm
Assigned power rating 80W
Maximum efficiency 80%
Website http://www.maxonmotor.com

Table 2.1: The steering motors

2.1.3 Propulsion System

For driving in a muddy field with little traction it is desirable to have a four wheel
drive (4WD) propulsion system on the AV. The 4WS of the AV putsconstraints on the
design of the propulsion system though. Because of the independent steering of each
wheel, it is not feasible to design a transmission system going from a central propulsion
engine and passing through each steerable wheel suspension. This would result in a
complex mechanical construction of the suspensions, and atthe same time it would
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most likely result in a propulsion distribution that is difficult to control. A different
approach is to mount four independent propulsion motors directly in each wheel, thereby
eliminating the need for a central transmission system all together. This is achieved on
the AV with the use of four brushless DC hub motors; one mounted in each wheel,
marked (2) on figure 2.2. The motors are custom built for the AVby Heinzmann GmbH
(http://heinzmann.de). Unfortunately, the customization means that very littleis
known of the electrical and mechanical properties of the motors, but they are assumed to
exhibit linear behavior. The four hub motors allows us to consider each wheel as a self
contained mechanical subsystem in the sense that only an electrical power and signal
connection needs to pass through the wheel suspension, thereby greatly decreasing the
mechanical complexity of the overall system. The system is also simplified, from a
control engineering point of view, by the similarity of eachwheel set and the useful
properties of having to control simple DC motors instead of,for example, a central fuel
based propulsion system.

2.1.4 Sensors

The 4WD-4WS structure of the AV results in a highly actuated and fully controllable
system, but in order to be fully observable as well, it is important to identify the infor-
mation needed to describe the instantaneous state of the AV and its surroundings. First
of all, the absolute position and orientation is needed to relate to the way-points received
from the base station. Knowledge of their time derivatives,i.e., the velocity and rotation
rate, is also imperative when it comes to good motion controlof the AV. Each particular
crop field might not be completely horizontal, so pitch and roll information is also useful
if any compensating for the effect of gravity is needed. All this information is related
to the global state of the AV, but some local information on actuator states is also nec-
essary. For steering the AV, information on the angular position of each steering motor
is needed. And knowing the angular velocity of each individual steering and propulsion
motor is useful for good low level motor control. To navigatealong crop rows, the AV
also needs information on the position and orientation of a target crop row. This is most
likely not available from the base station (depending on what information the farmer
collected when sowing the crop), so the AV needs some other method of obtaining the
information.

The necessary information is:

• The two dimensional position in world coordinates

• The two dimensional velocity in world coordinates

• Heading, pitch, and roll of the AV
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• Rotation rate of the AV

• Angular velocity of each propulsion motor

• Angular position and velocity of each of the four steering motor

• Location of a nearby crop row relative to the AV

This information is imperative for good control of the AV, and it must be available by
direct measurements or through an observer. To obtain the information, the following
range of sensors is equipped on the AV:

• A GPS receiverfor measuring position and velocity of the AV in world coordi-
nates

• A magneticcompass and tilt sensorsto measure the heading, pitch, and roll

• A single axisfiber optic gyro for measuring the rotation rate about an axis per-
pendicular to the ground

• Tachometersin each propulsion motor for measuring the angular velocity

• Encodersin each steering motor for measuring the angular position

• A ground speed radarfor measuring the forward velocity of the AV relative to
the ground

• A crop row guidance camerafor measuring the offset and direction of a crop
row in front of the AV

Figures 2.6 to 2.8 shows the mounting locations of the sensors.

GPS Receiver

The global positioning system equipped on the AV is a Real Time Kinematics - Global
Positioning System (RTK-GPS). The RTK-GPS receiver is usedto generate a position
and velocity solution in world coordinates. The solution isbased on signals received
from the GPS (and GLONASS when available) satellites together with correctional in-
formation via a radio modem from a reference station. The corrections are based on
information in the signals from the satellites and phase measurements on the modulated
signals themselves. By including phase measurements in thecorrections, it is possible
to achieve a precision of a couple of centimeters. More specifications are summarized
in table 2.2. The high precision is important for the qualityand repeatability of the
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Figure 2.6: The AV rear view. 3: GPS antenna, 4: Magnetometer and tilt sensors, 5:
Ground speed radar, 6: WLAN antenna. The joystick, monitor,and keyboard are used
for interfacing the on-board computer system
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Figure 2.7: The AV rear instrument box. 7: Power supply, 8: LH Agro embedded
computers, 9: PC/104 main computer
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Figure 2.8: The AV front instrument box. 8: LH Agro embedded computers, 10: 1-axis
fiber optic gyro, 11: RTK-GPS receiver, 12: GPS radio modem

field mapping. Repeatability refers to the ability to returnto the exact same location
on a crop field several times, and good repeatability is useful when the farmer wants to
see the temporal variation on a field or check the long term effects of his applied crop
treatment.

Manufacturer JAVAD
Model Legacy-E
Type 40-channels dual frequency GPS+GLONASS receiver
RTK accuracy (horizontal) 15mm
Maximum sampling rate 10Hz
Website http://www.javad.com

Table 2.2: The RTK-GPS

The GPS receiver is unfortunately a rather unreliable sensor. The receiver is only able
to return a position if the antenna has line-of-sight with atleast four satellites. This is
usually not a problem in clear weather on an open field, but as soon as the receiver is in
the vicinity of solid objects like buildings or trees, the positioning solution is often lost;
even thick clouds can severely degrade the performance of the receiver. This problem
can partly be solved by relying on the rest of the sensors in adead-reckoningconfigura-
tion during periods of GPS drop-outs. Dead-reckoning is a term used when estimating
the position of a system based on integration of local measurements only. If the steering
position and angular velocity of each wheel and the orientation of the body of the AV is
known it is possible to estimate the trajectory of the AV fromthe point where the GPS
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solution drops out. In the ideal situation, the dead-reckoning estimate would coincide
with the absolute position of the AV, but a dead-reckoning observer is by construction a
divergent filter. Uncertainties in the system, such as wheelslip or biased measurements,
will eventually make the dead-reckoning position deviate from the actual position. This
is illustrated in figure 2.9.

GPS drops out

Dead-reckoning position

Actual position

Figure 2.9: Deviation in dead-reckoning

During short drop-outs of the GPS solution, the availability of the AV can be greatly
increased by applying dead-reckoning, but if the drop-out is long, the dead-reckoning
will eventually become too unreliable. The AV will then haveto stop until the GPS
receiver has reestablished a positioning solution. The useof the rest of the sensors is
therefore twofold; they are used both for the full state estimation, when the GPS is
operational, and to help estimate the position of the AV whendead-reckoning.

Compass and Tilt Sensors

To obtain the global attitude (heading, pitch, and roll), the AV is equipped with compass
and tilt sensors combined in a single housing. The housing comprises three magneto
resistive magnetic sensors and a two-axis liquid filled tiltsensor to produce tilt compen-
sated attitude measurements. More specifications can be found in table 2.3. Because of
the multitude of magnetic sensors, the compass can somewhatcompensate for magnetic
interference from ferrous metallic objects and stray magnetic fields. This compensation
is by no means ideal, and the output heading from the compass is unreliable. It can,
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however, be combined with other measurements to yield a goodestimate of the heading.

Manufacturer Honeywell
Model HMR3000
Type Digital compass module
Heading accuracy 0.5◦

Pitch/roll accuracy ±4◦

Maximum sampling rate 20Hz
Website http://www.ssec.honeywell.com

Table 2.3: The compass and tilt sensor

Fiber Optic Gyro

The primary output of the 1-axis fiber optic gyro is the angular velocity about an axis
perpendicular to the ground. See table 2.4 for more specifications. The output is directly
related to the rate of change of the heading. The heading readings from the compass
can therefore be reconstructed by integrating the measurements from the gyro while
taking pitch and roll into account, but due to a temperature varying bias in the gyro, the
reconstructed heading will diverge from the actual headingif no compensation it present.
To solve this problem, the readings from the gyro and compasscan be combined to give
a more reliable estimate on the heading.

Manufacturer KVH Industries
Model E•Core 2000 (RD2100)
Type Single-axis fiber optic gyro
Accuracy 0.014◦/s
Bias stability over full temperature range 0.4◦/s
Maximum sampling rate 10Hz
Website http://www.kvh.com

Table 2.4: The fiber optic gyro

Propulsion Motor Tachometers

Each propulsion motor is equipped internally with a tachometer measuring the angular
velocity of each wheel relative to the wheel suspension. Thetachometer readings are
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used both for low level control of each actuator and for dead-reckoning where the dis-
tance traveled by each wheel can be calculated by integrating the tachometer readings.

Steering Motor Encoders

To measure the steering angles of the wheels each steering motor is equipped with an
encoder. See table 2.5 for specifications. Combining these measurements with the mea-
surements from the tachometers enables the calculation of the direction of movement of
the AV relative to itself. The encoders are also used for low level control of the steering
actuators.

Manufacturer maxon motor
Model HEDL 5540
Type Digital encoder
Accuracy 0.0144◦/pulse (through worm gear)
Website http://www.maxonmotor.com

Table 2.5: The steering motor encoders

Ground Speed Radar

Using the Doppler effect the ground speed radar mounted on the rear of the AV is able
to measure the velocity relative to the ground. See table 2.6for specifications. The use
of the radar is limited, because it only measures the absolute longitudinal component
of the velocity. Hence, the radar output is zero if the AV is driving sideways. The
primary reason for having the radar is to be able to estimate the occurrence of wheel
slip by comparing the output of the radar with the output of the four tachometers in the
propulsion motors.

Manufacturer DICKEY-john
Model RVSII
Type Ground speed radar
Accuracy 5% (0.53− 3.2km/h)

3% (3.2− 7.0km/h)
Website http://www.dickey-john.com

Table 2.6: The ground speed radar
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Crop Row Guidance Camera

To obtain local crop row information the AV is equipped with acrop row guidance
camera. See figure 2.10 and table 2.7 for specifications. The camera uses a vision
system to output the lateral offset of a crop row in its field ofvision.

Figure 2.10: ECO-DAN crop row guidance camera

Manufacturer ECO-DAN
Model 11-410-02-01
Type Single plant camera
Accuracy 1mm± 0.5mm
Maximum sampling rate 25Hz
Website http://www.eco-dan.com

Table 2.7: The crop row guidance camera

2.1.5 Computer System

To interface the different hardware components the AV is equipped with a computer sys-
tem that also handles internal coordination and external communication tasks. The over-
all purpose of the computer system is to execute the motion control algorithms needed
for autonomous driving. Even though no control algorithm has been introduced yet it is
possible to identify two distinct levels of control in the AV[44].

Low level motor control of each wheel set. The purpose of this control is to achieve
precise position, velocity, or torque control of each motoron the AV. The low level
control closes loops around the motor hardware, and it should be run at a high sampling
rate at an order of magnitude of102Hz.
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High level motion control of the AV body. This control handles the mutual coordina-
tion of all four wheel sets and the generation of position, velocity, or torque references
for the low level controllers. The high level controller closes the loop around the AV
body, which has a relatively slow response compared with theresponse of the motors.
Hence, the sampling rate of this control need not be as fast asthe motor control and is
of an order of magnitude of101Hz.

Not only do the two levels of control put different timing requirements on the computer
system; the complexity of the controllers also puts requirements on the computational
power. The low level motor control is expected to consist of simple, possibly linear
controllers, while the high level motion control is expected to be more complex. Because
of this layered control structure, the computer system on the AV is distributed over five
separate computers:

• 4 small embedded computers for low level control. Marked (8)on figures 2.7
and 2.8

• 1 powerful main computer for high level control and data communication with the
base station. Marked (9) on 2.7

The Four Embedded Computers

The four embedded computers are manufactured by LH-Agro, and they are small rugged
computers designed specifically for controlling farming applications. They run a real-
time operating system and are equipped with several I/O ports for interfacing sensors
and actuators. They also include a CAN-bus interface for real-time external communi-
cation. The primary task of the LH-Agro computers is to implement the fast local loops
around the motors, and each LH-Agro controls one propulsionand one steering motor.
Additional specifications can be found in table 2.8.

The Main Computer

The main computer on the AV is a standard PC/104 industrial computer running Debian
Linux. This computer runs high level motion planning and coordination tasks, and it
interfaces a subset of the sensors. The PC/104 stack comprises a main CPU module, a
power supply module, a RS-232 four port module for sensor communication, a PCMCIA
module for a WLAN adapter, and a CAN bus module for communicating with the LH-
Agros. Additional specifications can be found in table 2.9.
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Manufacturer LH-Agro
Model IC28
Processor Infinion C167CR
Input ports 16 digital

2 analog
Output ports 6 digital

4 PWM
Communication ports 1 CAN

1 RS-232
Website http://www.lh-agro.com

Table 2.8: The LH-Agro embedded computer

Module CPU
Manufacturer ICOP

Model ICOP-6070
Website http://www.icop.com.tw

Module RS-232
Manufacturer ICOP

Model ICOP-1800
Website http://www.icop.com.tw

Module PCMCIA
Model PCM-210A

Module CAN
Model PCM-3680

Table 2.9: The PC/104 stack
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2.1.6 Hardware Communication Structure

Figure 2.11 shows an overview of the hardware interconnections. Each sensor is con-
nected to the computer on which their output is first needed. The tachometers and en-
coders are connected to the LH-Agros, where they are used forthe low level control, and
except for the ground speed radar, the rest of the sensors aredirectly connected to the
PC/104. (The physical properties of the radar signal necessitates the connection to one
of the LH-Agros, but the data is passed unused to the PC/104 through the CAN-bus.)
The joystick is used for manual driving.

embedded
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PWM
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Figure 2.11:Hardware communication structure on the AV
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2.2 Software

Once the hardware is mounted and connected to the computer system the next step is to
combine the data flowing through the system in a good navigation and control scheme for
the AV. The software handles every aspect of communication and data handling on the
AV; from interfacing sensors and actuators to scheduled execution of high level motion
control algorithms. The AV is intended to be a development platform for testing motion
control algorithms, and from a control engineering point ofview, many of the software
aspects are not really of interest; the control engineer basically needs only to be served
the data that is available from the sensors, act on this data,and then generate control
signals for the actuators. How the system actually interfaces the sensors and actuators
is of less importance and should be encapsulated in a intuitive control development
environment. This section is focused on the development of such an environment for
testing motion control algorithms.

2.2.1 Overview of Major Software Components

In the previous section two levels of control were identified. One was the low level
control of each motor, which is to be executed on the LH-Agros, and one was the high
level motion control of the entire AV, which is to be executedon the PC/104. It is
assumed that good low level controllers can be designed and implemented on the LH-
Agros once and for all, and the need for future changes in the software is minimal. The
software on the PC/104, on the other hand, is assumed to be of amore varying nature,
since it should be possible to test many different motion control, path following, and
trajectory tracking algorithms.

Figure 2.12 identifies the major software components on the AV and their mutual data
dependencies. Note that it is very similar to the hardware interconnection in figure 2.11,
because of the distribution of computer systems. At the heart of the structure is the
PC/104 software that coordinates the motion of the AV. In order to do this, it has to have
access to the sensors, the joystick, and the LH-Agros through the CAN bus. The PC/104
software interfaces the sensors, and it closes the motion control loop by sending refer-
ence signals to the motors through the LH-Agro software. When driving autonomously,
it makes sense to have the ability to interface the AV remotely, hence the external PC.
From the external PC it should be possible to monitor the motion control software, trans-
mit new parameters, and start and stop the AV.

The data flowing between the components are as follows.
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Figure 2.12: Overview of software structure

PC/104←→ LH-Agros The LH-Agros receive position, velocity, or torque references
for the eight motors, and start and stop commands from the PC/104. They send back
tachometer, encoder, and ground speed radar readings to thePC/104. Any asynchronous
parameter changes for the LH-Agros software can also be sentby the PC/104.

PC/104←→ Sensors At this interface, data is sent from the GPS receiver, gyro, com-
pass, and crop row guidance camera to the PC/104, which in return sends any setup
information or polling requests to the sensors.

PC/104←→ Joystick The joystick is only to be used for manual driving, and under
these circumstances the state of the joystick is sent to the PC/104.

PC/104←→ External PC Supervisory information on the state of the AV is sent from
the PC/104 to an external PC. In return, the external PC is able to send new parameters
for the controllers on the PC/104 and LH-Agros. Asynchronous commands, such as
starting or stopping a controller and changing between manual and autonomous mode,
can also be sent by the External PC.

Getting data to flow in and out of each subsystem is one thing, but reacting on the data
in an advanced motion control scheme is a completely different issue. For the control
engineer the latter is, by far, the most interesting, but testing a developed control scheme
is difficult if there is no well defined data flow infrastructure. To relieve the control en-
gineer of knowing every little hardware and software detailon the AV and to generally
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ease the implementation of a designed controller, a graphical control development envi-
ronment that encapsulates and hides all data communicationon the AV is a great help.
The desired features of a development environment for the AVis:

• A graphical user interface that gives easy access to sensorsand actuators

• Automatic code generation and compilation based on the graphically designed
controller

• On-line graphical data representation and monitoring of the closed loop system

• On-line changing of controller parameters

All of these features are embedded in the mathematical software suite Matlab/Simulink
through its toolbox Real-Time Workshop. They can be appliedto the AV by tailoring
the PC/104 software to interface Real-Time Workshop.

2.2.2 Real-Time Workshop

The Real-Time Workshop (RTW) is a comprehensive Matlab/Simulink toolbox that is
able to generate and compile code based on Simulink block diagrams. It is mainly used
for rapid prototyping on a variety of different operating systems, and it can be extended
to fit more specialized systems, like the AV, as well. The source code generated by RTW
is in C and can be extended by any additional custom written C source code. This feature
enables RTW to communicate with any hardware or software component, as long as it
is accessible via C. RTW can generate generic executable code for the Linux operating
system, but without extensions it has limited hardware interface capability. Since there is
a lot of specialized hardware on the AV, several issues has tobe resolved before enabling
the control engineer to design a controller through Simulink and generate the appropriate
code automatically. The major issues are:

• RTW does not include an interface to the sensors, actuators,and CAN bus on the
AV, and it must hence be extended in order to communicate withthese components

• When generating code to the Linux operating system, RTW doesnot take timing
and scheduling into account. The resulting executable willrun ‘as fast as possi-
ble’, not obeying the desired sampling frequency

Fortunately, the extensibility of RTW makes these issues resolvable. The first issue can
be addresses directly by writing custom S-functions for inclusion in the Simulink dia-
gram. An S-function is a peace of C-code that defines how external components should
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be interfaced in a format that RTW understands. The second issue is somewhat more
difficult to resolve. To understand this, it is necessary to look closer at how RTW gen-
erates the code. Figure 2.13 shows an overview of the code generation and compilation
procedure of RTW. When thebuild button in Simulink is clicked RTW generates pre-

Generate
Makefile

Generate
Code

Click Build
Button

Compile
and Link

Simulink
Model

Template
Makefile

linux main.c

model.c
model.h

Custom
Makefile
model.mk

Stop

Figure 2.13:Code generation and compilation procedure of Real-Time Workshop

liminary code from the Simulink model, including any custommade S-functions. The
generated code is a basically a group of C-functions describing the model. This includes
functions for calculating the model states at the next time instance, retrieving the output,
and so forth. How, and in which order, these functions are called is not included yet. The
next step is to generate a custom makefile for the target executable. This is where RTW
is told which compiler to use and any options related to the compilation. The template
makefile also defines which file should be used to execute the code that was generated
in the first step. The file is typically a C source file that includes themain function in
which the functions from the code generation step are calledin the right sequence. In
this example the file is calledlinux main.c, and it is included when compiling and
linking the executable. Thelinux main.c file also determines time of execution of
each iteration step of the model, and any operating system specific timing and schedul-
ing should be included in this file in order to iterate the model at the correct sampling
interval.



34 HARDWARE AND SOFTWARE ON THE AV

In thelinux main.c file shipped with RTW there is no timing in the execution of
the model; the next iteration of the model is executed as soonas the previous one has
finished, resulting in an executable model that runs ‘as fastas possible’, thereby not
providing the correct sampling period. The problem has beenresolved by modifying this
file and inserting a timer that triggers the next iteration ofthe model when the correct
amount of time has elapsed.

The executable file generated by RTW includes one more very useful element. By de-
fault, RTW facilitates communication with the running executable through what is re-
ferred to asExternal Mode; typically via a TCP/IP connection. When the executable
is started it registers itself on the network stack on the machine and starts listening
for incoming connections. Anyone with the same Simulink model and a running Mat-
lab/Simulink is then able to connect to the executable, provided that they are on the same
network. When a connection is made, it is then possible to view on-line data from within
Simulink and to upload new parameters to the running model.

When RTW is fully integrated with the PC/104 software it provides the following intu-
itive work flow for the control engineer:

1. The engineer starts by designing and building a controller in Simulink. The design
would typically be based on a mathematical model of the AV andknowledge of
what sensors and actuators are present in the physical system. How sensors and
actuators are interfaced is not of importance, since this ishidden behind the user
interface and made available through appropriate Simulinkblocks

2. The next step is to test the controller on a simulation model of the AV. Figure 2.14
shows how this would appear to the engineer for a simple SISO system

Step Scope

x’ = Ax+Bu
 y = Cx+Du

Plant Model

2s+3

s  +5s+122

Controller

Figure 2.14: Simple example of the Simulink user interface when simulating

3. When design requirements have been met the hardware is introduced into the
loop by exchanging the simulation model with a set of S-function blocks, see fig-
ure 2.15. Executable code is then automatically generated,built, and downloaded
through the wireless network to the PC/104
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Figure 2.15: Simple example of introducing hardware in the loop in Simulink

4. The executable code is started and the engineer is able to connect to it, monitor
the system, and upload new parameters on-line from within Simulink running on
the external PC

2.2.3 PC/104 Software

The S-functions introduced in the previous subsection allows RTW to interface any piece
of hardware or software that is accessible through C. For controlling the AV the RTW
executable must know how to access the sensors, the CAN bus, and the joystick. To
make these subsystems available, the following three drivers are identified:

1. A sensor driver that handles the RS-232 interfaces to the GPS receiver, the gyro,
and the compass. The sensor driver must wait for incoming rawdata from the
sensors, interpret it, and make it available for the RTW executable. The sensor
driver must also handle any configuration of the sensors at start up

2. A CAN bus driver that handles all data communication to and from the CAN bus.
It must transmit references generated by the RTW executableand listen to incom-
ing data from tachometers, encoders, and crop row camera to make it available for
the RTW executable

3. A joystick driver that listens for incoming data from the joystick, interprets this
data and makes it available for the RTW executable

The inter process communication between the drivers and theRTW executable can be
handled in different ways. One option is to embed every part of the drivers in the S-
functions used by RTW. This solution will ultimately mean that the system will only
be able to run with a working RTW executable. Any external non-RTW programs will
then be unable to communicate with the hardware unless goingthrough RTW. Even
though Simulink and RTW are powerful tools they may not always be the most useful
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ones. When writing simple programs for the AV, such as testing or debugging programs,
it may be more convenient to access the drivers directly through a stand alone program.
To provide for a more flexible software structure the drivershave been split into individ-
ual programs; all communicating through a segment of sharedmemory. This allows any
other program (written in a language that supports communication with shared memory)
to access sensors and actuators. A schematic illustration of the shared memory commu-
nication is shown in figure 2.16. The figure shows the flow of sensor data and actuator
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Figure 2.16: Software components on the PC/104

references between the drivers and the RTW executable. As the figure shows, both the
RTW executable and the joystick generates actuator references, but they should not run
simultaneously. In general, the joystick is only used for manual driving, while the RTW
executable is used for autonomous driving. Both are depicted in the figure to illustrate
how the use of shared memory enables direct manual driving ofthe AV while bypassing
the RTW executable.

2.2.4 LH-Agros Software

When the actuator references have been generated by the software on the PC/104 they
are transmitted via the CAN bus to the four LH-Agros embeddedcomputers. The LH-
Agro software then closes the fast local loops around each actuator and returns mea-
surements from encoders and tachometers to the PC/104. The steering and propulsion
motors both exhibit simple first order linear behavior [7], and the model used to de-
scribe them is the basic first order linear model of a DC motor as shown on figure 2.17.
The parameters associated with the unloaded steering and propulsion motors were also
identified in [7]. They are summarized in table 2.10.
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Figure 2.17: First order motor model

Parameter Steer Propulsion
Ra [Ω] 1.43 0.017
Kt/Ke [Nm/A] / [Vs] 0.1 0.31
J [kg m2] 3.1 · 10−4 0.18
b [Nms] 0.003 0.37

Table 2.10:Parameters associated with the motors

The Steering Control Loop

To encapsulate the internal dynamics of the steering motorsindividual position and ve-
locity controllers around each motor were designed by Bisgaard et al. [7] and imple-
mented in the LH-Agros. The position controller is a second order lead-lag controller,
and it is used to precisely position each steering motor at anangle relative to the wheel
suspension. The velocity controller is a pure proportionalcontroller and is used to rotate
each steering motor at a given angular velocity. The position and velocity controllers on
each wheel are not designed to run simultaneously, and the controller used is determined
by the kind of reference transmitted by the PC/104. This structure allows the designer of
the high level controller on the PC/104 to focus on generating position or velocity ref-
erences to the steering actuators, while the actual reference tracking and the underlying
dynamics are encapsulated by the LH-Agros.

The Propulsion Control Loop

The custom built propulsion motors are already controlled by velocity controllers em-
bedded inside each motor. According to the manufacturer (Heinzmann GmbH) there
is a linear first order behavior from input voltage to angularvelocity of the closed loop.
Measurements have shown that this claim is valid with the assumption that the controller
is just a simple proportional feedback. In this sense, the proportional feedback can be
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viewed as a scaling of eitherKt, Ke, or Ra, and the closed loop can be viewed as a
linear DC motor with parameters shown in table 2.10. The parameters are based on
measurements on the closed loop.

The propulsion motors should not be velocity controlled though, because the four ve-
locities of the propulsion motors are not independent – assuming that the AV should be
driven with the minimum amount of slippage. Imagine that theAV is driving along a
straight line on a flat field. Obviously, the angular velocityof each propulsion motor will
be identical if the AV drives without slipping; the velocities of all wheels are determined
by the velocity of one. With the same velocity reference a wheel slip may occur if the
AV passes a bump or a depression in the field. If the motors are controlled by setting
references to the applied torque (τe on figure 2.17) instead the inputs are independent,
and slippage of the wheels will be reduced by the presence of natural friction forces
between wheel and ground. In the proceeding chapters it is assumed that the input to
the propulsion motors is the applied torque, where the following simple trick is used to
approximate the corresponding input voltageVm

Vm =
Ra

Kt

τe +

(

Ke +
Rab

′

Kt

)

ω.

Note that the value for the coefficient of kinetic frictionb in table 5.1 only describes the
internal friction of the motor. There are other sources of friction as well, such as ground
friction and increased friction in the motor bearings as a result of the load on the wheels.
The parameterb′ describes the total kinetic friction, but this parameter itis difficult to
determine as it largely depends on various ground and soil conditions. No effort will be
taken to determine the exact value ofb′, but an approximate mean value ofKe + Rab′

Kt

is assumed to be known for various environmental conditions.



CHAPTER3

L AGRANGE M ODEL OF THE AV

In the Matlab/Simulink setup the interface to the AV consists of reference signals to the
motors and state information from the sensors. For control purposes, and to understand
the underlying dynamics of the AV, the connection from inputreference signals to the
position and velocity of the AV is worth investigating, and in this chapter a mathematical
model describing the motion of the AV is introduced. The AV issubject to free rolling
and non-slipping constraints that should be accounted for in the model, and it is there-
fore developed using the Lagrange’s equation1 for nonholonomic systems with some
modifications due to the special 4WS structure of the AV. The resulting Lagrangian
model consists of a set of second order differential equations describing the motion of
the AV on its configuration manifold. On this form the equations are not suitable for
control, but they are the starting point for defining the Hamiltonian equivalent in the
subsequent chapter. The Hamiltonian equivalent, on the other hand, will be very useful
when turning to motion control of the AV.

1For an introduction to Lagrange’s equation please refer to appendix A.

39
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3.1 Vehicle Definition

The AV consists of a rigid rectangular body frame and four wheels. The wheels are
mounted at the four corners of the vehicle and are all both steerable and drivable. The
operational environment of the AV is assumed to be a horizontal field with a constant
height above sea level; the pitch and roll of the AV is hence negligible. The position
and orientation of the vehicle frame is defined on the manifoldM ⊂ R

2 × S, and a
point on this manifold is denotedχ ∈ M. Consider a coordinate systemN fixed to
the earth and with its axes pointing east and north. Then there exist local coordinates
χN = [x1 x2 θ]T with respect to theN -frame, as shown in figure 3.1. The figure
indicates that there also exists a second coordinate frameB fixed instantaneously at
the position and orientation of the AV. A pointχ on the manifold can be described in
both theN - and theB-frame and are denotedχN andχB respectively. For notational
convenience the superscript will often be dropped, and if nothing else is stated,χ is the
coordinate representation in theN -frame.

N
B

θ

x1

x2

Figure 3.1: Definition of the vehicle body frame coordinates.N is an inertial coordinate
frame fixed to the earth, and[x1 x2]

T is the position of the geometric center of the
vehicle. The geometric center coincides with the center of the GPS antenna. A second
coordinate frame is fixed to the AV at the geometric center andis denoted theB-frame.
θ is the rotation between theB- and theN -frame

The position of thei’th wheel is described by two anglesβi andφi, as shown in fig-
ure 3.2. The figure also shows the torque inputsτβi

andτφi
. The three constant param-

etersγi, κi, andrw describe the mounting position and radius of each wheel.
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βi

τβi

γiκi

φi

τφi

rw

Figure 3.2: Definition of parameters and coordinates related to thei’th wheel (the figure
shows top and side views).βi defines the steering angle of the wheel relative to the AV
frame, andφi defines the angular position of the propulsion motor.τβi

andτφi
are the

input torques to the steering and propulsion motors.κi andγi constitutes a constant
polar coordinate pair that defines the mounting position of the wheel relative to the
geometric center of the AV.rw is the radius the wheel

With these definitions it is possible to define the setqT of configuration coordinates that
is able to completely describe the instantaneous configuration of the AV

qT =





χ
β
φ



 , (3.1)

with β = [β1 β2 β3 β4]
T ∈ S

4 andφ = [φ1 φ2 φ3 φ4]
T ∈ S

4. This is not a minimal
set though, and the next section describes constraints thatwill allow the number of
configuration coordinates to be reduced.

The setuT of input torques to the system is defined as

uT =

[
τβ
τφ

]

,

with τβ = [τβ1
τβ2

τβ3
τβ4

]T ∈ R
4 andτφ = [τφ1

τφ2
τφ3

τφ4
]T ∈ R

4. The alert reader
might have noticed that the inputs to the local steering motor control loops are angular
velocity or position references and not torques. For now, however, it is assumed that the
inputs are all torques, as this will fit into the Lagrangian framework. The consequence
of changing the input to velocities will be discussed later in this chapter.

For later use, it is also worthwhile to define the transformation that relates a velocity
vector described in coordinates related to theN -frame to the same vector described in
coordinates related to theB-frame. If theB-frame is considered to be instantaneously
fixed at[x1 x2]

T and at a rotationθ the transformation is a simple rotation matrix

χ̇B = R(θ)χ̇N ⇒ χ̇N = RT (θ)χ̇B,
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with

R(θ) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 , R−1(θ) = RT (θ).

χ̇N andχ̇B denotes the same vector expressed in theN - and theB-frame respectively.

Remark.Note thatχ̇N is notexpressed in the same coordinates asχN . χ̇N is expressed
in terms of the basis vectors∂/∂x1, ∂/∂x2, and∂/∂θ that span the tangent space of
M atχ. △

3.2 Constraints

The 4WS-4WD structure of the AV might give it a large degree ofmobility, but the
motion of the AV is still not the motion of an unconstrained rigid body. The wheels of
the AV restricts the motion, and the direction of acceleration is always determined by
the orientation of the wheels. The multitude of steerable wheels means that they have
to be strictly coordinated for sensible driving. Imagine a situation where two wheels
are pointing north and two are pointing east. This is not a sensible configuration, and
it will ultimately result in sideways dragging of some of thewheels and maybe even
physical damage the wheel suspensions. The insensible configuration arises when the
instantaneous center of rotation is not uniquely defined. Recall that the ICR is defined
as the point of intersection of the four lines perpendicularto the wheels, see figure 3.3.

ICR

Figure 3.3: The Instantaneous Center of Rotation

Only two wheels are needed to uniquely define the ICR, but no constraints ensure au-
tomatically that the perpendicular lines from the two otherwheels also intersects the
ICR. On car-like steered vehicles, where only the front axleis steerable, the mechanical
construction of the steering system will ensure that a unique ICR is always located on
the line extended along the rear axle. On the AV, on the other hand, it is up to the motion
control algorithms to ensure that the mechanical constraint is replaced by sensible steer-
ing references for all four wheels. In practice this can be done by letting two wheels,
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for example the two left side wheels, define the ICR. Based on their steering anglesβ1

andβ2 the steering angles for the two right side wheels (β3 andβ4) that renders the ICR
uniquely defined can be determined by

β3 = arctan

(
cosβ1 sinβ2

sin(β1 − β2) + cosβ1 cosβ2

)

, (3.2)

β4 = arctan

(
sinβ1 cosβ2

sin(β1 − β2) + cosβ1 cosβ2

)

. (3.3)

Henceforth, it is assumed that the local position control loops around the steering motors
on wheel 3 and wheel 4 are fast enough to guarantee thatβ3 andβ4 are always satisfy
(3.2) and (3.3).

Remark.Note that the ICR is not uniquely defined when the two perpendicular lines
from wheel 1 and 2 coincide, i.e., whenβi = π/2 + nπ, i = 1, 2, n ∈ Z. All we
know is that it lies somewhere on the line passing through wheel 1 and 2. The problem
is overcome by using wheel 1 and 4 instead to define the ICR. △

The mutual dependency between the steering angles is an example of a holonomic con-
straint on the general form [30]

f(q1, q2, q3, . . . , t) = 0, (3.4)

A constraint on this form can be used to reduce the number of configuration coordinates;
in this case from all fourβ-angles to onlyβ1 andβ2. (β3 andβ4 will be encountered
later, but are then considered as functions ofβ1 andβ2 and not as an independent part of
the configuration coordinates.) Having introduced the constraint of a uniquely defined
ICR the set of configuration coordinatesqT and inputsuT have been reduced to

q′T =





χ
β′

φ



 , u′T =

[
τβ′

τφ

]

,

with β′ = [β1 β2]
T andτβ′ = [τβ1

τβ2
]T .

Not all constraints can be expressed on the form (3.4). A constraint might be expressed
by an inequality instead of an equality, or it might be expressed as a constraint on the
time derivatives of the configuration coordinates. If a constraint is not expressible by
(3.4) it is said to be nonholonomic or non-integrable [4]. For sensible driving of the
AV the vehicle is imposed with the nonholonomic constraintsof free rolling andnon-
slipping. The free rolling constrain means that no sideways velocityof any wheel is
allowed, and this is closely related to the existence of a unique ICR; free rolling can
only be achieved if the ICR is unique. The non-slipping constraint, on the other hand,
means that the velocity of the point of contact between each wheel and the ground is
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always zero in the direction of the wheel. Both of these constraints are related to the
velocity of the system and cannot be described as holonomic constraints. Instead, they
are described by a set of nonholonomic constraints on the form

AT (q)q̇ = 0, (3.5)

whereA(q) is ann × k matrix describingk constraints, andn is the number of con-
figuration coordinates. The constraints are assumed to be independent, i.e.,k ≤ n and
rank(A(q)) = k.

To derive expressions of the constraints consider the velocity of the i’th wheel relative
to theB-frame

wB
i =

[
ẋB1
ẋB2

]

+

[
−κi sin γi

κi cos γi

]

θ̇ =

[
1 0 −κi sin γi

0 1 κi cos γi

]

χ̇B.

According to the free rolling constraint this velocity vector should point in the exact
same direction as the wheel, and according to the non-slipping constraint, the velocity
of the contact point between wheel and ground should be zero,and hence the length of
the velocity vector should be equal torwφ̇i.

Now, define two unit vectors in theB-frame. One along and one perpendicular to the
wheel

eBi,‖ =

[
cosβi

sinβi

]

, eBi,⊥ =

[
− sinβi

cosβi

]

.

If the velocity of the wheel is in the direction of the wheel itself the dot product between
wi andeBi,⊥ must equal zero. The free rolling constraint can hence be expressed by

< wi, ei,⊥ >= 0 =
[
− sinβi cosβi κi cos(γi − βi)

]
χ̇B, i = 1, 2,

and expressing the constraints for all wheels in theN -frame yields

C1(β
′)R(θ)χ̇ = 0, C1(β

′) =

[
− sinβ1 cosβ1 κ1 cos(β1 − γ1)
− sinβ2 cosβ2 κ2 cos(β2 − γ2)

]

. (3.6)

Note that the constraint is only imposed on two of the wheels.If the ICR is uniquely
defined, and if two of the wheels satisfy the free rolling constraint, then all wheels satisfy
the constraint. Hence there are only two independent constraints.

An expression for the non-slipping constraint can be derived in a similar fashion. If the
length of the velocity vectorwB

i should be equal torwφ̇i the inner product betweenwB
i

and the unit vector along the wheel should also be equal torwφ̇i

< wi, e‖ >= rwφ̇i =
[
cosβi sinβi κi sin(γi − βi)

]
χ̇B, i = 1, 2, 3, 4.
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Expressing the constraints for all wheels in theN -frame yields

C2(β
′)R(θ)χ̇ = rwφ̇, C2(β

′) =







cosβ1 sinβ1 κ1 sin(β1 − γ1)
cosβ2 sinβ2 κ2 sin(β2 − γ2)
cosβ3 sinβ3 κ3 sin(β3 − γ3)
cosβ4 sinβ4 κ4 sin(β4 − γ4)






. (3.7)

All four wheels are included since there is no direct relation between the slippage of
each wheel and hence all four constraints are independent. Collecting the constraints
and expressing them on the form (3.5) yields

AT (q′T )q̇′T =

[
C1(β

′)R(θ) 0 0
C2(β

′)R(θ) 0 −rwI

]

q̇′T = 0.

3.3 Lagrange Model

Having defined the nonholonomic constraints the dynamics ofthe AV can be described
directly by applying Lagrange’s equation for nonholonomicsystems (see appendix A
for an introduction to this equation)

d

dt

(
∂L

∂q̇

)

− ∂L

∂q
= A(q)λ + U , (3.8)

AT (q)q̇ = 0,

whereλ ∈ R
k is a vector of Lagrange multipliers, andU includes the inputs and any

dissipation or friction forces in the system. The Lagrangian functionL = T − U is
defined as the difference in kinetic energyT and potential energyU of the entire sys-
tem. Driving on a horizontal field the AV has no potential energy, but if the field has a
slope, the potential energy will be nonzero. An exact expression of the potential energy
function is not available, but it is assumed that the energy is a function ofχ and that it is
bounded from below

U : M→ R, U(χ) ≥ C.

The expression for kinetic energy, on the other hand, is possible to derive immediately;
it is a combination of translational and rotational energy of the individual moving parts
of the AV. Assume that the following constants are known:
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mf Mass of AV body (excluding wheels)
jf Moment of inertia of AV body (excluding wheels) about the axis per-

pendicular to the ground and passing through the geometric center of
the AV

mw Mass of each individual wheel
jw,β Moment of inertia of each wheel plus suspension about theβ rotation

axes
jw,φ Moment of inertia of each wheel about theφ rotation axes

The total kinetic energy of the AV can then be expressed as

T (q′T , q̇
′
T ) =

1

2

[

mf (ẋ2
1 + ẋ2

2) + jf θ̇
2
]

+
1

2
mw

4∑

i=1

(ẋ1 − κi sin(γi + θ)θ̇)2 + (ẋ2 + κi cos(γi + θ)θ̇)2

+
1

2
jw,β

4∑

i=1

(β̇i + θ̇)2

+
1

2
jw,φ

4∑

i=1

φ̇2
i .

The first element is the translational and rotational energyof the AV frame, the second
element is the translational energy of the wheels, the thirdelement is the rotational
energy of the wheels about theβ rotation axes, and the fourth element is the rotational
energy of the wheels about theφ rotation axes.

On a more compact matrix form the Lagrangian function is

L(q′T , q̇
′
T ) =

1

2

[

χ̇TRT (θ)MR(θ)χ̇ + jw,β

4∑

i=1

(β̇i + θ̇)2 + jw,φφ̇
T φ̇

]

− U(χ),

with a constant positive definite symmetric inertia matrix

M =











mf + 4mw 0 −mw

4∑

i=1

κi sin γi

0 mf + 4mw mw

4∑

i=1

κi cos γi

−mw

4∑

i=1

κi sin γi mw

4∑

i=1

κi cos γi jf +mw

4∑

i=1

κ2
i











.

With the Lagrangian function defined the Lagrange equation 3.8 can be partitioned into
three separate parts; each describing the dynamics of the three parts of the configuration
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coordinates

d

dt

(
∂L

∂χ̇

)

− ∂L

∂χ
= RT (θ)CT

1 (β′)λ1 +RT (θ)CT
2 (β′)λ2,

d

dt

(
∂L

∂β̇′

)

− ∂L

∂β′
= τβ′ ,

d

dt

(
∂L

∂φ̇

)

− ∂L

∂φ
= −rwλ2 + τφ,

C1(β
′)R(θ)χ̇ = 0,

C2(β
′)R(θ)χ̇− rwφ̇ = 0,







(3.9)

whereλ1 andλ2 are of appropriate size. Because the inputsτβ′ andτφ are generalized
forces acting directly on the generalized coordinatesβ′ andφ they are simply added to
the last two Lagrange equations.

There is a problem with the second equation of (3.9) though. The rotational energy
about theβ axes of all four wheels are included in the kinetic energy, but only the torque
input to wheel 1 and 2 can change the energy. It was assumed in the previous section
that wheel 3 and 4 can be controlled in such a way thatβ1 to β4 will always uniquely
define the ICR. But how does this affect the kinetic energy? This is not answered by the
Lagrange equations, and one has to look closer at the local control loops of wheel 3 and
4 in order to find the answer. On the other hand, one has to realize that the rotational
energy of the wheels constitutes a very small part of the total kinetic energy. The mass
mf of the AV body is approximately200kg, and at the relatively low speed of1m/s
the translational energy in the body frame alone is100J. Assuming that the wheels can
be regarded as solid disks the moment of inertiajw,β of each wheel is approximately
0.5kg m2. Even with a fast turning rate ofπrad/s the total sum of the rotational energy
in the four wheels is only about5J. Not very much compared to the100J in the AV
frame.

Realizing that the rotational energy in the wheels only plays a very small role in the
overall Lagrangian function it is assumed that this part of the energy can be neglected
all together and the model modified accordingly. Neglectingthe rotational energy of the
wheels about theβ axes is equivalent to lettingjw,β tend to zero, but this raises an issue
of controllingβ′. Applying a torque to a body with zero moment of inertia wouldresult
in an infinite acceleration, in theory at least, of that body.To overcome this problem
the steering motors are controlled by local velocity controllers as already described in
chapter 2. By neglecting the dynamics of theβ angles they are no longer a part of the
generalized coordinates; instead, they are treated as timevarying parameters that can be
manipulated directly through their first derivative. In thenext chapter they will lay the
grounds for the formal definition ofkinematic inputs.
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The resulting modified Lagrange equations are

d

dt

(
∂L

∂χ̇

)

− ∂L

∂χ
= RT (θ)CT

1 (β′)λ1 +RT (θ)CT
2 (β′)λ2,

d

dt

(
∂L

∂φ̇

)

− ∂L

∂φ
= −rwλ2 + τφ,

β̇′ = ζ,

C1(β
′)R(θ)χ̇ = 0,

C2(β
′)R(θ)χ̇− rwφ̇ = 0.







(3.10)

The model is still not useful for control. There are still thetwo undetermined Lagrange
multipliers that have to be eliminated. Fortunately, the model contains more information
than is needed and can be reduced even further. The AV should be able to follow crop
rows, navigate way-points, etc., which is related to the position and velocity of the AV
frame. Knowing the exact angleφi of each wheel is therefore irrelevant. The velocities
φ̇ of the wheels are important though, since they contribute tothe kinetic energy of the
system. Fortunately, the direct dependency ofφ̇ can be eliminated by using the non-
slipping constraint (3.7) that relatesφ̇ to χ̇. By exchangingφ̇ with 1

rw
C2(β

′)R(θ)χ̇ the
Lagrangian function becomes a function ofχ, χ̇ andβ′ alone

L′(χ, χ̇, β′) =
1

2
χ̇TRT (θ)M̄ (β′)R(θ)χ̇− U(χ),

with an augmented inertia matrix

M̄(β′) = M +
jw,φ

r2w
CT

2 (β′)C2(β
′).

With this reformulated Lagrangian function the left hand side of the second equation of
(3.10) becomes zero and henceλ2 = 1

rw
τφ. Inserting this reduces (3.10) to

d

dt

(
∂L′

∂χ̇

)

− ∂L′

∂χ
= RT (θ)CT

1 (β′)λ1 +RT (θ)CT
2 (β′)

1

rw
τφ,

β̇′ = ζ,

C1(β
′)R(θ)χ̇ = 0.







(3.11)

There is still the problem of eliminatingλ1. This will be the topic of the next chapter,
which describes a general method of eliminating the Lagrange multipliers. The method
is based on the equivalent Hamiltonian formulation of a moregeneral system. Once the
multipliers have been eliminated the model can be verified based on measurements on
the physical system. This is postponed until chapter 5. The Hamiltonian equivalent of
model (3.11) will also be the starting point for developing control algorithms for the AV.



CHAPTER4

THE HAMILTONIAN FORMULATION AND M ODEL

REDUCTION

In the previous chapter the Lagrangian formulation of a mechanical system was applied
to the AV. The resulting dynamic model is an example of a standard constrained La-
grangian model with the exception that a part of it,β′, can be controlled directly through
its first derivative. This phenomenon is formally introduced in this chapter askinematic
inputsin the framework of general nonholonomic Lagrange systems.

Although the Lagrange equation is a powerful way of derivingthe dynamic equations
of a mechanical system it is not well suited for control. An equivalent formulation of
the dynamics, which will be introduced in this chapter, is the Hamiltonian formulation
of the system. This formulation adds no new information to the system, and it is es-
sentially just a transformation of the coordinates of the Lagrange equation, but it has
a structure that makes is very useful for feedback control; the Hamiltonian function,
which is the dual of the Lagrangian function, can often be used as a Lyapunov function,
and basic theorems of passive and dissipative systems have anatural application to the
Hamiltonian equation.

Feedback control will be postpone until chapter 6, and the focus in this chapter is on
deriving a suitable Hamiltonian equation of a general system with kinematic inputs. The

49
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undetermined Lagrange multipliers will still exist in the Hamiltonian equivalent of the
original Lagrangian equation, and the last part of this chapter describes a method of
reducing the system by eliminating the multipliers.

4.1 The Constrained Tangent Bundle

Although the configuration manifold of the AV was introducedin chapter 3 the full
configuration space has not yet been precisely defined. The position and orientation of
the AV is describes by points on the configuration manifoldM, but this is not enough
to describe the instantaneous state of the system. The system also has a velocity, and we
need to choose a space in which both the position and velocitycan reside. In mechanical
systems the natural choice is the tangent bundle, which defines a space of velocities
associated to every point on the configuration manifold. In nonholonomic systems the
space of velocities is further limited by the constraints, and this is the background for
defining the constrained tangent bundle for a general nonholonomic system.

Consider ann-dimensional configuration manifoldM and a physical system withq ∈
M describing its instantaneous configuration on the manifold. Let the tangent space at
q be denotedTqM⊂ R

n. Any vectorξ ∈ TqM belonging to the tangent space is called
a tangent vector toM atq, and the velocitẏq of the pointq is an example of an element
of the tangent space. The union of all tangent spaces

⋃

q∈M TqM is called the tangent
bundle ofM and is denotedTM. An element on the tangent bundle consists of a point
q and a vectorξ belonging to the corresponding tangent space atq

(q, ξ) ∈ TM (2n-dimensional).

Now, consider a system imposed with a set of nonholonomic constraints

AT (q)q̇ = 0,

whereA(q) is ann× k differentiable matrix of constant rankk definingk independent
nonholonomic constraints. The constraints limit the set ofallowed velocities onTqM,
and the constrained tangent bundle is defined as a subset of the full tangent bundle

Ωc = {(q, q̇) ∈ TM | AT (q)q̇ = 0}.

4.2 Kinematic Inputs

As stated in the previous chapter the direct steering of the wheels lays the grounds for
defining the notion of kinematic inputs. The basic property of the kinematic inputs is that
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they cannot directly change the amount of energy in the system; the energy is invariant
with respect to the coordinates related to the kinematic inputs. The formal definition of
the kinematic inputs of a mechanical system is as follows.

Definition 4.1. Consider a set of coordinates̄q = [qT rT ]T ∈ M × R defining the
instantaneous configuration of a mechanical system. Assumethat the l-dimensional
subsetr of the coordinates can be controlled directly through the first time derivative by
an inputv, such that

ṙ = v v ∈ TrR ⊂ R
l,

and that

∂T

∂r
= 0 for (q, q̇) ∈ Ωc,

whereT : Ωc ×R → R andU : M→ R describe the kinetic and potential energy of
the system. Thenv is a kinematic input.

As a result of this definition it is possible to define the Lagrangian equation of motion of
a nonholonomic system augmented with kinematic inputs

d

dt

(
∂L

∂q̇

)

− ∂L

∂q
= A(q, r)λ +B(q, r)u,

ṙ = v,

AT (q, r)q̇ = 0,







(4.1)

with a Lagrangian functionL(q, q̇, r) = T (q, q̇, r) − U(q), λ ∈ R
k, andu ∈ R

m. The
AV model (3.11) is an example of a system on this form. Note that r is allowed to change
the structure of both the constraint matrixA and the input matrixB. The dependency
onr in A(q, r) has an interesting effect on the shape ofΩc. Changingr will also change
the space of allowed velocities, and the constrained tangent bundle becomes dependent
onr

Ωc
r∈R

= {(q, q̇) ∈ TM | AT (q, r)q̇ = 0}.

The dependency onr means that it is possible to change the shape of the constrained
tangent bundle througḣr = v, and this will prove to be a useful feature when controlling
such systems. Consider the union of all possible constrained tangent bundles̄Ωc =
⋃

r∈R Ωc. ClearlyΩc ⊆ Ω̄c for anyr ∈ R, which implies that the reachable space of
the system can be increased by changingr. Ultimately, the system can be viewed as a
(nearly) unconstrained system ifΩ̄c =M× R

n
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4.3 The Hamiltonian Model

The Lagrangian formulation of the dynamics in (4.1) describes the motion of the sys-
tem in terms ofn second order differential equations inq, and the state of the system
is described by coordinatesq and velocitiesq̇ (for the momentr is assumed to be con-
stant). The Hamiltonian formulation, on the other hand, seeks to describe the motion
of the system by2n first order differential equations in2n variables. One can argue
that the Lagrangian formulation already describes2n first order equations ifq andq̇ are
chosen as the2n variables, but there exists a more suitable choice that willmake the
system equations almost symmetric. This new set of variables comprises the original
generalized coordinatesq and a newn-dimensional generalized momentum

p =
∂L

∂q̇
. (4.2)

The generalized momentum is said to lie in the cotangent space ofM, which is denoted
p ∈ T ∗

qM. The cotangent space ofM is defined as the vector space of linear functions
f : TqM → R mapping elements on the tangent space to the real axis. In thesame
fashion, as with the tangent bundle, the cotangent bundle can be defined as the union of
all cotangent spaces onM

T ∗M =
⋃

q∈M

T ∗
qM.

The dimension of cotangent bundle is the same as the dimension of the tangent bundle.

The procedure of switching from(q, q̇, r) in the Lagrangian formulation to(q, p, r) in
the Hamiltonian formulation is provided by the Legendre transformation that transforms
functions on a vector space (the tangent bundle) to functions on the dual vector space (the
cotangent bundle). A detailed discussion of the Legendre transformation and its use in
physical systems can be found in many books on mechanical systems and mathematical
analysis, see for example [4]. In this setting the Legendre transformation is used to
transform the Lagrangian function, which is a function on the tangent bundle, to a new
function on the cotangent bundle. The new function is the Hamiltonian function

H(q, p, r) = pT q̇ − L(q, q̇, r), (4.3)

in which q̇ is expressed in terms ofp by the relation (4.2). There is a simple physi-
cal relation between the Lagrangian and Hamiltonian functions if the kinetic energy is
described by a quadratic function inq̇

L(q, q̇, r) =
1

2
q̇TM(q, r)q̇ − U(q),

whereM(q, r) is a positive definite inertia matrix. The generalized velocity is then
related to the generalized momentum by

p =
∂L

∂q̇
= M(q, r)q̇ ⇔ q̇ = M−1(q, r)p,
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and the Hamiltonian function becomes

H(q, p, r) = pT q̇ − L(q, q̇, r)

=
1

2
pTM−1(q, r)p+ U(q). (4.4)

The first term is the kinetic energy described in the generalized momentum and the
Hamiltonian function is hence the sum of kinetic and potential energy, whereas the La-
grangian is the difference.

Having defined the Hamiltonian function the next step is to derive the equations of mo-
tion of the system (4.1) on the cotangent bundle. The resulting equations for an ordinary
Lagrangian system without kinematic inputs is a basic result from classical mechanics
and are referred to as the Hamiltonian equations of motion. As the following theorem
shows, the same equivalent exists for systems with kinematic inputs.

Theorem 4.1. The system(4.1) is equivalent to the system of first order Hamiltonian
equations

[
q̇
ṗ

]

=

[
0 I
−I 0

] [∂H
∂q

∂H
∂p

]

+

[
0

B(q, r)

]

u+

[
0

A(q, r)

]

λ,

ṙ = v,

0 = AT (q, r)
∂H

∂p
,







(4.5)

whereH(q, p, r) = pT q̇ − L(q, q̇, r) is the Legendre transformation of the Lagrangian
function viewed as a function ofq̇. p = ∂L

∂q̇
is the generalized momentum.

Proof. By definition, the Hamiltonian function is a function ofq, p, andr and the total
derivative of the function is

dH =
∂TH

∂q
dq +

∂TH

∂p
dp+

∂TH

∂r
dr, (4.6)

but from the definition of the Hamiltonian function (4.3) we can also write

dH = q̇Tdp+ pTdq̇ − ∂TL

∂q
dq − ∂TL

∂q̇
dq̇ − ∂TL

∂r
dr

= q̇Tdp− ∂TL

∂q
dq − ∂TL

∂r
dr. (4.7)

From (4.1) we have that

∂L

∂q
= ṗ−A(q, r)λ −B(q, r)u,
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and inserting this into (4.7) yields

dH = q̇T dp− [ṗ−A(q, r)λ −B(q, r)u]
T
dq − ∂TL

∂r
dr.

The Hamiltonian system (4.5) is obtained by matching terms with (4.6).

Remark.From the definition of the kinematic input it can also be concluded from the
proof that∂H/∂r = −∂L/∂r = 0. △
Remark.The drift vector field exhibits an almost symmetric structure, which is evident
in any Hamiltonian system. It is perhaps more clear in the classical system, where
q̇ = ∂H/∂p andṗ = −∂H/∂q. The Hamiltonian system is said to have asymplectic
structure [4]. △

Analogous to the definition of the constrained tangent bundle we can also define the
constrained cotangent bundle for the Hamiltonian system

Ω*
c

r∈R
= {(q, p) ∈ T ∗M | AT (q, r)

∂H

∂p
= 0}.

The Hamiltonian system (4.5) describes the motion of a system with kinematic inputs
on the constrained cotangent bundleΩ∗

c .

4.4 Eliminating the Lagrange multipliers

The Hamiltonian equations still contain the undetermined Lagrange multipliers, and if
the model is to be used for control, the multipliers need to beeliminated. This section
describes a method of doing this for a system on the form (4.5). The method is largely
based on the method described by van der Schaft and Maschke [54], but it is extended
to cover systems with kinematic inputs as well. The basic idea is to define a coordinate
transformationp 7→ p̃, p̃ = [p̃T

1 p̃T
2 ]T , wherep̃1 is invariant with respect toλ, and the

Hamiltonian function can be rewritten in terms ofq, r, andp̃1 alone.λ then only affects
the dynamics of̃p2, which can be safely disregarded.

Remark.For convenience we use the following notation. Consider ann-dimensional
column vectorX(x), where each entry is a function of them-dimensional vectorx. The
partial derivative ofX with respect tox is defined as the matrix

∂X

∂x
=






∂X1

∂x1

· · · ∂X1

∂xm

...
. . .

...
∂Xn

∂x1
· · · ∂Xn

∂xm






△
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If the constraint matrixA(q, r) is differentiable and rank(A) = k there exists ann ×
(n− k) differentiable matrixS(q, r) of rankn− k whose columns completely span the
kernel ofAT (q, r)

AT (q, r)S(q, r) = 0 ⇔ ker[AT (q, r)] = img[S(q, r)]. (4.8)

Define a diffeomorphic coordinate change(q, p) 7→ (q, p̃1, p̃2)
[
p̃1

p̃2

]

=

[
ST (q, r)
AT (q, r)

]

p. (4.9)

van der Schaft and Maschke [54] showed that∂H̃
∂p̃2

= 0 onΩ∗
c , but actually the Hamilto-

nian is completely independent ofp̃2 as the following theorem shows.

Theorem 4.2. Consider a Hamiltonian function on the form(4.4) and a coordinate
transformation(q, p) 7→ (q, p̃1, p̃2) on the form(4.9), whereA(q, r) andS(q, r) satisfy
(4.8). In the new coordinates the Hamiltonian function is described by

H̃(q, r, p̃1) =
1

2
p̃T
1

(
ST (q, r)M(q, r)S(q, r)

)−1
p̃1 + U(q). (4.10)

Proof. From the constraint we know thatq̇ ∈ ker[AT (q, r)]. Hence, from (4.8) it can be
concluded thaṫq ∈ img[S(q, r)], and there exists a set ofn − k independent signalsη
such that

q̇ = S(q, r)η.

The kinetic energy can then be written asT = 1
2η

TSTMSη, and the Hamiltonian
function becomes

Hη(q, r, η) =
1

2
ηTST (q, r)M(q, r)S(q, r)η + U(q).

Using the definition of the generalized momentum we also knowthat

p̃1 = ST (q, r)p = ST (q, r)M(q, r)q̇ = ST (q, r)M(q, r)S(q, r)η.

M(q, r) is positive definite, rank(S(q, r)) = n − k everywhere, and the square ma-
trix ST (q, r)M(q, r)S(q, r) is hence full rank and invertible. The Hamiltonian on the
constrained cotangent bundleΩ∗

c can thus be described by (4.10).

Remark.The Lagrange multipliers can be interpreted as the forces that guarantee that
the nonholonomic constraints are always satisfied. On the AVthey make sure that there
are no sideways displacement of the wheels and that there areno displacement of the
contact point between each wheel and the ground. In this sense they are not doing any
work on the system. As the results show the constraint forcesact in the direction of̃p2,
but since the constraint forces cannot contribute to the total energy, it makes sense that
the Hamiltonian function is invariant with respect top̃2. △



56 THE HAMILTONIAN FORMULATION AND M ODEL REDUCTION

The next step is to derive the system equations in terms of thenew Hamiltonian function
and the new coordinates. The dynamics of the generalized coordinates are

q̇ =
∂H

∂p
=

(
∂p̃1

∂p

)T
∂H̃

∂p̃1
+

(
∂p̃2

∂p

)T
∂H̃

∂p̃2
= S(q, r)

∂H̃

∂p̃1
. (4.11)

To find the expressions for̃̇p1 we first deriveṗ in terms of the new coordinates

ṗ = −∂H
∂q

+Aλ+Bu

= −∂H̃
∂q
−
(
∂p̃1

∂q

)T
∂H̃

∂p̃1
+Aλ +Bu

= − ∂H̃

∂q
−
[

∂pT S1

∂q
· · · ∂pT Sn−k

∂q

] ∂H̃

∂p̃1
+Aλ+Bu,

whereSi denotes thei’th column ofS(q, r)

The time derivative of thei’th element of the new generalized momentump̃1 is

˙̃p1,i =
d

dt

(
ST

i p
)

= pT ∂Si

∂q
q̇ + pT ∂Si

∂r
v + ST

i ṗ

= pT ∂Si

∂q
S
∂H̃

∂p̃1
+ pT ∂Si

∂r
v + ST

i

(

−∂H̃
∂q
−
[

∂pT S1

∂q
· · · ∂pT Sn−k

∂q

] ∂H̃

∂p̃1
+Aλ +Bu

)

=

(

pT ∂Si

∂q
S −

[

pT ∂S1

∂q
Si · · · pT ∂Sn−k

∂q
Si

]) ∂H̃

∂p̃1
+ pT ∂Si

∂r
v − ST

i

∂H̃

∂q
+ ST

i Bu.

(4.12)

The two dynamic equations (4.11) and (4.12) do not depend on neitherλ nor p̃2. The La-
grange multipliers have thus been eliminated, and the motion of the constrained system
is described by (4.11) and (4.12). This leads to the following Hamiltonian system

[
q̇
˙̃p1

]

= J(q, p̃1, r)

[
∂H̃
∂q

∂H̃
∂p̃1

]

+

[
0

ST (q, r)B(q, r)

]

u+

[
0

Bv(q, p̃1, r)

]

v,

ṙ = v,

H̃(q, r, p̃1) =
1

2
p̃T
1

(
ST (q, r)M(q, r)S(q, r)

)−1
p̃1 + U(q),







(4.13)

with interconnection matrix

J(q, p̃1, r) =

[
0 S(q, r)

−ST (q, r)
(
−pT [Si, Sj ](q)

)

i,j

]

,
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and kinematic input vector field

Bv(q, p̃1, r) =






pT ∂S1

∂r
...

pT ∂Sn−k

∂r




 ,

where[Si, Sj ](q) denotes the Lie bracket ofSi andSj in q

[Si, Sj ](q) =
∂Sj

∂q
(q, r)Si −

∂Si

∂q
(q, r)Sj .

Note thatJ(q, r) = −JT (q, r). The symplectic structure of the original system has
hence been maintained in the reduced system.

4.5 Inertia Matrix Scaling

Although the Lagrange multipliers have been eliminated, the reduction scheme has in-
troduced the additional input termBvv. The new input term is a result of the form of the
new inertia matrix of the new Hamiltonian function of the reduced system. The Hamil-
tonian functionH̃ is still invariant with respect tor but the inertia matrixSTMS might
not be. Hence, if the inertia matrix is changed by the kinematic input v the momentum
p̃1 must be changed accordingly for̃H to be rendered invariant. This explains the input
termBvv, which acts directly oñp1.

The only difference between the unreduced system with kinematic inputs (4.5) and the
classical Hamiltonian system is the dependency onr in the constraint and input matrices.
The similarity with the classical system is no longer as clear with the introduction of the
extra input termBvv, but fortunately, the choice ofS(q, r) is not unique, and as the
following theorem shows, it is possible to eliminate the term Bvv by an appropriate
scaling of the inertia matrixSTMS. By eliminating the extra input term, we will end
up with a system very similar to a classical Hamiltonian system.

Theorem 4.3. There exists ann× (n− k) matrixSI(q, r) of rankn − k that satisfies
AT (q, r)SI(q, r) = 0 and the relation

ST
I (q, r)M(q, r)SI (q, r) = I, (4.14)

whereM(q, r) is a strictly positive definite symmetric inertia matrix of the system(4.5).
UsingS = SI in (4.13)eliminates the input vector field

Bv(q, r, p) = 0. (4.15)
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Proof. Assume that there exists a matrixSI(q, r) that satisfies (4.14) and letS = SI .
Then the Hamiltonian function is̃H = 1

2 p̃
T
1 p̃1 + U(q), and from the definition of the

kinematic input we know that∂H̃/∂r = ∂p̃1/∂r = 0 and hence

∂p̃1

∂r
=

∂

∂r
ST (q, r)p = Bv(q, r, p) = 0.

To prove thatSI exists consider ann× (n−k) matrix S̄(q, r) of rankn−k that satisfies

AT (q, r)S̄(q, r) = 0.

A(q, r) andS̄(q, r) constitutes a proper transform pair, but so doesA(q, r) andS̄(q, r)Υ(q, r),
whereΥ(q, r) is any(n− k)× (n− k) non-singular matrix. If we takeSI = S̄Υ then
(4.14) is satisfied if there exists anΥ(q, r) such that

ΥT S̄TMS̄Υ = I. (4.16)

The symmetric matrix̄STMS̄ is a congruence transformation ofM , and the positive
definiteness ofM is hence maintained in̄STMS̄. For a positive definite symmetric
matrix there always exists a diagonalization on the formS̄TMS̄ = QT ΛQ, whereΛ
is a diagonal matrix composed of the strictly positive eigenvalues, andQ is a matrix
composed of orthonormal eigenvectors. Now chooseΥ = (QT Λ

1

2Q)−1, whereΛ
1

2

denotes the diagonal matrix of square roots of the individual eigenvalues (Λ = Λ
1

2 Λ
1

2 ).
Then (4.16) becomes

(QT Λ
1

2Q)−TQT ΛQ(QT Λ
1

2Q)−1 = QT Λ− 1

2QQT ΛQQT Λ− 1

2Q = I.

With the choice ofS = SI , the system (4.13) is reduced to

[
q̇
˙̃p1

]

= J(q, p̃1, r)

[
∂H̃
∂q

∂H̃
∂p̃1

]

+

[
0

ST (q, r)B(q, r)

]

u,

ṙ = v,

H̃(q, p̃q) =
1

2
p̃T
1 p̃1 + U(q).







(4.17)

4.6 Discussion

By eliminating the Lagrange multipliers, and after an appropriate scaling of the inertia
matrix, the resulting system equations have been reduced toa system of2n−k first order
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Hamiltonian equations with a very simple Hamiltonian function; plus thel original first
order linear equations for the kinematic inputs.

The only difference between the reduced system (4.17) and a classical Hamiltonian sys-
tem without kinematic inputs is the dependency onr in the interconnection and input
matrices. The passivity properties of the classical Hamiltonian system therefore also
apply to this system, since fixingr in (4.17) converts it to a classical system. Since the
Hamiltonian function in invariant with respect tor the passivity is also retained when
r varies. The introduction of the kinematic input means that the direction of movement
can be changed without affecting the total energy of the system and without sacrificing
the useful passivity property.





CHAPTER5

REDUCTION AND VALIDATION OF THE AV M ODEL

The Lagrange model of the AV, which was derived in chapter 3, is a special case of the
general Lagrange model of a system with kinematic inputs. The role of the kinematic
inputs are played by the velocities of the steering motors onthe AV, and an equiva-
lent Hamiltonian model of the AV can be obtained by applying the reduction scheme
introduced in the previous chapter. This chapter introduces the reduced Hamiltonian
equations for the AV, where the undetermined Lagrange multipliers have been elimi-
nated. With the Lagrange multipliers gone, and the AV equations written on a much
simpler form, the model is verified against measurements on the physical system.

5.1 The Reduced Hamiltonian Equivalent

Before applying the reduction scheme to the AV Lagrange model we must first check
that the model has the correct structure. When comparing (3.11) on page 48 to (4.1) on

61
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page 51 it is evident that the AV Lagrange model is on the correct form, with

L 7→ L′,

q 7→ χ,

A 7→ RTCT
1 ,

λ 7→ λ1,

B 7→ RTCT
2

1

rw
,

u 7→ τφ,

r 7→ β′,

v 7→ ζ.

The second thing to check is whether or not the velocities of the steering motors satisfy
the conditions of proper kinematic inputs. According to definition 4.1 on page 51ζ is
a proper kinematic input if both the kinetic energyT and the potential energyU are
invariant with respect toβ′ on the constrained tangent bundleΩc. The potential energy
U at a given point inΩc is derived from the height above sea level (or any other constant
reference point), and it is assumed to be completely independent ofβ′. All that is left to
be checked is if the kinetic energy is also invariant with respect toβ′. It is invariant if
the partial derivative ofT with respect toβ′ is zero onΩc:

∂T

∂βi

=
∂

∂βi

(
1

2
χ̇TRT (θ)M̄(β′)R(θ)χ̇

)

= 0, i = 1, 2 for (χ, χ̇) ∈ Ωc,

(5.1)
with theβ′ dependent inertia matrix̄M

M̄(β′) = M +
jw,φ

r2w
CT

2 (β′)C2(β
′).

SinceM is constant, (5.1) reduces to checking whether

χ̇TRT (θ)

[
∂CT

2

∂βi

C2(β
′) + CT

2 (β′)
∂C2

∂βi

]

R(θ)χ̇ = 0, i = 1, 2 for (χ, χ̇) ∈ Ωc

(5.2)
is true. Consider the derivative of the first row ofC2 denoted byC2,1 with respect toβ1

∂C2,1

∂β1
=
[
− sinβ1 cosβ1 κ1 cos(β1 − γ1)

]
.

The right side is exactly the same as the first row ofC1, see (3.6) in page 44. The rela-
tionship betweenC1 and the derivative ofC2 can be extended even further by looking at
all possible derivatives of the rows ofC2, but this will not be shown here. It can easily
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be verified that the derivative of any row ofC2 will result in a vector that is a linear
combination of the rows ofC1, i.e.,

∂C2,j

∂βi

=

4∑

k=1

αkjiC1,k, αk ∈ R.

Consider a vectorv that lies in the kernel ofC1. This means thatC1,kv = 0 and hence
also thatv lies the kernel of the space spanned by the derivatives ofC2. From the free

rolling constraint we know thatRχ̇ ∈ ker[C1] ⊂ ker
[

∂C2

∂βi

]

on Ωc. The multiplication

terms involvingRχ̇ and ∂C2

∂βi
in (5.2) vanish, and the equation is therefore true.ζ is

hence a proper kinematic input. Note that the equality will not be true for an arbitraryχ
andχ̇ outsideΩc.

Finding the Hamiltonian equivalent of the AV Lagrange modelis now done in three
steps; step one is to derive the unreduced Hamiltonian equivalent of the Lagrange model,
where the Lagrange multipliers are left untouched; the second step is to find a matrix
S that can be used to reduce the system by elimination of the Lagrange multipliers;
the third and final step is to find a suitable positive definite matrix Υ (it turns out to
be a scalar function) that renders the new momentump̃1 invariant with respect to the
kinematic inputζ.

Step 1. Finding the unreduced Hamiltonian equivalent

The Hamiltonian equivalent of the Lagrangian model (3.11) is obtained by direct appli-
cation of theorem 4.1 on page 53. The Hamiltonian equivalentof the AV model is

[
χ̇
ṗ

]

=

[
0 I
−I 0

] [∂H
∂χ

∂H
∂p

]

+

[
0

RT (θ)CT
2 (β′) 1

rw

]

τφ +

[
0

RT (θ)CT
1 (β′)

]

λ1,

β̇′ = ζ,

0 = C1(β
′)R(θ)

∂H

∂p
,







(5.3)

with p = RT (θ)M̄ (β)R(θ)χ̇ and Hamiltonian function

H(χ, p, β′) =
1

2
pT [RT (θ)M̄(β′)R(θ)]−1p+ U(χ).

The system defines the motion of the AV on the constrained cotangent bundle

Ω∗
c = {(χ, p) ∈ T ∗M | C1(β

′)R(θ)
∂H

∂p
= 0}.
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Step 2. Eliminating the Lagrange multipliers

To apply the reduction method and eliminate the Lagrange multipliers we need to find a
diffeomorphic change of coordinatesp̃1 = ΥT S̄T p andp̃2 = C1Rp where

C1(β
′)R(θ)S̄(χ, β′) = 0. (5.4)

The two rows ofC1R defines two independent constraints on the three dimensional
manifoldM. The kernel ofC1R is hence one dimensional, and we are seeking a three
dimensional nonzero column vectorS̄, which spans this kernel. One choice is

S̄(χ, β′) = RT (θ)Σ(β′),

Σ(β′) =





cosβ2κ1 cos(β1 − γ1)− cosβ1κ2 cos(β2 − γ2)
sinβ2κ1 cos(β1 − γ1)− sinβ1κ2 cos(β2 − γ2)

sin(β1 − β2)



 .

S̄ is nonzero (full rank) except whenβi = π/2 + nπ, i = 1, 2, n ∈ Z. See the remark
on page 43 on how to overcome this singularity. With thisS̄ andΥ = 1 it is possible
to write the system on the reduced form as in (4.13), but thereis still the problem of an
undesired dependency between the new momentum and the kinematic inputζ.

Step 3. Making the new momentum invariant with respect to thekinematic input

To further reduce the system by the application of theorem 4.3 S = S̄Υ = RT ΣΥ has
to satisfy the equation

ST (χ, β′)RT (θ)M̄(β′)R(θ)S(χ, β′) = 1, (5.5)

which will makep̃1 invariant with respect to the kinematic inputs.

To satisfy (5.5) a scalar nonzero functionΥ must be chosen such that

ΣT (β′)M̄(β′)Σ(β′)Υ2(χ, β′) = 1.

The choice ofΥ is obviously

Υ(β′) =
1

√

ΣT (β′)M̄(β′)Σ(β′)
.

Having found anS(χ, β′) that satisfies (5.5) the coordinate transformationp 7→ p̃1, p̃2

is

p̃1 = Υ(β′)ΣT (β′)R(θ)p 1-dimensional,

p̃2 = C1(β
′)R(θ)p 2-dimensional,
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and the reduced Hamiltonian equivalent of the AV Lagrange model is
[
χ̇
˙̃p1

]

= J(χ, β′)

[
∂H̃
∂χ

∂H̃
∂p̃1

]

+

[
0

Bφ(β′)

]

τφ,

β̇′ = ζ,







(5.6)

with

J(χ, β′) =

[
0 RT (θ)Σ(β′)Υ(β′)

−Υ(β′)ΣT (β′)R(θ) 0

]

,

Bφ(β′) = Υ(β′)ΣT (β′)CT
2 (β′)

1

rw
,

H̃(p̃1) =
1

2
p̃2
1.

The original Lagrange model equations (3.11) have now been reduced to a set of first
order equations. By using the nonholonomic constraints theproblem has been reduced
from a problem of solving three nonlinear second order differential equations, four non-
linear first order equations, and two linear first order equations, to a problem of only
four nonlinear first order equations and two linear first order equations.

The system (5.6) is still highly nonlinear, however, and it is easy to lose track of the
physical interpretation of the different elements in the system. To gain some insight
into the physical nature of the system we look at two special cases where the system is
expected to demonstrate a simpler, maybe even linear, behavior.

Special case 1. Driving along a straight line

When driving along a straight line all the steering motors are fixed at the same angleβ0,
and the ICR lies at infinity in the direction perpendicular tothe direction of motion, see
figure 5.1.

The wheels are mounted at the corners of a1 × 1m square, and the following relations
hold: κ1 cos γ1 − κ2 cosγ2 = 1 andκ1 sin γ1 − κ2 sinγ2 = 0. In this configuration the
components of the model hence reduce to much simpler forms

Σ(β0) =





cos2 β0

sinβ0 cosβ0

0



 , Υ(β0) =
1

cosβ0

√

mf + 4mw + 4
jw,φ

rw

,

C2(β0) =







cosβ0 sinβ0 κ1 sin(β0 − γ1)
cosβ0 sinβ0 κ2 sin(β0 − γ2)
cosβ0 sinβ0 κ3 sin(β0 − γ3)
cosβ0 sinβ0 κ4 sin(β0 − γ4)






.
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v s

ICR

β0

β0

β0

β0

Figure 5.1: Driving along a straight line.vs is the velocity in the direction of motion

The model (5.6) is then reduced to

χ̇ =





cos(θ + β0)
sin(θ + β0)

0




1

√

mf + 4mw + 4
jw,φ

rw

p̃1,

˙̃p1 =
1

√

mf + 4mw + 4
jw,φ

rw

4∑

i=1

τφi

rw
.







(5.7)

The first equation describes how the AV moves in the directionθ + β0. As expected,
there is no rotation of the AV, i.e.,̇θ = 0. The equation can be rewritten in terms of the
translational velocityvs along the direction of motion

χ̇ =





cos(θ + β0)
sin(θ + β0)

0



 vs,

with p̃1 andvs related by

vs =
1

√

mf + 4mw + 4
jw,φ

rw

p̃1. (5.8)

With this change of coordinates the second equation of (5.7)becomes

msv̇s =

4∑

i=1

τφi

rw
, ms = mf + 4mw + 4

jw,φ

rw
,

and we end up with a dynamic model that describes the acceleration of a massms along
a line with a constant slopeθ+β0. ms is the total mass of the AV plus the four moments
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of inertia of the rolling wheels translated to ‘masses’ through the wheel radiusrw . Thus,
ms describes all the parts of the AV that are set in motion when driving along a straight
line.

Special case 2. Rotation about the geometric center

In this situation all the wheels are oriented so that the ICR is located at the geometric
center of the AV. In this caseβ1 = −β2 = 3π/4 andβ4 = −β3 = π/4, see figure 5.2.

3π
4

− 3π
4

−π
4

π
4

ω r

ICR

Figure 5.2: Rotating around the geometric center.ωr is the angular velocity about the
geometric center

As in the previous case the components of the model reduces tomuch simpler forms

Σ =





0
0
−1



 , Υ =
1

√

jf + (mw +
jw,φ

rw
)

4∑

i=1

κ2
i

,

C2 =







−
√

2
√

2 κ1

−
√

2 −
√

2 κ2√
2 −

√
2 κ3√

2
√

2 κ4






,
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and (5.6) is reduced to

χ̇ =





0
0
1




−1

√

jf + (mw +
jw,φ

rw
)

4∑

i=1

κ2
i

p̃1,

˙̃p1 =
−1

√

jf + (mw +
jw,φ

rw
)
∑4

i=1 κ
2
i

4∑

i=1

κiτφi

rw
.







(5.9)

As expected, there is no translational motion, i.e.,ẋ1 = ẋ2 = 0. The first equation
describes the rotation about the geometric center, and the rotation rate is related to the
angular velocityωr by

χ̇ =





0
0
1



ωr.

In this casẽp1 is related toωr through the relation

ωr =
−1

√

jf + (mw +
jw,φ

rw
)
∑4

i=1 κ
2
i

p̃1.

Using this coordinate transformation the second equation in (5.9) is reduced to

jrω̇r =

4∑

i=1

κiτφi

rw
, jr = jf + (mw +

jw,φ

rw
)

4∑

i=1

κ2
i .

The result is similar to that of the previous case, but this time the equation describes
an angular acceleration of a body with moment of inertiajr. jr is the total moment of
inertia of the AV about its geometric center plus the momentsof inertia of the rotating
wheels, first translated throughrw to ‘masses’ at the wheel mounting points and then
translated throughκi to contributions to the total moment of inertia.

In each of the two special cases it is possible to relate the generalized momentum̃p1 to
either the translational or rotational velocity through the square root of the mass or mo-
ment of inertia. This is only valid for pure translational and pure rotational movement,
and in general, when the AV is exhibiting both translationaland rotational motion,̃p1 is
a combination of both.

5.2 Model Validation

The model (5.6) describes the dynamics of the AV with the assumption that all param-
eters in the model are constant and known. Most of the parameters can be measured
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directly using a scale or a tape measure, but parameters, such as moments of inertia
and friction coefficients, are somewhat harder to estimate.Based on empirical measure-
ments the values of the parameters used in the model have beenestimated and they are
summarized in table 5.1.

Parameter Value Description
mf [kg] 187 Mass of frame (*)

jf [kg m2] 95 Moment of inertia of frame (*)

mw [kg] 10 Mass of each wheel

jw,φ [kg m2] 0.5 Moment of inertia of a single wheel about the
φ rotation axis

κi [m]
√

0.5 Polar position of thei’th wheel relative to the
geometric center of the AV,i = 1, 2, 3, 4γi [rad] π

4 + π
2 (i− 1)

rw [m] 0.23 Radius of wheels

Table 5.1: Directly measurable AV model parameters. (*) taken from [7]

To make the model complete, an estimate of the friction coefficientb′ (see page 37) is
also needed. Recall that the physical input to the propulsion motors are not torques, but
voltagesVm related toτφ by

τφi
= D1Vmi

−D2(b
′)φ̇i, i = 1, 2, 3, 4, (5.10)

withD1 = Kt/Ra andD2(b
′) = KeKt/Ra+b′. D1 is the voltage to torque relationship

of the motor at zero velocity, and an estimate ofD1 was found by Bisgaard et al. [7].
The parameterD2 captures both the electromotive force generated in the motor and any
kinetic friction affecting the motor. The internal kineticfriction of the unloaded motor
was estimated by Bisgaard et al. [7], but it is assumed that the propulsion motors will
be subject to an increased friction from external sources when driving in the field. The
parameterD2 is assumed to be equal for all four wheels.

Consider a situation where the AV is driving along a straightline as in special case 1.
Combining (5.8) with (5.10) and applying the same voltageVm to all four wheels yields
the following linear first order system

msv̇s =
4

rw

(

D1Vm −
D2(b

′)

rw
vs

)

. (5.11)
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A similar approach can be taken for special case 2 where the AVis rotating about the
geometric center. In this case the first order system is

jrω̇r =
1

rw

4∑

i=1

κi

(

D1Vm −
κiD2(b

′)

rw
ωr

)

. (5.12)

Figure 5.3 shows two measured step responses of the AV. The applied voltage to the
propulsion motors are shown in the two top plots, and the resulting velocities are shown
in the bottom plots. The input to each experiment consists oftwo identical steps, and
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Figure 5.3: Step response of special case 1 and 2

if the dynamics of the AV are linear, we would expect two identical steps on the output
as well. This is not the case though, as the first step in both experiments are lower than
the second step. This indicates that there are additional unmodeled non-linearities in the
system. This is most likely due to static friction, and this is therefore introduced in the
model by the following modified input torque

τ̄φi
= D1Vmi

−D2(b
′)φ̇i − τsi

(φi, D1Vmi
), i = 1, 2, 3, 4,

where the static frictionτsi
is determined by

τsi
=







D1Vmi
if

∑4
i=1D1Vmi

< 4τs0 and φ̇i = 0,

sign(D1Vmi
)τs0 if

∑4
i=1D1Vmi

≥ 4τs0 and φ̇i = 0,

sign(φi)τs0 else.
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When the AV is not in motion the net torque is zero until the applied torque from the
motors grows larger than the total static friction4τs0. When the AV is in motion the static
friction in each wheel is constant in the opposite directionof rotation. For simplicity the
static friction during motionτs0 is assumed to be constant, positive, and identical for all
four wheels.

We are now ready to estimate the coefficientD2(b
′) and the static frictionτs0 from

the step responses of figure 5.3. When the AV drives at constant non-zero velocity the
models (5.11) and (5.12) including static friction reducesto

0 = D1Vm −
D2(b

′)

rw
vs − sign(vs)τs0,

and

0 =

4∑

i=1

κi

(

D1Vm −
κiD2(b

′)

rw
ωr − sign(ωr)τs0

)

.

These equations are linear equations in the two variablesD2(b
′) andτs0 whenVm, vs,

andωr are known. Four steady state velocities can be read from figure 5.3, and these
readings can then be used to do a simple least square approximation ofD2(b

′) andτs0.
The resulting values are shown in table 5.2. Note thatD2(b

′) will most likely change

Parameter Value
D1 [Nm/V] 18.2
D2(b

′) [Nm/rad/s] 6.5
τs0 [Nm] 11.6

Table 5.2: Estimated friction parameters. (D1 is derived from the data in table 2.10 on
page 37).

from one ground/soil condition to the next. In these experiments the AV was driving
on gravel ground, and the same is true for any subsequent experiments unless otherwise
specified.

With the estimates in tables 5.1 and 5.2 it is possible to compare the step responses of
the physical system with those of the model. They are depicted in figure 5.4, and the
model seems to capture the dynamics of the physical system inthe two special cases
well. The rise times of the model and the AV also fits nicely, which indicates that the
estimated total mass and moment of inertia are correct.

To see how the model behaves in a more general setting the output of the model is
compared with that of the AV during a90s test run where the AV is driven manually by
joystick. Figure 5.5 shows a block diagram of how the AV and model data are generated.
The inputsVm andβ′

ref are generated by the joystick. The sameVm is passed directly
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Figure 5.4: AV and model step responses of special case 1 and 2

to all four propulsion motors, but since the model expects four input torques, they have
to be calculated based on the estimated parametersD1, D2, andτs0. Note that the
kinematic inputζ does not enter the system explicitly. The joystick generates the desired
steering anglesβ′

ref , and the software in the LH-Agros uses these references in the
angular position control loops. Becauseζ has been eliminated in the model equation
(5.6) it suffices to pass the measured steering anglesβ̂′ to the model.

Figure 5.6 shows the inputVm and the corresponding estimated torque inputτ̄φ to the
model. The input is by no means simple and should in that senseexcite most of the
dynamics in the AV.

Figure 5.7 shows the measured steering angles fed into the model. Looking closely at
the figure, it is possible to identify the varying ways the AV is being steered. Around
t = 11s, for example, the steering angles areβ1 = −β2 and the AV is rotating around
an ICR that lies on the line passing through the side of the AV and the geometric center.
A different mode of steering can be identified aroundt = 70s, whereβ1 = β2 = −π/2
and the AV is driving sideways with all four wheels fixed at thesame angle.

Figure 5.8 shows the resulting translational velocity (vs =
√

ẋ2
1 + ẋ2

2) of the AV (mea-
sured by the GPS receiver) and the model. The model captures the dynamics of the
physical system well, even though there are some discrepancies between the two graphs;
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Figure 5.5: Block diagram of the verification setup
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Figure 5.6: Input voltage to the propulsion motors and the corresponding estimated
torque input to the model



74 REDUCTION AND VALIDATION OF THE AV M ODEL

β4

β3

β2

β1

t [s]

β
[r

a
d
]

9080706050403020100

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure 5.7: Measured steering angles

in the interval from 20 to 50 seconds the velocity seem to be a bit off at the peaks. A
clearer picture is shown in figure 5.9 where a closeup of that interval is shown. Even
though the model fails to hit the peaks of the measured velocity exactly it still captures
the dominating dynamics of the system, and the discrepancies at the peaks are not large
enough to invalidate the model.

The discrepancies between AV and model are even smaller whenturning to the measured
and simulated rotational velocities. Figure 5.10 shows therotational velocities of the AV
(measured by the gyro) and model during the full test, and figure 5.11 shows a closeup
of the interval from 20 to 50 seconds.

Calculating the position and orientation of the AV based on the model is essentially a
question of integrating the dashed graphs in figures 5.8 and 5.10, but due to the dis-
crepancies between model and AV, the resulting modeled position and orientation are
expected to diverge over time from those measured by the GPS and compass. Fig-
ures 5.12 and 5.13 shows the measured and simulated positionand orientation of the
AV. As expected, the position and orientation deviate over time (even though it is dif-
ficult to see for the orientation), but the model still captures the general behavior of the
AV, and the deviation can easily be eliminated by implementing a suitable observer for
the system. It is therefore concluded that the derived modelof the AV describes the real
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Figure 5.10: Measured and simulated angular velocity of the AV
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dynamics of the physical system to an extent that makes the model suitable for deriving
and simulating control algorithms for the AV.
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Figure 5.12:Comparison between measured and simulated position
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CHAPTER6

FEEDBACK CONTROL OF SYSTEMS WITH K INEMATIC

I NPUTS

A general model of a nonholonomic Hamiltonian system with kinematic inputs was
introduced in chapter 4, and we now turn to feedback control of that system. This chap-
ter focuses on asymptotic stabilization of the system by means ofenergy shapingand
damping injection. The two concepts are, in their simplest form, smooth time invariants
feedbacks, but Brockett and Sussmann [14] proved that smooth time invariant feedbacks
alone cannot asymptotically stabilize a nonholonomic system. The system will, how-
ever, converge to an open subset of the configuration manifold [40]. The kinematic
inputs constitutes an additional degree of control, and these inputs can be used to force
the set of convergence to only containing a set of desired stable equilibria and asymptotic
stability can be achieved.

The control methods described in this chapter are based on passivity properties of dy-
namic systems, and a short introduction to the passivity approach is valid before moving
to the control aspects.

79
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6.1 Passivity of Dynamic Systems

Consider the general nonlinear dynamic system

Π :

{

ẋ = f(x, u)

y = h(x, u)
,

with x ∈ X , u ∈ U ⊂ R
m andy ∈ Y ⊂ R

k. X is ann-dimensional manifold.
Define thesupply rates : U × Y → R and a continuous differentiablestorage function
V : X → R

+. R
+ denotes all non-negative real values1.

Definition 6.1. The dynamic systemΠ is said to bepassivewith respect to the supply
rate s if there exists a storage functionV , such that for any initial conditionx(0) ∈ X
and for all t1 > 0 the passivity inequality is satisfied

V (x(t1))− V (x(0)) ≤
∫ t1

0

s(u(t), y(t))dt. (6.1)

This is a quite general definition of passivity, and for mechanical systems it merely states
that the system is passive if the increase in stored energy from t = 0 to t = t1 is never
greater than the amount of energy supplied externally to thesystem; the system cannot,
by itself, generate energy.

In electrical and mechanical systems a useful choice of storage function is usually the
total physical energy of the system, and the supply rate is then usually chosen to be
the instantaneous externally applied power to the system. One important supply rate
is defined as follows. Consider an output space defined as the dual of the input space
Y = U∗. Then we can define a supply rate

s(u, y) = yTu.

This type of supply rate is encountered in many physical systems, and it often has a clear
physical meaning. In electrical systemsu andy may be voltages and currents, and in
mechanical systemu andy may be generalized forces and velocities. Other choices of
inputs and outputs exist, but if the storage function is realenergy the product between
input and output must equal power.

The passivity inequality (6.1) can also be written in terms of the instantaneous change
of the storage function. Taking the time derivative on both sides yields

V̇ (x(t)) ≤ s(u(t), y(t)).
1The storage function only have to be bounded from below, but without loss of generality we assume that

it is strictly non-negative.
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This inequality states that the system is passive if the rateof change of the storage
function at any given time instance is never larger than the supply rate. If the relation is
a strict equality the system is said to beconservative. This formulation of the passivity
condition can be directly applied to show that the Hamiltonian system with kinematic
inputs (4.17) is a conservative system. Take the Hamiltonian function H̃ as storage
function and look at the time derivative

˙̃H =

[
∂H̃
∂q

∂H̃
∂p̃1

]T (

J

[
∂H̃
∂q

∂H̃
∂p̃1

]

+

[
0

STB

]

u

)

=
∂T H̃

∂p̃1
STBu.

Defining the outputy as

y = BTS
∂H̃

∂p̃1
(= BT q̇),

yields
˙̃H = yTu. (6.2)

Hence, with storage functioñH the system is passive (and conservative) with respect to
the supply rates(u, y) = yTu with y defined as above. The choice of output may seem
random, but it usually has a clear physical interpretation.On the AV, for example, the
inputs are the four propulsion motor torquesτφ, and the outputy, if defined as above,
turns out to be the angular velocitiesφ̇ of the propulsion motors. The supply rate is then
equal to the total power supplied by the propulsion motors. Since the constraint forces
are not doing any work on the system, and since there are not yet any non-conservative
friction forces in the model, the supply rate is exactly equal to the rate of change of total
energy of the AV.

6.2 Example of Passivity Based Control

The passivity of (4.17) does not automatically infer stability of the system. The states
of a passive system will not grow exponential, but if the uncontrolled system is conser-
vative, and has a nonzero initial momentum, the system will never come to rest either.
Even if energy dissipation or non-conservative forces are introduced in the system there
is no guarantee that the system will come to rest at the desired equilibrium. The equilib-
rium point, or set of equilibrium points, are given by the minima of the potential energy
functionU , and the equilibrium points may, or may not, coincide with the desired set
of equilibrium points. To solve the problems of having an undesired potential energy
function and the absence of energy dissipation, the concepts ofpotential energy shaping
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0
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x

Figure 6.1: A mass moving on a frictionless surface

anddamping injectionare introduced. Before moving to the general situation, we first
consider the simple linear example in figure 6.1 of a massmmoving on a flat frictionless
horizontal surface.

The system can be written as a Hamiltonian system

[
ẋ
ṗ

]

=

[
0 1
−1 0

] [∂H
∂x

∂H
∂p

]

+

[
0
F

]

,

y =
∂H

∂p
(= ẋ),

H(p) =
1

2
m−1p2,

wherex is the position of the mass along the horizontal,p is the momentum of the mass,
andF is the applied input force.

Assume that we wish to asymptotically stabilize the system at the originx = 0. De-
pending on the initial momentum, the mass will either move ata constant velocity along
the horizontal ifp(0) 6= 0, or it will stay at its initial position ifp(0) = 0. The lack of
potential energy in the Hamiltonian function means that anyinitial point on the horizon-
tal plane is an equilibrium point ifp(0) = 0, but we are only interested in one:x = 0.
To eliminate the rest we define a functionU(x) that has a global minimum atx = 0 and
the following control law

F = −∂U
∂x

+ F̄ ,

whereF̄ is the new input. The feedback applies the negative gradientof the functionU
to the mass, thereby always pulling the mass toward the minimum, see figure 6.2.
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Figure 6.2: Energy shaping

The resulting closed loop Hamiltonian system with the new input is

[
ẋ
ṗ

]

=

[
0 1
−1 0

] [∂H̄
∂x

∂H̄
∂p

]

+

[
0
F̄

]

,

y =
∂H̄

∂p
,

H̄(x, p) =
1

2
m−1p2 + U(x).

The system is of the exact same structure as before, but now with a shapedpotential
energy. Had there been anyreal potential energy in the original system the shaped
potential energy would just have been the sum of the originalreal potential energy and
the newartificial potential energy. Examining the new system we see that the only
equilibrium point is(x, p) = (0, 0).

The system is still not asymptotically stable. Because of energy conservation (̄H is
constant ifF̄ = 0) the introduction of the artificial potential energy has resulted in a
marginally stable system, which oscillates about the origin. To make the system asymp-
totically stable the origin must not only be an equilibrium of the system, but also an
asymptotically stable one. Take the positive definite Hamiltonian functionH̄ as a Lya-
punov function candidate. The function is positive definitein a neighborhood of(0, 0),
and the time derivative of it is

˙̄H = yF̄ .

ChoosingF̄ = −kdy, k > 0 renders ˙̄H ≤ 0. The function ˙̄H is not identically
negative outside the origin, and we turn to LaSalles invariance principle to determine
the asymptotic behavior of the system.
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Figure 6.3: Energy shaping + Damping injection

Theorem 6.1 (LaSalle’s Invariance Principle). Let Ω ⊂ D be a compact set that is
positively invariant with respect to

ẋ = f(x),

wheref : D → R
n. LetV : D → R be a continuously differentiable function such that

V̇ (x) ≤ 0 in Ω. LetE be the set of all points inΩ whereV̇ (x) = 0. LetQ be the largest
invariant set inE. Then every solution starting inΩ approachesQ ast→∞.

Proof. See [35]

We conclude that the system converges asymptotically to thelargest invariant set of the
system where˙̄H = 0, that is, whenẋ = 0. The set is identical to the single point(0, 0)
and the origin is hence asymptotically stable.

This particular choice of̄F is calleddamping injection, and in the simple example thēF
feedback can be compared to the presence of a non-conservative friction force between
the mass and the ground, see figure 6.3.

The resulting closed loop system is

[
ẋ
ṗ

]

=

([
0 1
−1 0

]

−
[
0 0
0 kd

])[∂H̄
∂x

∂H̄
∂p

]

,

H̄(x, p) =
1

2
m−1p2 + U(x).







(6.3)

The responses of the original system, the system with energyshaping, and the system
with both energy shaping and damping injection are shown in figure 6.4. The system is in



6.2. EXAMPLE OF PASSIVITY BASED CONTROL 85

kd = 4
kd = 0.5

Original system + energy shaping + damping injection

t

x

4035302520151050

5

0

−5

Original system + energy shaping

x

4035302520151050

5

0

−5

Original system
x

4035302520151050

5

0

−5

Figure 6.4: Responses of the simple example

all three cases started with a nonzero momentum atx = −5. As expected, the response
of the uncontrolled system in the top figure continues to growat constant velocity. In the
middle figure energy shaping is introduced, and the positionno longer grows linearly,
but oscillates around the origin. In the bottom figure damping injection is introduced
with two different damping coefficients, and the responses converge asymptotically to
zero at different rates; the higher the damping, the faster the system settles.

If the potential energy function is defined as a quadratic functionU(x) = 1
2kpx

2, kp >
0, the total feedback isF = −kpx − kdẋ. One could argue that this example is just
a complicated way of deriving a simple linear PD controller,but the example is meant
as a brief introduction to the physical interpretation of energy shaping and damping
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injection. A PD controller is by construction linear, but the concepts of energy shaping
and damping injection works equally well for a large class ofnonlinear systems.

Remark.The damped system (6.3) is an example of a dissipative Hamiltonian system.
A more general form is

[
q̇
ṗ

]

= [J −D]

[
∂H
∂q

∂H
∂p

]

+

[
0
B

]

u,

y = BT ∂H

∂p
.

This system differs from the conservative Hamiltonian system by the introduction of a
positive semi-definite damping matrixD. The system still satisfies the passivity condi-
tion

Ḣ = yTu− ∂TH

∂p
D
∂H

∂p
⇒ Ḣ ≤ yTu,

but it is no longer conservative. △

6.3 Energy Shaping

To put the concept of energy shaping into a more general context we look at the Hamil-
tonian system with kinematic inputs from chapter 4. The system equations are repeated
below for convenience

[
q̇
˙̃p1

]

= J(q, p̃1, r)

[
∂H̃
∂q

∂H̃
∂p̃1

]

+

[
0

ST (q, r)B(q, r)

]

u,

y = BT (q, r)S(q, r)
∂H

∂p̃1
,

H̃(q, p̃1) =
1

2
p̃T
1 p̃1 + U(q),







(4.17)

with a skew symmetric interconnection matrix

J(q, p̃1, r) =

[
0 S(q, r)

−ST (q, r)
(
−p̃T

1 S
T (q, r)M(q, r)[Si, Sj ](q)

)

i,j

]

.

As already seen, the system is passive (and conservative) with respect to supply rate
s(u, y) = yTu and storage functioñH. That is,

˙̃H = yTu,
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and the set of equilibrium points(q̇, ˙̃p1) = 0 of this system with a fixedr is {(q, 0) ∈
Ω∗

c | ST (q, r)∂U
∂q

= 0}. The extreme points of the potential energy function are equi-

librium points of the system, but so is any pointq for which the gradient∂U
∂q

lies in the

kernel ofST . This is one of the direct consequences of having a nonholonomic sys-
tem, and the problem will receive more attention later. For now we focus on shaping
the potential energy function so that the extreme points of the shaped potential function
coincides with a desired set of equilibrium points.

Suppose the point, or the set of points,Q0 that we want the system to approach can be
represented as local minima of a known potential functionU + Ū , whereU(q) is the
originalrealpotential energy, and̄U(q) is theartificial or shapingpotential energy of the
designers choice. It is assumed that the artificial potential functionŪ can be designed in
such a way thatU + Ū are strictly non-negative and that the set of extreme pointsonly
comprises a closed set of minimum points. The setQ0 is then defined as

Q0 = {(q, 0) ∈ Ω∗
c |

∂(U + Ū)

∂q
= 0}.

The object of energy shaping is to find a feedback that will addŪ to the original po-
tential energy of the system, thereby shaping the total potential. Maschke and van der
Schaft [40] proposed an input that shapes the potential energy for nonholonomic sys-
tems without kinematic inputs, but it applies equally well for systems with kinematic
inputs. Consider an inputues satisfying

−ST (q, r)
∂Ū

∂q
= ST (q, r)B(q, r)ues. (6.4)

Inserting the inputu = ues + ū into (4.17) yields the modified Hamiltonian system

[
q̇
˙̃p1

]

= J(q, r, p̃1)

[
∂H̄
∂q

∂H̄
∂p̃1

]

+

[
0

ST (q, r)B(q, r)

]

ū, (6.5)

whereH̄ is similar to the originalH̃, but now with shaped potential energy

H̄(q, r, p̃1) = H̃(q, r, p̃1) + Ū(q).

The set of equilibrium points of the new system has thus been modified to include all
the minimum points of the desired potential functionU + Ū

Q = {(q, 0) ∈ Ω∗
c | ST (q, r)

∂(U + Ū)

∂q
= 0}. (6.6)
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6.4 Damping Injection

The introduction of artificial potential energy has not changed the conservative nature of
the original system. The time derivative of the new storage functionH̄ still equals the
supply rate, that is,˙̄H = yT ū. If we consider the new Hamiltonian function as a Lya-
punov function candidate the time derivative should be rendered negative to guarantee
asymptotic stability. The obvious choice of feedback that will render ˙̄H non-positive is

ū = −Ky, K > 0, (6.7)

with K ∈ R
m×m. ˙̄H only becomes negativesemidefinite, but from theorem 6.1 we

know that the system states will asymptotically converge tothe largest invariant set
where ˙̄H = 0. The structure of the system implies that ify = 0 thenp̃1 = 0, and the
largest invariant set is exactlyQ.

The closed loop system with energy shaping and damping injection can be written on
the simple form

[
q̇
˙̃p1

]

= [J(q, r, p̃1)−D(q, r)]

[
∂H̄
∂q

∂H̄
∂p̃1

]

, (6.8)

with an unchanged interconnection matrixJ and a positive semi-definite dissipation
matrix

D(q, r) =

[
0 0
0 ST (q, r)B(q, r)KBT (q, r)S(q, r)

]

.

Remark. The controlled system is an example of a non-conservative, or dissipative,
Hamiltonian system. There was no energy dissipation in the original system, but it was
introduced by feeding back the outputs. If the original system had inherent dissipative
elements – like friction in mechanical systems or resistiveelements in electrical circuits
– they can usually be modeled by a similar dissipation matrix. Feeding back the outputs
would then result in either an increased dissipation ifK > 0, or a decreased dissipation
if K < 0. As long as the total resulting dissipation matrix is positive semi-definite the
system remains stable. △

6.5 Asymptotic Stability

So far, energy shaping and damping injection have transformed the original system into
a system that converges asymptotically to the setQ. This set contains the desired set
of convergenceQ0, butQ is generally larger thanQ0, which is a direct result of the
nonholonomic nature of the system. To visualize this consider the simple example of a
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v

θ

Q0

x2

x1

Figure 6.5: A knife’s edge moving in a potential field

knife’s edge with massm moving in a potential field, see figure 6.5. The knife’s edge
is only allowed to move in the direction it is pointing, and this constraint renders the
system nonholonomic. The gray arrows in the figure representthe negative gradients of
a potential functionU that has a global minimum atQ0.

Suppose the knife’s edge has negligible moment of inertia and that the rotation rate can
be controlled directly through its first derivative. We choose this as a kinematic input
θ̇ = ζ and chooseq = [x1 x2]

T as generalized coordinates. The generalized momentum
is thenp = mq̇ and the Hamiltonian function is

H(q, p) =
1

2m
pT p+ U(q).

The system is subject to the nonholonomic constraint

q̇ =

[
cos θ
sin θ

]

v ⇒
[
sin θ − cos θ

]
q̇ = 0.

The unreduced system can then be written as a Hamiltonian system

[
q̇
ṗ

]

=

[
0 I
−I 0

][∂H
∂q

∂H
∂p

]

+







0
0

sin θ
− cos θ






λ.
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v

θ

Q0

x2

x1

Q

Figure 6.6: Set of equilibrium points of the knife’s edge example

To eliminate the Lagrange multipliers we chooseS(θ) = [cos θ sin θ]T and define the
new momentum

p̃1 = cos θpx1
+ sin θpx2

.

This is exactly the momentum along the direction of motion, and with this change of
coordinates the system can be rewritten on the reduced form

[
q̇
˙̃p1

]

=

[
0 S(θ)

−ST (θ) 0

][ ∂H̃
∂q

∂H̃
∂p̃1

]

,

H̃(q, p̃1) =
1

2m
p̃2
1 + U(q).

Using (6.6), the set of equilibrium points is described by

Q = {(q, 0) ∈ Ω∗
c |
[
cos θ sin θ

] ∂U

∂q
= 0}. (6.9)

At a fixedθ the set is defined by the union of all points on the manifold with associated
gradients∂U

∂q
that are perpendicular to the direction of motion. The set isillustrated in

figure 6.6 for a fixedθ.

Without changingθ the knife’s edge would move toward the intersection betweenits
own line of motion andQ and not towardQ0 as desired. In this simple example it is
easy to see what could be done to makeQ0 an asymptotically stable equilibrium. We
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could for example use the kinematic input to make sure that the gradient∂U
∂q

always lies

in the image ofST . This is the same as saying that the knife’s edge should always be
pointing in the same direction as the gradient. In this example the only solution to (6.9)
would then be the trivial one∂U

∂q
= 0, and asymptotic convergence to the desired point

Q0 is achieved.

The same rationale can be used for the general situation.

Theorem 6.2. Consider the feedback controlled system(6.8). Letn be the dimension
of the configuration manifoldM and letS(q, r) be full rank and defined according to
(4.8). Furthermore, let the shaped potential energyU(q) + Ū(q) be a smooth function
whose extreme points only comprises a closed setQ0 of minima. If

⋃

r∈R

img[S(q, r)] = R
n, q ∈M (6.10)

there always exists a reference for the coordinatesr related to the kinematic inputsv
that renders the system asymptotically stable atQ0.

Proof. There has been made no assumptions on the size of∂(U+Ū)
∂q

, and in general it
can lie anywhere inRn. If (6.10) is true it is always possible to find at least onerq that
satisfies

∂(U + Ū)

∂q
∈ img[S(q, rq)] = ker[AT (q, rq)], q ∈M. (6.11)

Using thisrq as reference for the kinematic control ofr the solution of (6.6) is the trivial
one, i.e,Q = Q0 and asymptotic stability is achieved.

From an energy perspective the situation can be interpretedas follows. Consider the
gradient as a generalized forceFU (q) = −∂(U+Ū)

∂q
. This is the force that pulls the

system toward the setQ0, but in order to do any work on the system the force has to lie
in the space of allowed velocities. The nonholonomic constraint forces will partially or
completely cancel it if it does not. Since the space of allowed velocities is img[S(q, r)],
(6.11) implies that a nonzero generalized forceFU (q) is guaranteed to do work on the
system and pull it towardQ0.

The requirement (6.10) implies that a suitablerq for q ∈ M is only guaranteed to exist
if it possible to go in any direction onTqM by changingr. The requirement is satisfied
for the simple knife’s edge example and also for the AV as we shall see in the next
chapter. In the general situation though, the requirement may not be satisfied. Consider
for example a car like vehicle, where the angle of the steering axle is controlled by a
kinematic input. No matter how the steering wheels are oriented, the vehicle cannot
drive sideways.
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6.6 Discussion

The general problem, when trying to asymptotically stabilize nonholonomic systems, is
that the constrained tangent space seldom ‘points in the right direction’. That is, it does
not point towardQ0, but toward the bigger setQ that includesQ0. By introducing the
kinematic inputs we are able to redirect the constrained tangent space so that it always
points towardQ0.

In chapter 4 we defined the kinematic inputs as time derivatives of a part of the configu-
ration coordinates, but the inputs could have been introduced as external inputs as well.
However the inputs are introduced they have to satisfy∂T

∂r
= 0. The trick is to leave

the coordinates that we wish to control as regular generalized coordinates and use the
part related to the kinematic inputs to stabilizeq, i.e., stabilizingr is of no concern and
they are used only as a tool to stabilizeq. If U + Ū is a smooth function andS is full
rank for anyq andr, and if each entry inS is a smooth function, then the referencesrq
will also be smooth functions, and it is possible to design smooth time-invariant feed-
backs for the kinematic inputs. The energy shaping and damping injecting feedback is
also smooth and time-invariant, and this implies that we have achieved global asymp-
totic stability of a nonholonomic system using a smooth time-invariant feedback. This
is not in contradiction with the results by Brockett and Sussmann [14] who proved that
a nonholonomic system cannot be asymptotically stabilizedby a smooth time-invariant
feedback. In systems with kinematic inputs we only considerasymptotic convergence of
theq coordinates and not ther coordinates related to the kinematic inputs. Controlling
ther coordinates is used to asymptotically stabilize theq coordinates, but onceq ∈ Q0

the references to the kinematic inputs are undefined, or theywill be defined by the di-
rection of the gradient when close toQ0, i.e., the final position ofr is determined by
the initial configuration of the system. Of cause,r can be changed to any value by the
kinematic input whenq ∈ Q0, since changingr will not changeq, but this involves a
non-smooth switching. In this sense the feedback algorithmpresented in this chapter
does not violate the results by Brockett and Sussmann [14].

The passivity of the closed loop system implies that it is also robustly stable with respect
to parameter variations in the inertia matrix (these are often the parameters that are hard-
est to estimate). As long as the net damping is positive the Hamiltonian function will
decrease, and the system will eventually stop when all the energy has been dissipated.
The performance, on the other hand, will most likely be sacrificed, since it is determined
by the shape of the potential shaping function, which shouldbe designed with the esti-
mated inertia matrix in mind, i.e, the rate of convergence towardQ0 is determined by
the steepness of the shaping function. This is an issue that deserves some future atten-
tion, but it will not be considered further in this thesis. Itwould require that a general
definition of performance in Hamiltonian systems is developed, or at least a definition
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that can be applied to nonholonomic Hamiltonian systems with kinematic inputs, but
performance is an issue that is generally difficult to handlefor nonlinear systems.





CHAPTER7

FEEDBACK CONTROL OF THE AV

The energy shaping and damping injecting feedbacks will nowbe applied to the AV.
Under normal operation the AV receives a set of way-points that it has to reach in se-
quence. When driving in between way-points the AV has to do aslittle damage to the
crop as possible. This implies that is should follow the croprows and the wheels should
follow the space between the crop rows.

The method introduced in the previous chapter is used to asymptotically stabilize the
AV toward either a single (way-)point or a path (crop row) in the field. Both kinds of
convergence can be achieved with the same controller by changing the shape of the po-
tential energy. In the simple linear example introduced on page 81 the energy shaping
and damping injecting feedback, with an appropriately chosen potential, led to a simple
PD controller. For nonlinear systems the resulting controller will in general be nonlin-
ear, but some of the intrinsic features and limitations of a linear PD controller are still
present. One major limitation is the absence of integral action, and small disturbances
may lead to situations where the asymptotic behavior is severely degraded. This chapter
presents a solution to this problem by introducing an additional integral state on the AV.
The new state does not integrate the position error directly, as a normal integral state
would do. Instead it integrates the potential energy, whichmeans that it can be included
directly in the Hamiltonian framework. The energy shaping and damping injecting con-

95
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troller is by definition a position controller, but there maybe practical considerations that
puts restrictions on the allowed velocity of the AV as well. To accommodate for a cer-
tain degree of velocity control an extension is introduced that uses a velocity dependent
damping to control the velocity of the AV.

7.1 Energy Shaping and Damping Injection

In this section a energy shaping and damping injecting feedback for the AV is introduced.
For convenience, the reduced Hamiltonian model of the AV from chapter 5 is rewritten
below

[
χ̇
˙̃p1

]

= J(χ, β′)

[
∂H̃
∂χ

∂H̃
∂p̃1

]

+

[
0

Bφ(β′)

]

τφ,

β̇′ = ζ,

y = BT
φ (β′)

∂H̃

∂p̃1
(= φ̇),

H̃(p̃1) =
1

2
p̃2
1,







(7.1)

with

J(χ, β′) =

[
0 RT (θ)Σ(β′)Υ(β′)

−Υ(β′)ΣT (β′)R(θ) 0

]

,

Bφ(β′) = Υ(β′)ΣT (β′)CT
2 (β′)

1

rw
.

Since the AV is assumed to be driving on a horizontal field, it does not have any initial
potential energy. Suppose we want the AV to converge asymptotically to a setQ0 defined
as the set of minimum points of a potential function

Q0 = {(χ, 0) ∈ Ω∗
c |

∂Ū

∂χ
= 0}.

For simplicity it is assumed thatQ0 is a closed connected set, and thatŪ has no other
extreme points than those inQ0.

First of all, we wish to add the artificial potential energyŪ to the system by means of an
energy shaping feedback, because we know that the system will then converge to a set
that includesQ0. We are therefore looking for a feedbackues that satisfies (6.4), or in
the AV case, a feedbackτφ,es that satisfies

−Υ(β′)ΣT (β′)R(θ)
∂Ū

∂χ
= Υ(β′)ΣT (β′)CT

2 (β′)
1

rw
τφ,es. (7.2)
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The relation constitutes one equation with four unknown, and some additional con-
straints between the four wheel torques have to be introduced in order to solve the equa-
tion. Because of the non-slipping and free rolling constraints, the AV can, in theory,
be driven by one propulsion motor only. A solution to (7.2) istherefore to set three of
the wheel torques equal to zero and solve for the last one. This obviously puts an un-
necessary high strain on this single motor. Another solution is to let all four propulsion
torques be equal. Both solutions share the property that thetorque vector can be written
as

τφ,es = Xτs, (7.3)

whereτs is a scalar, andX is a 4-dimensionaltorque distributionvector.X = [1 0 0 0]T

in the case of driving the AV with only the torque to the first wheel, andX = [1 1 1 1]T

if all four torques are equal. Combining the constraint (7.3) with (7.2) results in an
equation with just one unknown, and the solution is

τφ,es = −X rwΣT (β′)R(θ)

ΣT (β′)CT
2 (β′)X

∂Ū

∂χ
. (7.4)

The vectorX must be chosen such that the denominator is nonzero. The torque distribu-
tion vector does not necessarily have to be constant, and in section 7.2 a varyingX(β′),
which minimizes the instantaneous electrical power supplied to the propulsion motors,
is found. Note that the choice ofX has no influence on the motion of the system, and for
now it is just assumed that anX that renders the denominator of (7.4) nonzero exists.

Remark.The derivation of this energy shaping feedback could have been derived by
physical consideration alone without the help of (7.2). Consider two almost identical
AVs; one (system 1) is actuated at the wheels, as is the case with the real AV, and one
(system 2) is actuated by applying a forceF̂U and a torqueτU at the geometric center.
See figure 7.1.

The configuration of the two systems are defined on the same manifold, and they are
both subject to the same nonholonomic constraints; the onlything separating them is
the point of entry of the inputs. The input space of system 2 isdirectly related to the
generalized momentump – the three dimensional vector describing the translational and
rotational momentum of the AV.

What we aim to do, when shaping the potential energy of the AV,is to find a feedback
that applies the negative gradient, viewed as a generalizedforce, of the desired potential
energy function. The negative gradient cannot directly be applied to system 1, but it can
be applied directly to system 2. By setting

FU = −∂Ū
∂χ

, FU =

[

F̂U

τU

]

the potential energy of system 2 has been shaped. To shape theenergy of system 1 we
need to find an inputτφ that will make system 1 move along the exact same trajectory as
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Figure 7.1: Two methods of actuating of the AV

system 2. Without going into too much detail the dynamics of system 2 can be written
in the reduced Hamiltonian form1

[
χ̇
˙̃p1

]

= J(χ, β′)

[
∂H̃
∂χ

∂H̃
∂p̃1

]

−
[

0
Υ(β′)ΣT (β′)R(θ)

]
∂Ū

∂χ
.

Equating this system with (7.1) and using (7.3) yields relation (7.4). △

From (6.6) on page 87 we know that the conservative AV with shaped energy has equi-
librium points defined by

Q = {(χ, 0) ∈ Ω∗
c | ΣT (β′)R(θ)

∂Ū

∂χ
= 0}. (7.5)

Shaping the potential energy has not changed the conservative property of the AV, and
damping has to be introduced to guarantee thatQ is also an asymptotically stable set.
Using (6.7) the damping injection takes on the simple form

τφ,di = −kdy = −kdφ̇, kd > 0,

1It is a matter of exchanging the input vector fieldRT (θ)CT
2

(β′) 1

rw
τφ of the unreduced system 1 with

that of system 2. The input vector field of system 2 is just the identity matrix. System 2 is then reduced with
the coordinate transformation defined in chapter 5.
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with kd ∈ R. The damping injection is essentially just an addition of kinetic friction in
the wheels with the same scalar friction coefficientkd for all four wheels. They do not
necessarily have to be equal, but they are chosen this way forsimplicity.

Including both energy shaping and damping injection, the total feedback isτφ = τφ,es +
τφ,di and the closed loop becomes

[
χ̇
˙̃p1

]

= [J(χ, β′)−D(β′)]

[
∂H̄
∂χ

∂H̄
∂p̃1

]

, (7.6)

with a damping matrix

D(β′) =

[
0 0
0 kdBφ(β′)BT

φ (β′)

]

,

and a shaped Hamiltonian function

H̄(p̃1, χ) = H̃(p̃1) + Ū(χ).

7.2 Torque Distribution

The torque distribution vectorX was introduced as a prerequisite for solving (7.2). Al-
though the torque distribution vector is not unique, it has to satisfy the additional con-
straint of rendering the denominator of (7.4) nonzero. The denominator will become
zero (or very small) if the four motors counteracts each other. Consider the situation
when the two front wheels are pointing straight ahead (β1 = β4 = 0), and the two rear
wheels are pointing in the opposite direction (β2 = β3 = π). If we choose an equal
torque distribution between the four wheelsX = [1 1 1 1]T the front and rear torques
will cancel each other, the denominator of (7.4) becomes zero, and the torques grow
to infinity. To generate these torques the propulsion motorswould have to draw an in-
finitely high current from the power supply, but physical limitations will most likely not
allow this. In this situation a torque distribution on the formX = [1 1 −1 −1]T would
be more appropriate. This example implies that a constant torque distribution vector is
a poor choice in some situations, and it is more appropriate to use a varyingX ; one that
always renders the denominator of (7.4) nonzero. An obviouschoice is

X(β′) = C2(β
′)Σ(β′). (7.7)

As long asX is nonzero the denominator of (7.4) is also nonzero2.

2X = 0 at the singularityβi = π/2 + nπ, i = 1, 2, n ∈ Z The singularity can easily be avoided.
Please refer to the remark on page 43.
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The previous example also implies that the torque distribution has an effect on the cur-
rent drawn from the power supply and hence the energy used by the propulsion motors.
Apart from rendering the denominator of (7.4) nonzero, the particular choice of torque
distribution in has yet another useful property related to the electrical power. Consider
the total instantaneous electrical power supplied to the four propulsion motors

Pe =

4∑

i=1

Vmi
Ii,

whereVmi
is the input voltage applied to thei’th motor, andIi is the resulting current

through the motor. The motors are modeled as first order DC motors, and the input
voltages needed to generate the desired torque at a particular angular velocity of each
wheel is

Vmi
=
Ra

Kt

(

τφi
+ b′φ̇i

)

+Keφ̇i, i = 1, 2, 3, 4.

(See figure 2.17 on page 37 and the subsequent subsections fora description of the
parameters.) The currents are proportional to the effective propulsion torques through
the motor torque constantKt

Ii =
1

Kt

(

τφi
+ b′φ̇i

)

, i = 1, 2, 3, 4.

The power can thus be rewritten as a function of the torques and the wheel velocities

Pe =

4∑

i=1

Ra

K2
t

(

τφi
+ b′φ̇i

)2

+ b′φ̇2
i + φ̇iτφi

,

or in matrix form

Pe =
Ra

K2
t

(

τφ + b′φ̇
)T (

τφ + b′φ̇
)

+ b′φ̇T φ̇+ φ̇T τφ. (7.8)

Note that in consistent unitsKt andKe are equal, i.e.,Ke

Kt
= 1. (7.8) shows that the

total input power to the propulsion motors can be divided into three distinct parts. The
first part is the power loss in the armature resistance of the motors, the second part
is the power lost to friction, and the last part is the remaining power transformed into
mechanical power. Suppose that we have designed an energy shaping and damping
injecting feedback with some arbitrary torque distribution vectorX

τφ = X
rwΣTRF

ΣTCT
2 X

− kdφ̇, F = −∂Ū
∂χ

.
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The dependency onβ′ andχ have been dropped for notational convenience. Inserting
the feedback into (7.8) yields

Pe(X) =
Ra

K2
t

(

X
rwΣTRF

ΣTCT
2 X

+ (b′ − kd)φ̇

)T (

X
rwΣTRF

ΣTCT
2 X

+ (b′ − kd)φ̇

)

+ b′φ̇T φ̇+ φ̇T

(

X
rwΣTRF

ΣTCT
2 X

− kdφ̇

)

.

Suppose that we wish to find a vectorX that minimizes the powerPe. To find possible
candidates we first find the extreme points of the function by solving for X in ∂Pe

∂X
=

0. Pe is a rather lengthy term, but many of the terms vanish in the derivative. The
square elements iṅφ, for instance, are independent ofX and vanish. Next, consider the
elements involving

1

ΣTCT
2 X

φ̇TX. (7.9)

The individual elements oḟφ are not independent due to the nonholonomic constraints,
but they are functions of the single independent variablep̃1 (using (3.7) on page 45 and
(7.1))

φ̇ = C2Σ
Υ

rw
p̃1.

Inserting this into (7.9) yields

1

ΣTCT
2 X

p̃1
Υ

rw
ΣTCT

2 X = p̃1
Υ

rw
.

All the elements involving (7.9) hence vanish in∂Pe

∂X
, and finding the extreme points of

Pe reduces to finding the extreme points of the function

P̃e(X) =
1

(
ΣTCT

2 X
)2X

TX. (7.10)

P̃e is related to the power loss in the armature resistance, and we conclude that this is
the only loss that can be minimized by a suitableX . Taking the partial derivative with
respect toX and setting it equal to zero yields

∂P̃e

∂X
= −C2Σ

2
(
ΣTCT

2 X
)3X

TX +X
2

(
ΣTCT

2 X
)2 = 0.

Multiplying with the scalar12
(
ΣTCT

2 X
)2

yields

−C2Σ
1

ΣTCT
2 X

XTX +X = 0,
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which implies that a vectorX = cC2Σ, c ∈ R\{0} is an extreme point ofPe. In fact,
any nonzero vectorX in the set img[C2Σ] will result in a minimum value ofPe. This
can be seen directly by inspection of (7.10). Start by choosing a randomX ∈ img[C2Σ],
for exampleX = C2Σ. Any other vector in img[C2Σ] can be reached by a subsequent
scaling ofX , but this will not change the value ofPe, since the scaling factor will be
canceled by the division. Now consider a situation whereX is rotated, so that it moves
outside img[C2Σ], but still retains its length. The value of the factorXTX will remain
the same, whereas the value of the denominator(ΣTCT

2 X)2 will decrease, leading to
an increase of̃Pe (and hence alsoPe). Any four dimensional vector can be reached by
first moving alongC2Σ followed by a rotation, and we conclude that a minimum value
of Pe(X) implies thatX ∈ img[C2Σ]. So by using the torque distribution vector (7.7)
the electrical power drawn from the power supply has been minimized.

7.3 Convergence TowardsQ0

In section 7.1 a feedback, which asymptotically stabilizesthe AV toward the setQ, was
introduced. This set is generally larger than the desired set Q0 due to the nonholonomic
nature of the AV. To guarantee asymptotic stability towardQ0 we need to find a suitable
reference for the kinematic inputs so that (6.11) is satisfied. In the AV case it amounts
to solving forβ′ in

∂Ū

∂χ
∈ img[RT (θ)Σ(β′)] = ker[C1(β

′)R(θ)], χ ∈ M. (7.11)

This is solvable for anyχ if the following statement is true (6.10)
⋃

β′∈S2

img[RT (θ)Σ(β′)] = R
3, χ ∈ M. (7.12)

The validity of the statement can be rephrased as follows: isit possible to orient the
vectorRT Σ in any direction inR

3 by turning the wheels? We already know that the
velocity of the AV satisfiesχ̇ ∈ img[RT Σ], and since the ICR of a 4WS vehicle can
be placed anywhere, any direction onR

3 ∋ χ̇ can be reached. (7.12) is hence true, and
there always exists at least one solution to (7.11).

The right side of (7.11) implies that

C1(β
′)R(θ)

∂Ū

∂χ
= 0,

and written in details for thei’th wheel

− sin(βi + θ)
∂Ū

∂x1
+ cos(βi + θ)

∂Ū

∂x2
+ κi cos(βi − γi)

∂Ū

∂θ
= 0.
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Using the cosine addition formula on the third term yields

− sin(βi + θ)
∂Ū

∂x1
+ cos(βi + θ)

∂Ū

∂x2

+ κi [cos(βi + θ) cos(θ + γi) + sin(βi + θ) sin(θ + γi)]
∂Ū

∂θ
= 0.

Collecting terms of sines and cosines yields

sin(βi + θ)

[
∂Ū

∂x1
− κi sin(θ + γi)

∂Ū

∂θ

]

= cos(βi + θ)

[
∂Ū

∂x2
+ κi cos(θ + γi)

∂Ū

∂θ

]

,

and finally we have that

βi = arctan

(
∂Ū
∂x2

+ κi cos(θ + γi)
∂Ū
∂θ

∂Ū
∂x1
− κi sin(θ + γi)

∂Ū
∂θ

)

− θ.

This is equivalent to

βi = ∠

([
∂Ū
∂x1

∂Ū
∂x2

]

+ κi

∂Ū

∂θ
ei

)

− θ, (7.13)

whereei is a unit vector perpendicular to the line connecting the geometric center of
the AV and the center of thei’th wheel, see figure 7.2. To achieve asymptotic conver-
gence toQ0 the wheels should hence point in the directions of linear combinations of a
translational force vector and four force vectors uses to rotate the AV.

Whether or not it is possible to design steering controllersthat guarantees that (7.13)
is always satisfied depends largely on the shape of the potential energy function, physi-
cal saturation limits in the steering motors, and the velocity of the AV. Steep curvature
changes in the energy function̄U will result in fast changes of the desired steering an-
gles, but since the turning rate of steering motors are physically limited, the desired
steering angles may not be met. This is not a real problem though. If the references
are not met the AV will converge to the setQ, and on approach the AV will slow down
due to the damping. A slower moving AV leads to a decreasing rate of change of the
gradient direction and hence also the steering angle references. Even slow controllers
will eventually be able to meet the references.

Figure 7.3 shows a closed loop simulation with the energy shaping and damping inject-
ing controller. The simulation is an example of asymptotic stabilization of the AV at a
target pointχ0 using a simple quadratic potential shaping function

Ū(χ) =
1

2
(χ− χ0)

TKp(χ− χ0), χ0 =





10
−10
π



 , Kp =





160 0 0
0 80 0
0 0 80



 ,
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Figure 7.2: Unit vectors of rotating forces

and with damping constantkd = 8. The dashed lines in the figure represent contour
curves of thex1, x2-components of̄U . This part of the function is not completely sym-
metric; it has a steeper descent along thex1-axis than along thex2-axis, which explains
why the AV converges faster in thex1-direction than in thex2-direction. The AVs drawn
in the figure shows the position and orientation of the AV for every2 seconds.

7.4 Disturbances and Integral Action

The energy shaping and damping injecting controller inherits some of the characteristics
of a linear PD controller. In the simple linear example on page 81 the resulting controller
was in fact a linear PD controller when the potential energy function was a quadratic
function, and without integral action the asymptotic convergence of the linear system is
often sacrificed if there are external disturbances. The same is true for the AV where
external disturbances comprise unmodeled slopes in the field, uneven soil tracks, rocks,
etc. Consider the same simulation as shown in figure 7.3, but this time the AV is driving
on a field with a slope. A5◦ slope is modeled by a constant translational force pulling
the AV toward north-west, and the resulting simulation in shown in figure 7.4. The
gray AV represents the target configuration, but the AV stopsshort of it by a few meters
because of the slope.
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Figure 7.3: Stabilization at a single point
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Figure 7.4: Stabilization at a single point on a non-horizontal field.



106 FEEDBACK CONTROL OF THE AV

The remainder of this section describes a method of introducing integral action into the
Hamiltonian formulation of the AV. The resulting closed loop with integral action main-
tains the Hamiltonian structure and hence also the passivity property of the system. The
integral feedback that maintains the Hamiltonian structure has itself a special structure,
and it has an interesting consequence for the stability of the system; because of the pre-
served passivity, increased feedback gains cannot destabilize the system. To relate this
to linear systems, the simple example of a mass moving on a horizontal plane is revisited
at the end of the section.

Integral action is only considered when the AV has to converge to a single point, i.e.,
when the potential energy function̄U has a single global minimum. In this situation
any unmodeled structures in the field, such as an unknown slope, rocks, or soil tracks,
may inhibit the asymptotic convergence. These unknown physical structures can all be
modeled as additional unknown potential energy. So insteadof the Hamiltonian function
used to prove asymptotic stability in the ideal case, the disturbed Hamiltonian function
of the real system includes additional potential energy

H̄d(p̃1, χ) =
1

2
p̃2
1 + Ū(χ)

︸ ︷︷ ︸

H̄

+ Ud(χ). (7.14)

Ud is the disturbance potential energy function capturing theunknown structures in the
field. The addition of the disturbance function means that the system will not converge to
the minimum of the shaped potential energyŪ , but will instead converge to the minimum
of the total potential energȳU + Ud. The introduction of an unknown potential can
either be introduced in the Hamiltonian function as in (7.14), or it can be introduced in
the closed loop system as an additional energy shaping term

[
χ̇
˙̃p1

]

= [J(χ, β′)−D(β′)]

[
∂H̄
∂χ

∂H̄
∂p̃1

]

−
[

0

Υ(β′)ΣT (β)R(θ)∂Ud

∂χ

]

. (7.15)

To introduce integral action we are seeking an additional feedback that will make the
augmented system converge to the original desired setQ0. When the AV is far away
fromQ0 integral action is not really necessary because∂Ū

∂χ
is generally much larger than

∂Ud

∂χ
, but when the AV approachesQ0 the disturbance begins to dominate, and integral

action must be used to drive the last distance toQ0. To simplify the problem some as-
sumptions have to be made. It is assumed that the disturbanceis constant locally around
Q0 in the sense that∂Ud

∂χ
is constant. This rules out some disturbances, such as stones

and other small structures, while larger structures, such as unmodeled slopes, are still
allowed. It is further assumed that the AV is sufficiently damped so when approaching
Q0 it is driving slowly, and if a smooth well behaved̄U is used, the direction of∂Ū

∂χ
is

also changing very slowly. Since the steering angles are derived from this direction, it is
assumed thatβ′ is fixed during periods when integral actions is turned on.
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The first issue in the design of integral action is to decide onan appropriate quantity
to integrate. Suppose that the closed loop system (7.15) is experiencing a nonzero dis-
turbance. After a while the system will stop (p̃1 = 0), where the artificial force−∂Ū

∂χ
,

which should pull the AV towardQ0, is canceled by the disturbance.

˙̃p1 = −Υ(β′)ΣT (β′)R(θ0)
∂Ū

∂χ
−Υ(β′)ΣT (β′)R(θ0)

∂Ud

∂χ
= 0.

The artificial force is a function of the generalized coordinatesχ and is related to the
error between the current configuration of the AV and the desired target configuration
Q0; if Ū is a quadratic function ofχ the gradient is proportional to the error. One choice
of integral state is therefore to define a state that is related to the integral of the artificial
force and then feed back this state. Define the integral state

ṗI = −Υ(β′)ΣT (β)R(θ)
∂Ū

∂χ
.

Inserting this into (7.1) yields yet another Hamiltonian system





χ̇
˙̃p1

ṗI



 = [JI(χ, β
′)−DI(β

′)]







∂H̄
∂χ

∂H̄
∂p̃1

∂H̄
∂pI







+





0
Bφ(β′)

0



 τφ,I −





0

Υ(β′)ΣT (β)R(θ)∂Ud

∂χ

0



 ,

(7.16)
whereτφ,I is an additional input to be used for the integral state feedback (nowτφ =
τφ,es + τφ,di + τφ,I ) and

JI(χ, β
′) =





0 RT (θ)Σ(β′)Υ(β′) RT (θ)Σ(β′)Υ(β′)
−Υ(β′)ΣT (β′)R(θ) 0 0
−Υ(β′)ΣT (β′)R(θ) 0 0



 ,

DI(β
′) =





0 0 0
0 kdBφ(β′)BT

φ (β′) 0

0 0 0



 .

The upper right element ofJI has been set to the current value to maintain the skew-
symmetric property of the matrix. It does not change the dynamics of the system because
∂H̄
∂pI

= 0, but the skew-symmetric property will be useful in the final closed loop system.
To close the loop we need to feed back the integral state, while maintaining the stability
of the closed loop system. It is a well known fact from linear systems analysis that an
integral feedback may destabilize the system if the integral feedback gain is too high.
Care should therefore be taken when choosing the feedback, but if it is possible to find
a feedback that maintains the Hamiltonian structure and passivity of the system we can
also prove that it is stable. Consider the feedback

τφ,I = −kdB
T
φ (β′)kI(p̃1 − pI), kI > 0, (7.17)



108 FEEDBACK CONTROL OF THE AV

and the new Hamiltonian function

H̄I = H̄ +
1

2
kI(p̃1 − pI)

2 =
1

2
p̃2
1 +

1

2
kI(p̃1 − pI)

2 + Ū(χ).

With this feedback the closed loop system becomes





χ̇
˙̃p1

ṗI



 = [JI(χ, β
′)−DI(β

′)]







∂H̄I

∂χ

∂H̄I

∂p̃1

∂H̄I

∂pI






−





0

Υ(β′)ΣT (β)R(θ)∂Ud

∂χ

0



 .

This system is again a Hamiltonian system with skew-symmetric interconnection matrix
JI , a positive semi-definite dissipation matrixDI , and a new strictly positive Hamil-
tonian functionH̄I . The system is still stable, which can be seen by takingH̄I as a
Lyapunov function candidate, and looking at its time derivative

˙̄HI = −







∂H̄I

∂χ

∂H̄I

∂p̃1

∂H̄I

∂pI







T

DI(β
′)







∂H̄I

∂χ

∂H̄I

∂p̃1

∂H̄I

∂pI







= −kdBφ(β′)BT
φ (β′)

(
∂H̄I

∂p̃1

)2

≤ 0.

The system is stable, but does it still converge asymptotically to the same set as before?
Application of theorem 6.1 on page 83 proves that the system converges asymptotically
to the largest invariant set contained in the set of points where ˙̄HI = 0 ⇒ ∂H̄I

∂p̃1
= 0, or

p̃1 =
kI

1 + kI

pI .

SincekI > 0 the relation implies that̃̇p1 = ṗI = 0 in the set where˙̄HI = 0, and the
system converges to the following set on the constrained tangent bundle

QI = {(χ, p̃1) ∈ Ω∗ | ΣT (β′)R(θ)
∂Ū

∂χ
= 0}. (7.18)

Note that the set of convergence is not exactly the same as (7.5); in this new set̃p1 is
not necessarily zero. Imagine the case where there is no potential energy in the system,
andpI is given an initial value different from zero. The lack of potential energy means
thatpI will never change from its initial value, and̃p1 will hence also remain constant
and nonzero in the set wherē̇HI = 0. If, on the other hand, the potential energy of the
system has only a single global minimum, then the set (7.18) only contains the points
wherep̃1 = 0. This can best be seen by contradiction. Ifp̃1 6= 0, thenχ̇ 6= 0. This
implies that ifŪ has only one minimum, then after a short whileṗI 6= 0 and ˙̄HI 6= 0.
The points wherẽp1 6= 0 do therefore not belong to an invariant set where˙̄HI = 0.
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Figure 7.5: Stabilization at a single point using integral action

For practical purposes it is assumed that the set (7.18) coincides with (7.5), because the
integral action is only to be used for asymptotic stabilization of the AV at a single desired
configuration.

Figure 7.5 shows the same simulation as in figure 7.4, but now with integral action. An
integral feedback gain ofkI = 0.01 has been used, and figure 7.6 shows the evolution
of the position and orientation errors of the simulation. Toavoid integrator windup,
the integral state is not updated, and the integral feedbackis not switched on, until
the kinetic energy of the AV has reached a lower bound, i.e.,|p̃1| ≤ 1. This happens
aroundt = 34s, where integral action is turned on, and the AV is forced to converge
asymptotically toward the minimum of̄U .

Remark.Feeding back integral states in a control system can often have a destabilizing
effect on the closed loop system. It may therefore seem illogical that the closed loop
system remains stable, even ifkI is increased to an arbitrary high positive value. The
stability is maintained because the integral feedback (7.17) also introduces an additional
damping, which is proportional tokI . To have a closer look at the effect of the inte-
gral feedback we return to the simple example from page 81 of amassm sliding on a
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Figure 7.6: Position and angular errors when stabilizing to a point using integral action

frictionless surface. The Hamiltonian representation of the system is

[
ẋ
ṗ

]

=

[
0 1
−1 0

] [∂H
∂x

∂H
∂p

]

+

[
0
F

]

,

H(p) =
1

2
m−1p2.

In the example an energy shaping and damping injecting feedback was introduced

F = −∂U
∂x
− kdẋ,

and the resulting closed loop system was

[
ẋ
ṗ

]

=

([
0 1
−1 0

]

−
[
0 0
0 kd

])[∂H̄
∂x

∂H̄
∂p

]

,

H̄(x, p) =
1

2
m−1p2 + U(x).

We now introduce the integral state

pI = −∂U
∂x

,
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Figure 7.7: Closed loop of the simple example

and feed it back so that the total feedback becomes

F = −∂U
∂x
− kdẋ− kdkI(p− pI).

Suppose that we wish to stabilize the moving mass at a reference pointr. The artificial
potential energy function to achieve this may then be chosenasU(x) = 1

2kp(x − r)2,
which has a single global minimum atx = r. A block diagram of the closed loop system
is depicted in figure 7.7, and the transfer function from reference to position is

X(s)

R(s)
=

kps+ kdkpkI

ms3 + kd(1 +mkI)s2 + kps+ kdkpkI

.

To investigate the stability of the system we look at the Routh array

s3 : 1 m−1kp

s2 : m−1kd(1 +mkI) m−1kdkpkI

s1 : m−1kp

(

1− kI

m−1 + kI

)

0

s0 : m−1kdkpkI .

If the coefficients of the left column are all positive the system is stable. We immediately
see that as long askp, kd, andkI are all positive the system is stable. So, in conclusion,



112 FEEDBACK CONTROL OF THE AV

we have designed a simple PID controller for the linear case,but by giving the controller
a Hamiltonian structure the closed loop system is always stable, in theory, no matter the
size of the feedback gains. △

7.5 Path Tracking

The focus of this chapter has up until now been on stabilizingthe AV at a single tar-
get configuration, but the energy shaping and damping injecting feedback can easily be
extended to path tracking as well. The first step toward path tracking was already seen
in figure 7.3 on page 105, where the potential shaping function was designed to have a
steeper slope in thex1-direction than thex2-direction, thereby forcing the AV to con-
verge faster in thex1-direction. The simulation showed how it is possible to define the
path, along which the AV travels, by shaping the potential energy functionŪ . By con-
struction, the closed loop system will always be pulled toward the minimum ofŪ , and
convergence to a desired path can be achieved by designing the function such that the
path represents a set of low values. This is illustrated in the following example, where
energy shaping is used to track a circular path.

7.5.1 Tracking a Circle

Consider the situation where the desired path is a circle in thex1, x2-plane with center
at the origin and radiusr0. The initial position of the AV may be anywhere in the plane.
The goal of path tracking is then to force the AV to converge tothe circle and then track
it indefinitely. It is assumed that damping is already present in the system (if not, it can
be injected) and that any disturbances can be neglected. Integral action is turned off. We
then seek a potential function̄U , which is able to attract the AV to the circle, and when
on the circle, the function should be able to pull the AV alongit. To converge to the path
the following shaping function is constructed:

Ūc =
1

2
Kc(r − r0)2, r2 = x2

1 + x2
2, Kc > 0.

The function is depicted in figure 7.8.

Starting anywhere in thex1, x2-plane (except at the origin, which is a singular point and
should be avoided) the negative gradient of this function will always pull the AV toward
the circle, which constitutes the set of minima ofŪc. Although the AV is expected to
converge to the circle it has not yet been defined how the AV should move when on the
circle. If Ūc is used alone as shaping function the AV will simply drive toward the point
on the path, which is closest to the initial position of the AV, and eventually stop at this
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Figure 7.8: The potential function̄Uc, whose minima comprises a circle

point when all kinetic energy has been dissipated. This function is therefore not useful
by itself, and an additional potential has to be introduced to achieve tracking along the
path. If the AV is to drive clockwise along the circular path the following potential
function with a constant length gradient along the path is constructed:

Ūa = Kaψ, Ka > 0,

whereψ = arctan x2

x1
is the angle of the line connecting the origin of thex1, x2-plane

with the AV. Note thatψ is not limited to0 < ψ < π, but is allowed to evolve indefi-
nitely, as illustrated on figure 7.9.

The negative gradient of this function will always pull the AV in the clockwise direction
parallel to the tangent of the circle. By addinḡUc and Ūa a new potential function
is constructed that pulls the AV toward and along the path. The combined potential
function Ūc + Ūa is shown in figure 7.10. Just by looking at this figure one would
immediately expect the AV to exhibit some kind of circular movement in thex1, x2-
plane ifŪ is applied as shaping function. Figure 7.11 shows a simulation of the AV with
Ū = Ūc + Ūa, parametersr0 = 5, Kc = 1600,Ka = 1600r0, and a damping constant
of kd = 8.

The simulation shows the trajectory and position of the AV1s apart during a period
of 10s. The desired path is marked by a dotted line, and the dashed lines represent
contour curves of the potential function. Initially, the AVis started with zero velocity
at (x1, x2) = (4, 0). The figure shows how the AV converges smoothly to the path
and stays there for the remaining time. Only one revolution is shown, but the AV will in
principle continue due to the lack of a absolute minimum in the potential function. Since
the damping is nonzero, the AV reaches a constant velocity when the gradient of the
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Figure 7.10: Combined potential function̄Uc + Ūa
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Figure 7.11:Tracking the circle

potential function pulling it along the path is canceled by the damping. The orientation
of the AV is constant during the simulation becauseŪ is independent ofθ.

If the AV is supposed to stop at a certain point on the path the gradient along the path
should be designed so that it has constant length when the AV is far away from the target
point, and when the AV approaches the point, the length of thegradient should decrease
and eventually vanish at that point.

It may seem illogical that there is no overshoot when the AV hits the path. Indeed, a
free moving mass, or a rolling ball would oscillate about thepath, but the nonholonomic
nature of the AV forces the momentum perpendicular to the path, which is generate
when approaching it, to be directed along the path instead. Consider the gradient of the
potential function

∂Ū

∂χ
= Kc(r − r0)





cosψ
sinψ

0



+
Ka

r





− sinψ
cosψ

0



 .

The gradient consists of two distinct parts; the first part, which is perpendicular to the
circle and vanishes on the circle, and the second part, whichis tangent to the circle
and have constant length on the circle. When the AV approaches and eventually hits
the path the gradient of̄U points along the path. Since the direction of the gradient is
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used as reference for the steering motors the wheels are pointing in the direction of the
tangent, and the AV cannot overshoot the path without violating the constraints. In the
practical case though, care should be taken when choosing values for the constants in
the potential function. IfKc is very large compared toKa the direction of the gradient
will change very rapidly when the AV approaches the path, andthe AV may be forced
to do an almost90◦ turn when it hits the path. If the velocity is high the result may be
sideways slip of the wheels, or even worse, the AV may roll over.

The potential function introduced here has effectively achieved path tracking to a circle
in thex1, x2-plane, but there are still some issues that have to be resolved before the path
tracking algorithm can be used for effective crow row tracking. First of all, the control
of the orientation of the AV must be addressed. In the circle example the orientation
of the AV was left unchanged, but this is of cause not a good idea if the crop rows
should be left undamaged. This issue will be addressed in thenext subsection. The
second issue is related to the desirable traveling velocityduring path tracking. The final
traveling velocity along the path is in the ideal case determined by the length of the
gradient along the path and the amount of damping in the system. In the non-ideal case
the velocity is also influenced by disturbances, such as unknown slopes in the field,
unmodeled friction, etc. In subsection 7.5.3 an adaptive damping scheme is introduced
to address this issue and to achieve a great deal of velocity control along the path.

7.5.2 Inter Crop Row Potentials

In the example of tracking a circle the AV maintained a constant orientation, and at
certain points on the circle the wheels of the AV crossed the path. If the path represents
a crop row this is not very desirable. The potential functionŪc used to converge to
the circle was defined to have a minimum when the geometric center of the AV was
on the circle. When it comes to crop row tracking it makes moresense to define a
function, which has a minimum when the wheels are on the intercrop row space instead.
Figure 7.12 shows a schematic drawing of what is defined as theinter row potentials
(dashed graphs). Instead of the geometric center tracking asingle potential on the crop
row the left wheels should track the left inter row potentialand the right wheels should
track the right inter row potential.

To exemplify the inter row potential tracking the circle tracking example from earlier is
revisited. The left and right inter row potentials can now bedefined as follows. If the
AV is to drive clockwise along the circle the left wheels (wheel 1 and 2) should track a
circle of radiusr0 + 0.5, and the right wheels (wheel 3 and 4) should track a circle of
radiusr0 − 0.5. Define the position of thei’th wheel relative to the center of the circles
as a two dimensional vectorwi. Assuming that the center of the circle and the origin of
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Figure 7.12: Inter crop row potentials

theN -frame coincide the vector is given by

wi =

[
x1 + κi cos(γi + θ)
x2 + κi sin(γi + θ)

]

, i = 1, . . . , 4.

The error between each wheel and the circle it has to track is then|wi| − (r0 + δri),
whereδri = 0.5 for i = 1, 2 (left wheels), andδri = −0.5 for i = 3, 4 (right wheels).
Let us then define the total potential function as a sum of squares of these errors

Ūic =
1

2
Kc

4∑

i=1

(|wi| − (r0 + δri))
2
,

whereKc is a design parameter. This function clearly has a minimum when all four
wheels are situated in the inter crop row space, though the errors cannot vanish com-
pletely due to the curvature of the circle and the rigid body frame of the AV. To apply
the potential function in the feedback the gradient of the function must first be found

∂Ūic

∂χ
= Kc

4∑

i=1

(|wi| − (r0 + δri))
∂|wi|
∂χ

.

With
|wi| =

√

(x1 + κi cos(γi + θ))2 + (x2 + κi sin(γi + θ))2,

each individual element of∂|wi|
∂χ

is

∂|wi|
∂x1

=
1

2|wi|
2(x1 + κi cos(γi + θ)) = cos(∠wi),
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∂|wi|
∂x2

=
1

2|wi|
2(x2 + κi sin(γi + θ)) = sin(∠wi),

where∠wi denotes the angle of the vectorwi. The third element of the gradient is

∂|wi|
∂θ

=
1

2|wi|
[
2(x1 + κi cos(γi + θ))(−κi sin(γi + θ))

+ 2(x2 + κi sin(γi + θ))κi cos(γi + θ)
]

= κi[− cos(∠wi) sin(γi + θ) + sin(∠wi) cos(γi + θ)]

= −κi sin(γi + θ − ∠wi).

The final gradient is then

∂Ū

∂χ
= Kc

4∑

i=1

(|wi| − (r0 + δri))





cos(∠wi)
sin(∠wi)

−κi sin(γi + θ − ∠wi)





︸ ︷︷ ︸

∂Ūic
∂χ

+
Ka

r





− sinψ
cosψ

0





︸ ︷︷ ︸

∂Ūa
∂χ

.

(7.19)
Note thatŪa has been left unchanged from the previous example, as its only purpose is
to pull the AV along the circle. The major difference betweenthis gradient and the one
from earlier is the nonzero term∂Ūc

∂θ
, which has been introduced by using the inter row

potentials. Figure 7.13 shows a simulation using the inter row potentials withKc = 300,
Ka = 600r0, and a damping factor ofkd = 8. The AV is drawn1s apart.

The simulation shows that the AV has started to orient itself, and the wheels no longer
crosses the path. The orientation does seem to lag behind though when choosing a
relatively low valuedKc. By increasing it with a factor4 toKc = 1200 the lag is greatly
reduced as shown on figure 7.14. Unfortunately, the AV experiences a huge attraction to
the path from its initial position, which results in a very sharp turn at high velocity when
the AV approaches the path. This is the drawback of only having one design parameter
(Kc) to determine the gain of the translational attraction to the path and the subsequent
tracking. The problem can be solved by using a lowKc when initially approaching the
path and then increasingKc when on the path.

7.5.3 Adaptive Damping

In all the preceding tracking examples nothing has been stated about the velocity of
the AV. The AV will eventually reach a constant velocity whenthe gradient of the
potential energy is canceled by the damping, and in theory, this steady state velocity
can be determined if the damping factor is known and there areno disturbances. If there
exists specifications on desired traveling velocity along the path the gains in the potential
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Figure 7.13:Tracking the circle with inter row potentials (Kc = 80)
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Figure 7.14:Tracking the circle with inter row potentials (Kc = 320)
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Figure 7.15: Velocity of the AV during path tracking with constant damping

energy function can be chosen accordingly. In practice though, the kinetic friction,
unknown slopes in the field, parameter variations, etc., will influence the velocity of
the AV, and an additional velocity feedback is necessary to achieve the desired velocity.
One option is to use a velocity feedback to increase or decrease the length of the gradient
along the path. In other words, let the gradient along the path pull the AV more if the
velocity is lower than the desired velocity, and pull it lessif the velocity is higher than
the desired velocity. This idea poses a basic problem though. The gradient should still be
considered as a gradient of a potential energy function, andif the length of the gradient
varies, the potential energy on the manifold also varies as afunction of velocity. This
means that the AV can generate its own potential energy, and the passivity property of
the AV has be lost. Another way of solving the velocity control problem, while still
maintaining the passivity property of the system, is to varythe damping factor. The
damping factor can be varied, and the passivity maintained,as long as the damping
factor is positive. Consider an adaptive damping on the form

k̇d =
1

Td

(vt − vt0), vt =
√

ẋ2
1 + ẋ2

2,

kd = sat(kd, kd,min).

When the velocity of the AV diverges from the desired velocity vt0 the damping fac-
tor is either increased or decreased at a rate proportional to the velocity error.Td is
the integration time. The second part is a saturation function ensuring that the damp-
ing is bounded from below by a positive constant minimum damping kd,min. This is
introduces to guarantee that the system remains stable.

Figure 7.15 shows the translational velocity of the AV in thecircle tracking example
from before with constant damping factorkd = 8. The only difference from the previous
example is that the initial position of the AV is on the path.

Figure 7.16 shows the same simulation, but this time with theadaptive damping applied.
The integration time is set toTd = 0.1, the minimum damping tokd,min = 8, and the
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Figure 7.16:Velocity of the AV during path tracking with adaptive damping

desired velocity is set tovt0 = 1m/s for t < 10s and then changed tovt0 = 2m/s for
t ≥ 10s.

The figure shows that the desired velocities are reached asymptotically with a consid-
erable overshoot in the beginning. If desired, the overshoot can avoided by choosing a
more appropriate initial value ofkd. In this simulationkd = 8 at t = 0s.

7.5.4 Putting it All Together

The combined feedback with energy shaping, damping injection, integral feedback, and
adaptive damping is

τφ =− C2(β
′)Σ(β′)

rwΣT (β)R(χ)

ΣT (β)CT
2 (β)C2(β′)Σ(β′)

∂Ū

∂χ
(energy shaping)

− kdφ̇ (damping injection)

− kdB
T
φ (β′)kI(p̃1 − pI), (integral feedback)

with the derivative ofpI

ṗI = −Υ(β′)ΣT (β)R(θ)
∂Ū

∂χ
,

and the adaptive damping coefficient

k̇d =
1

Td

(vt − vt0), vt =
√

ẋ2
1 + ẋ2

2

kd = sat(kd, kd,min).
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Figure 7.17:Tracking four crop rows

Last, but not least, the references to the steering motors are

βi,ref = arctan

(
∂Ū
∂x2

+ κi cos(θ + γi)
∂Ū
∂θ

∂Ū
∂x1
− κi sin(θ + γi)

∂Ū
∂θ

)

− θ.

Figure 7.17 shows an example simulation of a simple row tracking operation, where
both crop row tracking and convergence toward single pointsare used. Along the four
crop rows parallel to thex1-axis and during the turn between point 1 and 2 the AV is
tracking the path using inter crop row potentials and a constant pull from the potential
function along the path. From point 3 to point 4 and again frompoint 5 to point 6 the AV
is given a simple potential function with a single minimum atpoint 4 and 6 respectively.
In the latter case the potential function includes an additional rotational potential that
forces the AV to execute a90◦ rotation.

The translational velocity of the AV is shown in figure 7.18. The figure illustrates how
the adaptive damping effectively forces the AV to travel at the desired speeds. Along the
four straight lines and the semicircle the desired speed is set to1m/s. During the point
stabilization between point 3 and 4 and again between point 5and 6 no desired speed is
set.

All the examples shown in this chapter are based on pure simulation of the AV. In the
next chapter the control principles will be applied to the real AV.
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Figure 7.18: Translational velocity of the tracking example. The numbers on top mark
the points in time, when the AV reaches the correspondingly numbered way-points in
figure 7.17

7.6 Discussion

During modeling of the AV the Hamiltonian function played a crucial part in defining
the dynamics, but in the energy shaping and damping injecting feedback it seems to
have completely vanished. The kinematic parts are still there in the form of the matrices
C2(β

′), Σ(β′), andR(θ), but the inertia matrix is gone. The Hamiltonian function does
not enter the feedback explicitly, but implicitly through the design of the energy function
Ū . The shape and size of the shaping energy function should be designed with the inertia
matrix in mind to give the closed loop system a decent performance; moving a huge mass
may require a steep potential energy function to perform properly, while a small mass
may require a less steep function. In other words, the feedback itself only guarantees
stability and does not take performance into account, and itis up to the designer of̄U to
define the performance.

The performance of a dynamic system is related to the conceptof time (just consider the
rise time and settling time of linear systems), and the ‘lack’ of performance in the feed-
back is also related to the ‘lack’ of time dependency when tracking, i.e., the AV is able
to track paths and not trajectories. Tracking paths is preferred to tracking trajectories
in the application of the AV, since trajectory tracking along the crop rows implies that
we need to set the exact traveling speed of the AV at any point on the trajectory. Some
parts of the field may be difficult to traverse and the desired velocity may not be met.
In these situations the AV is likely to fall behind the trajectory, which can have undeter-
mined side effects. By using path tracking and adaptive damping instead, the velocity
of the AV is allowed to drop below the desired velocity without sacrificing stability and
convergence to the path.





CHAPTER8

PHYSICAL TESTS

The control algorithms derived in chapter 7 will now be applied to the physical system
with all its limitations such as noisy measurements, higherorder dynamics, and actuator
saturation. Note that every graph and figure in this chapter is based on data collected
from the real system.

8.1 Convergence toward a Single Point

The first test is to see if the AV is able to converge asymptotically to a single point. The
following potential function is used

Ū =
1

2
(χ− χ0)

TKp(χ− χ0), χ0 =





0
0
−π

2



 , Kp =





1600 0 0
0 1600 0
0 0 1600



 ,

and the damping factor is fixed atkd = 8. The AV is started from rest to the west of
the target at orientationθ(0) = 0. Figure 8.1 shows the path taken by the AV with this
potential function and with no integral action (kI = 0). The AV is drawn for every2s,
and the shaded AV shows the desired configuration at the target χ0. The AV is instructed
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Figure 8.1: Converging to a single point

to stop when it reaches the target configuration, but withoutintegral action, the AV is
prevented from converging asymptotically due to a externaldisturbances. Figure 8.2
shows the same test, but now integral action is turned on (kI = 0.001) when the AV is
within 5m of the target. In this case the AV smoothly converges to the desired target with
asymptotically vanishing errors. The errors for both the tests are shown in figure 8.3.

8.2 Tracking a Line

In this section the AV’s ability to track a single straight line atx2 = 0 at constant velocity
during various load conditions is tested. To track a line theAV is given the following
potential function

Ū =
1

2
Kc

4∑

i=1

(x2 + κi sin(γi + θ)− δi)2 −Kax1,

with constantsKc = 320,Ka = 1600, δi = 0.5 for i = 1, 2, andδi = −0.5 for i = 3, 4.
The first part of the potential function comprises four interrow potentials, one for each
wheel. Each potential is a quadratic function of the distance between thei’th wheel and
the linex2 = δi. The second part of the potential gives the constant pull along the line.

Figure 8.4 shows a test with a constant damping factorkd = 7, i.e, there is no adaptive
damping. The figure shows that the AV quickly converges to thepath and stays there for
the duration of the test. Since there is no adaptive damping there is little control of the
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Figure 8.2: Converging to a single point with integral action
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Figure 8.4: Tracking a line. Constant damping
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Figure 8.5: Velocity of the line tracking test with constant damping

resulting velocity along the path. Figure 8.5 shows the translational velocity of the AV
as measured by the GPS receiver. In the beginning, when the AVis far away from the
path, the velocity reaches a maximum of around2m/s. This upper limit is determined
by saturation limits in the propulsion motors, and the AV reaches its maximum speed
due to a large contribution from the inter crop row potentials. When the AV reaches
the path the inter crop row potentials vanish quadratically, which explains the sudden
drop in velocity at aroundt = 3.8s. After that, the AV continues along the path at a
constant velocity untilt = 13s. At this point an external disturbance is introduces by
dropping a40kg anchor behind the AV, see figure 8.6. With a constant damping factor
the velocity of the AV drops slightly, which was expected since there is no effort to
maintain a constant velocity.
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Figure 8.6: The40kg anchor used as external disturbance

The same testwith adaptive damping is shown in figures 8.7 and 8.8. An integration
time of Td = 0.2 and a desired velocity ofvt0 = 1m/s are used. The ability to track
the line is unchanged, but now the velocity stabilizes at thedesired velocity and quickly
returns to it after introducing the disturbance att = 17s. The oscillations fromt = 3s
to t = 7s are due to a relatively short integration timeTd that makes the damping factor
kd fluctuate. The oscillations could have been avoided by choosing a larger integration
time, but then the controller would not have been so quick to reach the desired velocity
when the disturbance is introduced. A better solution wouldbe to fix the damping factor
until the AV is close to the path and then turn on the adaptive damping, but this will not
be pursued further.

8.3 Tracking a Circle

We now turn to the physical implementation of the circle tracking example of sec-
tion 7.5.2. We wish to clockwise track a circle with radiusr0 and centered at the origin
of theN -frame. In the first test a potential function with inter row potentials is used (it
is the same function that was used to generate the gradient (7.19) on page 118)

Ū =
1

2
Kc

4∑

i=1

(|wi| − (r0 + δri))
2

+Kaψ. (8.1)

r0 is the radius of the circle,|wi| is the distance from the center of the circle to thei’th
wheel. Wheel 1 and 2 should track the inter row spacing outside the circle, and wheel 3
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Figure 8.7: Tracking a line. Adaptive damping
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Figure 8.8: Velocity and damping values of the line tracking test with adaptive damping
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Figure 8.9: Tracking a circle.Kc = 320,Ka = 1600r0

and 4 should track the inter row spacing inside the circle, i.e.,δri = 0.5 for i = 1, 2 and
δri = −0.5 for i = 3, 4. ψ is the angle of the line connecting the center of the circle to
the geometric center of the AV.

Figure 8.9 shows how the AV behaves with one choice ofKc andKa. From an initial
position below the circle the AV quickly converges to the circle and stays there with little
variation for the duration of the test. Because of the curvature of the path the wheels
never hit the inter row spacing, and at the end of the test, when the AV has reached
a steady velocity, the orientation of the AV is almost perpendicular to the tangent of
the circle. This deviation from the inter row spacing is due to a lowKc, and a better
inter row tracking can be achieved by increasingKc (see for example the simulation in
figure 7.14 on page 119), thereby punishing deviations from the inter row spacing more
severely. Unfortunately,Kc also determines the rate of translational convergence of the
AV toward the circle, and increasingKc to much more than400 will result in a huge
net pull of the AV, even at small errors. This, in turn, results in jagged, non-smooth,
and generally unwanted motion of the AV (the almost90◦ turn on figure 7.14 is a good
example of this). Clearly, this is a drawback of using inter row potentials, and a different
potential should therefore be used when tracking paths witha large curvature. One of
many options is the following function

Ū =
1

2
Kc (r − r0)2 +

1

2
Kθ

(

θ −
(

ψ +
π

2

))2

+Kaψ. (8.2)
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Figure 8.10: Tracking a circle.Kc = 1280,Kθ = 1600,Ka = 1600r0

The first part has a minimum when the AV is on the circle, the second part has a mini-
mum when the AV is oriented along the tangent to the circle, and the last (unchanged)
part accounts for pulling the AV along the circle. With the introduction of the third
design parameterKθ the rate of convergence of the orientation and the position can be
controlled independently. Figure 8.10 shows the behavior of the AV with this potential
function. With the additional design parameterKθ the AV is now able to smoothly track
the circle while maintaining an orientation along the tangent of the circle.

Whether the inter row potential function (8.1) or the function (8.2) is best suited depends
on the situation at hand. This example just illustrates thatthe motion of the AV it greatly
influenced by the structure of the potential function.

8.4 Putting it All Together

As a last test the different modes of operation – convergencetoward a single point, track-
ing a line, and tracking a circle – are combined in a test wherethe AV drives along four
parallel lines. The test is the physical implementation of the simulation in figure 7.17 on
page 122. Figure 8.11 shows the configuration of the AV duringthe test. The wheels of
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Figure 8.11: Tracking four crop rows in practice

the AV are kept well away from the crop row represented by the straight lines, except at
the very beginning when the AV approaches the first row. The desired speed was set to
1m/s along the rows and the semicircle between point 1 and 2, and figure 8.12 shows
that it is precisely met.

8.5 Discussion

The tests shown in this chapter are all based on convergence to simple geometric objects,
such as points, straight lines, and circles. The simplicityof these objects facilitates easy
construction of the potential function̄U , but a general path or crop row in a field may
comprise more than just lines and circles. On the other hand,one should note that
the control algorithm does not need access to the complete potential function, but just
the gradient ofŪ at the instantaneous configuration of the AV on the manifold.The
complete potential function may be difficult to generate in the general case, but the
gradient is easily reconstructed from local measurements,since the gradient represents
the positional error between the AV and the target path or point. The crop row camera
(see page 26), for example, outputs the offset and orientation error relative to a nearby
crop row and these two measurements can directly be related to the gradient if the object
is to track the row.

From the tests shown in this chapter it is concluded that the feedback controlled AV be-
haves as expected from the simulation. Even with noisy sensor data. The data collected
from the sensors are in most cases unfiltered when entering the feedback loop. The only
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Figure 8.12: Translational velocity of the tracking example. The numbers on top mark
the points in time, when the AV reaches the correspondingly numbered way-points in
figure 8.11

exception is the estimated orientation of the AV, which is a combination of the compass
reading and the integral of the gyro. By controlling the AV based on a dynamic model of
the vehicle, the dynamics of the AV itself acts as a kind of filter. The damping injecting
feedback, for example, is based on the measured velocity from the GPS receiver. This
signal is quite noisy, but since it is passed through the natural dynamics of the AV the
resulting motion of the AV is still smooth.

What have been accomplished here is the design and implementation of a smooth time
invariant controller for the AV that is general enough to deal with both asymptotic sta-
bilization and path tracking. A second and important property of the controller is the
absence of any singularities. It has a singularity whenβ1 = β2 = π

2 , but this is related
to the structure of the AV and not the controller. In [66] a linearization of a the same
type of robot was introduced, but it was also shown that the linearizing feedback is only
defined at a nonzero velocity. This is not a problem for path tracking applications, but
for asymptotic stabilization some other method has to be applied instead. By avoiding
linearization all together and exploiting the nonlinear structures of the AV the resulting
passivity based controller is defined for any configuration and any velocity of the AV.



CHAPTER9

CONCLUSIONS AND FUTURE WORK

This thesis has focused on modeling and feedback control of aclass of nonholonomic
systems. The major contribution has been the introduction of so-called kinematic inputs
in the framework of Lagrangian and Hamiltonian systems. Previous results on feedback
control of classical nonholonomic Hamiltonian systems have been shown to be applica-
ble for this type of system as well, but the introduction of kinematic inputs has proved
to provide for the design of a global asymptotically stabilizing feedback. The feedback
control of Hamiltonian systems with kinematic inputs has been simulated and tested
successfully on a real nonholonomic system. The system in question was a four wheel
steered, four wheel driven mobile robot (the AV) used for surveying crops and weeds
in an agricultural field. For proper operation, the AV has to be able to asymptotically
stabilize itself and follow crop rows to minimize crop damage. Both of these operational
modes were provided by the proposed controller.

9.1 Summary of the Results

In chapter 3 a full dynamic and unreduced model of the AV was introduced based on
the Lagrange equation for nonholonomic systems. The motionof the AV was assumed
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to satisfy free rolling and non-slipping constraints, and the appropriate expressions for
these nonholonomic constraints were incorporated in the model. Some considerations
were discussed where a part of the configuration coordinates(the steering angles) was
separated from the rest of the coordinates to lay the groundsfor defining the notion of
kinematic inputs.

In chapter 4 the kinematic inputs were formally defined in thecontext of general non-
holonomic Lagrangian systems. A kinematic input was definedas an input that could
control a subset of the configuration coordinates through its first time derivative. Fur-
thermore, the total physical energy of the system had to be invariant with respect to
this subset. The link between a Lagrange system with kinematic inputs and the corre-
sponding Hamiltonian system was also given in this chapter,and a reduction scheme
that eliminated the Lagrange multipliers was introduced. The reduction scheme was a
coordinate transformation based on results by van der Schaft and Maschke [54], and it
was shown that the reduction also applied to systems with kinematic inputs. The reduced
system was again a Hamiltonian system, but with an additional input that was a result of
including kinematic inputs. Finally, this chapter introduced an additional constraint on
the coordinate transformation that was able to eliminate the additional input. The final
reduced system was on a simple form that made it particularlyuseful for control.

The results from chapter 4 was applied to the model of the AV inchapter 5. It was
first checked that the steering angle velocities of the AV were fully qualified kinematic
inputs. Once this was established the reduction scheme was applied to the model. The
resulting model was then validated based on measurements onthe real AV, and the model
was seen to precisely predict the behavior of the real system.

Chapter 6 dealt with feedback control of the reduced nonholonomic Hamiltonian system
with kinematic inputs. The object was to asymptotically stabilize the system at a desired
closed setQ0 on the configuration manifold. The setQ0 was defined as the set of minima
of a potential energy function. An energy shaping and damping injecting feedback was
introduced, and the closed loop dissipative system was shown to converge to an open set
Q. The setQ containedQ0, but was generally larger, and asymptotic stability toward
Q0 was not yet achieved. This was where the kinematic inputs came into play. By
designing a proper feedback for the kinematic inputs it was possible to force the setQ
to only containQ0, and asymptotic stability was achieved. A feedback for the kinematic
inputs was not guaranteed to exist, so a sufficient conditionfor existence was also given.
The condition was satisfied for the four wheel steered AV and other systems with a
similar degree of mobility.

The feedback was applied to the model of the AV in chapter 7 to yield a closed loop
dissipative system that enabled global asymptotic stabilization at an arbitrary position
and orientation on a horizontal field. While the four wheel steer made it possible to
asymptotically stabilize the AV, the four wheel drive supplied the freedom to define the
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propulsion torque distribution between the four DC drive motors. Many torque distribu-
tions were possible, and a distribution that minimized the electrical power input to the
motors was proposed.

The energy shaping and damping injecting feedback was by construction very similar
to a PD controller for a linear system, and it inherited some of the same limitations; if
there were external disturbances to the system the asymptotic stability was sacrificed.
To solve this problem integral action was introduced to dealwith constant disturbances,
such as non-horizontal fields, soil tracks, rocks, etc. The integral feedback was chosen
such that the closed loop system was again on a Hamiltonian form. By imposing this
structure on the feedback the system was guaranteed to be stable, even when choosing
high feedback gains.

Asymptotic stabilization of the AV was not enough for properoperation in the field. The
AV also had to be able to track crop rows. This was achieved by designing a potential
energy function, where the path was represented by a cleft orvalley in the function.
This function was then fed back through the energy shaping feedback, and path tracking
were achieved with the same controller structure. When traveling along the path, the
velocity of the AV was determined by the steepness of the potential energy function and
the amount of damping, and to give the system a certain degreeof velocity control, an
adaptive damping scheme was introduced. By changing the damping it was possible to
control the steady state velocity without sacrificing the useful dissipative property of the
closed loop system.

The proposed feedbacks were tested on a simulation model of the AV in chapter 7, and in
chapter 8 they were tested on the real AV, which was subject tounknown disturbances,
actuator saturation, unmodeled dynamics, etc. The closed loop system was proved to
perform as expected with very little discrepancies betweenreal and simulated outputs.

9.2 Recommendations for Future Work

Three important issues that have not received attention in the thesis are worth noting
here. These include both practical issues and problems of a more theoretical nature.

1. To be able to asymptotically stabilize a nonholonomic Hamiltonian system with
kinematic inputs condition (6.10) on page 91 should be satisfied. It is easily
checked for the AV, but in general, checking the validity of this condition is not
an easy task. A local proof is easy to find based on the inverse function theorem,
but this must be extended to a global proof if we wish to prove the existence of a
global asymptotically stabilizing feedback.
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2. There has been very little attention on the performance ofthe closed loop system,
and any performance requirements have been left to be resolved by the designer of
the potential shaping function. An unambiguous concept of performance is always
difficult to define for nonlinear systems, but the Hamiltonian structure might help.
In the authors opinion it would be worthwhile to construct a suitable performance
index so that energy shaping and damping injecting feedbacks for the AV could be
evaluated for performance. Or an index that allows for a qualitative comparison
between the passivity based controller presented here and existing controllers for
vehicles of the same type.

3. The simulation model of the AV was a set of continuous differential equations,
and simulation was done based on a high-order numerical integration method.
The physical implementation of the feedback, on the other hand, was based on an
less precise approximation where the inputs to the actuators were passed through a
zero-order hold filter. This had no visible effect on the results, since the sampling
period was short. Increasing the sampling period will almost certainly have a
detrimental effect on the stability and performance of the closed loop system, and
it should be further investigated just how far we can push thesystem without
destabilizing it.



APPENDIX A

HAMILTON ’ S PRINCIPLE AND L AGRANGE ’ S

EQUATION

This appendix gives a short introduction toHamilton’s principle of least actionand is
based on excerpts from the two books [30] and [41]. Hamilton’s principle is a very basic
principle, and it applies to a wide range of physical systems. Newton’s laws of motion
are just one example of equations that can be deduced from this principle. Because of
the generality of Hamilton’s principle it is well suited to handle mechanical systems
with nonholonomic constraints, and in the end of the chapterthe principle will be used
to derive the extended Lagrange’s equation for nonholonomic systems.

A.1 Lagrange’s Equation

We start by introducing Hamilton’s principle for a conservative unconstrainedmono-
genicsystem and use it to derive the classical Lagrange’s equation. The term monogenic
indicates that all forces acting on the system are generatedby a single potential function,
and this function is only depending on the position coordinates of the system (consider
for example a mass moving in a gravitational field). The position and velocity of the
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system are described by the generalized coordinatedqi, i = 1, 2, . . . , n and their corre-
sponding generalized velocitiesq̇i, i = 1, 2, . . . , n. For the time being it is assumed that
the system is holonomic, which implies that theqis andq̇is are independent. Constraints
on theq̇is will be introduced later when moving to nonholonomic systems. Hamilton’s
principle states that the motion from timet1 to timet2 is such that the line integral

I =

∫ t2

t1

Ldt, L = T − U,

is stationary for any arbitrary variations of the correct path betweent1 andt2 – provided
all these variations vanish att1 andt2. The scalar functionL(q1, . . . , qn, q̇1, . . . , q̇n, t)
is called the Lagrangian function and is defined as the difference between kinetic energy
T and potential energyU .

Stationarity of a line integral implies that the integral along the correct path has the
same value as the integral along any neighboring path to within first order. Consider the
variations in the coordinates

q1(t, α) = q1(t, 0) + αη1(t),

...

qn(t, α) = qn(t, 0) + αηn(t),

where theηis are arbitrary independent function with the only constraints that they van-
ish att1 andt2 and that they are continuous through their second derivative. The line
integralI is stationary if thevariationof I is zero

δI = δ

∫ t2

t1

L(q1, . . . , qn, q̇1, . . . , qn, t)dt = 0. (A.1)

The variation ofI is defined as

δI =
∂I

∂α
dα,

and (A.1) is

δI =

∫ t2

t1

∑

i

(
∂L

∂qi

∂qi
∂α

dα+
∂L

∂q̇i

∂q̇i
∂α

dα

)

dt = 0. (A.2)

Integrating the second term by parts
∫ t2

t1

∂L

∂q̇i

∂q̇i
∂α

dt =

[
∂L

∂q̇i

∂qi
∂α

]t2

t1

−
∫ t2

t1

∂qi
∂α

d

dt

(
∂L

∂q̇i

)

dt.

Becauseηi vanishes at the end points the first term is zero and (A.2) becomes

δI =

∫ t2

t1

∑

i

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)

δqidt = 0, (A.3)
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where the variation orvirtual displacementof qi is

δqi =
∂qi
∂α

dα.

The term virtual displacement refers to an infinitesimal displacement of the configura-
tion coordinate consistent with any forces and constraintsimposed on the system at time
instancet. For the time being we only consider unconstrained movement, but later in
this appendix nonholonomic constraints will be introduced, which will limit the set of
possible displacements. The displacement is called virtual to distinguish it from an ac-
tual displacement occurring in a time intervaldt, during which forces and constraints
may change.

Since theqis are independent (no constraints), the virtual displacements δqis are also
independent. The condition thatδI = 0 implies that each coefficient to theδqis vanish
separately1. This implies that

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, 2, . . . , n. (A.4)

This is the well known Lagrange’s equation for a conservative monogenic system.

As a control system the basic Lagrange’s equation is of little use, because it does not
provide any controllable inputs to the system. In the monogenic system is was assumed
that all the forces in the system was derivable from a single potential functionU , which
only depended on theqis. That is

Q̄i = −∂U
∂qi

,

and Lagrange’s equation can be rewritten as

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Q̄i, i = 1, 2, . . . , n.

WhetherQ̄i is an internal force of a system withL = T − U , or an externally applied
generalized force to a system with no potential energy (L = T ), the motion of the system
will be the same. We conclude that if the forces acting on the system consists of both an
internal part derived from a potential function and an external partQi, then Lagrange’s
equation can be extended to cover system with external inputs as well

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi, i = 1, 2, . . . , n. (A.5)

1We use thefundamental lemmaof the calculus of variations. The lemma states that if
R b

a
M(x)h(x)dx =

0, ∀h(x) with continuous second partial derivatives, thenM(x) = 0 [4].
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A.2 Extension to Nonholonomic Systems

In the step going from (A.3) to Lagrange’s equation (A.4) it was assumed that the virtual
displacementsδqi were all independent, but this is not true for nonholonomic systems. A
system is nonholonomic if there exists constraints that cannot be expressed as holonomic
constraints between the configuration coordinates, as in

f(q1, . . . , qn, t) = 0. (A.6)

In many applications (including mobile robots) nonholonomic constraints are encoun-
tered as linear relationships between the differentials oftheqis

∑

i

alidqi + altdt = 0, (A.7)

wherel = 1, . . . ,m indicates that there may be more than one constraint. Note that
thealis andalt may depend on both time and the generalized coordinates. Sometimes
the constraints can be integrated to yield constraints on the form (A.6), but then it is a
holonomic constraint. From the definition of the virtual displacement the nonholonomic
constraints can be viewed as constraints on theδqis

∑

i

aliδqi = 0. (A.8)

The virtual displacements are hence no longer independent,and we need to reduce the
n equations of (A.3) to independent ones. The trick to do this is to introduceLagrange
undetermined multipliers. If (A.8) holds, then it is also true that

λl

∑

i

aliδqi = 0

for some undetermined quantitiesλl, l = 1, . . . ,m. Summing overl and integrating
the result fromt1 to t2 yields

∫ t2

t1

∑

i,l

λlaliδqidt = 0.

This equation can then be added directly to (A.3)

δI =

∫ t2

t1

∑

i

(

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∑

l

λlali

)

δqidt = 0. (A.9)

Theδqis are still not independent though. The firstn−m equations may be chosen inde-
pendently, but the remainingm are fixed by (A.8). The Lagrange multipliers, however,
are still at our disposal. Suppose that we choose theλls such that

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∑

l

λlali = 0, i = n−m+ 1, . . . , n. (A.10)
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With theλls determined we know that the lastm equations of the sum in (A.9) are all
zero, but we still have to satisfy

∫ t2

t1

∑

i

(

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∑

l

λlali

)

δqidt = 0, i = 1, . . . , n−m.

The onlyδqis involved are the independent ones, and we conclude that it is satisfied if
and only if

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∑

l

λlali = 0, i = 1, . . . , n−m (A.11)

(again using thefundamental lemma). Combining (A.10) and (A.11) and adding an
external input by the same reasoning, which led to (A.5), we end up with the final La-
grange’s equation for nonholonomic systems

d

dt

∂L

∂q̇i
− ∂L

∂qi
=
∑

l

λlali +Qi, i = 1, . . . , n. (A.12)

This is not enough to describe the motion though. We have introduced them Lagrange
multipliers, which are generally functions of the coordinates and time, and hence in-
creased the system to having2n + m unknowns, but the Lagrange’s equations (A.12)
only gives a total ofn second order differential equations. The lastm equations are em-
bedded in the constraint equations (A.7), but this time theyare considered as first order
differential equations

∑

i

aliq̇i + alt = 0. (A.13)

The two sets of equations (A.12) and (A.13) can be also be written on a more compact
matrix form

d

dt

∂L

∂q̇
− ∂L

∂q
= AT (q, t)λ+Q,

0 = A(q, t)q̇ +A0(q, t),

with

q =






q1
...
qn




 , Q =






Q1

...
Qn




 , λ =






λ1

...
λm




 ,

A(q, t) =






a11 · · · am1

...
. . .

...
a1n · · · amn




 , A0(q, t) =






a1t

...
amt




 .
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