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Abstract 

Generative models of decision now permeate all subfields of psychology, cognitive and clinical 

neuroscience. To successfully investigate decision mechanisms from behaviour, it is necessary to 

assume the presence of delays prior and after the decision process itself. However, directly 

observing this “non-decision time” from behaviour long appeared beyond reach, the field mainly 

relying on models to estimate it. Here, we propose a biological definition of decision that includes 

perceptual discrimination and action selection, and in turn explicitly equates non-decision time 

with the minimum sensorimotor delay, or “deadtime”. We show how this delay is directly 

observable in behavioural data, without modelling assumptions, using the visual interference 

approach. We apply this approach to 11 novel and archival datasets from humans and monkeys 

gathered from multiple labs. We validate the method by showing that visual properties 

(brightness, colour, size) consistently affect empirically measured visuomotor deadtime, as 

predicted by neurophysiology. We then show that endogenous factors (strategic slowing, 

attention) do not affect visuomotor deadtime. Therefore, visuomotor deadtime consistently 

satisfies widespread selective influence assumptions, in contrast to non-decision time parameters 

from model fits. Last, contrasting empirically observed visuomotor deadtime with non-decision 

time estimates from the EZ, DDM and LBA models, we conclude that non-decision time parameter 

from these models is unlikely to consistently reflect visuomotor delays, neither at a group level 

nor for individual differences, in contrast to a widely held assumption. 

 

 

 

Keywords: reaction time, sensorimotor processes, vision, decision model 

 

At any given time, the environment offers a wealth of sensory stimulation and affords 

many potential behavioural responses, but our eyes can only look in one direction and our limbs 

be in one location. Narrowing down behavioural responses from potentially many to effectively 

one per effector (and sometimes none) requires a deliberation process that is referred to as 

decision. The use of sensory information to guide action choices is a core principle of all mobile 

animals and a fundamental drive in evolution. Estimating how quickly and consistently 

information can travel to support this ability is both intrinsically interesting and essential to 

understand the neural underpinning of all sensorimotor decisions, in healthy and diseased brains. 

mailto:Bompasae@cardiff.ac.uk
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Human brains are evolved from simpler brains capable of making basic sensory-motor decisions, 

in terms of selecting a behaviour amongst different options. Indeed, one can argue that 

translating sensory input into behavioural responses is what brains are for (Anderson & Chemero, 

2017). We believe the complexities of human decisions must be evolved and extrapolated from 

the principles of basic sensory-motor behaviour, and therefore it is fruitful to study fast sensory-

guided action as a window into understanding decision.  

This article focuses on the processes that take place when sensory information is used to 

drive behavioural responses in line with internal goals. At the core of this transformation are 

some neuro-computational processes, including an assessment of the sensory information with 

respect to internal goals, and a competition between action plans (i.e. the neuronal activity 

favouring alternative response options) that results in the co-determination of one response (i.e. 

a choice) and one reaction time (if the chosen response is to move) (Schall, 2001). These core 

processes are often referred to as perceptual discrimination and response selection, and form 

part of the broader concept of decision. They start with the arrival of sensory signals and 

culminates with a point-of-no-return triggering one of the available motor plans. Before and after 

these are inevitable delays, while sensory and motor information travel to and from the neuronal 

populations enabling these processes1. This conception superficially aligns with the way response 

times are modelled, i.e. as the sum of decision and non-decision times  (see Kelly et al., 2021; 

Nunez et al., 2019; Servant et al., 2021; Weindel, 2021 for clear, recent articulations of this idea). 

But what biological processes form part of decision, and what exactly constitutes the non-

decision time? These are important questions, as the inferences drawn about decision depend 

inextricably on the assumptions or inferences made about non-decision time (NDT).  

This article hopes to offer a theoretical and empirical perspective on sensorimotor delays 

and how these relate to the way NDT is conceptualised and estimated in the field. In a first 

theoretical section, we describe the principles and main assumptions of decision models, and 

review how this literature has addressed NDT, highlighting the theoretical and empirical 

challenges for simplistic interpretation (Lowe et al., 2019; Schall, 2019). In a second theoretical 

section, we adopt a biological perspective based on recordings from monkey neurons and the 

oculomotor/EMG literature to ask when decisional processes start and end. We then put forward 

a broad definition of decision and non-decision time based on time-windows when behavioural 

responses (action choices and reaction time) are or are not influenced by competitor stimuli, and 

explain why it is a sensible choice to fully capture and explain a range of behaviours across 

multiple speeded sensory-guided action tasks. This definition also allows us to measure non-

decision time non-invasively and without model-fitting. In the empirical part of the article, we 

then measure visuomotor deadtime (the portion of RT when the response is not influenced by 

 
1 There is an active and important debate surrounding the type and location of neurons best matching this 

definition, the outcome of which depends on many aspects, including the task (e.g. motion direction discrimination 

or visual search; Schall, 2019) and the criteria used by researchers (e.g. neurons’ activity predicting well and as 

early as possible the upcoming behavioural response, or an area being necessary to perform the task; Katz et al., 

2016). Although this manuscript makes use of examples from the neurophysiology literature to explain our claims 

and interpret our measures (see section “When Decision Begins and Ends in the Brain”), our message does not rely 

on the outcome of this debate, but only on two generally uncontroversial assumptions: 1) that some neurons 

contribute to these core processes while others do not, and 2) that some amongst the latter feed into or are fed by 

the former to enable sensory-guided behaviour. 



3 

 

competitors) across a range of datasets, delineating its main properties. We then fit some of 

these datasets using the three most common decision model instantiations and contrast model 

NDT parameters to our empirical estimates, in order to test how well the general assumption is 

met that model NDTs reflect sensorimotor delays. 

The paper’s main arguments are structured as follows (see each section for details, 

nuances and references): 

1) Sequential sampling models of decision can fit behavioural data by assuming RT and choice 

are the outcome of an accumulation of evidence (treated as a stochastic unitary process) to 

a threshold, plus some “residual” time. For this exercise to be meaningful and perceived as 

useful by the wider community, the model parameters need to map onto psychological 

constructs and/or biological measures. The typically accepted mapping is that the 

accumulation process embodies the decision, while the residual time corresponds to the sum 

of sensory and motor delays. However, empirical results do not always align with this 

mapping, casting doubt on the interpretability of model parameters more generally.  

2) Although models need to remain simple to be constrainable by behavioural data, from a 

psychological or biological perspective, decision is unlikely to arise from a unitary linear 

process. For example, perceptual discrimination and response selection are both aspects of 

the overall decision process and co-occur in most tasks. The conception of decision as a 

unitary process imposed by simple models can lead to these subprocesses being 

inconsistently labelled as decisional or non-decisional across studies, depending on which 

subprocess dominates in a given task. Moreover, if these subprocesses have different 

dynamics, a model assuming a unitary decision process will fail to accurately capture their 

contribution, with the likely consequence that part of either or both processes may appear 

to take place during non-decision time. This may contribute to selective influence 

assumptions being violated.  

3) To make meaningful predictions, we explore the consequences of releasing the assumptions 

described in (1) and embrace a broader definition of decision, that includes perceptual 

discrimination and response selection. Within each trial, this dynamic process may start as 

soon as some of the neurons involved in either subprocesses respond to the new sensory 

display, and continue until action initiation can no longer be delayed, altered or cancelled. 

We therefore propose that a general definition of decision time should span the entire time 

in between, which equates the remaining non-decisional part of the RT to sensory and motor 

deadtime.  

4) Visuomotor deadtime (VMDT) can be measured using the visual interference method, and 

we show that it behaves according to selective influence assumptions: it is influenced by 

factors manipulating visual and motor speed, and not by task-demands.  

5) We then test whether model NDT includes (though may not be limited to) VMDT, which 

would bring support to the more general mapping assumption that NDT relates to sensory 

and motor delays. This assumption clearly predicts that: i) model NDT should never fall below 

VMDT, ii) that factors influencing VMDT should also affect NDT and iii) that VMDT and NDT 

should correlate across individuals. We show these predictions to be inconsistently met 

across models and datasets.  
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Non-decision Time in Decision Models 
 

In the last decade, the use of simple decision models, such as the drift diffusion model 

(DDM, Ratcliff & Rouder, 1998) or the linear ballistic accumulator (LBA, Brown & Heathcote, 

2008), has grown rapidly. Relatively easy to use, the parameters they provide attractively 

complement traditionally reported measures of mean RT and accuracy or choice, and the 

conceptual framework has helped explain (sometimes counterintuitive) patterns of behaviour 

across many types of task (Hedge et al., 2018). The goal of these models is to estimate a small 

number of parameters with psychological or neurophysiological meaning from the observed RT 

distributions of correct and incorrect responses.  

For the decisional process itself, these parameters include a baseline level before the 

arrival of decision-relevant information, a mean rise rate capturing a sequential evidence-

sampling process, a threshold capturing the amount of evidence sufficient to commit to a 

response, and variability terms. The mathematics of accumulation-to-threshold models with 

these assumptions provides a characteristically skewed (Wald-like) response distribution, similar 

to the response distributions seen across many tasks and species (Carpenter & Williams, 1995; 

Van Zandt & Ratcliff, 1995). 

However, to match measured response distributions, and for biological plausibility, most 

models also include non-decision time (NDT), commonly interpreted as representing sensory and 

motor delays. NDT is typically modelled as a fixed value or a uniform distribution, which allows it 

to be mathematically separable from the Wald distribution meant to reflect the decision stage. 

By extension, the skewed shape of variability in the decision process and the non-skewed NDT 

underlies (alongside accuracy) the way in which differences between conditions, tasks or people 

are attributed to the decisional or non-decisional parameters and, in turn, generates theoretical 

conclusions about cognitive processes or the nature of individual differences. Below we review 

this evidence with a specific attention to conclusions pertaining to NDT. 

 

Evidence about NDT from Modelling  
It is striking that model-fit estimates of NDT vary far more across studies than would be 

expected from variation in relatively basic sensory and motor processes. The estimates vary from 

null (which would be biologically impossible if these were to reflect sensorimotor delays, see for 

example Rohner & Lai, 2021) to above 1000 ms (which suggests the parameter includes more 

than basic sensory and motor delays, see for example Aschenbrenner et al., 2016; Powell et al., 

2019).  

Very few articles directly discuss the nature or properties of NDT. A search on PubMed 

for keywords related to the most common decision models (diffusion model and linear ballistic 

accumulator2) reveals about 4,000 entries since 1963, but only 2% of these articles make use of 

the words non-decision time (under various forms3) in their title or abstract (search completed 

 
2 Decision AND ("diffusion*model*" OR DDM OR "LBA model" OR "linear ballistic accumulator" OR "decision 

model*") 
3 Adding to the above: AND ("non-decision time" OR "non decision time" OR "nondecision time" OR "response 

execution time" OR "sensory time" OR "sensory delay" OR "sensory conduction delay" OR "sensory conduction 

time") 
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on the 22nd of January 2024). Only a few of these studies are designed to specifically manipulate 

sensory and/or motor delays, and assess the effect on model parameters. Manipulation of 

sensory conduction delay (Servant et al., 2016; Weindel, 2021), motor difficulty (Sandry & Ricker, 

2022; Voss et al., 2004; Weindel, 2021) or response modality (Gomez et al., 2015) lead to the 

expected variations in NDT model estimates but, crucially, changes are also observed in the 

decision parameters. Reciprocally, when those same studies also manipulate factors expected to 

selectively modulate decision parameters (speed-accuracy trade-off or task difficulty), changes 

in NDT are also often reported. Overall, results such as these cast doubts on the legitimacy of 

selective influence assumptions (consistent with the inherent permeability between sensory, 

decision and motor stages in the brain, see second part of this article), and/or on the ability of 

model-fit NDT to selectively capture changes in sensorimotor delay.  

In other studies where the focus was not directly on NDT, when changes in NDT are 

reported, they often mimic overall changes in mean RT, irrespective of whether these changes 

are theoretically expected to influence sensorimotor or decisional processes. Although changes 

in NDT are expected to lead to changes in mean RT, the lack of specificity is worrying. Most of 

the time, these changes occur alongside changes in other parameters. For instance, the well 

documented increase in RT with older age is partly accounted for by increased NDT (see Theisen 

et al., 2021 for a meta-analysis), and likewise for many other factors known to slow RT down, 

such as fatigue (Ulrichsen et al., 2020), sleep deprivation (Patanaik et al., 2014), alcohol (van 

Ravenzwaaij et al., 2012), dopaminergic drugs (Huang et al., 2015), perceptual difficulty (Kelly et 

al., 2021), task switching (Imburgio & Orr, 2021), multi-tasking (Durst & Janczyk, 2019), and 

instructions favouring accuracy over speed (Lerche & Voss, 2018). Reciprocally, reductions in 

mean RT typical in Parkinson’s disease (Zhang et al., 2016), following practice (Dutilh et al., 2011), 

dopaminergic antagonist drugs consumption (Wagner et al., 2020), increased spatial 

predictability (Puri et al., 2023) or speed instruction have all been associated with shorter NDT. 

Other conditions showing less systematic changes in reaction time, such as ADHD, also show less 

consistent changes in NDT, some reporting a decrease (see for instance Karalunas et al., 2014), 

an increase (Merkt et al., 2013) or no changes (e.g. Fosco et al., 2017; Karalunas et al., 2018). It 

is unclear to what extent these outcomes would be affected by different modelling assumptions 

and, as a general rule, the number of trials per participant or condition is too low to allow formal 

model comparison. Again, the overall picture appears to indicate severe difficulty in disentangling 

changes in sensorimotor delays from changes in decision processes using models. 

From the list above, the question of whether speed and accuracy instructions affect non-

decision time has attracted particular attention. Speed-accuracy trade-off is a long-standing 

decision concept in cognitive psychology, whereby humans and other intelligent animals 

strategically slow down when faced with increased risk, or perceived risk, of making errors. 

Conceptually one can argue that such strategic adjustments are intrinsically decisional, and in 

decision models they have been traditionally expected to selectively influence the threshold 

(boundary or criterion) that accumulated evidence needs to reach in order to initiate a response. 

In practice though, decision modelling has sometimes found strategic adjustments to affect 

multiple parameters, including NDT (see for example Dutilh et al., 2019; Lerche & Voss, 2018), 

though not consistently so (Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 

2002). This led some authors to conclude that the standard speed-accuracy manipulation in 
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human lacks specificity, but could also indicate that the models do not specifically distinguish the 

mechanisms at play (Evans, 2021). 

 

What do Decision Model Parameters Really Mean?  
It has been tempting for many papers in the expanding use of decision models to explicitly 

or implicitly equate NDT with sensory encoding and motor execution time, boundary with caution 

and drift rate with efficiency of information processing, without explicitly scrutinising these 

concepts. To dig beyond these habitual associations, let us take a brief journey into the 

conceptual mathematics of fitting models to response distributions, stripping away the 

parameter labels we have grown accustomed to. 

Three key aspects of human decisions inspired the use of accumulation models: even for 

the simplest tasks, responses show variance, skew and errors (Carpenter & Williams, 1995; Van 

Zandt & Ratcliff, 1995). Two of the key parameters of an accumulation-based model (gain and 

threshold, or drift rate and boundary) provide these outcomes in distributions that approximate 

the shape of behavioural distributions. These parameters engender a systematic relationship 

between variance, skew and errors, but behavioural response distributions do not exactly fit this 

relationship. Therefore, a parameter (or more) is needed to soak up some of the delay and/or 

variance without affecting (or with a different relationship with) skew and errors. NDT does (part 

of) this job in decision models. When it is fixed, it can only account for a simple offset of the 

distribution, but when it has uniform noise, its value is an indication of the degree to which the 

simulated response distribution needs non-skewed variance to fit the behavioural distribution 

(the value will also be influenced by what other parameters exist to help with this, and with the 

relationship between correct and incorrect responses). 

In this context, functionally interpreting modelling outcomes requires us to ask: which 

parts of the dynamic process linking stimulus to action should we expect to behave like the 

positive skew-producing accumulation-to-threshold, and which parts would not? This may prove 

a complex question, which may not receive the answer intrinsic in the habitual assumptions: i.e. 

that the skew-producing accumulation part captures what we would label as the decision 

process, only the decision process, and the whole decision process, while the residual time 

captures sensory and motor delays (only, and whole).  

For example, motor delays may well be, like most biological processes, noisy with a 

positive skew when responses involve body muscles (button presses, pointing, reaching etc). The 

positive skew is, at least conceptually, inevitable for a variable delay time that cannot go negative. 

Saccades are the only response where motor output time can be safely simplified to a fixed value 

(see Bompas et al., 2017, and Discussion). Parameter recovery estimates using the standard DDM 

showed that, when decision time is much more variable than NDT (e.g. four times), the 

distribution of their convolution hardly depends on the shape of the NDT distribution (Ratcliff, 

2013; Ratcliff & Tuerlinckx, 2002). These conditions may well apply to hard perceptual 

discrimination tasks, especially when the rate of perceptual evidence is slowed down by noise, 

such as for instance in the popular random dot kinetograms (e.g. Gold & Shadlen, 2000). 

However, in many speeded tasks, sensory and motor delays can contribute to a much higher 

proportion of the overall RT, either because the task is easy and leads to short decision times, or 

because the motor response required is longer and more variable. Indeed, previous work showed 
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that ignoring skew in motor output time can lead to systematic ‘inaccuracies’ in decision 
parameter estimates, because they will try to capture the motor skew if it is excluded from the 

NDT parameter(s) (Verdonck & Tuerlinckx, 2016). 

As another example, in many tasks, the biological decision process will involve multiple 

streams of sensory inputs, dynamically honed to task demands and integrated within networks 

of leaky interconnected neurons. This dynamic will produce non-linear profiles that may not be 

well approximated by the linear accumulation central to most simple models. This misalignment 

will likely differ across conditions, giving rise to apparent violations of selective influence 

assumptions. The misalignment will also likely differ across tasks, making the violations 

inconsistent across studies. Below we explore this issue in more detail.  

 

When Decision Begins and Ends in the Brain 

 
Even for the simplest tasks, there is no consensus on which brain processes are 

considered part of decision, and which are considered “non-decisional”. This is partly because 

the brain does not process tasks in discrete stages (e.g. sensory, perceptual, response selection 

and motor). Monkey neurophysiology shows that sensory information starts influencing brain 

areas associated with action early on, often in parallel with areas involved in various types of 

sensory or perceptual processing. Likewise, evidence accumulation will propagate into response 

preparation, and muscle activation can start before a final decision has been reached (Donner et 

al., 2009; Gold & Shadlen, 2000; Kelly et al., 2021; McBride et al., 2012; Servant et al., 2021). 

 There is, however, a hierarchy within sensorimotor pathways, with information reaching 

some areas earlier than others (Schmolesky et al., 1998), and the transition from some neuron 

populations to others being sometimes gated (e. g. Purcell et al., 2012; Purcell et al., 2010). One 

can therefore define stages based on when functionally different processes start to occur (or 

when we first see evidence of them with our measurement techniques), while avoiding any 

implication that earlier stages are complete before later stages start (McClelland, 1979) see also 

(Lowe et al., 2019) for a recent reflection and review on seriality and parallelism during 

visuomotor tasks. If the processes that give rise to RT (sensory processes, perceptual 

discrimination, action selection and motor execution) overlap in time, how can we decompose 

RT into a sum of functionally distinct, non-overlapping, time delays? Importantly, can this 

decomposition rely on principles that generalise across a range of stimuli, tasks and people, and 

generate testable predictions that will be useful to the field?   

Conceptually important time points can be identified between the onset of a stimulus and 

the subsequent response, which have been used in the literature as landmarks for when decision 

may begin and end. Ultimately, any attempt to categorise the dynamics of a highly complex and 

distributed system into distinct stages is bound to be a simplification, the validity of which will 

depend on the task. This section and Figure 1 take the example of a visual search task (e.g. finding 

a target amongst a display of salient geometrical shapes) to illustrate these landmarks, with a 

focus on neuronal recordings for visual and decisional components, and EMG for manual 

execution components (see Discussion for a generalisation to other paradigms). Neuronal 

recordings in awake monkeys performing this sort of tasks have provided a rich literature 

spanning multiple areas (Lowe et al., 2019), prominently the lateral intraparietal cortex (LIP, 
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Chelazzi et al., 1993), the frontal eye fields (FEF, Schall & Hanes, 1993) and the superior colliculus 

(SC, Sparks, 1986). Neurons in these areas are thought to contribute importantly to the decision 

because their activity profile is predictive of the upcoming behavioural response and its reaction 

time, including when the testing conditions remain constant. Although similar activity profiles 

are sometimes reported in neurons across these three areas, there are also specificities and 

differences in the strength and earliness of their predictive power. These differences may be 

largely task-dependent, but also illustrate the spatially, temporally and functionally distributed 

nature of visuomotor decisions (Katz et al., 2016). Figure 1 uses monkey FEF only as an example 

to illustrate our proposal. 

The first key timepoint is the onset of the initial visual volley (denoted TV on Figure 1A, 

red traces based on Figure 3B in Purcell et al., 2010), i.e. the start of the modulation in neuronal 

activity caused by the fastest stimulus-driven activity that feeds through to visually-responsive 

neurons. In oculomotor visual search tasks, this volley is clearly apparent in many neurons in the 

FEF, SC and LIP. Although this modulation often takes the form of an excitation, TV can also 

correspond to a transient inhibition, as has been reported in LIP neurons in response to random 

dot kinetogram onsets (Roitman & Shadlen, 2002). 

The initial activity ramp starting with TV is transient if the stimulus turns out not to be 

chosen for action (dashed red line), but it is maintained and strengthened if it is to drive an action 

(solid red line). This gives rise to a divergence point (denoted TP in Figure 1A, for perceptual 

divergence time, also called target selection time), which constitutes evidence of perceptual 

discrimination and/or response selection (Thompson et al., 2005). 

Closely aligned with this divergence, activity starts ramping up in ‘motor neurons’ in the 
FEF (denoted by TM on the green trace, based on Figure 3C in Purcell et al., 2010). These neurons 

do not show the initial stimulus driven activity and have been proposed to accumulate task-

related activity of their associated visually responsive neurons (Purcell et al., 2010). At some point 

TNR, this build-up activity (or rather its leaky integration by downstream neurons, see Heitz & 

Schall, 2012; Verdonck et al., 2021) meets a threshold of no-return (ΘNR) where it becomes too 

late to abort, change or delay the action. Between this threshold being reached and the eyes 

starting to move (i.e. when the reaction time is recorded) comes a fixed delay of about 10-20 ms 

(we’ll assume 20 ms in the rest of the manuscript, but see Discussion for more details), which 

accounts for the transfer through the saccadic motor network and the activation of extraocular 

muscles.  

For manual responses, the decision is conceptualised in a similar way, with pyramidal 

neurons in layer 5 of motor and premotor cortices envisaged to play similar roles to movement 

neurons illustrated for FEF, under the modulatory influence of frontal areas like the pre-

supplementary motor area (Chevrier et al., 2015; Forstmann et al., 2008). Therefore, although 

the traces on Figure 1A are inspired from the oculomotor literature, they also serve to illustrate 

visuomanual decisions. There are two important differences though. First, the threshold is more 

nuanced and cortical activity sufficient to activate muscles can occur before the decision is 

finished (at TE, before TNR), as if triggered by a lower initiation threshold (ΘE on Figure 1A, as 

suggested in Servant et al. 2021, see also Verdonck et al. 2021 for an alternative account, 

whereby the accumulated decision evidence feeds into a lagged and smoothed motor 

preparation signal). Secondly, the delay between TE and a response being recorded can be quite 

long and variable across trials: it includes a cortico-muscular delay as well as some “motor time” 
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that translates muscle activity into an overt response with large enough amplitude to be detected 

(covering the delay between EMG onset and measured RT on Figure 1B). The cortico-muscular 

delay varies from around 10 ms for a moving limb (Van Acker et al., 2016) to 50 ms for a limb at 

rest (Morrow & Miller, 2003). The motor time is about 50-100 ms (Begovic et al., 2014; Servant 

et al., 2021), largely varying with the action required and the device used to record it. Note that 

while the EMG might be initiated in motor cortex before TNR, it may occur within the muscles 

after TNR, if the delay between TE and TNR is shorter than the cortico-muscular delay, as illustrated 

in Figure 1B. The delay between TE and TNR, as well as the overall length of the EMG, will vary 

with the task (decisional factors, action force and action complexity, as detailed in Servant et al. 

2021). 
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Figure 1. A. Schematic temporal dynamics of neurons supporting visuomotor decisions, with key 

identifiable time points used as indicators for when decision begins and ends. Curves illustrate the 

activity typically recorded within visually responsive (red) and movement-related (green) neurons 

in an area such as FEF when searching for targets (T) in the presence of distractors (D, activity 

profiles inspired by Figure 3 in Purcell et al. 2010). The full red line indicates the activity when a 

visual target is presented within the cell’s receptive field during correct trials. The dashed red line 

shows the cell’s response to a distractor onset in its receptive field. The full green line indicates 

the activity when correctly performing a saccade towards the cell’s movement field, while the 

dashed green line corresponds to the monkey performing a correct saccade away from the cell’s 
movement field. Timepoints TV, TP and TM correspond to different definitions of when decision 

may begin (see text). TV corresponds to the onset of the fastest stimulus-related visual response 

and, in this article, constitutes our working definition for when sensory delay transitions to 

decision time. TP corresponds to the divergence time between responses to target versus 

distractors. TM corresponds to the onset of movement-related neural activity. TNR marks the end 

of decision (i.e. the point of no-return) and occurs when the activity in movement-related neurons 

cross a threshold (ΘNR). Reaction time (RT) follows after an output time which, in the case of 

saccades, is approximately 20 ms. B. In visuomanual decisions, our working definition remains the 

same, but the longer output time now corresponds to cortico-muscular delay (grey arrows) and 

some additional muscle-to-movement delay. Muscle activity (EMG) can be detected prior to RT 

(activity profiles inspired by Servant et al. 2021), with this delay referred to as motor time. In most 

cases (black), EMG onsets are predictive of a subsequent response in the same effector, but 

sometimes partial EMG activity is measured without an overt response (grey), consistent with the 

first muscle signals being triggered at a lower threshold (ΘE) at time TE, that precedes TNR. 

 

When Does Sensory Delay Stop and Decision Begin? 
The dynamically changing information outlined above makes it difficult to consensually 

define a transition time from “sensory delay” to “decision time”. Some researchers align saccadic 

decision with the accumulation of activity in FEF movement neurons (Logan et al., 2015; Purcell 

et al., 2010; Ray et al., 2009) which places the start of decision at TM. These neurons’ activity does 

indeed show many features conceptually associated with decision, as conceived by mathematical 

models of decision: it increases over time and predicts which response will be made (rather than 

where a stimulus appeared or what the correct response ought to be) and whether a response 

will be made in stop-trials during the countermanding task (Middlebrooks et al., 2020). However, 

while these cells show accumulation, we would argue that this process only embodies part of the 

decision process (possibly conceptually mapping onto action selection or preparation) and leaves 

out perceptual discrimination. In visual search tasks, perceptual discrimination is conceptually 

very much part of the decision - a process that informs the system where the target is, or whether 

each stimulus is a target or a distractor. The hallmark of this process should be the transformation 

of an indiscriminate neuronal response (blind to the task demands) into a discriminate (task-

informed) response, and therefore start prior to the divergence point TP, and the accumulation 

of response-related activity (TM). Visuo-movement neurons are best suited to embody this 

transformation, as they show a visual response as well as a pre-response ramping of activity.  

We propose to adopt TV instead as the conceptual start of decision, in those same neurons 

that also display a later divergence point TP, hence allowing decision time to cover this transition 
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from TV to TP. Where distinct neuronal populations present both TV and TP, those showing the 

earliest modulation would be considered more critical for defining the start of decision time. 

Depending on the task, TV may be triggered information that is more or less relevant to the 

instructions. In many tasks, the distinction between task-relevant and irrelevant neural 

information is blurred. For instance, in visual search, target and distractors share some features 

(e.g. both consisting of sudden colour changes at specific times or locations), but differ in other 

features (e.g. the specific colour). When relevant and irrelevant information are dynamically 

integrated within the same neurons and over a short period of time (essentially the first 100 ms), 

irrelevant information will inevitably influence the way relevant information is processed, and 

this influence (or possibility of influence) may continue until the point of no return. The multiple 

routes from these early pathways through different visual processing areas and into decisional 

circuits will be more or less relevant for each task, changing the dynamics of the early evidence 

accumulation depending on task requirements. As a result, any attempt to segregate (either 

based on neural activity or RT) this dynamic honing of activity towards task relevance somewhere 

between TV and Tp appears perilous. From this perspective, the initial visually-driven activity 

always contains task-relevant, task-semi-relevant and distracting information, constituting the 

raw material from which target selection can arise. This dynamic selective/competitive process 

forms part of decision (see Bompas et al. 2020 for a briefer but similar argument). 

The blurriness between task-relevant and task-irrelevant signals aligns with the extensive 

literature on response interference and priming, where ‘task-irrelevant’ stimuli (or stimulus 

features) succeed in modulating response selection in tasks containing, for example, Stroop 

stimuli, flankers, distractors, priming or object affordance. Sensory features that are associated 

with certain actions, or are similar to features currently relevant for action, are assumed to 

automatically elicit response activity that competes with the process of activating the currently 

required response (Boehnke & Munoz, 2008; Bompas et al., 2020; Hedge et al., 2022; McBride et 

al., 2012; Sumner, 2007; van den Wildenberg et al., 2010). Not all visual transients would qualify 

to signal the start of decision though. For instance, masked primes that onset 200 ms prior to a 

target are very unlikely to be confounded with targets and trigger erroneous anticipatory 

answers. In this case, the visual transient they evoke may alter the context in which the upcoming 

decision takes place but, to our eyes, would not mark the decision time onset. In contrast, in the 

visual search task example, distractors that share enough attributes with targets (locations, onset 

times and features) will evoke visual responses in the same neurons that would have responded 

to targets and will occasionally cause errors. We would then argue that the TV evoked by such 

distractors (TVD) would signal the start of decision time, should it happen to precede the TV 

evoked by targets (TVT). Moreover, when a target and a distractor appear in close temporal 

proximity, their corresponding action plans (e.g. looking at the target versus the distractor) will 

interfere with one another. Importantly, a distractor can only interfere with an ongoing target-

related action plan after TVD. Reciprocally, a target can only interfere with an ongoing distractor-

related action plan after TVT. In behavioural data, these interference patterns are directly 

observable and, providing one knows the motor output time, allow these TV to be estimated (see 

section “An Intuitive and Observable Non-decision Time”). Therefore, not only does TV make 

sense conceptually as the start of the decision, it is also measurable from behavioural data.  

Choosing visually-responsive neurons as signalling the start of the decision also allows to 

generalise to tasks or trials where no action is required (such as catch trials in Thompson et al., 
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2005 or in delayed-response tasks). In these tasks, movement neurons may remain silent (hence 

no TM) until another signal arrives that demands a response, while visuomovement neurons will 

still display TV and TP, signalling that perceptual discrimination is taking place. In tasks where no 

perceptual discrimination is necessary (e.g. when orienting gaze to single peripheral targets), TV, 

TM and TP will closely coincide, signalling the start of the response selection which occupies the 

whole decision time.  

Choosing TV to mark the transition from purely sensory to decision time also makes 

predictions that align with selective influence assumptions common in the field. For instance, TM 

and TP occur earlier in an easy visual search task (green target amongst red distractors) compared 

to a hard one (same green target amongst yellower green distractors, Figure 3 in Purcell et al. 

2010). This is consistent with the target selection stage starting earlier when the discriminatory 

features necessary to make this selection are available sooner, but if TM or TP are to represent 

the start of decision, this contradicts the intuition that task difficulty should essentially affect the 

decision process (unless basic stimulus features change, such as contrast). In contrast, TV is 

invariant to task difficulty, in line with the expectation that the extra time needed when the task 

is harder should belong to decision time, rather than non-decision time. TV is also conveniently 

invariant to speed versus accuracy instructions (Heitz & Schall, 2012; Reppert et al., 2018), while 

TP isn’t. Likewise, in the countermanding task, TM in no-stop trials is longer after a stop trial 

compared to after a no-stop trial, in line with longer RT, while TV remains invariant (Pouget et al., 

2011). Using TM as the start of decision means that the extra time incurred by this strategic pro-

active slowing gets allocated to pre-decision time. Using TV instead leads to the more intuitive 

conclusion that decision time is increased. These examples can be usefully considered in the light 

of the modelling work introduced above, where the NDT parameter is inconsistently modulated 

by manipulations that should (intuitively) selectively affect decision time. 

We used neuronal recordings to illustrate these concepts as they often constitute 

theoretical references in the field of decision, but the logic described above generalises to other 

methodologies, including brain imaging in humans. In particular, Kelly et al. (2021) hypothesise 

two separate landmarks indicating “evidence onset” and “evidence accumulation”, which map 
conceptually to TV and TM. They further hypothesise no modulation of evidence onset by strategic 

modulations, aligned with our assumptions (although the choice of stimuli in that field means 

that some of the arguments presented above are less relevant, we come back to this in 

Discussion). Nunez et al. (2019) also provides a detailed account of “visual encoding time” using 

EEG, defined as the visual processing time that precedes the start of decision, itself defined as 

action selection and evidence accumulation, and theoretically aligns with TM and TP, not TV. 

To summarise, we propose that the process of selecting an overt action in response to a 

novel stimulus (or stimulus set, scene etc) starts when the first volley of sensory activity related 

to that stimulus reaches the relevant decision network (defined operationally as cells that will 

also show a goal-related divergent response and/or motor-related accumulation). In turn, pre-

decision time is simply the time before which no decision can start. Should this sensory delay 

vary across trials, then its minimum would provide a conservative estimate for “sensory 

deadtime”. This sensory deadtime also determines when the activity evoked by a stimulus can 

start to compete with other action plans and can be observed empirically, using the visual 

interference on visuo-oculomotor tasks, as we will show in the empirical part of this article. This 

means that this approach can be applied to a large variety of people and tasks.  
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When Does Decision End and Motor Delay Start? 
When an overt response is required by the task, we propose that the end of the decision 

should be defined as the point at which the response becomes inevitable and its main features 

(RT and chosen option) become inalterable. The transition from decision to motor delay would 

then be the latest time after which new information can no longer influence the outcome. Even 

if very late stimuli can sometimes affect the trajectory or dynamics of a movement (McSorley et 

al., 2005), it is generally agreed that there is a time beyond which they can no longer stop the 

action or change it to an alternative – such as a different hand.  

In the oculomotor domain, this transition coincides empirically with the time the initiation 

threshold is reached, hence its name on Figure 1A (no-return threshold, TNR). This is evidenced 

by movement neurons in LIP, FEF or SC reaching an activity level across trials that is invariant with 

response time across trials, as verified when activity profiles are temporally locked onto the 

saccade onset (e.g. Hanes & Schall, 1996; Roitman & Shadlen, 2002; Sparks, 1986). This clockwork 

relationship suggests a mechanistic link between this threshold being reached and motor 

initiation in the brainstem (the turning-off of omnipause neurons and the excitation of burst 

neurons). However, this link appears to involve many distinct cortical and subcortical neuronal 

populations and is still not fully understood (Schall & Pare, 2021). Besides, this threshold level 

can sometimes vary across empirical manipulations, such as speed versus accuracy instructions 

(Heitz & Schall, 2012; Reppert et al., 2018 showing a slightly reduced threshold in the accuracy 

condition, notably in the opposite direction to that predicted by models). This suggests some 

flexibility in the implementation of this link. Despite these uncertainties regarding the 

implementation, the 20 ms delay between TNR and the onset of the eye movement (RTSacc) 

matches our definition of a post-decisional delay (saccadic output time on Figure 1). This delay 

means that a new signal would only be able to interfere with an ongoing action plan if the activity 

it evokes starts at least 20 ms prior to the reaction time that would have occurred in its absence. 

Moreover, any evidence of an interference having taken place would only be visible in 

behavioural data after this delay has occurred.  

As for actions requiring body movements, we define an equivalent “manual output time” 
covering the post-decisional delay between TNR and the recorded time of response (RTManu). 

Estimating this delay is less straightforward than for saccade because the notion of threshold is 

less clearly defined in this modality, as the point of no-return threshold may not align with motor 

initiation threshold. Extensive investigations of motor delays can be found in the previous EMG 

literature (see Servant et al. 2021 for a review of delays across a wide range of tasks and 

manipulations). In particular, the time between EMG onset and RT has been analysed as a proxy 

for motor delays. However, as illustrated in Figure 1, interpreting these findings is not 

straightforward, because muscle activity can occur before decisions are complete. This is 

evidenced in several ways: there can be partial muscle activity that is not followed by an overt 

action (as shown in the grey trace in figure 1B, inspired by Figure 5 in servant et al. 2021), or even 

partial overt actions (e.g. when pressure devices are sensitive enough to detect these, see Figure 

4C in McBride et al. 2012). The fact that these are partial rather than complete shows that the 

point of no return has not yet been reached (by definition). Further, when full responses are 

made, the duration of the EMG preceding RT (called Motor Time in Servant et al. 2021) can reflect 

modulations conceptually associated with the decision process, such as slower rate of 
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accumulation for poorer evidence and speed-accuracy trade-offs (similar to Spieser et al., 2017; 

Steinemann et al., 2018). In line with the selective influence assumptions, this would suggest that 

it includes more than post-decision time. These effects are well accounted for by assuming that 

EMG onset is triggered by a different, lower, threshold, so that the last part of evidence 

accumulation affects the first part of the EMG (Servant et al., 2021). The same ambiguity may 

affect motor delay estimates based on the evoked response potential profiles, averaging across 

trials the EEG signal over motor areas, locked on response time. Using this method, Kelly et al. 

(2021) also reported shorter motor delays of under speed pressure. However, it is possible that 

this measure also reflects this lower threshold, and therefore may not indicate the end of the 

decision. Crucially, this leaves us with no empirical measure for post-decisional delay for manual 

responses (i.e. a manual output time) – neither a distribution (as EMG could have delivered) nor 

a mean across trials (as the ERP measure could have provided). In this article, we describe an 

approach to fill this gap. Although it cannot provide, like EMG onset, a trial by trial measure, it 

provides an estimate of the distribution of manual output time across trials (see Bompas et al., 

2017 and section "Manual Output Time"). When manual output time varies across trials (which 

is very likely), its minimum is what we refer to as motor deadtime. The interference method on 

manual data provides empirical estimates of the sum of visual and motor deadtime, which can 

help us further clarify the factors that modulate these and those that do not. 

 

An Intuitive and Observable Non-decision Time 
 

Above, we have described a conceptual decomposition of RT into a sum of three 

functionally distinct non-overlapping stages, even though most processing is cascaded and 

overlapping. This requires us to allocate the broadest role and longest possible time-window to 

decision, defined to include all the overlapping processes that can be influenced by other stimuli 

in competitive discrimination and action selection. Thus, we reduce sensory and motor delays 

only to their briefest expression, defined by the earliest volleys of potentially relevant (or 

potentially interfering) stimulus information and the latest time of no-return for response 

initiation. The sum of sensory and motor delays defined in this way can be called ‘deadtime’ – 

the portion of RT where competitive interactions are not influencing the response.   

Logically then, this definition of non-decision time is measurable based on the time it 

takes an interfering stimulus to disrupt ongoing action selection, as explained in the next section. 

We can then test assumptions of selective interference – that stimulus features but not task 

demands or strategy should affect ‘non-decision time’. We do this on multiple datasets in the 

next section (returning in following sections to the relationship between this definition of non-

decision and the NDT parameter of decision models). All tasks here are fast visually guided 

decisions in response to clearly visible simple geometrical shape onsets (we have not used RDKs 

or other noisy stimuli where the relevant external information arrives over time).  

 

Observing Non-decision Time Empirically Through Interference 

Visuomotor deadtime can be estimated from visually triggered fast responses where one 

stimulus partially interferes with the initiation of an action to a previous stimulus (Bompas et al., 

2020; Bompas & Sumner, 2011; Buonocore & Hafed, 2023; Reingold & Stampe, 2002). The 
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method typically involves two salient visual onsets separated by some delay, illustrated in Figure 

2 using saccades (the same principles apply to manual tasks). Most often, the first signal is the 

target and the second is the interferer (e.g. a distractor or a stop-signal). Over many trials, the 

onset of the second stimulus creates a dip in the RT distribution to the first stimulus, when 

compared to the distribution in the absence of the interferer (black and grey curves on Figure 

2B). Figure 2B also shows the very rare errors (thin black line), illustrating that the dip is caused 

by saccades being delayed, rather than misdirected. The starting time of this dip (blue dot on 

Figure 2B) is precisely time-locked to the interferer onset (Bompas & Sumner, 2011; Reingold & 

Stampe, 2002).  

 
 

Figure 2. The visual interference method illustrated for an example study (from Bompas & Sumner 

2011). A. The method compares the reaction time distribution to a target (here a peripheral black 

dot) in the absence (top row) and presence (bottom row) of a visual signal, here a task-irrelevant 

peripheral white distractor. B. Example RT distributions obtained from one participant in the 

target alone condition (grey) and when the signal onsets after the target (thick black curve), with 

an SOA of 40 ms and stays on for 50 ms. The thin black curve shows the very rare errors. The blue 

dot indicates the dip onset time, i.e. the time at which the signal-present RT distribution (black) 

starts diverging from the no-signal RT distribution (grey), as a result of the signal onset. The red 

dot indicates the time of maximum distraction ratio, which is not functionally meaningful, but is 

used as a starting point when moving backwards in time to estimate the dip onset time. The 

visuomotor deadtime (T0) is given by the time delay between the signal onset and the dip onset 

(70 ms in this example).  

 

The time delay between the interferer onset and the dip onset (simply referred to as dip 

onset time in this article) indicates the sum of 1) the visual deadtime (minimum visual delay) of 

the interferer and 2) the motor deadtime (minimum output time) for responding to the target. 

As a result, the dip onset time provides an estimate of what the non-decision time would have 

been for this interferer if it had been the target or, when interferers and targets share the same 

visual properties, simply the non-decision time (we will refer to this measure as visuomotor 

deadtime, VMDT or T0).  
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The reason why the onset of the ‘dip’ (the transient interference in the RT distribution) 

reflects the non-decision time for the interferer stimulus is as follows: for a target signal to trigger 

an action, information about it needs to travel from the receptors to the decision network 

(sensory conduction delay), compete and rise to threshold (decision time), and translate into the 

measured movement (motor output time). In contrast, for an interferer to simply delay that 

action, it is sufficient that its signal reaches the decision process just before the end of the 

decision time, i.e. before the decision process has reached the point beyond which it can no 

longer be influenced. This interference can take place only once the visual information from the 

interferer has itself travelled from the eye to the neurons that contribute to the decision (Bompas 

et al., 2020; Salinas & Stanford, 2021). Any delay or change to the response incurred by this 

interferer will only be measurable behaviourally after the output time has passed. Therefore, the 

earliest motor plan that an interferer will be able to disrupt is one whose RT is equal to the sum 

of the minimum sensory delay of the interferer and the motor output time in this task, i.e a proxy 

of its non-decision time. Note that because stimulus properties affect sensory delay, the dip for 

a given interferer measures the NDT for that same stimulus (e.g. when used as a target in a 

decision task). It does not measure the NDT for the current target in the interference task, if that 

differs physically (e.g. in contrast, colour, eccentricity…).  

 

This logic does not need modelling validation, but it may please some readers to know 

that models able to convincingly reproduce the behavioural effects of visual interferers on RT 

distributions produce dips with onset perfectly matching the sum of the sensory delay and output 

time parameters, both noise-free for saccade and with motor noise for manual responses. These 

models were exposed recently and do not constitute the topic of the present article. The 

interested reader may check Bompas et al. (2020) and Bompas et al. (2017) for more details. It is 

sufficient for now to emphasise that the key properties that allow these models to capture the 

interference effects are twofold: 1) they integrate time-varying exogenous and endogenous 

signals and 2) distant nodes mutually inhibit each other. While exogenous signals are conceived 

as automatic and mainly constrained by sensory events (stimulus onset and offset), endogenous 

signals are dependent on the task and instructions.  

 

The saccadic modality is best suited for researchers interested in estimating sensory 

delays and investigating the factors that may affect it. Indeed, changes in VMDT for saccades can 

normally be fully attributed to sensory conduction delay, because saccadic output time shows 

negligible variance (see Discussion). This also means that saccade onset provides, on each trial, a 

nearly perfect read-out of the time each decision is reached in the brain. And once VMDT is 

known (T0), it is straightforward to estimate the mean decision time (mean RT – T0). 

 

The interference method for manual responses typically supports similar conclusions as 

using saccades, but manual motor output time is longer and intrinsically noisy. T0 then indicates 

the shortest non-decision time in this noisy range. Researchers specifically interested in 

investigating manual output time distribution may consider the method summarised in Figure 4, 

using saccadic and manual versions of the same RT task on the same participants. In this article, 

we provide the outcome of this process on a benchmark of 40 participants. 
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In the following section, we introduce the 11 datasets and results from the two 

approaches described above. To anticipate, we find the following conceptually important results:  

- Visuomotor deadtime varies predictably with low-level properties of the signal such as 

brightness, colour and size, in line with neurophysiology. 

- Visuomotor deadtime is not affected by top-down adjustments such as slowing down due 

to different instructions or perceived error risk. 

- Visuomotor deadtime shows robust individual differences across conditions and tasks. 

- In contrast to saccadic output time, output time for button presses is highly variable 

across trials and often positively skewed.  

 

Behavioural Methods 

 

Datasets Description 
To illustrate which factors affect (or do not affect) non-decision time, the methods 

described above are applied to a range of empirical datasets. Datasets are chosen based on 

several criteria, rarely met together. First, they all require fast responses (saccadic or manual) to 

visual targets in the presence and absence of a second signal (e.g. distractor or stop signal). 

Second, they offer a within-subject comparison across at least two conditions leading to changes 

in response speed: different visual properties of the signal, different action modalities or 

different strategies (e.g. in datasets featuring the stop-task, trials following go-trials were 

compared to those following signal-trials, the latter displaying pro-active slowing, i.e. a change in 

strategy). Third, the number of trials per condition is sufficient (at least 200 trials per condition 

for distributional analyses and 100 for estimating the mean RT, typically more). Several such 

datasets were available internally, others were volunteered by other labs or requested from 

authors based on their publications. Two new datasets were collected for the purpose of this 

article. A search on the OSF for additional relevant saccadic datasets was performed using the 

keyword combination (("stop signal task" OR countermanding OR distract*) AND (saccad* OR 

"eye movement*" OR eye-movement*)) OR "saccadic inhibition". It revealed 74 new projects, 

none of which matched our criteria. Datasets for human participants are presented below in 

chronological order, while the monkey dataset is presented first. All received approval from their 

respective research ethics committee. We report how we determined our sample size (for new 

datasets), all data exclusions, all manipulations, and all measures in the study. 

 

The monkey dataset covers a large part of the scientific careers of four rhesus macaques 

initialled A, C, Eu and X, trained to perform fast saccades to peripheral visual onsets, and stop on 

trials featuring a later visual onset (stop-signal). The behavioural and neuronal data from these 

monkeys contributed to many publications including Boucher, Palmeri et al. (2007) for monkeys 

A and C, and Sajad et al. (2019) for monkeys Eu and X, where interested readers can find a full 

description of the monkeys, task and data pre-processing. The total number of saccades made 

available to us were 5309, 4228, 12678 and 23298 for monkeys A, C, Eu and X. The ratio of signal-

present trials was around 40% for A and C, and 50% for Eu and X. The SOAs varied across monkeys 

and covered a large range from 43 to 900 ms, with the number of trials per SOA varying across 

monkeys and recording sessions. Note that our analysis pipeline is largely immune to this variety 
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(because it locks the response time on the onset of the interferer signal and pools across SOA), 

providing that a large enough number of trials are available at early SOAs where the early 

interference is visible, which was clearly the case here. 

 

Boucher et al. 2007a (Boucher, Stuphorn, et al., 2007) had five participants take part in a 

saccadic, manual or bimodal visual stop-task. This dataset contributed to the post-signal slowing 

analyses in both modalities. Participants were asked to respond to peripheral visual onsets (at 

one out of four cardinal locations) with either a fast saccade, a joystick move or both, and 

withhold their response when detecting a central visual onset. Signals were presented on 30% of 

trials, with SOAs 25, 75, 125, 175, 225, or 275 ms. For each participant and each modality 

considered, between 588 and 924 no-signal trials and between 252 and 396 signal-present trials 

were collected. The dataset also featured a selective stopping condition where participants 

needed to rely on the colour of the signal to identify which action modality should be withheld 

and which one was to be executed. This condition was not included in the present analysis, as 

there were not enough trials within each sub-condition to reliably extract dip onset. 

 

Bompas & Sumner (2009a) compared saccadic behaviour to stimuli matched in salience 

but either visible or invisible to the magnocellular pathway (a manipulation known to slow 

sensory transmission time), with 5 participants. Stimuli consisted of achromatic luminance 

increments or chromatic shifts toward purple, amongst luminance noise, and appeared randomly 

on the left or right of fixation. These stimuli were either used as saccade targets (first part of the 

experiment) or as distractors to be ignored (second part), where they were presented opposite 

to a black target. The first and second parts totalled 320 trials and 3240 trials per participant 

respectively. The SOAs used in the second part ranged from -80 to 80 ms in steps of 20 ms, but 

for the purpose of the present article, only positive SOAs were used to extract dip onset time. 

The number of useful trials per participant was then 450 distractor-present trials for each 

stimulus type (pooled across the 5 useful SOAs) and 2430 distractor-absent trials. The proportion 

of distractor-present was 76%. Data and code used in the present article are available here. 

 

Bompas & Sumner (2009b) varied stimulus brightness with 3 participants. In a first part, 

participants performed saccades to light grey peripheral stimuli with 7 levels of luminance 

contrast (8 to 91%) against the darker grey background, appearing randomly left or right of 

fixation. 180 trials were collected per level and participant. In a second part, those stimuli were 

used as distractors and participants were instructed to ignore them while producing saccades to 

a black peripheral target randomly presented to the left or right of fixation. Distractors were 

always presented on the opposite side compared to the target, with SOA from -80 to 80 ms in 

steps of 20 ms and were present on 90% of trials. For the purpose of the present article, only 

positive SOAs were considered in order to extract dip onset. A total of 6300 saccades per observer 

were collected for part 2, including 450 trials for each level (pooled across the 5 useful SOAs) and 

630 no-distractor trials. Data and code used in the present article are available here. 

 

The free choice dataset (unpublished) also varied stimulus brightness. A preliminary 

experiment was first conducted to select contrast levels for the main experiment. The design was 

the same as the first part in Bompas & Sumner (2009b) but with 8 brightness levels. In the main 

https://osf.io/ufja7/?view_only=abbccd30b6c24f8292c3b35783b65d25
https://osf.io/rtnga/?view_only=cae9e376912e44ebade9823fd69de7f5
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experiment, three levels were selected (the lowest, highest and one intermediary level from the 

preliminary experiment), and were presented as targets, either alone (left or right of fixation), or 

in pairs (both left and right) with varying SOAs from 0 to 60 ms in steps of 20 ms, where the 

participant was free to saccade to any of them under a speed instruction. The non-chosen 

stimulus, when appearing after the chosen stimulus, creates a dip in the RT distribution (in the 

same way as a distractor). The low and high brightness levels in the free choice dataset were the 

same as in the Bompas & Sumner (2009b) dataset, while the medium one was picked based on 

each individual’s RT, but was close to level 4 in Bompas & Sumner (2009b) and was therefore 

treated as such in the analyses. A total of 5300 saccades per observer were collected for part 2, 

including 900 one-stimulus trials at each level and 900 two-stimuli trials for each brightness pair. 

The data from the preliminary experiment were not used in the present article, as the latency to 

single trials during the main experiment was available and had more trials. Data and code used 

in the present article are available here. 

 

Buonocore & McIntosh (2012) manipulated distractor size and side (ipsi- or contralateral 

to the target, and therefore to the attended hemifield). Data from three of the four reported 

experiments are included here. Between 5 and 7 participants per experiment were asked to make 

fast saccadic responses to a right peripheral onset, in the presence or absence of a distractor 

stimulus, meant to be ignored. Only one SOA was used per participant, ranging from 69 to 234 

ms, which corresponded to the individual’s median RT during a preliminary phase minus 90 or 
110 ms. Each condition was sampled with between 150 and 400 trials per participant. Experiment 

1 and 2 used only contralateral and ipsilateral distractors respectively, with varying sizes. 

Experiment 3 used both contra and ipsilateral distractors over a smaller range of sizes. 

Experiment 4 was ignored here, as it included only one distractor size and target side was 

random, and therefore did not meet criterion 2 for our analyses (having conditions with different 

mean RT, or otherwise known to affect processing time). 

 

Campbell et al. (2017) had 40 participants take part in a saccadic and manual version of 

the same task, before and after both alcohol and placebo drink conditions, and under instructions 

to either ignore or stop to a visual signal. All the analyses presented here were made after pooling 

across the three sober blocks (pre-placebo, post-placebo and pre-alcohol). This dataset was used 

to assess the effect of instruction on NDT in both modalities and characterise individual 

differences in NDT and manual output time. Participants were instructed to respond to a white 

peripheral onset (randomly left or right of fixation) with either a saccade or a left/right button 

press. On 25% of trials, a red central stimulus appeared after the target, with SOA 50, 100, 167, 

233, 317 or 400 ms. In some blocks participants received the instruction to ignore the signal 

while, in other blocks, their task was to withhold their response. For each combination of action 

modality, instruction, and drink, 216 signal-present trials were collected across the six SOAs, and 

648 no-signal trials. Although participants were instructed not to wait for the signal in the stop 

blocks, the contrast between the two blocks revealed clear pro-active slowing. We used the data 

available on the repository indicated in the original article, which only included RT for correct 

responses. Data and code used in the present article are available here. 

 

https://osf.io/8d9je/?view_only=077cc915e3274c668f608632e178883c
https://osf.io/e5shq/?view_only=a788101082ff4b208ffc40e3b091b94f
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The experiment 2 in Bompas et al. (2017) had 4 participants doing a saccadic and manual 

version of the same task. Participants were instructed to respond to a peripheral black target 

onset randomly presented to the left or right, either with a saccade or a button press, in separate 

blocks, as fast as they could. On 83% of trials, a white distractor would appear at the opposite 

location from the target and participants were instructed to ignore it. Only the no-signal trials 

were considered here and were included in the manual output time analysis (as there wasn’t 
another experimental manipulation affecting RT). The number of trials collected per condition 

were 500. Data and code used in the original and the present articles are available here. 

 

Bompas et al. (2020) instructed 8 participants to saccade to peripheral (randomly left or 

right) visual onsets as fast as they can, and either ignore or stop in response to a central visual 

onset. The instruction to ignore or stop to the signal was given in separate blocks, inducing 

measurable pro-active slowing, i.e. an increase in no-signal RT during stop blocks compared to 

ignore blocks. The signal appeared after the target with SOA 50, 83 and 133 ms, on 40% of trials. 

The 8 participants were collected in 2 separate experiments, with a total of 8640 and 5472 trials 

collected per participant. While experiment 2 was a simple blocked instruction design, 

experiment 1 involved some element of selective stopping: in 5% of trials, a signal of opposite 

polarity was associated with the opposite instruction (for example: in ignore blocks where most 

signals were white and to be ignored, a few signals were black and needed stopping). This 

resulted in a larger difference in mean no-signal RT between the ignore and stop blocks in 

experiment 2 compared to experiment 1. Data and code from the original article are available 

here. 

 

A novel manual shape-discrimination stop-task was deployed to quantify the effect of 

signal brightness on manual non-decision time. This dataset was ran online using the pavlovia 

platform on 45 participants (this sample size was determined by participants availability and was 

aligned with the largest sample size in our archival data). Participants ran 30 blocks in total. On 

odd blocks, participants were asked to press the left or right key to quickly indicate whether a 

centrally presented rectangle was elongated vertically or horizontally (Figure 3). The background 

was grey, and the rectangle was either light grey (dim condition) or white (bright condition), each 

contrast being presented for a total of 600 trials. In even blocks, participants were asked to press 

the left or right key to indicate the side of a peripheral black square (left or right randomly), but 

to withhold their response on detection of a central grey or white rectangle (stop-signal). Dim 

and bright stop-signals were presented with equal probability on half the trials (600 trials each), 

with SOAs 50 or 83. Participants were asked to perform the task as fast as they could and refrain 

from slowing down to avoid making errors. Five participants were excluded for poor compliance 

(low accuracy and infrequent responses showing poor engagement), resulting in 40 participants. 

All data and code are available here. 

 

https://osf.io/vh8wy/?view_only=7a6d1fa67eb542eca3e96251fbafe4f1
https://osf.io/8g9f3/?view_only=83cba9708c5d43fcb25c2e5e6af7d807
https://osf.io/qzywf/?view_only=333db565300c4d75892863bc89bca75d
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Figure 3. Design and stimuli sequence for the novel shape discrimination stop-task. Each line 

represents a trial type, with the horizontal line representing time. 

 

A novel manual letter discrimination and selective stopping dataset was collected to 

quantify the effect of instructions and strategy on manual non-decision time, during a perceptual 

choice task. It was run online using the pavlovia platform on 14 participants (this sample size was 

determined by participants availability and time constraints). In each of 30 blocks, a triplet of 

letters was introduced, including two target letters (e.g. Q and O) and one stop letter (e.g. G, see 

Figure 4). Target letters were to be discriminated, pressing the corresponding letter on the 

keyboard (e.g. “q” and “o” with the left and right index fingers). Stop letters were associated with 

an instruction to withhold the response. Triplets were chosen such that the two target letters 

were clearly separated horizontally on the keyboard, and the stop letter sat in between. Each 

stop letter also played the role of target letter in other blocks. Letters appeared either above or 

below fixation and visual interference was produced by a second letter appearing after the target 

at the alternate vertical location on a subset of trials. The second letter was either the same 

target letter (ignore trials), or the stop letter (stop trials). Ignore and stop trials were presented 

with equal proportion, with 4 repetition per SOA and per block, with SOAs 83, 100, 117 or 133 

ms. There were 24 single target letter trials per block. On odd blocks, participants were asked to 

perform the task as fast as they could and refrain from slowing down to avoid making errors 

(“fast blocks”). On even blocks, the stop letter could also appear alone (12 trials per block) and 

participants were encouraged to remain fast overall but be more cautious to avoid responding 

on these trials (“cautious blocks”). The analyses were therefore conducted on 360 single target 

trials, 240 double letter ignore trials and 240 double letter stop trials in each type of blocks. All 

data and code are available here. 
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Figure 4. Design and stimuli sequence for the novel letter discrimination task. Each line 

represents a trial type, with the horizontal line representing time. 

 

Datasets Analyses 

 

Mean RT estimates across all datasets are performed after pooling across directions and 

excluding trials with RT < 0 or > 700 ms and directional errors, if any. The effect of signal 

properties on mean RT is calculated from specific blocks where those signals were used as 

targets. The effect of instruction is characterised by contrasting mean baseline (no-signal) RT 

across the ignore and stop instructions. Datasets featuring only the stop instruction (Boucher et 

al. 2007a and monkey data) are split into two, according to the nature of the previous trial: trials 

following signal-present trials (expected to induce more pro-active slowing) versus trials 

following signal-absent trials. This leads to smaller adjustments than the ignore versus stop 

comparison, which is why the latter is preferred when available. 

 
Dip onset time estimation follows the same procedure as in Bompas et al. (2020), with 

only minor adjustments to accommodate for differences across datasets. Briefly, RTs for signal-

present trials across all correct directions are locked on signal onset and pooled across all SOAs 

(black line on Figure 2). Histograms are built using bin-sizes of 4 or 3.33 ms for saccadic RT 

(reflecting the refresh rate of the eye-tracker), and 10 ms for manual RT, then smoothed with a 

Gaussian kernel to achieve 1 ms resolution. For comparison, a surrogate signal-absent RT 

distribution is constructed, by submitting signal-absent RTs to the same transformations as the 

signal-present RTs (i.e. locking these onto hypothetical matched signal onsets, binning and 

smoothing). The time of maximum interference (TMax, red dot on Figure 2) corresponds to the 
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peak of the distraction ratio (Nsignal-absent – Nsignal-present) / Nsignal-absent, and dip onset time (T0, blue 

dot on Figure 2) is obtained by going backwards in time from TMax until the distraction ratio falls 

below 2%. Note that TMax is nothing more than an empirical landmark and does not receive any 

interpretation. Dip time extraction is automatic for all saccadic data with high number of trials. 

Conditions leading to weaker interference (eg. manual responses under ignore instructions) or 

relying on a small number of trials (eg. post-signal trials analyses) are visually inspected and 

aberrant estimates are removed manually. Dips are considered suspicious if they are very small 

(hard to distinguish from noise), start too early to be plausible (100 ms for manual data; see 

Bompas et al., 2017 where manual dips derived from many trials per participant always occur 

around 200 ms or later; and see Miller et al., 2009; Pruszynski et al., 2010 for a biological 

rationale), or start too late to be likely related to the interferer (clear outliers from group data). 

A combination of the first and one of the two later cases led to estimates being discarded. These 

cases often coincided, most very small manual dips occurring due to noise at the edge of the 

distribution where fewer trials are available and distributions are noisier. Relatedly, we note that 

the use of smoothing anticipates dip onset time by the size of the time window used (typically 5 

or 7 ms), as explained in previous work. 

 

Manual output time is estimated from the comparison between manual and saccadic RT 

distribution, as described in Figure 5. In addition to a simple fixed delay, three noisy distribution 

profiles are compared: a uniform distribution (characterised by two parameters, a delay and a 

range), a Gaussian distribution (characterised by its mean and standard deviation), and a Gamma 

distribution (characterise by its shape and scale added to a fix delay). The best parameters for 

each profile are those minimizing the Kolmogorov Smirnov distance between the observed and 

predicted baseline manual RT distributions. For the fixed delay, the best value is simply picked 

amongst all the integers from 0 to 300 ms. For the three noisy profiles and each participant, the 

best parameters are selected following a grid search approach amongst 30,000 simulated noise 

distributions. An initial round uses large steps between parameter values in order to comfortably 

cover all participants, and then a finer grid is used to provide better tuning. Because the Gamma 

distribution has 3 free parameters, while the uniform and Gaussian distributions have only 2, we 

use larger step sizes throughout when fitting the gamma distribution, to ensure that a similar 

number of comparisons were performed across the three distributions.  
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Figure 5. Estimating manual output time from RT on an example participant from Campbell et al. 

2017. In detection tasks, manual RTs (red curve) are systematically longer and more variable than 

saccadic RTs (black curve). The manual output time distribution (cyan curve) is the distribution 

which, when convolved with the saccadic RT distribution, provides the best fit to the manual RT 

distribution. In this participant, the best-fitting distribution (cyan dashed area) is obtained using 

a gamma distribution with a shape of 2 (skewness of 1.4) and a scale of 28, added to a fixed delay 

(D) of 76 ms. 

 
Group Statistical Analysis. All reported F and t values relate to repeated measures ANOVA 

and paired t-test respectively, unless stated otherwise. Null findings are further confirmed using 

Bayesian statistics, conducted in JASP (JASP Team, 2020). We use equal prior probabilities for 

each model and 10000 Monte Carlo simulation iterations and report the Bayes Factor for the null 

(BF01), which indicates the ratio of the likelihood of the data under the null hypothesis compared 

to hypothesis that a difference is present. We interpret BF01 of 3 or higher as evidence for the 

null.  

 

 Data and code availability. All analysis code used for the present article and all the data 

collected in Cardiff can be found on the OSF (links are provided above for each dataset and 

gathered here). Datasets collected elsewhere will be made available upon request to the 

corresponding author, pending permission from their owners. 

 

Behavioural Results 
 

In this section, we provide an empirical characterisation of VMDT, its sensitivity and 

immunity to a range of factors, and its suitability for investigating individual differences. Here, 

empirical NDT refers to dip onset time (T0), as obtained from the interference method. Figure 6 

summarises the effect of different factors modulating RT and illustrates which ones do so by 

modulating empirical NDT (all exogenous factors), and which ones do not (all endogenous 

factors). Figure 7 further displays individual data points from each dataset and experiment 

contributing to Figure 6, and illustrates the individual differences in T0, the robustness of which 

is further illustrated on Figure 8.  Figure 9 focuses on manual output time and Figure 10 

provides a summary of all empirical findings. 

 

https://osf.io/gz9uc/?view_only=30c56b2c454949ddbe2b4d56da5f87f6
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Non-Decision Time is Modulated by Exogenous Factors 

 
Low-level visual properties of signals, such as brightness or colour, are obvious ways to 

manipulate exogenous signals. Neuronal recordings in monkeys performing fast visually-

triggered saccades provide evidence that the initial volley of visual activity within areas such as 

the superior colliculus or the frontal eye field is delayed by up to 50 ms when luminance contrast 

is highly reduced (Buonocore et al., 2021; Li & Basso, 2008; Marino et al., 2012; Ziv & Bonneh, 

2021) and by up to 30 ms when contrast is chromatic rather than achromatic (White et al., 2009). 

Figures 6A-B and 7A-B confirms that empirical NDT measured with the interference method 

showed this expected pattern, providing an important validation of our approach.  

 

Decreasing brightness resulted in a significant increase in dip onset time. For saccades 

empirical NDT was on average 65, 73 and 94 ms for high, medium and low brightness (F(2,5)=9.7, 

p=0.005). For button presses empirical NDT increased from 268 to 290 from high to low 

brightness, t(36) = 8.8 , p<10-10). A colour change from signals visible to the magnocellular 

pathway to signals of equal salience that are invisible to this pathway also led to an increase in 

dip onset time (on average 100 vs 109 ms, t(4)=3.3, p=0.03), also consistent with previous 

behavioural literature (Bompas & Sumner, 2008).  

 

Decreasing distractor size led to an increase in dip onset time (on average from 54 to 68 

ms for the largest and smallest stimuli, F(4,36)=6.5, p<0.001). This finding is also expected from 

the neurophysiology literature, because smaller size has lower total luminosity and also maps 

onto higher spatial frequency, known to increase the latency of the first visually-driven spikes in 

superior colliculus (Chen et al., 2018), and to delay saccadic inhibition during reading (Stampe & 

Reingold, 2002). 

 

Figures 6-7 also display, for comparison and when available, the mean RT observed when 

these same stimuli were used as targets rather than interferers. Decreasing brightness 

significantly increased mean saccadic RT (F(1.013,10) =10, p = 0.023 after Greenhouse-Geisser 

correction) and manual RT (t(39) = 11.2, p<10-13), while this effect did not reach significance for 

colour (t(4) = 2.17, p = 0.1). Similar data was not available for the size comparison.  

 

On saccadic data, because sensory and motor delays are expected to show negligible 

noise (see Discussion), the visual interference method allows us also to directly assess the effect 

of visual properties on mean decision time, simply given by mean RT – T0. Reducing brightness 

from medium to low led to a further 20 ms increase in decision time (F(2,10) = 4.3, p = 0.045), in 

addition to the increase in non-decision time. No change in variability was observed (BF01 = 1.35). 

No change in decision time was observed between equally salient chromatic and achromatic 

contrasts (t(4) = 0.05, p > 0.9, Bayesian evidence favouring the null with BF01 = 2.03).   
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Figure 6. Exogenous factors (top) modulated NDT, endogenous factors (bottom) did not.  Data 

points show group averages, pooled across similar experiments, based on 8 saccadic and 3 

manual datasets. Y-axes show average T0 (continuous lines), alongside mean RT (dashed lines) 

when available. T0 is obtained from trials using the signal as interferer. Mean RT for endogenous 

factors is obtained from the same blocks using no-signal trials. Mean RT for exogenous factors is 

obtained from separate blocks where the signal is used as target. Error bars show the standard 

deviation of the group (standard errors were so small that they were hardly visible in the plot for 

most datasets). Stars indicate statistical significance *p < 0.05, **p < 0.01, ***p < 0.001; ns: non-

significant (here all p > 0.2, with BF01 > 2). Datasets included: saccades and brightness (Bompas 

et al. 2009b; free choice dataset); saccades and colour (Bompas et al. 2009a); saccades and size 

(Buonocore & MacIntosh, 2012); manual and brightness (manual shape discrimination stop-task); 
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saccade and strategy (black: Campbell et al. 2017; Bompas et al. 2020; blue: monkey data; 

Boucher et al. 2007a); saccade and attention (Buonocore & MacIntosh, 2012); manual and 

strategy (black: Campbell et al. 2017; blue: Boucher et al. 2007a; red: letter discrimination, T0 

pooled across ignore and stop trials). 

 

 
Figure 7. Individual data from each dataset contributing to Figure 6. The effect of exogenous 

factors on NDT is illustrated by the positively sloped lines connecting the markers in the upper 

panel. The absence of an effect of endogenous factors is illustrated by the flat or inconsistent lines 

connecting the empty and full markers in the lower panels. A. Brightness (black to grey circles and 

diamonds: bright to dim in Bompas et al. 2009b and the free choice data); Magnocellular versus 

koniocellular (grey to magenta circles: achromatic to chromatic in Bompas et al. 2009a); Size 

(black to green: 16 to 1 deg wide stimuli from exp 1 (empty circles), 2 (full circles) and 3 (diamonds) 

in Buonocore & MacIntosh, 2012). B. Brightness (black to grey diamond and circles: bright to dim 

from the manual shape discrimination stop-task dataset, local and online experiments). C. 

Instructions (empty to full grey circles: ignore to stop blocks from Campbell et al. 2017; black 

circles and diamonds: exp 1 and 2 in Bompas et al. 2020); Post-signal slowing (empty to full dark 

blue: post-signal to post-go trials from monkey data; light blue circles and diamonds: unimodal 

and bimodal conditions in Boucher et al. 2007a); Attention (empty to full green circles: ipsilateral 

to contralateral distractors from Buonocore & MacIntosh, 2012). D. Post-signal slowing (empty 

to full grey circles: post-signal to post-go trials from Campbell et al. 2017; light blue circles and 

diamonds: same from unimodal and bimodal conditions from Boucher et al. 2007a); Instructions 
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(empty to full red circles: fast to cautious blocks from the letter discrimination dataset, T0 pooled 

across ignore and stop trials that were interleaved within blocks). 

 

Non-Decision Time is Unaffected by Endogenous Factors 

 
Whether spontaneous (following an error or a perceived increase in task difficulty) or 

explicitly instructed, pro-active slowing is one manifestation of the broader construct of speed-

accuracy trade-off. Neuronal recordings during saccadic RT tasks show that changes to speed-

accuracy settings do not modulate the initial rise of visually-driven neural activity, strongly 

suggesting these do not affect sensory conduction delay (Heitz & Schall, 2012; Reppert et al., 

2018).  

 

In line with this, Figures 6C and 7C show that, for saccades, strategic adjustments 

producing large changes in baseline RT, such as pro-active slowing in stop compared to ignore 

blocks (t(47) = 18, p<10-22) or following signal trials in stop blocks (t(13) = 9, p<10-6), induced no 

changes in saccadic T0 (paired t-test across 4 datasets, on 55 participants including 4 monkeys: 

t(54) = 0.7, p = 0.47, BF01 = 5.9, showing evidence for the null). Particularly striking is that dip 

onset time was no different whether the signal creating the dip was to be ignored (task irrelevant) 

or acted upon (very important to the task, p=0.30, BF01=3.5), despite an average 154 ms change 

in mean RT, confirming the conclusions from Bompas et al. (2020), and extending them to trial-

to-trial strategic pro-active slowing (p=0.64, BF01=3.3).  

 

Figures 6D and 7D generalise these conclusions to button presses across all datasets. In 

the new manual letter discrimination dataset (red series), no difference in T0 was observed 

between fast and cautious blocks (mean pooled T0 across ignore and stop trials of 226 and 227 

ms, t(13) = 0.19, p > 0.8, BF01 > 3.6), despite small but highly consistent increase in RT in no-signal 

trials (277 to 286 ms, t(13)=5.3, p<10-3)4. In this task, ignore and stop trials were interleaved, 

alongside no-signal trials serving as a common baseline (see Figure 4).  No significant differences 

were observed across T0 separately estimated from ignore and stop trials (mean T0 of 244, 241, 

246 and 240 ms from the fast-ignore, fast-stop, cautious-ignore and cautious-stop trials, all 

pairwise comparison showing p-values above 0.12, BF01 > 1.2). Although the evidence against a 

difference between ignore and stop trials was indeterminate, mean numerical differences 

between ignore and stop remained very small (4 ms), and are likely to be an artefact of dips being 

larger in stop compared to ignore trials. Indeed, smaller dips show less clear onsets, which 

translates into later dips because dip onset time estimate works backward in time from TMax (see 

Data Analyses section).   

 

 
4 The absence of within-block feedback reinforcing the instruction to be fast or cautious is likely responsible for the 

small effect we observed overall. Only a minority of participants slowed down by 10 ms or more. Repeating the 

analysis on these participants did not change the outcome, but numbers then become small, weakening our 

conclusions. Future work will need to confirm this finding on data showing larger effect of speed versus caution 

instructions. 
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In the Campbell et al. (2017) data, instruction had no clear effect on manual dip onset 

time (t(15)=1.2, p=0.25, BF01=2.14), contrasting again with a clear change in strategy evidenced 

by the mean RT difference between the ignore and stop manual blocks (314 to 430 ms, p<10-23). 

Although the evidence didn’t clearly support the null (BF01<3), the pattern of results was similar 

to that observed on saccadic RT. However, only 16 out of 40 participants showed dips both in the 

ignore and stop manual blocks. This is mainly down to SOAs in this dataset being too long to be 

optimal for producing manual dips in the ignore instruction where dips are more transient. This 

suggests that the stop task could be a better tool for estimating dip onset time in the manual 

modality.  

 

The Boucher et al. 2007a dataset (light blue series Figure 6D) was also analysed to further 

investigate the effect of strategy on manual dip onset time. This dataset did not use button 

presses but joystick orienting responses, either alone (unimodal blocks) or alongside a saccadic 

response (bimodal blocks), on the same 5 participants. The effect of strategy on dip onset time 

and baseline RT was analysed in a similar way as for the saccadic modality, by contrasting post-

signal and post-go trials. A 2-way RM-ANOVA (unimodal versus bimodal; and post-go versus post-

signal) revealed modest but clear spontaneous slowing following signal-present trials (16 ms 

increase in mean baseline RT, F(1,4) = 29, p = 0.006), but no significant effect on dip onset time 

(9 ms increase, F(1,4) = 0.2, p = 0.67, BF01 = 2.12). These results should be interpreted with caution 

as trial numbers were low in some conditions (signal present on two trials in a row), which may 

have further impacted the reliability of T0 estimates.  

 

Last, as a different type of endogenous modulation, we also report the lack of effect of 

visuo-spatial attention on saccadic empirical NDT (green series on panel C), as shown by 

contrasting the effect of distractors appearing on the attended side of the screen (i.e. ipsilaterally 

to the target, which always appeared on the right) or the unattended side (contralaterally to the 

target). This lack of difference was observed first across subjects (contrasting exp 1 and 2 from 

Buonocore & McIntosh (2012): F(1,8)=0.29, p=0.6, BF01 = 77), and then replicated within-subject 

(exp 3: F(1,6) = 0.005, p = 0.95, BF01 = 3.4), both tests showing evidence for the null. The lack of 

effect of attention on dip onset time contrasts with the clear effect on dip amplitude reported in 

Buonocore & McIntosh (2012) and (Reingold & Stampe, 2003). This suggests that, at least for 

stimuli with high salience, visuo-spatial attention mainly modulates the strength of visual signals, 

but not so much the speed of the fastest signals. This re-emphasises the distinction between the 

latency of the first wave of influential activity (which may be more or less immune to attentional 

modulation) and the on-going processing thereafter, which is almost certainly under attentional 

modulation in most tasks.  

 

Non-Decision Time Shows Robust Individual Differences 
 

Noticeable in Figure 7 are large individual differences. Do these reflect noise in our 

estimates, or are these repeatable individual traits? The manual shape discrimination stop-task, 

the saccadic condition from Campbell et al. (2017), and the letter discrimination datasets all 

involved one major empirical manipulation and at least 14 participants, and show clear dips, 

enough for a first assessment of the robustness of individual differences in dip onset time. Figure 
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8 shows that, in all three datasets, dip onset times were correlated between the fast (x-axis) and 

slow (y-axis) conditions across participants. Figure 8A shows the correlation between the onset 

time of dips produced by interleaved dim and bright signals (r(37) = 0.78, p < 10-7). Figure 8B 

shows the correlations between the T0 measured from separate blocks under the instruction to 

ignore or stop in signal trials (r(34) = 0.48, p = 0.0042). Figure 8C shows high correlations of dip 

onset time across three comparisons: fast versus cautious blocks (r(14) = 0.80), ignore versus stop 

in fast blocks (r(13) = 0.94), and ignore versus stop in cautious blocks (r(14) = 0.93). One can also 

note the upward bias on 8A, reflecting the sensitivity of dip onset time to exogenous factor. No 

such bias was observed in 8B or C, again reflecting the immunity of dip onset time to endogenous 

factors. While the correlation in the saccadic data can only be driven by sensory delay, in the 

manual case it may be driven both by sensory delay and output time. Because the two manual 

datasets presented here were collected online, the correlation may also be partly driven by 

hardware differences. 

 

 
Figure 8. Cross-individual correlations between the T0 measured in two conditions. The red line is 

the identity line. Coloured lines are linear regression lines. A. Data from the manual shape 

discrimination stop-task for the 41 individuals showing reliable dips in the dim and bright 

conditions, pooling across the online (circles) and local (diamonds) experiments. B. Data from 

Campbell et al. 2017 saccadic blocks for the 34 individuals showing reliable dips in both the stop 

and ignore instructions. C. Data from the letter discrimination dataset for all 14 participants. 

Circles show the T0 estimated after pooling ignore and stop trials, for the fast (x-axis) vs cautious 

(y-axis) blocks, with a blue regression line. Squares show the T0 from the ignore (x-axis) versus 

stop (y-axis) trials from fast blocks, with a green regression line. Diamonds show the same from 

cautious blocks, with a magenta regression line.  

 

Manual Output Time is Noisy and Often Skewed 
  

In this section, we aim to describe the main defining features of manual output time 

distribution and their variations across participants (Figure 9). For this, we apply the same logic 

and methods as in Bompas et al. (2017) on a larger sample of 40 participants from Campbell et 

al. (2017), focusing on simple choice reaction times from button presses. This approach relies on 

important simplifying assumptions, and therefore can only provide an approximation of manual 
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output time distribution (see Data Analysis and Discussion for detailed exposure of the logic and 

limitations). Despite these limitations, we believe the main conclusions from this exercise are 

clear enough to be presented.  

 

 
Figure 9. Properties of button press output time distribution, estimated from the distribution that 

should be convolved with saccadic RT to minimise its distance to the manual RT, as measured with 

the Kolmogorov Smirnov (KS) statistics. The 44 data points each represent one participant, across 

two datasets with fast manual and saccadic responses to peripheral targets without distractors 

(circles: ignore condition in Campbell et al. (2017); diamonds: exp 3 in Bompas et al. (2017)). RT 

data correspond to fast manual and saccadic responses to peripheral targets without distractors. 

A. KS statistics for the best fitting parameters for each type of motor noise considered, from the 

worst performing (fixed value) to the best (gamma distribution). The insert directly compares the 

most commonly used noisy distribution (uniform) to the best performing (gamma). Points show 

the KS ratio, with values higher than 1 showing better performance for gamma. B. Mean, 

standard deviation and skewness of the best-fitting Gamma distributions across participants. C. 

Best fitting individual values for each of the three parameters of the gamma distribution. 

 

Figure 9A illustrates the success of each noise distribution hypotheses at reducing the 

distance between the saccadic and manual RT distributions, i.e. at approximating manual output 

time distribution. Unsurprisingly, the fixed value clearly underperformed compared to the noisy 

distributions, unable to capture the extra variance in manual RT data. The uniform distribution 

came second last, losing both to the Gaussian and gamma distributions (t(43) = 3.4, p = 0.001; 

t(43) = 5.3, p<10-5). The gamma distribution did best overall, but only marginally so compared to 

the Gaussian distribution (t(43) = 1.8, p = 0.077). The insert further shows that the better 



32 

 

performance of the gamma distribution compared to uniform was driven by about one third of 

the participants (KS ratios above 1.5), and this preference was correlated with the skewness of 

the best-fitting gamma distribution (r = 0.54, p < 10-3).  

 

Figure 9B illustrates the main properties of the best fitting gamma distribution, including 

the skewness. Despite the large differences across participants, we note that none of the best 

fitting distributions across all three hypotheses led to a SD close to zero (as assumed when using 

a fixed value for non-decision time), nor to a skewness close to zero (as assumed when using a 

Gaussian or uniform distribution). We therefore conclude that inter-trial variability and skewness 

are likely features of non-decision time and should constitute desirable parameters for 

researchers interested in accurately modelling non-decision time. We come back to this 

conclusion in the Discussion. Figure 9C further displays the individual parameters for the best 

fitting gamma distribution. Exponential distributions (as considered in Ratcliff, 2013) are a special 

case of gamma distribution with a shape of 1. This corresponded to 9 participants out of 44.  

 

The presence of noise in manual output time means that the relationship between dip 

onset time and non-decision time is less straightforward for manual compared to saccadic 

responses. Indeed, manual non-decision time is inherently noisy, but dip onset time is a single 

value by construction. However, when sufficient trials are available, the expectation is that 

manual dip onset times should tend towards the minimum value for non-decision time (Bompas 

et al., 2017). In datasets featuring both manual and saccadic data, this minimum value can be 

estimated independently for each participant by taking the sum of the sensory conduction delay 

(saccadic T0 – 20 ms) and the minimum value of the manual output time (Delay parameter 

displayed on Figure 8C). The Campbell et al. 2017 data partly met this expectation: observed 

manual dip onset times were on average equal to the predicted minimum non-decision time 

(both were 170 ms), not significantly different from each other (BF01 = 5.6). However, the success 

of this prediction is mitigated by the lack of correlation between observed and predicted values 

across individuals, which could be due to individual manual dip onset times not being reliable 

enough for this data. 

  

Our estimates of manual output time pertain to button presses, by far the most popular 

type of manual response. However, by definition, the main properties of motor output time will 

depend on response modality. The pathways relied upon by button presses, screen touches, 

joystick or mouse movement, finger pointing, or hand reaching may overlap (from the motor 

cortex to arm and finger muscles) but the RT may include different elements of response 

execution, depending on how RT is defined. Future research will be needed to validate our 

approach and generalise it to other types of body responses. 

 

Conclusions from Behavioural Analyses 

 
 Figure 10 summarises our assumptions and empirical findings. Note that exact numbers 

are of little importance here as they will depend on the data used. The key message is that the 
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approach described here allows us to estimate the contribution to RT of each stage of the 

decision process and its susceptibility (or immunity) to a range of factors. 

 

 
 

Figure 10. Summary of main assumptions (black font) and conclusions (blue font) from our 

empirical section. Top. Neuronal information flows through early visual areas (LGN: Lateral 

Geniculate Nucleus; V1: primary visual cortex) to discrimination and selection network (e.g. FEF: 

Frontal Eye Field; SC: Superior Colliculus; M1: primary motor cortex) and to muscles. Middle. 

Mean delays incurred by each stage and across-trials variability. Values indicate the rounded 

medians across all available estimates (all conditions and participants) and superscript indicating 

the 5 and 95 percentiles. Bottom. Effects of specific factors on the time incurred within each stage 

and its variability across trials. Here, pro-active slowing refers both to instructions and 

spontaneous slowing. Values indicate the mean difference across the conditions, when significant 

(e.g. reducing contrast increases conduction time by 21 ms across relevant datasets, and decision 

time by a further 22 ms). ∅ symbols indicate non-significant modulations, with Bayesian evidence 

favouring an absence of effect. Empty cells indicate aspects that were not tested here. 

 

Comparison to NDT Fitted by Decision Models 

 

Rationale 

Now that we have established that the visual interference method produces estimates 

that are both reliable and match the expected properties of sensory and motor delays, we move 

on to a comparison with NDT extracted from decision models, using the three most popular 

simple model instantiations: the EZ drift diffusion model (Wagenmakers et al., 2007), the DDM 

(Ratcliff & Rouder, 1998) and the LBA (Brown & Heathcote, 2008). NDT model estimates are 

commonly interpreted as including delays incurred by sensory and motor processes. This implies 

that the NDT parameter at least includes VMDT, which makes 3 clear predictions: 

1) model NDT should be at least as long as visuomotor deadtime (T0),  

2) NDT should be positively correlated with T0 across participants,  
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3) factors that modulate T0 should also modulate model NDT 

In the eventuality that any of these predictions are not met, this would argue against the 

hypothesis that model NDT specifically reflect sensorimotor delays. If NDT also includes 

processes with larger variance than sensorimotor delays (such as perceptual processing, for 

example), then we might expect predictions 2 and 3 above to be diluted, but not absent, and the 

degree of dilution should approximately correspond to the degree to which NDT exceeds VMDT 

(i.e. where NDT and VMDT are not too dissimilar in value, we expect 2 and 3 to clearly hold).  

To test these predictions, datasets need to meet two conditions: a) the interfering signal 

used to estimate T0 has the same visual properties as the target used in the modelled data 

(necessary to test predictions 1 and 2), b) there is an experimental manipulation that affects 

VMDT (necessary to test prediction 3). We first select those datasets that meet both conditions: 

the novel shape discrimination and stop task (A in Table 1, Figure 11A and 12A), manipulating 

visual contrast, and the three saccadic datasets also manipulating visual properties (group B). We 

also present datasets where condition (a) is met but (b) is not (group C), as well as other datasets 

where neither are met (group D and E).  

Datasets where condition (b) is not met (C-E) are those selectively manipulating task 

demands, and therefore where no modulations of T0 were observed. These are presented here 

to assess the consistency (across datasets and models) with which NDT modulations are observed 

nevertheless. Previous observations of task demands affecting model NDT have been labelled as 

violations of selective influence assumptions. However, the common claim that model NDT 

includes sensory and motor delays leaves the possibility for model NDT to also include other 

processes, which we argued in the introduction should conceptually be part of decision time, but 

may not conform to the dynamics of linear accumulation to threshold. This narrative for 

interpreting the model NDT parameter is therefore compatible with a fourth hypothesis:  

4) factors that modulate RT but not T0 may affect model NDT 

While predictions 1-3 are core predictions of the claim that model NDT includes VMDT, this 4th 

item isn’t, but it could inform future discussions on the nature of model NDT. 

 

We first consider NDT estimates provided by a blind model implementations of each of 

the three models, i.e. pretending we do not know the nature of the manipulation. This approach 

may be similar to the one faced by the 17 research teams invited by Dutilh et al. (2019) to use 

their favourite modelling approach to blindly identify the task manipulations modulating 

participants’ performance across 14 datasets. In their case, none of these manipulations 

intended to induce a change in sensory delay or output time (although changes in NDT were still 

diagnosed in 37% of the inferences, which echoes the overall message exposed in the first section 

of the present article).  

We then consider an “informed” approach, which allows parameters to be either free or 

fixed across conditions in a way that aligns with selective influence assumptions and is informed 

by data analysis. In this variant, NDT is allowed to vary with visual features of the signal but not 

task demands. Reciprocally, boundary separation and baseline variability vary with task demands 

but not with signal properties. Drift rate is allowed to vary when a legitimate case can be made 

for it. For instance, drift rate is allowed to vary with stimulus visual properties in the gaze 

orienting datasets because we observed that increasing contrast led to a reduction in decision 

time (see behavioural results section). However, drift rate is kept fixed across contrasts in the 
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shape discrimination dataset, because there was no evidence that the task was harder in the dim 

compared to the bright condition (same accuracy and SD of RT). Likewise, manipulations inducing 

pro-active slowing are not hypothesised to lead to changes in drift rate, as the perceptual 

evidence remains the same. The informed variant also allows NDT to vary across trials in all 

manual datasets, but not in saccadic datasets, in line with the expectations outlined in this article. 

We aim to check whether constraining model parameters in such ways improves the models’ 
ability to deliver an interpretable NDT parameter, i.e. to better meet predictions 1 and 2. We 

appreciate the diversity in ways models have been constrained or informed in previous literature 

and welcome further modelling attempts using different criteria (all code and data relevant to 

this section is available here). 

 

Modelling Methods 
Model fits are performed using freely available code and default, non-hierarchical, fitting 

approaches. Table 1 summarises the parameters for each model variant and datasets. We 

assume readers are familiar with the principles underlying simple decision models and will 

therefore only provide a very brief overview here. The central assumption common to these 

models is that decision time is the time taken by a decision variable to progress from a baseline 

level and reach a threshold. This decision time is added to a non-decision time to form the 

reaction time. Decision time is determined by the distance between baseline and threshold 

(boundary separation), and by a drift (or rise) rate which can vary across trials. The LBA possesses 

only one threshold, towards which all response options (e.g. correct and incorrect) race until one 

wins. In contrast, the DDM envisages decision as a journey between two boundaries, each coding 

for alternative response options. Both models assume across-trial (Gaussian) variability in drift 

rate, but they differ in their assumptions regarding the other sources of variability. The DDM 

assumes Gaussian within-trial variability in the drift, while LBA assumes a linear rise to threshold. 

The LBA assumes (uniform) trial-to-trial variability in starting point, in contrast to the standard 

version of the DDM used here.  

 

Table 1. Parameter descriptions and treatment for each model and groups of datasets A-E. Free 

parameters are allowed to vary across participants and conditions. Some parameters are only 

allowed to vary across participants but not condition (Fp). The remaining parameters are scaling 

parameters or ignored options (grey fonts). Datasets are grouped in 5 categories, according to 

the manipulation (visual properties versus task demands) and the action modality (manual versus 

saccades). Groups A-E contain the following datasets: A. Novel manual shape discrimination and 

stop task, where fast and slow conditions correspond to bright and dim stimuli. B. Bompas & 

Sumner 2009, Free Choice and Bompas & Sumner 2008 datasets, where fast conditions 

correspond to brightest and magnocellular stimuli, and slow conditions to the dimmest and 

koniocellular stimuli. C. Novel manual letter discrimination task, where the fast and slow 

conditions correspond to fast and cautious blocks. D. Saccadic trials from Campbell et al. 2017, 

Boucher et al. 2007, Bompas et al. 2020 and Monkeys, where fast conditions correspond to ignore 

blocks and post-go trials, and slow conditions to stop blocks and post-signal trials. E. Manual trials 

from Campbell et al. 2017 and Boucher et al. 2007, where fast conditions correspond to ignore 

blocks and post-go trials, and slow conditions to stop blocks and post-signal trials. 

EZ parameters  Blind 

https://osf.io/qzywf/?view_only=333db565300c4d75892863bc89bca75d
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Non-decision time Ter Free  

Drift rate v Free  

Boundary separation a Free  

Within-trial variability s 0.1  

DDM parameters  Blind Informed 

Non-decision time Ter Free Free (A, B) or Fp (C, E) 

Drift rate v Free Free (B) or Fp (A, C, E) 

Boundary separation / Threshold a Free Fp 

Across trial variability in T0 sTer 0 Fp (A, C, E) or 0 (B, D) 

Across-trial variability in v sv 0 0 

Within-trial variability s 0.1 0.1 

Response bias  z 0 0 

Across-trial variability in z  sz 0 0 

LBA parameters  Blind Informed 

Non-decision time Ter Free Free (A, B) or Fp (C, E) 

Drift rate toward correct response v Free Free (B) or Fp (A, C, E) 

Across-trial variability in v  sv Free or 1 (B, D, E) Fp (A, C) or 1 (B, D, E) 

Starting point variability A Free Fp 

Boundary separation b Free Fp 

Drift rate toward incorrect response v0 1-v (A, C) or NA (B, D, E) 1-v (A, C) or NA (B, D, E) 

 

Parameters for the EZ diffusion model are calculated using custom Matlab code based on 

the R code from Wagenmakers et al. (2007). The EZ diffusion model takes mean accuracy, mean 

RT and the variance of RT in each condition to determine the parameters. Where accuracy is at 

100%, an edge correction was applied consistent with Wagenmakers et al. (2007). These 

parameters are also used as initial parameters for the DDM, as part of the default pipeline using 

the DMAT toolbox in Matlab (Vandekerckhove & Tuerlinckx, 2008). Data are accuracy coded, so 

that the upper and lower boundaries in the DDM correspond to correct and incorrect responses 

respectively. Data are fitted by minimising a negative multinomial log-likelihood function, 

calculated on percentiles of the correct and incorrect RT distribution [10,30,50,70,90,100]). In 

the blind variant, we fix all the across-trial variability parameters to 0, following recent expert 

recommendations to do so to avoid compromising estimates of the main parameters (Boehm, 

2018; Lerche & Voss, 2016), and because researchers typically do not have hypotheses about 

these variability parameters. In the informed variant, we set sTer (the variability in NDT) free 

across participants in manual datasets, since non-zero trial-to-trial variability in output time is 

biologically highly plausible. When this is included, we use (Ter – sTer/2) for comparison with 

observed T0, reflecting the lower bound of the uniform distribution, in line with our theoretical 

expectations and analyses of manual dip onset time on the Campbell et al. (2017) data. 

The LBA model is fitted via the LBA MATLAB toolbox5. All data is accuracy coded. All trials 

outside the range of [70 400] for saccades and [150 700] for manual are excluded. For all datasets 

with enough errors (groups A and C), we use independent accumulators for correct and incorrect 

responses and, as a scaling parameter, we use the standard approach of constraining the sum of 

correct and erroneous drift rates to 1, and only one across-trial drift rate variability (sv) for correct 

 
5 https://github.com/smfleming/LBA 

https://github.com/smfleming/LBA
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and incorrect answers. In datasets that did not include enough errors (groups B, D and E), errors 

were excluded and only the parameters associated with the correct response were estimated (sv 

was then used as a scaling parameter). Because LBA has uniform variability in starting point, we 

use (b + A/2) in our analyses when referring to threshold. The informed variant of the LBA does 

not allow across trial variability in NDT, as this option is not typically implemented for LBA (but 

see Heathcote & Hayes, 2012 and our Discussion). Each participant’s data are fitted 
independently, from 50 random combinations of starting parameters, and minimising the sum of 

the negative log likelihood of each observed RT against the model (following the default pipeline 

in the toolbox; note that we observe excellent parameters convergence across the 50 iterations).  

 

Modelling Results 
Figures 11 and 12 summarise the results of this endeavour, alongside Tables 2 and 3. 

Figure 11 shows, for each group of datasets, the observed T0 from the interference method 

alongside NDT estimates from the best fit for each model variant. Figure 12 shows each model 

NDT against observed T0 across participants, for each dataset using the same stimuli as interferer 

and as target for the data being modelled (condition a). Table 2 presents the statistical outcome 

for the core predictions 1-3. Table 3 presents the statistical outcome for hypothesis 4. 
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Figure 11. Observed T0 and NDT estimates from five models. The left and right halves of each 

violin show the data for the fast (dark grey shading and data points) and slow (light grey) 

conditions, across five categories of datasets (panels A-E, same as Table 1). Full and empty circles 

central to each violin indicate the median value for each condition. Panels A and B show datasets 

where the visual properties of signals were manipulated, and we therefore predict (and observe) 

an increase in T0 from fast to slow condition. Panels C-E show datasets where the visual properties 

of signals were not modulated, and we therefore predict (and observe) no increase in T0 from fast 

to slow conditions. The left violin on each panel (T0) indicates individual observed dip onset times 

from the visual interference method. The blue continuous and dashed lines show the group 
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median T0 for the fast and slow conditions, where directly comparable to the NDT estimates, i.e. 

when obtained from the same stimuli (panels A-C). T0 on panels D and E are also provided for 

completion but correspond to different stimuli so are only indicative. The five following violins on 

each panel represent the NDT estimates from each model’s best fit.  

 
Figure 12. NDT model estimates against observed T0, for five models across three categories of 

datasets where this direct comparison is possible (panels A-C from Table 1). Markers’ colour 
indicate the conditions, from fastest (black) to slowest (white and purple). The red line shows the 

unity. Clouds of points centred on or above the red line align with prediction 1, that model NDT 

should be equal or longer than T0 (EZ and DDM for A and C), while those centred below violate it 

(LBA). Clouds of points oriented diagonally align with prediction 2, that NDT and T0 should 

correlate across participants. 

 

Table 2. Mean observed T0 and model NDT from 5 models and for dataset groups A, B and C (same 

as Table 1), on which core predictions 1-3 are tested. Mean values are given in ms. BF (NDT ≥ T0) 

shows the Bayes Factor against the hypothesis that NDT < T0. R2 (NDT, T0) show the % shared 

variance between NDT and T0, with – indicating negative correlations. Green and orange shading 

highlights tests in favour or against each prediction. Grey shading indicates inconclusive tests. For 

group C, the informed model doesn’t allow NDT to vary with condition (fast versus cautious), 

which is why a single value is presented. 

 
DS  T0 EZ DDMBlind DDMInf LBABlind LBAInf 

A Mean Bright|Dim 268|290 310|325 276|291 313|329 88|119 85|101 

BF (NDT ≥ T0) Bright|Dim  75|57 13|9 73|62 < 10-10 < 10-11 

R2 (NDT,T0)  13|15 12|7 1|1 0|1 0|4 

BF (Bright < Dim) 108 108 6.4 1012 1.3 1010 

B Mean Bright|Dim 81|101 121|143 48|53 22|27 73|48 40|56 

BF (NDT ≥ T0) Bright|Dim  28|31 0.26|0.12 < 10-4 2.7|0.24 0.37|0.35 

R2 (NDT,T0)  54|43 2|0 46|0 56|11 30|2 

BF (Bright < Dim) 22 18 0.38 0.44 0.15 2.7 
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C Mean Fast|Cautious 226|227 369|365 311|290 337 218|115 205 

BF (NDT ≥ T0) Fast|Cautious  235|271 45|11 48|45 3.1|0.06 2.2|2.1 

R2 (NDT,T0)  74|81 16|0 3|1 21-|16- 25-|22- 

 

Table 3. Mean observed T0 and model NDT for datasets C to E (same labels as Table 1) on which 

Hypothesis 4 is tested. Bayes Factor indicate the evidence for an effect of task demands on T0 and 

NDT estimates. Green and orange shading highlights tests in favour or against a modulation of 

NDT by task demands.  

Dataset  T0 EZ DDMBlind LBABlind 

C Mean Fast|Cautious 226|227 369|365 311|290 218|115 

BF (Fast < Cautious) 0.31 0.13 0.15 0.09 

D Mean Fast|Slow 99|95 93|113 67|44 37|55 

BF (Fast < Slow) 0.073 115 0.04 6.9 

E Mean Fast|Slow 188|169 217|239 177|153 93|121 

BF (Fast < Slow) 0.11 > 103 0.06 > 106 

 

 

Model NDT Systematically Longer than Visuomotor Deadtime? 
 Prediction 1 was assessed on groups A, B and C (Table 2, BF (NDT ≥ T0)). It was met 

inconsistently across datasets and models. NDT values from the EZ model fell consistently above 

T0, on average by 40 ms (groups A and B) and 130 ms (group C). DDM (blind and informed variants 

alike) met this prediction on both manual datasets (A and C) but not the saccadic ones (group B). 

LBA consistently failed to meet this prediction, across all three groups of datasets, and 

irrespective of whether the model was blind or informed. Where the predictions were not met 

(all LBA fits and DDM fits on saccadic data), many values were unrealistically low. Considering the 

first signs of visual activity in the brain occur at the very least some 20 ms after the visual event, 

that saccadic output time is 20 ms and the delay parameter from the manual output time 

distribution in our analyses never fell below 20 ms, any estimates under 40 ms for saccades and 

60 ms for button presses are likely impossible neurophysiologically. In these many instances, the 

NDT fits not only fail to meet our prediction relative to T0, they are generally incompatible with 

any definition associating NDT to visual and motor delays. In the case of DDM fits on saccadic 

data, the poor performance may well relate to the negligeable error rate in this data. In contrast, 

both variants of the DDM provide plausible NDT estimates on the manual discrimination data, 

where error rates are around 10%. This explanation doesn’t apply to LBA, which was adjusted to 

fit only the correct responses when error rates were low, and failed on all datasets irrespective 

of error rate anyway. 

 

Model NDT Correlated with Visuomotor Deadtime Across Participants? 
 Prediction 2 was assessed on groups A, B and C (Table 2, R2 (NDT,T0)), each totalling 40, 

11 and 14 participants. Prediction 2 was also met inconsistently across models and datasets. 

Again, correlations between NDT values and T0 were maximal for the EZ model, leading to clearly 

significant correlations for groups B and C, though only weak ones for group A. The prediction 

was not clearly met by DDM on any dataset, in the blind and informed variants alike. For LBA, the 

prediction was only met on saccadic data (group B), not the manual data (A and C), irrespective 

of variants. Although individual T0 estimates are subject to noise, this is unlikely to explain alone 
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the lack of correlation between T0 and DDM / LBA NDT parameters. First, T0 estimates were 

shown to be robust individual traits (see Figure 8 and corresponding text). Second, T0 estimates 

were systematically correlated with mean RT from the same data to which the models were fitted 

(dataset A: R=0.53/0.49 at dim/bright contrast; dataset B: R=0.65/0.81 at dim/bright contrasts, 

dataset C: R=0.82/0.75 for fast/cautious blocks; all significant). This correlation was leveraged 

successfully by EZ, but not DDM and LBA. 

 

Model NDT Affected by Visual Properties? 

Prediction 3 was tested on groups A and B only. NDT from the EZ model showed excellent 

sensitivity to visual properties (comparable to observed T0), while the blind DDM showed only 

modest sensitivity in one dataset and none in the other, and the blind LBA showed consistently 

no sensitivity. Although for dataset A, the informed model led to clearer results for both DDM 

and LBA, this is actually a trivial outcome. Indeed, for dataset A, NDT was the only parameter 

allowed to vary with contrast in the informed variant. Although the improved sensitivity of the 

NDT parameter to contrast is therefore reassuring, it is highly expected, and mainly 

uninformative unless accompanied by increased ability to meet predictions 1 and 2, which was 

clearly not the case.  

 

Model NDT Affected by Task Demands? 
 Hypothesis 4 was tested on groups C, D and E (all showing no effect of task demands on 

T0), with group C particularly relevant because this prediction can be analysed in the context of 

predictions 1 and 2. It is tested on the blind variants only (as the informed variant fixes NDT across 

conditions). The conclusion differed across datasets and models. Dataset C (letter discrimination) 

did not show an effect of instruction on NDT. Although this outcome was consistently observed 

across all models, it was most convincing when NDT values were meaningful, i.e. clearly higher 

than T0, as was the case for EZ and DDM. However, the difference in mean RT between the fast 

and cautious instructions was very small (9 ms on average, see empirical results section), so the 

lack of effect is not so surprising. Groups D and E showed large effects of instructions when 

analysed with EZ and LBA (shorter NDT under fast instructions), while the results were consistent 

with T0 when using the DDM. 

 

A hybrid approach? 
As noted above, some NDT estimates were extremely low. In particular, LBA estimates for 

dataset A were, to a few exceptions, systematically lower than T0. These estimates also did not 

meet predictions 2 and 3. We suspect that this could be due to high levels of correlation across 

parameters, in particular between NDT and each of the two decision parameters (threshold and 

drift rate both shared above 36% variance with NDT, see Table 4, also showing values for the 

other models for comparison). Here we explore the effect of bypassing the above unsuccessful 

attempt to extract NDT from model fits, and instead inserted the individual T0 values at each 

contrast level when fitting the models. By constraining the NDT parameter to be equal to T0, we 

hope to reduce the strong correlations between NDT and the other parameters observed in LBA. 

Although some correlations across parameters may be genuine within the population, large 
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correlations may be diagnostic of trade-offs, and the increases in variance these trade-offs induce 

in individual estimate reduce their interpretability.  

Table 4 shows an overall benefit to the LBA, reducing correlations across all parameters 

(all R2<0.09, all non-significant), and comparable to EZ. As for DDM, the correlations between 

decision parameters and NDT were also reduced, but the correlation between drift rate and 

threshold remained extremely high (> 80% shared variance). In conclusion, the hybrid method 

may have helped reduce the trade-offs affecting LBA decision parameters, but the real test for 

this approach will be to assess whether the hybrid method can result in higher external validity 

for decision parameters. This can be the purpose of future research.  

 

Table 4. Cross-participant correlations between NDT, drift rate (v) and threshold (Th) for dataset 

A, with R2 values expressed as % of shared variance. Orange shading highlight R2 above 30% for 

at least one contrast level. (-) indicate negative correlations. 

 

 EZ 

Blind 
DDM LBA 

Blind Informed Hybrid Blind Informed Hybrid 
R2 (v, NDT) Bright|Dim 15|13 14-|11 28-|28- 3|7 36|73 70|68 9|6 

R2 (v, Th) Bright|Dim 0|0 74|10 62 87|83 3-|50- 47- 0|0 

R2 (Th, NDT) Bright|Dim 2|6 36-|11- 52-|51- 1|5 73-|85- 85-|83- 0|0 

 

 

General Discussion 

Overview 

  

In the theoretical part of the paper, we offered a framework for how the concepts of 

decision time and non-decision time can be reconciled with existing knowledge of overlapping 

cascaded processing throughout the brain, the characteristic activity patterns seen in monkey 

neural recordings and the nuances of EMG recordings in humans. We argued that there is a 

definition of non-decision time that allows reconciliation, if ‘decision’ entails the entire time-span 

when interference from competing stimuli is possible, from the first burst of sensory information 

– even task-irrelevant information – in the relevant decision units or networks, until the point of 

no return when a response cannot be withheld. We argued this definition is consistent with 

concepts in the literatures on response control, dual route interference (e.g. Stroop tasks, 

affordance tasks etc) or priming where irrelevant features or non-conscious primes can influence 

response selection. However, this definition of non-decision does not necessarily map directly 

onto the NDT extracted from fitting decision models, which is defined in terms of the extra delay 

(residual time) needed to fit response distributions to the distribution profile provided by 

accumulating evidence to criterion.  

Our argument for defining decision time via the possibility (or not) of interference is 

related to a method for measuring non-decision time (or deadtime), using a competing stimulus 

to disrupt action selection and utilising the timing of the ‘dip’ this disruption creates in the 

response distribution profile. In a first empirical part of the paper, we used this method on 

behavioural data and confirmed the expected influence of visual properties (luminance contrast, 

colour and size) on sensory delay and found evidence against an influence of top-down factors 
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such as pro-active slowing and attention. Then, contrasting simple choice saccadic and manual 

RT, we delineated the main properties of manual output time as varied and skewed (at least in 

one third of participants). 

In the second empirical part of the article, we tested the relationship between this 

empirically measured deadtime and NDT in popular decision models. We tested three predictions 

arising if model NDT comprises at least the empirical deadtime, and tested a fourth hypothesis 

compatible with NDT also including additional processes. Interestingly the simplest instantiation 

of decision models – the EZ drift diffusion model – provided results broadly consistent with these 

predictions, while the full diffusion model and LBA often did not, either in blind or constrained 

instantiations.  

 

Model NDT sometimes reflects sensorimotor deadtime  
The NDT extracted from the EZ diffusion model for our datasets correlated reasonably 

well with empirically measured T0 and was (for most participants) longer than T0. It was also 

modulated by visual properties of the stimulus, like T0. Thus, our three core predictions were met 

for the idea that model NDT includes sensorimotor deadtime, and perhaps a bit more. EZ NDT 

was also modulated by task-demands that did not modulate T0, consistent with the longer time 

value for EZ NDT compared with T0 (Hypothesis 4).  

Where modelled NDT in previous literature has performed in this way, we would argue 

that it may have successfully captured sensorimotor delays, but at the same time, where it is 

modulated by task demands, this results from other processes that the NDT is also partially 

reflecting. The problem is that there is no way to discern this directly from model performance 

or fitting, but the absolute length of NDT compared to expected deadtime can be taken as a clue.  

 

Model NDT Sometimes Does Not Reflect Sensorimotor Deadtime  
Our results for the full diffusion and LBA models lead us to conclude that sometimes the 

NDT parameter does not appear to selectively capture visuomotor delays in a meaningful way. 

Correlations with empirical T0 were absent, NDT was sometimes shorter than T0, and it was 

inconsistently modulated by visual properties. One possibility is that the NDT parameter has 

captured just a portion of deadtime, but without necessarily providing sensitivity to the 

differences between stimuli or participants. Another (non-exclusive) possibility is that NDT has 

captured portions of RT associated with decision, which seems likely where it showed sensitivity 

to task demands. Critically, if NDT does not consistently capture sensory and motor delays, then 

by extension the decision parameters of boundary and drift often cannot be fully or exclusively 

capturing the cognitive properties they are normally associated with, potentially undermining 

many conclusions drawn in the literature. 

If we step back from assuming that model parameters always provide a dissociation 

between decision and non-decision and acknowledge that they may be instead dissociating 

Wald-time from non-Wald time, then we need to reorient how we expect accumulation models 

to help understand cognitive functions. It is worth noting that models provide a valuable service 

that is often overlooked: they effectively provide smoothing and outlier rejection in a systematic 

way based on the expected shapes of response distributions (even if you ignore all theoretical 

associations with their parameters). However, to allow models to help beyond this rather 
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pragmatic purpose, one will need to think in terms of what processes should produce variance 

of different shapes and extents, and what processes would inherently affect error rates and 

which might not. For example, if strategic factors change the NDT parameter, this is telling us 

about a change to the distribution that doesn’t quite fit with what boundary or drift rate changes 
do, at least not under their current implementations in simple models. There are several reasons 

this might occur, for example if multiple streams of input with distinct strengths or temporal 

profiles contribute to the decision accumulation or if there is significant leakage (like in the 

DINASAUR model, see Bompas & Sumner, 2011). We suggest that future research will only 

address this question if we resist assuming we already know the answer – that changes to NDT 

always indicate changes to sensory or motor delay. 

 

Simpler Is Better? 
Why did EZ provide better correspondence to empirical deadtime than the fuller models, 

despite having the same free parameters as the blind DDM? It seems that the very simplicity of 

EZ may be an advantage in some circumstances for sensitivity to experimental or group 

differences, a property that has been commented on previously, though not necessarily for the 

NDT parameter (van Ravenzwaaij et al., 2017). We observed a general trend of longer NDT 

estimates from EZ relative to the other methods. This echoes parameter recovery simulations by 

Lerche et al. (2017), who observed an underestimation of NDT when modelling the full 

distribution using maximum likelihood and hierarchical Bayesian fitting methods. This was 

primarily observed when the intertrial variability parameters were fixed to zero and was 

mitigated when they were freely estimated. NDT is quite sensitive to the leading edge of the RT 

distribution, or the first quantile in bin-based fitting methods (Ratcliff & Tuerlinckx, 2002). 

Logically, NDT must be shorter than the minimum RT when intertrial variability is 0 and boundary 

separation is non-zero. When intertrial variability in NDT is introduced, the distribution rises less 

steeply, corresponding to an increase in the width of the first quantile. Estimates of mean NDT 

can also be longer than the minimum RT when intertrial variability is included (which is why we 

used Ter – sTer/2 in our comparison). It is possible that fitting the distribution leads to overfitting 

the noise in the leading edge of the distribution, which compromises NDT’s ability to be sensitive 
to the real signals – the changes between stimuli and participants. As EZ is only provided with the 

mean and variance of the whole RT distribution, it will be less sensitive to this overfitting. 

We also observed a trend for short estimates of NDT from the LBA relative to the DDM, 

which is consistent with previous simulations and fitting (Donkin et al., 2011; Heathcote & Hayes, 

2012). Heathcote and Hayes also observed that NDT estimates from the LBA could be implausibly 

short unless intertrial variability in NDT was included. The way in which the DDM and the LBA 

account for the leading edge of the RT distribution has been noted as one possible explanation 

for different effects of the speed-accuracy trade-off using the different models (Evans, 2021). 

NDT estimates from the DDM were shown to be highly sensitive to differences in the leading 

edge of the distribution, whereas the LBA was less sensitive to differences – presumably because 

they can be absorbed by changes to the threshold and starting variability. However, it is unclear 

how this alone can account for why LBA estimates were lower than DDM estimates on our data. 
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Notably, a number of methods have been proposed to account for potential 

contaminants in the data. Mixture models have been used to account for responses that are not 

consistent with an evidence accumulation process, including guesses that are uniformly located 

throughout the RT distribution (Ratcliff & Tuerlinckx, 2002) or a gaussian distribution of fast 

guesses (Ratcliff & Kang, 2021). Vandekerckhove & Tuerlinckx (2007) implemented an 

exponentially weighted moving average method to identify the minimum RT at which accuracy 

exceeds chance. Using both options together in the DMAT toolbox on our data did produce higher 

NDT estimates, but did not provide any substantial benefit towards any of our predictions. In 

particular, the NDT estimates on saccadic data remained extremely low, and the small increase 

obtained with the correction was by far insufficient to change the statistical outcome of the tests. 

A full examination of the role of variation in pre-processing steps and fitting methods is beyond 

the scope of this paper (but see Lerche et al., 2017; Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002; van 

Ravenzwaaij & Oberauer, 2009). We believe that these data-processing questions can be 

informed by our empirical estimates of visuomotor deadtime.  

 

A Note on Parameter Recovery 
NDT can be recovered quite well in simulated data (Lerche & Voss, 2017), and generally 

the simple forms of the models have been shown to be quite successful by the criterion of 

parameter recovery (e.g. Donkin et al., 2011; van Ravenzwaaij & Oberauer, 2009). It is worth 

stressing that parameter recovery is a prerequisite for a model parameter to be helpful in 

research, but it does not tell us what the parameter represents biologically or cognitively. Models 

that incorporate additional parameters, such as trial-to-trial variability, leakage or conflict 

parameters in the evidence accumulation process are a step closer to likely biology, but show 

poorer recovery without additional constraints (Boehm, 2018; Hedge et al., 2022; Lerche & Voss, 

2016; Miletić et al., 2017; White et al., 2018). A case in point here would be the incorporation of 

skewed motor output noise. We concluded above that manual output noise is likely skewed (as 

previously suggested Servant et al., 2021; Verdonck & Tuerlinckx, 2016), but incorporating this 

into a model would risk poorer parameter recovery, given that there would now be two sources 

of skew (the evidence accumulation and the motor output). In contrast, if the aim is to include a 

biologically plausible representation of motor output time, it should probably be skewed.  

Although the logic of parameter recovery pushes for parsimony, a complementary logic 

is to add external constraints to allow models to capture a wider range of data, without increasing 

the number of free parameters, guided by a clear definition of what the modelling exercise is 

aiming to achieve (Kelly et al., 2021; Miletić et al., 2017). Our hybrid variant here illustrates a 

possible way to avoid implausible values and aid the interpretability of the other parameter 

estimates. In contrast to decision parameters (such as baseline, rise rate, threshold, or decision 

noise), absolute non-decision time has observable analogous equivalents in biological signals, 

and is meaningful irrespective of model architecture. Our hybrid variant may constitute a 

behavioural-informed approach, complementary to the neurally-informed approach developed 

by others (Kelly et al., 2021; Nunez et al., 2019).  

 

Comparisons to other models 
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A number of extensions to the basic accumulator model framework have been proposed 

with the goal of better understanding mechanisms that might otherwise be encompassed in 

estimates of NDT (Servant et al., 2021; Smith, 1995; Smith & Ratcliff, 2009; Verdonck et al., 2021). 

Smith (1995) proposes a model of stimulus detection, with the goal of capturing both sustained 

and transient visual inputs. The motivation was to reconcile the literature on decision-making 

with that of psychophysics, which is similar to our motivation of reconciling decision-models with 

what is known about neurophysiology. For our purposes, we could ask whether a model that 

incorporates principles of sensory processing would perform better in our tests than the DDM 

and LBA, especially on gaze orienting tasks manipulating visual properties (closest to simple RT 

tasks for which the model was developed). Evidence accumulation in the model proposed by 

Smith could be represented by an Ornstein-Uhlenbeck (OU) process (see also Busemeyer & 

Townsend, 1993) which itself is equivalent to the DDM with the addition of decay in the 

accumulated evidence. However, comparisons of the OU model to the DDM have shown that the 

best fitting value of the decay parameter is near zero when freely estimated (Ratcliff & Smith, 

2004). Without further constraints, we would therefore expect the OU model to provide similar 

estimates of NDT as the DDM in our tests. 

Smith & Ratcliff (2009) propose a model to explain inconsistent effects of attention cues 

on RT and accuracy in detection tasks, with an explicit characterisation of sensory encoding 

distinct from non-decision/non-sensory parameters. In this model, attention serves to encode a 

sensory representation into visual short-term memory, and this representation in turn is the basis 

of the decision process. Under our definition, such process would be included under the umbrella 

of cascaded decisional processing.  

We do not believe any of these models to be at odds with our account, but they also do 

not try to answer the same question as we do. Regarding whether alternative models would 

perform better in our tests, it is notable that the alternative models noted above are more 

complex than the DDM and LBA. We would expect more complex models to have poorer 

parameter recovery, which would negatively impact their performance, particularly on criteria 

like the correlation between NDT and T0 (Boehm, 2018; Fengler et al., 2021; Lerche & Voss, 2016; 

Miletić et al., 2017).  

 

Comparison to other tasks 
It is worth discussing at this point the potential differences between fast action selection 

tasks where all the information is provided quickly or simultaneously – as in the tasks we have 

analysed here – and tasks where the information is provided over time, such as random dot 

kinetograms (RDKs) or added to time-varying noise. These stimuli have been used extensively in 

decision model literature, and may lend themselves particularly well to linear accumulation 

models, because arguably the brain has no choice but to accumulate the scant evidence over 

time and the information is provided at a linear rate. This may mean that the accumulation model 

assumptions are better met, although this literature also presents plenty of examples where 

more complex conceptualisation may be needed to fully capture biological and behavioural data 

together (Kelly et al., 2021; Nunez et al., 2019; Servant et al., 2021). Future research will need to 
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clarify whether the empirical approach described in the present article could be of help in the 

context of noisy stimuli, and to what extent the conclusions we made by contrasting empirical 

values to model NDT generalise to them. For RDK, the delay between the first burst of visual 

information (triggered by the onset of dots) and the start of meaningful linear accumulation will 

be longer compared to salient visual onsets (in part because net motion energy emerges only 

after several frames). As a result, NDT in RDK tasks may conform more reliably with the prediction 

that model NDT is longer than visuomotor deadtime. However, this may not be the case for the 

other two predictions (correlations between model NDT and deadtime across participants, and 

model NDT sensitivity to factors affecting deadtime). The additional delay (including motion 

processing in RDK, or “visual encoding” more generally across tasks) may well differ across 

participants, which would only dilute any cross-participant correlation with visuomotor 

deadtime. Moreover, the additional delay may be sensitive to noise and factors that do not 

modulate visuomotor deadtime (endogenous factors), which can only weaken the statistical 

effect of visual properties on model NDT. In the case of weak stimuli embedded in time-varying 

noise, it is also possible that the first volley of visual activity is too weak to be detectable, either 

using the visual interference method or using high temporal resolution brain imaging methods 

(EEG, single-unit…). Moreover, it may also be too weak and transient to have an impact on the 

decision process, elongated by the presence of noise. In these cases, the relevance, applicability 

and benefit of our approach will be unclear.  

 

Estimating Sensory Conduction Delay  
The estimation of sensory delay from the interference approach is in principle amenable to 

any datasets whereby some stimuli are occasionally presented close in time to a saccade-

triggering stimulus (Reingold & Stampe, 2002) or the likely initiation of an endogenously driven 

saccade (e.g. in reading: Reingold & Stampe, 2004; anticipatory saccades: Salinas & Stanford, 

2018; or free viewing: Stampe & Reingold, 2002). Most studies considered here present a 

peripheral visual target followed, on some trials, by another visual stimulus, but other designs 

may be equally suitable. For instance, in our free choice task, the chosen stimulus plays the role 

of a target, while the unchosen stimulus acts as an interferer. The presence of a peripheral target 

is also not mandatory and can be replaced by any stimulus onset that triggers a saccade (e.g., the 

onset of a central arrow pointing to a peripheral placeholder, an anti-saccade target, or an 

auditory cue prompting a saccade to a memorised location), or indeed completely omitted like 

in free-viewing or reading. Likewise, the interferer doesn’t need to be visual (see Rolfs et al., 2008 

for interference from auditory signals), although the visual modality is the most effective for 

disturbing saccade plans. For the extraction of dip onset time to be reliable, it is desirable to use 

enough trials to obtain smooth baseline RT distributions. Although this has not been 

systematically assessed, in our experience, 100 for baseline and 100 for signal-present is likely a 

bare minimum. It is also critical to choose SOAs wisely, to avoid producing dips at the edge of the 

baseline distribution, as these can be more easily confounded with noise. In speeded conditions 

when the target and interferer have similar salience, the optimal SOA will likely be around 50 ms. 

However, distractors that are more salient than targets will require longer SOAs, and vice versa. 

Also, when participants slow down (like in the stop task or when the task is harder or has more 

emphasis on accuracy), SOAs need to increase proportionally. Adjusting SOA as a function of 
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participant mean RT can prove effective, as is common in the stop-task and saccadic inhibition 

literature.  

 The values of visual conduction delay obtained from the interference method using 

salient visual stimuli and the saccade modality varied from 35 to 150 ms, across datasets and 

participants. Although individual estimates may be subject to noise, it is clear that these values 

are much lower than those typically reported for non-decision time in biological studies including 

brain imaging on humans (around 125-150 ms Jun et al., 2021; Kelly et al., 2021; Nunez et al., 

2019; VanRullen & Thorpe, 2001). This is unsurprising for two reasons. First, our definition of 

non-decision time is different and starts with the initial volley of visual activity reaching the 

neurons involved in the decision process (defined as TV in Figure 1), while most brain imaging 

studies report the time when differential activity starts, for instance between targets and 

distractors, chosen and unchosen directions, correct and incorrect responses, conceptually 

aligned with what we define as TP or TM in our introduction. Second, many imaging datasets use 

different stimuli, often RDK or low-salience stimuli embedded in time-varying noise, with the 

consequences highlighted in the section above (comparison with other stimuli). Another reason 

is also that the EEG and MEG signals require the activity of large assemblies of neurons to be 

detected, and may therefore lead to longer latencies. Moreover, when averaging across trials (as 

typical in evoked-related potential analyses), time estimates may reflect average values, which 

may be longer than our lower-bound estimates in the presence of trial-to-trial variability. 

 

Estimating Manual Output Time 
The estimation of manual output time illustrated here requires the direct comparison of 

manual and saccadic data on the same participants and task. This approach relies on the 

simplifying assumption that the added variance in the manual compared to the saccadic modality 

all originates at the motor stage, rather than at the sensory or decision stages. Although visual 

pathways are partly shared across modalities, we know that the weighting of the different 

pathways (magnocellular, parvocellular and koniocellular) into action and perceptual decisions 

differs across modalities (Bompas & Sumner, 2008). Moreover, these visual pathways project 

onto different decision brain areas (as depicted in Figure 10), providing ample reasons for the 

decision process to differ. Despite all this, we previously concluded that saccadic and manual 

decisions are indeed similar enough to support this approach (Bompas et al., 2017). In this 

previous work, we compared observed data with predictions from alternative models across a 

range of measures, including the strength and timing of the interference effect at various SOAs. 

This work showed that allocating the added variance at the motor stage provided the best match 

to our data. However, this modelling work provided only indirect evidence and was conducted 

on four participants only (albeit with a lot of data per participant), and would therefore need 

validation on a larger sample. 

The analyses presented here are conducted on simple choice RT data in an easy task. Not 

any task is suitable though. In particular, stop-task data are not usable for our purpose, as they 

produce baseline saccadic RT distributions that are systematically more variable than the manual 

distributions. This is in stark contrast with simple choice RT data, where the opposite pattern is 

robustly found. This suggests that participants adopt different strategies when responding with 

the eyes or the hand in the context of the stop-task, which clearly violates the premise of our 
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empirical approach (i.e. that the decision process is similar enough between saccades and manual 

responses that we can allocate their differences to motor output time only). Previous work 

suggested that one strategy developed by monkeys and humans alike to avoid frequent errors in 

the saccadic stop-task is to hold on fixation stronger to delay saccades (Lo et al., 2009), a strategy 

that is not directly equivalent to stabilizing limbs. This strategy may take resources and be 

deployed mainly when the perceived risk of error increases, leading to the increased variability 

compared to the ignore condition where this strategy is never necessary. Similarly, any factor 

that may affect one modality more than another (e.g. fixation gap effect) is discouraged. 

Researchers interested in implementing our approach are encouraged to acquire blocks of simple 

choice saccadic and manual responses, either together (one saccade and one button press on 

each trial), or in a blocked design. Based on our experience, randomly alternating saccadic only 

and manual only trials should be discouraged, as the risk of producing saccades on manual only 

trials is high.  

 

On The Variability of Saccadic Non-decision Time 
Equating saccadic dip onset time with visuomotor deadtime relies on variability in non-

decision time being negligible, which requires both sensory conduction delay and saccadic output 

time to be highly consistent across trials. Although the profile of saccadic dips is gradual (Figure 

2B), this is not in itself an indication of trial-to-trial variability in visuomotor deadtime. Previous 

modelling work suggests that the empirical shape of the saccadic dips is well captured by 

assuming no trial-to-trial variability in exogenous and motor delays. The gradual profile can be 

explained by interferers reaching decision nodes at the exact same time but not always incurring 

the same delay to the RT across trials, because the state of the decision node will vary due to 

noise, amplified within the connected map of neurons (Bompas & Sumner, 2015).  

However, this is not a demonstration for an absence of trial-to-trial variability in saccadic 

deadtime, as other unexplored modelling choices may also capture data well. The rationale for 

this assumption rather comes from the electrophysiology literature, as detailed below. In any 

case, if this assumption were wrong, dip onset time would tend towards the lower bound of non-

decision time (providing many trials are available), as it does in the manual modality, with only 

minor consequences for our conclusions.  

 

No variability in saccadic output time? All studies relying on neuronal recordings in FEF 

or SC during saccade tasks consider output time to be within 10 to 20 ms, and average firing rates 

over this time window have been calculated to estimate the decision threshold (e.g. Heitz & 

Schall, 2012). However, this range doesn’t imply that output time is thought to be variable across 
trials within the 10 to 20 ms range. Rather, it is our understanding that the range may reflect 1) 

the need to define a time window for averaging neuronal responses and 2) methodological 

differences across studies. For instance, microstimulation studies in the SC designed to perturb 

saccade trajectory often provides estimates around 10 ms, while 20 ms would be required when 

the aim is to initiate a saccade when premotor burst neurons are inhibited by omnipause 

neurons, as is the case when triggering a saccade while fixating  (Miyashita & Hikosaka, 1996; 

Munoz & Wurtz, 1993). In our work, we use 20 ms, consistent with the latter scenario and with 

our earlier modelling work, inspired by recordings in visuomotor neurons in the SC (Trappenberg 

et al., 2001), and still in line with recent assumptions in the field (Buonocore et al., 2021). 
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No variability in sensory conduction delay? We know this assumption to be an 

approximation. Our confidence that this approximation is reasonable derives from indirect 

evidence, reading across a range of single-cell recording studies measuring neuronal response to 

visual stimuli in monkey FEF and SC. Based on these, it is our understanding that the 

approximation holds for salient, low-spatial frequency stimuli most common in this field (0.5 to 

2 cycle per degree Gabor patches, bright squares or circles of about 1 degree of visual angle). In 

particular, some articles would directly contrast the evolution of firing rates in visuo-movement 

neurons averaged across slow versus fast RT trials. They report the same timing for the initial 

visually-driven response (e.g. Fig 1C in Ray et al., 2009, showing visuo-movement neurons in FEF). 

This shows that, if variability exists, it is not sufficient to drive clear differences in reaction time 

across trials. Other articles would display, for one example neuron, spike time series across many 

trials (e.g. Figure 2 in Buonocore et al., 2021;  or Figure 1 in Chen et al., 2018, both based on SC 

recordings), again suggesting high consistency of visually-driven neuronal response across trials. 

However, some variability may be expected when using low-salience stimuli. For instance, Lee et 

al. (2010) showed that the latency of the first visually-evoked spike in V1 is predictive of saccadic 

reaction time across trials, while Westerberg et al. (2023) reported a similar finding in area V4. 

This implies that this latency can be variable across trials under some conditions. In our data, low 

contrast stimuli lead to higher RT variability, but this trend was not significant. This pattern is 

expected though, since an increase in the variability of neuronal latency is reported as early as 

the retinal level (Bolz et al., 1982). Note that the literature using noisy stimuli (e.g. random-dot 

kinetograms, Gold & Shadlen, 2000) is not directly relevant to our question here, as the variability 

is built into the design rather than reflecting properties of the visual pathways. 

 

Biological Underpinning of Individual differences in Non-Decision Time 
We have argued that empirically measured NDT reflects the first volley of signals into the 

decision process, plus the motor time beyond a decisional point-of-no-return (the point after 

which the action is going to happen, even if it can be modified in flight). It might therefore be 

considered surprising that such basic transmission times show marked individual variation. One 

possible place to start looking for biological underpinnings of such differences is in the white 

matter tracts. Several studies have reported that speed positively correlates with measures of 

white matter “integrity” (e.g. fractional anisotropy, FA) in multiple tracts (Haasz et al., 2013; 

Kuznetsova et al., 2016; Penke et al., 2012; Penke et al., 2010). Correlations between white 

matter and trial-to-trial variability in RT have also been observed, both in specific tracts and at a 

whole brain level (Booth et al., 2019; Fjell et al., 2011; Kievit et al., 2016; Tamnes et al., 2012). 

Further studies have used simple decision models to examine associations with microstructure 

properties (Forstmann et al., 2011; Imms et al., 2021; Karahan et al., 2019; Yang et al., 2015). 

Two of these report associations with the NDT. Yang et al. (2015) used a letter discrimination task 

and reported a correlation between the DDM NDT parameter and radial diffusivity in the body of 

the corpus collosum. Karahan et al. (2019) used a simple manual RT task and focused on the 

microstructure properties of task-relevant tracts only, i.e. the optic radiation and the cortico-

spinal tract. They reported no correlation with mean RT, but some correlation between the LBA 

parameter for non-decision time and the properties of the bilateral cortico-spinal tract. 
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To our eyes, these previous attempts are suboptimal, since mean, median or SD of RT are 

blunt summaries of a highly composite measure, while model estimates of non-decision time can 

be misguided, as we have shown here. We anticipate that the use of the approaches described 

in this article to isolate individual differences in 1) visual delay and 2) manual output time, will 

lead to more robust and specific patterns of correlation. In particular, using saccadic dip onset 

time would give us the best chance to assess the role of individual differences in optic radiation 

microstructure, while contrasting simple saccadic and manual choice reaction time distributions 

will do the same for the cortico-spinal tracts. Future studies will need to extend those approaches 

across the age span and clinical conditions, in order to form a better understanding of the 

contribution of these tracts to individual differences in response speed. 

 

Conclusion 
 

We hope to have demonstrated that empirical approaches to estimating non-decision 

time are both straightforward and necessary for building solid ground for future sensorimotor 

decision research. In contrast to simple model fitting that can typically be applied to most RT 

datasets, the approaches described in this work generally require the acquisition of specific data 

(in addition to the task conditions researchers are interested in, in order to help them interpret 

those interesting tasks). Future research will need to quantify key properties, such as test-retest 

repeatability as a function of trial numbers, which will in turn dictate the applicability of these 

methods to more challenging populations (e.g., children, patients) and inform the sample sizes 

required. The simplicity of the tasks proposed (simple choice RT or distractor task) makes them 

amenable to a large range of populations and, for human observers, do not require detailed 

instructions or training.  

 

We hope this work will inspire a wide range of researchers and further our understanding 

of decision and its biological underpinning. For instance, researchers interested in understanding 

sensory-guided action decision through modelling may find these useful to assess the plausibility 

of models’ outcome and further constrain their model. Researchers interested in individual 
differences may want to directly use these measures, as alternatives or in addition, to model 

estimates when contrasting decision or non-decision time across individuals or between groups, 

or linking them to physiological measures such as genetics or brain structure. Further, 

researchers interested in unravelling the neural dynamics of these decisions may use these 

estimates to determine time windows of interest when analysing electrophysiological signals that 

possess high temporal resolution, such as single cell recordings, electroencephalography, 

magnetoencephalography or electromyograms, or to choose optimal stimulation times in brain 

simulation protocols such as transcranial magnetic or direct-current stimulation. 
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