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Abstract Novel space-time view synthesis for monocular

video is a highly challenging task: both static and dynamic

objects usually appear in the video, but only a single view of

the current scene is available, resulting in inaccurate synthesis

results. To address this challenge, we propose FRNeRF, a novel

space-time view synthesis method with a fusion regularization

field. Specifically, we design a 2D-3D fusion regularization

field for the original dynamic neural field, which helps reduce

blurring of dynamic objects in the scene. In addition, we add

image prior features to the hierarchical sampling to solve the

problem that the traditional hierarchical sampling strategy

cannot obtain sufficient sampling points during training. We

evaluate our method extensively on multiple datasets and show

the results of dynamic space-time view synthesis. Our method

achieves state-of-the-art performance both qualitatively and

quantitatively. Code is available for research purposes at

https://cic.tju.edu.cn/faculty/likun/projects/FRNerf.

Keywords neural radiance fields, space-time view synthe-

sis, dynamic scene reconstruction, flow fields

1 Introduction

The environment we live in is a three-dimensional space,

and images captured from the environment have various

viewpoints. With monocular videos as input, novel space-

time view synthesis aims to generate novel view images of

dynamic scenes. Novel view synthesis has many applications

in real life, such as achieving space-time interpolation in

virtual game scenes, replaying the actions of athletes from
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Fig. 1 Novel view synthesis for dynamic monocular video. Our

method takes monocular video frames as input. Each frame in the

video is taken from a different viewpoint at a unique time step.

Existing space-time view synthesis methods such as NSFF struggle

to render high-quality views from monocular videos with highly

dynamic motion. Our method produces results with higher clarity.

novel viewpoints for professional sport events, and creating

cinematic effects.

Systems for novel view synthesis need to overcome the

challenging problems associated with video capture, recon-

struction, compression and rendering. Most existing methods

use expensive and laborious setups, e.g. multi-view camera

systems [1], fast-moving cameras [2], or other specialized

hardware to capture and observe the scenes [3, 4]. However,

such approaches are complicated in real life applications.

Therefore, it is more practical to generate dynamic scenes

from a monocular video captured by a single RGB camera.

Few methods are able to achieve novel view synthesis from

a single stereo camera or even monocular RGB camera, and

they are further constrained to specific fields such as human

reconstruction [5, 6]. Some methods [7–9] represent dynamic

scenes as continuous neural radiance fields of space and time

and generate reflectivity, density, and 3D scene motion infor-

mation with multi-layer perceptrons (MLPs). Unlike static

neural radiance fields (NeRFs) [10], a scene flow establishes

tight relationships for frame sequences. NSFF [7] strengthens

the consistency between viewpoints and the 3D scene flow

and introduces a variety of prior knowledge, so it can gen-

erate more coherent novel view images. At the same time,
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NSFF [7] creates separate neural radiation fields for static

and dynamic regions to improve the synthesis quality of the

network. However, the most significant difficulty is to reduce

the artifacts caused by fast motions of multi-frame images in

novel viewpoint synthesis. NSFF [7] estimates the scene flow

field between corresponding 3D points in a multi-frame scene

and calculates the pixel colors in adjacent frames through

the scene flow field. The depth in the 3D scene flow field is

essentially generated by a depth estimation network, which

differs from the ground truth depth information, so is inac-

curate. In addition, directly calculating a loss using color

differences between adjacent frames has the problem of pixel

misalignment. As a result, fast-moving objects in novel view

images suffer from noticeable artifacts.

To address the problems above, in this paper, we propose

FRNeRF for dynamic space-time view synthesis. It can gen-

erate novel view images from monocular videos with greater

clarity and realism. We propose a 2D-3D fusion regulariza-

tion field, which can fuse the 2D feature field with the 3D

scene flow field to enhance it. Specifically, we first introduce

a 2D feature field in the dynamic NeRF to simulate the real

spatial offset of pixels between adjacent frames. Then we

extract the high-level semantic features of the original 3D

scene flow field predicted by dynamic NeRF to re-match and

correct the misaligned dynamic pixels due to inaccurate depth

information. The fusion regularization process of the flow

field in the scene can significantly reduce the artifacts caused

by the fast motion of dynamic objects, and generate a more

realistic novel view image.

Dynamic space-time view synthesis is a challenging prob-

lem. Unlike static novel view synthesis, in which the input

is an intensive multi-view observation, a novel view of the

captured scene can be synthesized simply by a hierarchical

sampling strategy. In the dynamic case, novel view synthesis

requires more information about the scene as the dynamic

scene changes over time. However, the sparse viewpoints

cannot adequately capture the dynamic pixels in the scene,

and a simple hierarchical sampling strategy cannot provide

sufficient sampling points, affecting the quality of novel view

synthesis.

We propose two improvements to overcome this challenge.

The first improvement is to append the 2D image features

extracted by the feature extractor to the input of FRNeRF,

which provides more feature information to the implicit neural

representation and can improve inference on unseen pixels,

and we add a local convolution module to the pre-trained

feature extractor. The local modeling property of the convo-

lution module can utilize the two-dimensional neighborhood

information during each iteration. Additional 2D priors can

increase the pixel features needed for rendering. In order

to further improve the quality of novel view synthesis on a

global scale, we propose as a second improvement to add

a global pixel alignment loss between the estimated view

and the input view to enhance the global rendering percep-

tion quality, which diminishes the spatial ambiguity due to

the high-speed movement of pixels. As shown in Figure 1,

our method significantly improves the rendering fidelity of

dynamic space-time view synthesis.

Our main contributions can be summarized as:

• a joint 2D-3D fusion regularization field, which contains

both 2D feature field and 3D scene flow field, and

• image-prior-based 2D feature addition and semantic

constraints, achieving local interactivity and global con-

sistency for each pixel in the scene, leading to

• generation of results superior to previous state-of-the-art

dynamic space-time view synthesis methods.

2 Related work

2.1 Implicit neural representations

Continuous and differentiable functions parameterized by

fully-connected networks have been successfully applied as

compact implicit representations for modeling 3D scenes [10–

13], object appearances [14, 15] and 3D shapes [16–22].

These methods train MLPs to regress input coordinates,

e.g. points in 3D space, to the desired quantities, for exam-

ple, volume densities [10], colors [10, 11, 15, 23], signed

distances [19, 24, 25], or occupancy values [12, 23, 26].

Recently several works have shown training MLPs with 2D

images under multi-view without directly using 3D supervi-

sion [10, 14, 27], leveraging differentiable rendering [28, 29].

Most existing methods deal with static scenes. Due to mo-

tion entanglement and the complexity of 3D shapes, directly

extending MLPs to encode additional temporal dimensions is

ineffective. The method in [30] extends NeRF [10] to process

diverse photographs containing lighting changes and trans-

parent objects. The most relevant work for our method is [7],

which learns continuous motion fields over space and time.

Our method follows it, but the focus of our task is to resolve

the previously ambiguous fast motion for dynamic space-time

novel view synthesis. Unlike [7], we additionally extract fea-

tures from 2D images as supplementary information to guide

the model for dynamic scene learning.

2.2 Novel view synthesis for static scenes

Synthesizing novel views for static scenes is a long standing

vision and graphics problem that aims to synthesize new
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images from arbitrary viewpoints of a scene captured by

multiple cameras. Different methods represent the underlying

geometry using different representations. Mesh-based ap-

proaches [31–36] represent scenes using compact and easily

renderable surfaces, while optimizing a mesh for complex

scenes remains challenging. Volume-based works, e.g. multi-

plane images (MPIs) [17, 37–41] and voxel-meshes [42–46]

are more suitable for modeling those complex and translucent

scenes which are smooth and fluid. In particular, the realis-

tic rendering quality of NeRF [10] has led to an explosion

of developments in the field. Progress has been made in

training speed [16, 47–50], improving the rendering qual-

ity [51, 52], accelerating rendering, and adapting to more

general scenes [30, 53–55], etc.

2.3 Novel view synthesis for dynamic scenes

Synthesizing novel views for dynamic scenes is a more prac-

tical and challenging problem. However, existing methods

do not perform well with dynamic scenes. Discrepancies be-

tween the actual capture process and the existing experimental

protocols for monocular videos have been shown in [56].

Most methods are limited to certain scenarios, e.g. con-

strained motions or human models. For complex scenes in

the real world, reconstruction from synchronized multi-view

videos is more promising due to the intensive supervision

of each viewpoint and point in time. Earlier works [57, 58]

explore this issue and show the possibility of rendering novel

videos from a set of input views. The Neural Volumes ap-

proach [44] uses volumetric representations. It employs an

encoder-decoder network to convert the input images into

3D volumes and decode the latent representation by differen-

tiable ray marching operations. [59] proposes a data-driven

strategy for 4D space-time visualization of dynamic scenes.

They split the static and dynamic components and convert the

intermediate representations into images using spatial U-Net

structures. More recently, Li et al. [60] used a time-aware neu-

ral radiance field to address the problem, and proposed several

new sampling strategies to train the model efficiently. They

presented a more complex real-world dataset and validate

the improvements of their method compared to the previous

methods. To accelerate the reconstruction of dynamic scenes,

the Fourier Plenoctree approach [61] proposes to model dy-

namic components in the frequency domain, and generates a

Plenoctree by multi-view blending to accelerate the rendering.

The authors focus on the foreground moving components

extracted through chroma key segmentation, which requires

that the background should be a solid color.

With advances in rendering, view synthesis methods have

shown state-of-the-art results from a monocular video de-

picting a dynamic scene. These methods can be divided into

explicit modeling [62–65] and implicit modeling of deforma-

tions [7, 66–69]. Despite the improvements achieved, it is still

difficult to reconstruct complex dynamic scenes only using

monocular videos. In particular, DynamicNeRF [67] decom-

poses a dynamic scene into static, deforming components and

jointly trains a time-invariant static NeRF and a time-variant

dynamic NeRF, and learns how to blend the results in an

unsupervised manner. However, this approach is unsuitable

for fast motions and often leads to incorrect flows. NSFF [7]

proposes a new representation that models a dynamic scene as

a time-variant continuous function of appearance, geometry,

and 3D scene motion. However, this method only works well

for short (1–2 s) videos without fast or drastic motions.

Differing from these works, we introduce fusion regular-

ization fields to eliminate the influence of the inaccurate 3D

flow fields, which can further enhance the correlation between

adjacent video frames. We also propose a 2D image feature

extractor to achieve local interactivity and global consistency

for each pixel in the dynamic scenes.

3 Method

3.1 Background: static scene rendering

NeRFs represent a continuous static scene as a function with

an input of 5D vectors, including the 3D coordinate position

o = (x, y, z) of a space point, and the viewpoint direction d =

(θ,Φ). In NeRF, FΘ represents an MLP network that models

the volume density σ and color c = (r, g, b) corresponding

to each position and view direction in the space, forming an

implicit representation of the 3D scene:

FΘ : (o,d) → (c, σ), (1)

The RGB value of each pixel in the view of a single novel

viewpoint requires the (r, g, b, σ) values of all the sampled

points on the ray to be determined. To render the color of an

image pixel, NeRF approximates a volume rendering integral.

Light is emitted and sampled from the camera position to a

pixel in the scene and the expected color Ĉ of that pixel is

then given by:

Ĉ(r) =

∫ t̂far

t̂near

T (t̂)σ(r(t̂))c(r(t̂),d)dt̂,

T (t̂) = exp

(

−

∫ t̂

t̂n

σ(r(t))dt

)

. (2)

where the function T (t̂) represents the accumulated transmit-

tance of the ray from t̂near to t̂, and t̂near and t̂far correspond

to the samples at the near and far planes.
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Fig. 2 Framework. Our dynamic NeRF with fusion regularization fields can take 2D-3D knowledge transfer as input to predict the flow

fields from frame t to frame t− 1 and frame t+ 1. For static components, we train a following NeRF model, but exclude all pixels marked

as dynamic from model training. This allows us to reconstruct the background structure and appearance without conflicting with moving or

deforming objects.

x

The goal of our work is to synthesize novel viewpoints at

any desired time within the video. Figure 2 shows the frame-

work of our method. The inputs are a monocular video frame

sequence (t1, . . . , tn) of a dynamic scene and the known

camera parameters (k1, . . . , kn). The most significant dif-

ferences from existing work are that we predict the fusion

regularization fields from frame t to frame t− 1 and to frame

t+ 1 for bi-directional consistency of adjacent video frames,

and globally align the rendered pixels with the corresponding

input video frame pixels. In addition, we propose a feature

enhancement strategy for hierarchical volume sampling. Our

method consists of three steps: (i) extraction of 2D semantic

features from scene images using a pre-trained feature extrac-

tor and attachment of 2D feature information to the original

hierarchical sampling points (see Sec. 3.2), (ii) knowledge

transfer for 2D-3D fusion (see Sec. 3.3.1), and (iii) alignment

regularization of the 3D scene flow field (see Sec. 3.3.2).

To synthesize seamless and sharp dynamic scenes, we have

designed a hybrid dynamic-static neural rendering network

(see Sec. 3.4). Utilizing both 2D images and 3D scene data,

we address the pixel misalignment in consecutive novel views.

3.2 Feature enhancement for hierarchical volume

sampling

NeRF uses a combination of implicit neural fields and volume

rendering techniques [70] to render 3D scenes by hierarchical

volume sampling. However, the hierarchical volume sampling

mechanism cannot provide sufficient pixel information for

dynamic radiance fields where the input is a monocular

video frame sequence. In order to increase the available input

information for the model, we introduce additional 2D image

information to the original hierarchical sampling points:
(

σt, ct, f
3D
t , f2D

t , wt

)

= Fd

(

xt, d, t, FV (π(xt))

)

, (3)

where xt is the spatial position of 3D point x at frame t, d

is the view direction. σt and ct = (r, g, b) are the volume

density and color at frame t for the 3D point, respectively.

π denotes projecting 3D point xt onto the image. Fd is the

dynamic representation model. FV (π(xt)) represents image

feature extraction by bilinear interpolation.

In addition, the model predicts the forward and back-

ward 3D scene flow fields f3D
t = (f3D

t→t+1, f
3D
t→t−1),

and the forward and backward 2D feature fields f2D
t =

(f2D
t→t+1, f

2D
t→t−1), which represent the 3D offset vectors and

2D feature offsets corresponding toxt and its projection points

at frames t + 1 and t − 1, respectively. To handle motion

occlusion in 3D space, the model also predicts the occlusion

weights wt = (wt→t+1, wt→t−1) for previous frame t − 1

and next frame t+ 1.

As Figure 3 shows, given an input image I of the scene,

we extract the features FV = E(I), where E denotes the

feature extraction network. Specifically, we choose the masked

autoencoder (MAE) feature extractor [71]. The core idea of

the masked autoencoder is to allow the model to learn a
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Fig. 3 Image feature extraction. Given the input image, FV (π(X))

is extracted with the feature extraction network.

generalized intermediate representation, which increases the

NeRF’s ability to reason about under-observed pixels. After

obtaining the 2D image features of the current frame through

the feature extraction network, the features of the current

frame and the 2D feature field can be used to calculate the

pixel features of the previous frame and the next frame. In

this paper, we retain the convolutional embedding operations

in the first two stages of the feature encoder module. This

enables the network to collect local image regions during each

iteration. Thus, utilizing 2D local neighborhood information

when rendering each pixel can be formulated as follows:

Fencoder 1 = StrideConv (MAE1, 2) , (4)

Fencoder 2 = StrideConv (MAE2, 2) , (5)

F2D = [Fencoder1, Fencoder2] , (6)

where StrideConv(·, 2) represents the mask convolution op-

eration with a stride of 2, MAE1 and MAE2 represent the two

stages of the masked autoencoder feature extractor respec-

tively, Fencoder 1 and Fencoder 2 are the two scales of features

extracted by the masked autoencoder feature extractor, and

F2D is the final 2D fusion feature. Then, for each sampling

point x on the ray r, we project x to the corresponding co-

ordinate π(x) on the image plane using the known camera

intrinsics and then retrieve the corresponding image features

by π(x) and use bilinear interpolation to extract the feature

vector FV (π(x)).

3.3 Fusion regularization field

3.3.1 Knowledge transfer for 2D-3D fusion

Previous methods [7, 9] predict the forward and backward 3D

scene flow of a dynamic scene, representing the offset of pixels

moving at a uniform speed for frames t−1 and t+1. However,

the 3D scene flow contains inaccurate depth information. In

this paper, we use the same datasets as NSFF [7], in which

the depth is not the ground truth, but it is generated by the

depth estimation method. As a result, significant artifacts can

be produced when we model dynamic objects in the scene

using a scene flow that includes inaccurate depth information.

The 2D feature field estimates the offset of pixels in adjacent

frames, which does not use inaccurate depth. As shown in

Figure 2, we introduce 2D image features in the fusion field to

alleviate the artifacts of objects in adjacent frames and making

the NeRF effectively handle rigid and non-rigid deformations

of moving objects. At the same time, the 2D feature field with

image priors can further enhance the accuracy and extend the

NeRF’s expressive capabilities for dynamic space-time view

synthesis.

For each pixel, the training process starts with three frames

of the scene to train the model: the current frame t, the

previous frame t − 1, and the next frame t + 1. After the

number of training iterations reaches 50,000 steps, the model

can be trained using five adjacent frames of the scene, i.e.

frames t− 2 and t+ 2 are added.

Taking frame t as the reference frame, the volume density

σ and color c of the 3D point x in frames t− 1 and t+ 1 can

be calculated according to the 3D scene flow field and 2D

feature field, expressed as:

(σt→t−1, ct→t−1) = Fd

(

xt + f3D
t→t−1, d, t− 1,

F
V (π(xt)+f2D

t→t−1)

)

, (7)

(σt→t+1, ct→t+1) = Fd

(

xt + f3D
t→t+1, d, t+ 1,

F
V (π(xt)+f2D

t→t+1)

)

, (8)

When rendering the image, we warp the 3D point xt of the

current frame t to frames t− 1 and t+ 1 using the predicted

3D scene flow field f3D
t and the 2D feature field f2D

t . The

volume density σ and color c of this 3D point xt at adjacent

frames t− 1 and t+ 1 are rendered along the ray rt. It can

be seen that the volume density σ and color c of pixels in

adjacent frames should be consistent.

3.3.2 Alignment regularization of 3D scene flow field

Adjacent monocular video frames in the same scene share

the same semantic features; capturing and realigning the

semantic features of the scene is beneficial to improve the

consistency and fidelity of the scene flow. Since the contents

and styles of adjacent frames are similar, the deep learning

network can learn invariant representations. Therefore, we

alleviate the artifacts due to inaccurate depth information by

re-aligning the original 3D flow field at the semantic level

through a vision transformer (ViT) [1]. In the ViT module, a

monocular video frame is flattened into n non-overlapping

patch sequences. Then each patch is linearly embedded into

a c-dimensional vector, and the learned position embedding

(using a value to characterize the absolute position of each

patch) is added. ViT extracts abstract high-level semantic

representations from non-overlapping patches using global
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Fig. 4 3D scene flow regularization. High-level semantic infor-

mation of adjacent video frame pixels is extracted by ViT, and then

optimized using cosine similarity loss.

self-attention and generates a single global embedding vector.

As Figure 4 shows, we use this mechanism to correct the

high-level semantic features of adjacent frames.

The cost of matching the corresponding pixel points of

adjacent video frames is determined based on the high-level

semantic feature representation learned by ViT. Scene flow

features after ViT processing are of the form Xt+l, Xt ∈

R
n×p, where p is the dimension of the features. The losses

are calculated as follows:

Ls =
Φ(Xi

t+l) · Φ(X
j
t )

⊤

∥Φ(Xi
t+l)∥2 ∥Φ(X

j
i )∥2

, l ∈ {−1, 1}, (9)

where Xi
t+l, X

j
t ∈ R

n×p are the i-th and j-th patches of

Xt+l and Xt, respectively, and Φ(·) denotes the normalized

embedding of the image.

3.4 Hybrid rendering

In this paper, we use the same hybrid (dynamic and static)

neural fields as NSFF [7] to render the scene. The static rep-

resentation model Fs takes 3D coordinates x, view direction

d, and feature vector V (π(x)) as input and aims to generate

the volume density σ, and color c = (r, g, b) of this 3D point:

(σ, c,m) = Fs(x, d, FV (π(X))), (10)

where m is an unsupervised 3D mixture weight for linearly

fusing σ and c from the static and dynamic representation

models; m is generated by training the static representation

network. The feature vector FV (π(X)) provides a priori infor-

mation to generate more accurate color details. Intuitively,

m should assign a low weight to the dynamic representation

in static regions with sufficient observations, as these can

be rendered at higher fidelity by the static representation,

while assigning a lower weight to the static representation in

regions that are moving, as these can be better modeled by

the dynamic representation:

Ĉt (rt̂) =

∫ t̂far

t̂near

Tt(t̂)σt

(

rt(t̂)
)

ct
(

rt(t̂)
)

dt̂, (11)

where σt(rt(t̂)) and ct(rt(t̂)) are linear combinations of static

and dynamic scene representations weighted by m(t̂), given

by:

σt

(

rt(t̂)
)

ct
(

rt(t̂)
)

= m(t̂)c
(

rt(t̂)
)

σ
(

rt(t̂)
)

+ (1−m(t̂))ct
(

rt(t̂)
)

σt

(

rt(t̂)
)

,
(12)

The final blended rendering loss LR calculates the mean

squared error between the blended rendered pixel value

Ĉt (rt̂) and its corresponding true pixel value Ct(rt̂) along

the ray rt̂:

LR =
∑

r
t̂

∥

∥

∥
Ĉt (rt̂)− Ct (rt̂)

∥

∥

∥

2

2
, (13)

Based on blended rendering loss, we align the rendered

pixels globally to enhance the overall spatial consistency

of the rendered scene images (dynamic and static) with

the original monocular video frames. First, we flatten the

raw input video frames and the rendered scene images and

then put them into ViT [1] to obtain their high-level semantic

features. The pre-trained ViT has high robustness to unaligned

pixels in the scene flow. Following [72], we compute the L2

distance between the high-level semantic features extracted

from the rendered scene images and the semantic features of

the original video frames to construct the global loss function:

Lglobal = ∥E (td)− E (tf )∥
2
, (14)

where E(·) denotes the advanced semantic feature extractor,

td denotes the scene images generated by NeRF rendering, and

tf denotes the original monocular video frames. Therefore,

the improved combined loss for the space-time viewpoints

synthesis task is as follows:

L = λrLR + λsLS + λgLglobal, (15)

where λr, λs, and λg are balancing weights for the corre-

sponding loss terms, which are set to 1, 0.1, 0.1 in this paper,

respectively.

4 Experiments

4.1 Setup

4.1.1 Implementation details

Our framework is implemented in PyTorch. The hyper-

parameters λr, λt, λc, λeg, λg, and λz are set to 1.0, 1.0,

1.0, 0.1, 0.2, and 0.4 during training. We use COLMAP [73]

to estimate the camera intrinsics and extrinsics, and since

COLMAP can only estimate camera parameters for static

scenes, we use instance segmentation [74] to hide the fea-

tures from the regions that are associated with the common

dynamic objects. During training and testing, we sample 64

points along each camera ray. In addition, we use the Adam
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Table 1 Quantitative evaluation of space-time novel view synthesis for dynamic scenes on the Nvidia Dynamic Scenes Dataset.

Scene Method
Dynamic Only Full Image

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

Jumping

DynamicNeRF 0.203 0.392 0.709 0.205

NSFF 0.685 0.176 0.918 0.072

Ours 0.705 0.131 0.925 0.055

Umbrella

DynamicNeRF 0.225 0.649 0.510 0.433

NSFF 0.549 0.171 0.842 0.097

Ours 0.549 0.162 0.844 0.098

Playground

DynamicNeRF 0.196 0.366 0.490 0.325

NSFF 0.716 0.143 0.876 0.081

Ours 0.725 0.127 0.877 0.075

Skating

DynamicNeRF 0.663 0.159 0.812 0.054

NSFF 0.788 0.106 0.971 0.035

Ours 0.789 0.098 0.977 0.023

Truck

DynamicNeRF 0.218 0.149 0.492 0.134

NSFF 0.839 0.056 0.691 0.026

Ours 0.913 0.046 0.963 0.024

Average

DynamicNeRF 0.301 0.343 0.603 0.230

NSFF 0.715 0.130 0.860 0.062

Ours 0.736 0.113 0.917 0.055

Table 2 Comparison of our approach to state-of-the-art novel view

synthesis methods NeRFPlayer, K-planes, and DynIBaR on the

Nvidia Dynamic Scenes Dataset.

Scene Methods
Dynamic Only Full Image

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

Jumping

NeRFPlayer 0.532 0.289 0.813 0.102

K-planes 0.639 0.366 0.835 0.078

DynIBaR 0.701 0.133 0.922 0.057

Ours 0.705 0.131 0.925 0.055

Playground

NeRFPlayer 0.598 0.245 0.812 0.163

K-planes 0.654 0.198 0.822 0.147

DynIBaR 0.721 0.129 0.875 0.077

Ours 0.725 0.127 0.877 0.075

Average

NeRFPlayer 0.565 0.267 0.813 0.133

K-planes 0.647 0.282 0.829 0.113

DynIBaR 0.711 0.131 0.899 0.067

Ours 0.715 0.129 0.901 0.065

optimizer [75] to train a separate model for each scene, with

learning rate 5 × 10−4. Training a full model takes about

seven days per scene using two NVIDIA 2080ti GPUs and

rendering takes roughly 6 seconds for each 512× 288 frame.

4.1.2 Datasets

We evaluate our method on the Nvidia Dynamic Scene

Dataset [76]; it consists of 8 scenes with human motions

and inanimate objects and background. These sequences were

captured with 12 cameras using a static camera setup. All

cameras synchronously captured images at 24 different time

steps {t0, . . . , t23}. The input is 24 frames of monocular

videos {i0, . . . , i23} obtained by sampling the image taken by

the k-th camera at time tj . Note that each frame of the video

uses a different camera to simulate camera motion in order

to obtain information about the perspective transformation.

Frame i contains a background that does not change over

time, and dynamic objects which change over time. We use

positional encoding to transform the inputs and parameterize

the scenes using standardized coordinates. We assume that all

cameras share the same intrinsic parameters. Following [7],

we simulate the moving monocular camera by extracting

images sampled from each camera viewpoint at different

time instances and evaluate the results of view synthesis with

respect to known held-out viewpoints and frames. For each

scene, we use 24 frames from the original video for training

and use the remaining 11 held-out images from each time

instance for evaluation.

4.1.3 Metrics

We evaluate the results of novel view synthesis using the

following metrics: (i) structural similarity index measure

(SSIM) [77], which measures the similarity between im-

ages from three aspects: brightness, contrast, and structural

similarity, and (ii) learned perceptual image patch similarity

(LPIPS) [78], which computes the distance between the gen-

erated image and the ground-truth image in the perceptual

domain. LPIPS is generally considered to be closer to human

perception, when assessing reconstruction errors. Further-

more, we calculate errors both over the entire scene (Full
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Fig. 5 Qualitative comparisons to state-of-the-art space-time novel view synthesis methods. Left to right: results from DynamicNeRF,

NSFF, our method and ground truth. The images generated by our model more closely match the ground-truth, and include fewer artifacts,

especially in the highlighted regions.

Fig. 6 Qualitative comparisons to other state-of-the-art novel view synthesis methods. Left to right: our results, close ups of results from

NeRFPlayer K-planes, DynIBaR, our method, and ground truth.

Image) and restricted to dynamic regions only (Dynamic

Only). The dynamic component is obtained using the binary

masks in the initial inputs.

4.2 Quantitative results

We first compare our approach to state-of-the-art monocu-

lar dynamic view synthesis methods: DynamicNeRF [67]

and NSFF [7], which specifically generate novel space-time

view images with monocular videos. Note that DynamicN-

eRF [67] was originally trained with 12 input images. We

re-trained DynamicNeRF [67] and NSFF [7] with 24 frames

of the monocular videos for fair comparisons, and generated

qualitative and quantitative results using the same test set.

Table 1 reports our results and compares them to those of

DynamicNeRF and NSFF, which are specialized to space-

time novel view synthesis for dynamic scenes. Our method

outperforms them for all metrics. In particular, our method

achieves much better results on the dynamic components,

demonstrating that our model is better adapted to handle

non-rigid motions and blur in the entire scenes. In addition,

calculating the mean values on all datasets, our method gets

the best scores: our model outperforms existing methods.

In order to demonstrate the superiority and robustness

of our method for novel view synthesis, we also conducted

comparative experiments with other state-of-the-art methods:

NeRFPlayer [79], K-planes [80], and DynIBaR [69]. NeRF-
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Table 3 Quantitative comparison with four alternative designs.

Scene Methods
Dynamic Only Full Image

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

Jumping

w/o Feature Enhancement 0.694 0.133 0.926 0.052

w/o 2D-3D Fusion 0.698 0.136 0.922 0.057

w/o 3D Regularization 0.699 0.136 0.927 0.054

w/o LConstraint 0.696 0.136 0.923 0.056

Full Model 0.705 0.131 0.925 0.055

Skating

w/o Feature Enhancement 0.769 0.118 0.982 0.019

w/o 2D-3D Fusion 0.814 0.087 0.971 0.027

w/o 3D Regularization 0.813 0.098 0.974 0.027

w/o LConstraint 0.800 0.104 0.976 0.024

Full Model 0.805 0.098 0.977 0.023

Truck

w/o Feature Enhancement 0.892 0.054 0.965 0.023

w/o 2D-3D Fusion 0.907 0.053 0.961 0.026

w/o 3D Regularization 0.908 0.054 0.961 0.027

w/o LConstraint 0.901 0.053 0.967 0.023

Full Model 0.913 0.046 0.963 0.024

Average

w/o Feature Enhancement 0.785 0.102 0.958 0.031

w/o 2D-3D Fusion 0.806 0.092 0.951 0.037

w/o 3D Regularization 0.807 0.096 0.954 0.036

w/o LConstraint 0.799 0.098 0.955 0.034

Full Model 0.808 0.092 0.955 0.034

Fig. 7 Comparison to NSFF, showing that our proposed fusion

regularization field is the key to better visual results.

Player and K-planes both support novel view synthesis with

multiple cameras; NeRFPlayer focuses on reducing training

and rendering times, while K-planes focuses on low memory

usage and DynIBaR focuses on synthesizing novel views from

long videos. Table 2 compares our method to NeRFPayer,

K-planes and DynIBaR. We randomly selected two scenarios

from the Nvidia Dynamic Scene dataset, i.e. Playground and

Jumping for evaluation.

4.3 Qualitative results

We provide qualitative comparisons between our approach

and two state-of-the-art monocular and dynamic-scene-based

view synthesis methods in Figure 5. DynamicNeRF [67]

produces many artifacts in both static and dynamic regions of

the scenes. NSFF [7] reconstructs most static regions correctly

since it treats all the moving objects as view-dependent effects

leading to loss of certain details, e.g. the head of the woman,

the eyes of the toy dinosaur, and the folds of the umbrella

when the dynamic objects move rapidly. In contrast, our

model is able to model the fast motion of dynamic objects

and still retains the complete structure even if the dynamic

regions are widely separated between two adjacent frames.

We also make a comparison to other state-of-the-art novel

view synthesis methods: K-planes [80], NeRFPlayer [79] and

DynIBaR [69], in Figure 6. Our approach outperforms them

both in terms of overall quality and scene details.

Figure 7 shows a comparison to NSFF [7] on sequences

with large motion, e.g. a moving truck and a man skating.

Unlike NSFF [7], which uses a static NeRF to predict the

blending weights, we propose a fusion regularization field to

fuse the 2D feature field features to enhance the quality of

the foreground. The benefits of this 2D feature field include

extracting features of dynamic regions and generating the

images with less blur.

Figure 8 shows some novel viewpoints synthesized by our

method at any desired time within the video, demonstrating

that our method can achieve space-time novel view synthesis

and generate realistic images, specifically generating accurate

results for dynamic regions of the entire scene.
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Fig. 8 Further visual results of space-time novel view synthesis.

4.4 Ablation study

We conducted ablation experiments on the Nvidia Dynamic

Scene Dataset [76] for each of the four proposed components

and the full model. We analyzed the effectiveness of each

proposed component in novel view synthesis by removing (i)

feature enhancement (w/o Feature Enhancement), (ii) 2D-3D

fusion (w/o 2D-3D Fusion), (iii) 3D regularization (w/o 3D

regularization), and (iv) the constraint loss (w/o LConstraint);

our full method is denoted (Full Model).

Quantitative results are shown in Table 3, which demon-

strate the relative importance of each component, with the full

model performing the best. As shown in Table 3, the results

of the dynamic components in Jumping and Truck scenes of

the Full Model outperform the other four variants. The Full

Model does not get the best numerical performance for the

dynamic regions in the Skating scene. This is because the

movement of the skating man is very smooth which leads

the model to learn more background information. Neverthe-

less, the average results for all cases on the dynamic regions,

indicate that the full model performs best.

As for the full image, since the dynamic regions in the

foreground take up a small proportion of the whole image,

and the background information is dominant, this leads the

full model to achieve a performance comparable to the best

scores.

Visual results are shown in Figure 9. Compared to the four

variants, the full model achieves better results especially for

non-rigid motions and dynamic regions. More results can be

found in the demo video at https://cic.tju.edu.cn/faculty/lik

un/projects/FRNerf/demo.mp4.

5 Conclusions and limitations

In this paper, we propose a novel framework for novel view

synthesis from a monocular video. Our core contribution lies

in the fusion regularization fields and the addition of sampled

features to enhance consistency between video frames and to

mitigate the ambiguity in synthesizing dynamic scenes due to

inaccurate depth information and under-sampled features. We
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Fig. 9 Qualitative results of ablation study.

demonstrate qualitatively and quantitatively, using multiple

dynamic datasets, that our approach can synthesize photo-

realistic novel-view images from a monocular video, and

can achieve significant improvements over state-of-the-art

methods on the dynamic scene benchmarks.

Space-time view synthesis on dynamic scenes is a highly

challenging task, and our proposed method addresses the

problems of temporal consistency and under-sampled fea-

tures. However, our method still has a limitation in common

with most existing methods [7, 67]; it has many learnable

parameters, leading to a long training time. In future, we hope

to improve training efficiency using a Jittor model [81, 82],

which is 2.26 times faster than the equivalent PyTorch model

on average.
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