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ABSTRACT Recently, maximum Versoria criterion-based adaptive algorithms have been introduced as
a new solution for robust adaptive filtering. This paper studies the steady-state tracking analysis of an
adaptive filter with maximum Versoria criterion (MVC) in a non-stationary (Markov time-varying) system.
Our analysis relies on the energy conservation method. Both Gaussian and general non-Gaussian noise are
considered, and for both cases, the closed-form expression for steady-state excess mean square error (EMSE)
is derived. Regardless of noise type, unlike the stationary environment, the EMSE curves are not increasing
functions of step-size parameter. The validity of the theoretical results is justified via simulation.

INDEX TERMS Adaptive filter, non-stationary, performance analysis, tracking, Versoria.

I. INTRODUCTION
Since the invention of adaptive filters by Widrow and
Hoff [1], they have been successfully used in many appli-
cations such as noise and echo cancellation, signal predic-
tion, channel estimation, and beamforming [2]. Generally,
an adaptive filter adjusts its parameters (filter weights) by
optimizing a predefined cost function. The cost function
quantifies the difference between the desired and actual
outputs of the filter. The most commonly used cost function
is the mean squared error (MSE), the statistical average
of the squared difference between the desired and actual
outputs. While MSE-based adaptive filters provide appealing
performance for linear models with Gaussian data, they
perform poorly when dealing with nonlinear models and non-
Gaussian signals.

To improve the robustness against non-Gaussian signals
such as impulsive noise, other criteria beyondMSE should be
considered. Recently, information-theoretic adaptive filters
have been developed to optimize the filter coefficients
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based on information-theoretic measures, such as mutual
information, error entropy [3], [4], [5], [6], correntropy [7],
[8], [9], [10], [11] and risk sensitive loss [12], [13], [14], [15].
These filters can effectively capture higher-order moments
of data, which allows them to better adapt to the changes
in signal conditions and improve the performance of signal
processing tasks. For example, in correntropy-based adaptive
filters, the filter parameters are adjusted in a way that the
correntropy between the desired and estimated outputs is
maximized, which, in turn, effectively reduces the impact of
non-Gaussian and impulsive noise.

While maximum correntropy focuses on the similarity
between the input and output vectors, maximum Verso-
ria [16], [17], [18], [19], [20] takes a different approach.
Versoria is a measure of directionality that captures the
underlying structure of the data. Maximum Versoria-based
adaptive filtering algorithms aim to maximize the Versoria
criterion, quantifying the similarity between the desired and
estimated output directions. By maximizing the Versoria
criterion, these algorithms can extract valuable directional
information from the data, even in non-Gaussian noise. This
makes maximum Versoria a powerful tool for applications
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TABLE 1. Symbols and their descriptions.

FIGURE 1. An adaptive filter in a system identification setup.

such as beamforming, where the direction of arrival needs to
be estimated accurately.

In the context of Versoria-based adaptive filtering algo-
rithms, the tracking analysis provides valuable information
about their ability to capture the underlying structure
of a non-stationary (Markov time-varying) system [15],
[21], [22]. Such non-stationarities arise in many practical
applications such as acoustics, communication, control, and
power systems. By analyzing the tracking performance,
the parameters of an adaptive filter can be adjusted to
optimize their performance for specific applications. This
paper examines the tracking analysis of adaptive filters with
maximum Versoria criterion (MVC). We explore the steady-
state behavior of these filters and analyze their performance
in both Gaussian and non-Gaussian noise environments.
Our analysis is based on the energy conservation method,
allowing us to derive closed-form expressions for steady-
state excess mean square error (EMSE) for both cases.
Furthermore, we investigate the impact of the step-size
parameter on the EMSE curves and provide insights into
selecting an optimal step-size for different scenarios.

Throughout the paper, we use normal lowercase letters for
scalars, bold lowercase letters for column vectors, and bold
uppercase letters for matrices. A list of main symbols used
throughout the paper is provided in Table 1.

II. MVC ALGORITHM
To begin, without loss of generality, we consider an adaptive
filter in a system identification setup, as shown in Fig. 1. The
objective is to estimate an unknown weight vector (parameter
of parameters) wo

∈ RM×1 by minimizing the error between
desired signal dn ∈ R and actual output y(n). For a stationary
environment (with constantwo) and linear model assumption,

the desired signal dn at any time instant n is given by

dn = unwo
+ vn (1)

where in this model, un ∈ R1×M denote the input data
with covariance matrix Ru. Moreover, vn ∈ R are samples
of zero-mean observation (measurement) noise, which are
assumed to be independent, identically distributed, and
independent of the input signal un.
One possible way to estimatewo is to use an LMS adaptive

filter, which operates by minimizing the mean-square error
between the desired signal and the filtered output as follows

JMSE(w) ≜ E
[
e2n

]
(2)

where en is the instantaneous error signal given by

en = dn − unw (3)

The LMS algorithm adjusts the filter coefficients in propor-
tion to the negative gradient of the MSE cost function and
solves (2) iteratively as

wn = wn−1 + µuT
nen (4)

where µ > 0 is a suitably chosen step-size parameter.
As mentioned earlier, while the least mean squares (LMS)
algorithm is widely used for its simplicity and stability,
it may exhibit performance degradation in non-Gaussian
environments.

To address these limitations, Versoria has recently been
introduced as the cost function to be maximized for adaptive
filters, which exploits higher-order data moments with low
computational complexity. The cost function in the standard
form of the MVC algorithm is defined as

argmax
w

J (w) ≜ E
[

1
1 + τe2n

]
(5)

where τ > 0 represents Versoria parameter. Using the steep-
est ascent method to solve (5) and replacing the statistical
expectation with instantaneous mean approximation yields
the standard MVC update equation as

wn = wn−1 + µ
uT
nen

(1 + τen)2
(6)

Let further denote by f (en) a function of the error signal en
in (6) as

f (en) ≜
en(

1 + τe2n
)2 (7)

Replacing f (en) in (6) gives

wn = wn−1 + µf (en)uT
n (8)

When τ → 0, the MVC algorithm in (6) tends to the
LMS algorithm. In [23], steady-state analysis of the MVC
algorithm for stationary data has been studied. Although that
analysis is required to understand the behavior of adaptive
filters with MVC, it does not give any insight into the
performance of theMVC algorithm in a non-stationary (time-
varying) system. Thus, a tracking analysis that examines the
performance of the MVC algorithm for the non-stationary
systems is necessary.

30748 VOLUME 12, 2024



A. Khalili et al.: Tracking Analysis of Maximum Versoria Criterion Based Adaptive Filter

III. TRACKING ANALYSIS
To proceed with the analysis, we first introduce the assump-
tions and definitions used in this paper.

A. ASSUMPTIONS AND DEFINITIONS
In our analysis, a simple Markov process is used to describe
the time evolution of the optimal weights {wo

n}, which means
that wo

n varies according to a random-walk model as follows:

wo
n = wo

n−1 + θn (9)

where θn a zero-mean white noise with covariance matrix
2 = E

[
θnθ

T
n
]
.

For future reference, the following error signals are
defined:

w̃n ≜ wo
n − wn, weight error vector (10)

ea,n ≜ unw̃n, a-priori error signal (11)

Assumption 1.

1) For a priori error signal ea,n, we have

• E
[
ea,n

]
= 0,

• g(ea,n) is independent of vn for any any given
function g(·).

2) At the steady-state i.e. n → ∞, ∥un∥2 is independent
of en.

3) For all t < n, θn is independent from {dt } and {ut } and
also {w0}.

We consider the steady-state EMSE as the performance
metric, which is defined as

ξ = lim
n→∞

E
[
e2a,n

]
(12)

Our analysis relies on the energy-conservation approach
which shows that certain a-priori and a-posteriori errors
maintain an energy balance (known as the variance relation)
for all time instants. To derive the variance relation for the
MVC algorithm with non-stationary data, we start by taking
the Euclidean norm on the update equation in (8) and apply
the statistical expectation to the resultant expression and
using Assumption 1, we arrive at the variance relation (16).
Then, the closed-form expressions for steady-state EMSE are
extracted from the variance relation (16) for two different
cases for the measurement noise distributions.

B. ANALYSIS
By subtracting wo

n from both sides of (8) and using the
definition of wo

n in (9) we have

w̃n = w̃n−1 + θn − µuT
nf (en) (13)

Taking Euclidean norm on both sides of (13) and applying
E[·] on the resultant equation we obtain

E
[
∥w̃n∥

2
]

= E
[
∥w̃n−1∥

2
]

− 2µE
[
unw̃n−1f (en)

]
+ µ2E

[
∥un∥2f 2(en)

]
+ E

[
∥θn∥

2
]

+ E
[
w̃T
n−1θn

]︸ ︷︷ ︸
1⃝

+ E
[
θT
nw̃n−1

]︸ ︷︷ ︸
2⃝

− 2µ E
[
θT
nu

T
nf (en)

]︸ ︷︷ ︸
3⃝

(14)

where 3⃝= 0 due to Assumption 1. The terms denoted by 1⃝
and 2⃝ have been calculated in Appendix A as

E
[
w̃T
n−1θn

]
= E

[
θT
nw̃n−1

]
= 0 (15)

Additionally, using E
[
∥θn∥

2
]

= E
[
Tr

[
θnθ

T
n
]]

= Tr[2] and
replacing (15) in (14) we obtain

E
[
∥w̃n∥

2
]

= E
[
∥w̃n−1∥

2
]

− 2µE
[
ea,nf (en)

]
+ µ2E

[
∥un∥2f 2(en)

]
+ Tr[2] (16)

At the steady-state, where n → ∞ an acceptable
approximation is E

[
∥w̃n∥

2
]

≈ E
[
∥w̃n−1∥

2
]
, which in turn

simplifies (16) as

2 lim
n→∞

E
[
ea,nf (en)

]
= µTr[Ru] lim

n→∞
E

[
f 2(en)

]
+ µ−1Tr[2]

(17)

To proceed with the analysis, two different cases for the
measurement noise distribution are considered.

C. GAUSSIAN NOISE
In this case, the observation noise vn is assumed to follow
a Gaussian distribution with zero mean and variance of σ 2

v .
Then, the following Lemma from Price Theorem [24] can be
used to evaluate limn→∞ E

[
ea,nf (en)

]
:

Lemma 1. Let X and Y be scalar real-valued zero-mean
jointly Gaussian random variables. For any Borel function
h(·) we have

E[Xh(Y)] =
E[XY]
E

[
Y2

] E[Yh(Y)] (18)

Setting X = ea,n, Y = en and h(·) = f (·),
limn→∞ E

[
ea,nf (en)

]
: can be calculated as

lim
n→∞

E
[
ea,nf (en)

]
= lim

n→∞

E
[
ea,nen

]
E[enf (en)]

E
[
e2n

]
=

ξ

σ 2
e

lim
n→∞

E[enf (en)] (19)

where σ 2
e denotes the variance of en. Note that in (19) we

used en = ea,n+vn and Assumption 1. Replacing (19) in (17)
yields

ξ =

σ 2
e

(
µTr[Ru] lim

n→∞
E

[
f 2(en)

]
+ µ−1Tr[2]

)
2 lim
n→∞

E[enf (en)]
(20)
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When e(n) is Gaussian distributed (per our assumption in this
subsection), it is shown in [23] that E

[
f 2(en)

]
is given by

α ≜ E
[
f 2(en)

]
= φ + τ

∂φ

∂τ
+

τ 2

6
∂2φ

∂2τ
(21)

where

φ ≜ E[enf (en)] (22)

Using the moments in (21) and (22) in (20) we have

ξ =

σ 2
e

(
µTr[Ru]α + µ−1Tr[2]

)
2φ

(23)

Finally, by defining β ≜ α/φ and µθ ≜ φµ and replacing
σ 2
e = ξ + σ 2

v in (23) we obtain

ξ =

σ 2
v

(
βµTr[Ru] + µ−1

θ Tr[2]
)

2 − βµTr[Ru] − µ−1
θ Tr[2]

(24)

Remark 1. For stationary data with θ = 0, ξ in (24) changes
to

ξ =
σ 2
v βµTr[Ru]

2 − βµTr[Ru]
(25)

which is the theoretical steady-state EMSE of the standard
MVC algorithm derived in [23]. Moreover, as τ → 0, β

approaches 1 and ξ in (24) tends to

ξ = ξLMS =
σ 2
v µTr[Ru]

2 − µTr[Ru]
, as τ → 0 (26)

which is the theoretical steady-state EMSE of LMS adaptive
filter [2].

D. NON-GAUSSIAN NOISE
To calculate the required moments in (17) for general non-
Gaussian noise, we first need to obtain suitable approxima-
tions for E

[
ea,nf (en)

]
and E

[
f 2(en)

]
. To this end, we use the

Taylor series expansion for f (en) as

f (en) = f (vn) + f ′(vn)ea,n +
1
2
f ′′(vn)e2a,n + o(e2a,n) (27)

Replacing (27) in E
[
ea,nf (en)

]
(in (17)), using Assumption 1

and ignoring higher order terms gives:

E
[
ea,nf (en)

]
= E

[
f (vn)ea,n + f ′(vn)e2a,n + o(e2a,n)

]
≈ ξE

[
f ′(vn)

]
(28)

Similarly, for E
[
f 2(en)

]
in right-hand side of (17) we have:

E
[
f 2(en)

]
= E

[
f 2(vn)

]
+ E

[
f (vn)f ′′(vn) + ξ

(
f ′(vn)

)2]
(29)

By substituting (28) and (29) in (17), the following expression
is obtained:

2E
[
f ′(vn)

]
ξ

= µTr[Ru]
(
E

[
f 2(vn)

]
+ ξE

[
f (vn)f ′′(vn) +

(
f ′(vn)

)2] )
+ µ−1Tr[2] (30)

Solving (30) to obtain ξ yields

ξ =

µ
(
Tr[Ru]E

[
f 2(vn)

] )
+ µ−1Tr[2]

2E[f ′(vn)] − µ
(
Tr[Ru]E

[
f (vn)f ′′(vn) + (f ′(vn))2

] )
(31)

Using (7), f ′(vn) and f ′′(vn) are obtained as:

f ′(vn) =
(1 − 3τv2n)

(1 + τv2n)
3 , f ′′(vn) =

−12τvn(1 − τv2n)

(1 + τv2n)
4 (32)

Using (32) in (31) we have

ξ =

µ
(
Tr[Ru]E

[
v2n

(1+τv2n)
4

] )
+ µ−1Tr[2]

2E
[
(1−3τv2n)

(1+τv2n)
3

]
− µ

(
Tr[Ru]E

[
1−18τv2n+21τ 2v4n

(1+τv2n)6

] ) (33)

Remark 2. As can be seen from (24) and (33), unlike the
stationary case [23], the obtained expressions for EMSE for
both Gaussian and non-Gaussian cases are not monotonic
functions of step-size parameter. This means that reducing
step-size value does not necessarily result in a smaller
steady-state EMSE value. So, selecting an appropriate
step-size parameter is crucial to achieving acceptable perfor-
mance. For example, the given expression for EMSE in (33)
can be written as

ξ =
µa1 + µ−1a2
b1 − µb2

(34)

with

a1 = Tr[Ru]E

[
v2n

(1 + τv2n)
4

]
(35a)

a2 = Tr[2] (35b)

b1 = 2E

[
(1 − 3τv2n)

(1 + τv2n)
3

]
(35c)

b2 = Tr[Ru]E
[
1 − 18τv2n + 21τ 2v4n

(1 + τv2n)6

]
(35d)

Setting ∂ξ/∂µ = 0 yields

a1b1µ2
+ 2a2b2µ − a2b1 = 0 (36)

The positive root of (36) is the optimum step-size parameter
that achieves the minimum value of EMSE. It should be noted
that the optimal step-size parameter requires information
(statistical moments), which in practical applications is not
available in advance. One possible way is to use instantaneous
approximations for needed statistical moments in the solution
of (36) and use variable step-size µn to achieve a sub-
optimum solution.
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FIGURE 2. The EMSE learning curve (top) and estimation performance
(bottom) for Gaussian noise.

FIGURE 3. The EMSE learning curve (top) and estimation performance
(bottom) for uniform noise.

IV. SIMULATION RESULTS
In this section, simulation results are presented to verify the
theoretical analysis. To this end, we consider the system
identification setup, as shown in Fig. 1. For unknown system
we set M = 6 and initial value wo

0 = (1/M )1M . For input
vectors we assume that E[unut ] = 0 when n ̸= t , and {un}
are generated from aGaussian process with covariancematrix
Ru = IM . For random-walk model (9) with 2 = σ 2

θ IM .
Three different distributions for the measurement noise vn are
considered, including:

• vn ∼ N (0, 0.01), i.e. zero-mean Gaussian noise with
variance σ 2

v = 0.01.
• uniform noise is distributed over [0, +1].
• vn ∼ (1 − p)N (0, 0.01) + pN (0, 10), i.e., impulsive
noise condition with white Gaussian background noise,
and impulse probability of occurrence p = 0.1.

The tracking performance of the MVC algorithm is shown in
Figs. 2-4 for µ = 0.08, σ 2

θ = 10−4 and τ = 1. These figures
depict the EMSE learning curves for true unknown parameter
and its estimation for different measurement noises.

From these figures, it is clear that for a suitably chosen
step-size parameter, the MVC algorithm can track the
variation of the unknown parameter.

FIGURE 4. The EMSE learning curve (top) and estimation performance
(bottom) for impulsive noise.

FIGURE 5. Theoretical and simulated EMSE values for Gaussian
measurement noise.

FIGURE 6. Theoretical and simulated EMSE values for uniform
measurement noise.

To verify the accuracy of the derived expression for EMSE
in (24) and (33), we compare the theoretical EMSE values
with those of the simulated ones for different values of
the step-size parameter. To this end, the theoretical EMSE
values are first generated using expressions in (24) and (33).
Derivation of a closed-form expression for every required
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FIGURE 7. Theoretical and simulated EMSE values for impulsive
measurement noise.

FIGURE 8. Steady-state EMSE values for different values of σ2
θ

and
different noise distributions.

moment in (24) and (33) is not mathematically tractable.
So, to obtain an accurate estimate for each required moment
in (24) and (33), the ensemble averages of over 5000 trails
have been replaced with statistical expectations. The MVC
algorithm is carried out for 2000 iterations to reach its
steady and then averages the last 100 samples to obtain
simulated values. Figs. 5-7 show the theoretical and simulated
EMSE values regarding the step-size parameter for different
measurement noises.

The simulation results are in close agreement with those
by the theoretical analysis, confirming the accuracy of the
derived expressions for the EMSE in (24) and (33).Moreover,
regardless of measurement noise distribution, the EMSE

FIGURE 9. The EMSE learning curve for different values of τ for impulsive
noise.

curve is not a monotonic increasing function of the step-size
parameter. This result emphasizes the importance of selecting
an appropriate step-size value to achieve optimal tracking and
convergence in non-stationary scenarios.

The effect of θ on the steady-state tracking performance
of the MVC algorithm has been considered in Fig. 8, where
the steady-state EMSE values for different values of σ 2

θ and
different noise distributions are plotted. From Fig. 8 it is
seen that for all noise distribution, when σ 2

θ (as a source of
noise) increases, the tracking ability of the MVC algorithm
decreases, which in turn, increases the steady-state value.

Fig. 9 shows the effect of τ on the learning rate and
steady-state tracking performance of the MVC algorithm
for impulsive noise distribution have been considered. From
Fig. 9 we can see that a larger value of τ yields a lower
steady-state misalignment but a slower convergence rate, and
vice versa.

V. CONCLUSION
In conclusion, the tracking analysis of adaptive filter with
maximum Versoria criterion provides valuable insights
into its performance in non-stationary environments. The
analysis, based on the energy conservation approach, allows
us to understand the behavior of these filters and optimize
their performance by selecting an appropriate step-size. The
derived theoretical expressions for the steady-state EMSE
provide a framework for evaluating the performance of
adaptive filters in both Gaussian and non-Gaussian noise
environments. The simulation results validate the analysis
and highlight the importance of considering the noise
characteristics in optimizing the filter’s performance.

APPENDIX A CALCULATION OF THE TERMS IN (14)
To calculate 1⃝, it should be noted that w̃n−1 can be rewritten
as

w̃n−1 = wo
n−1 − wn−1 =

wo
−1 +

n−1∑
j=0

θ j

 − wn−1 (A1)
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So we have

E
[
w̃T
n−1θn

]
=E

wo
−1+

n−1∑
j=0

θ j

T

θn

 − E[wn−1θn] (A2)

Note that, E[θnθ t ] = 0 for t < n so we have

E

wo
−1 +

n−1∑
j=0

θ j

T

θn

 = 0 (A3)

Moreover, wn−1 is independent of θn, which means that
E[wn−1θn] = 0. Similarly, we have 2⃝ = 0.
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