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Abstract

We demonstrate that a large class of discrete choice models of demand can be approximated by real

analytic demand models. We obtain this result by combining (i) a novel real analytic property of

the mixed logit and the mixed probit models with any distribution of random coefficients and (ii)

an approximation property of finite mixtures of Gumbel and Gaussian distributions. To illustrate

some of the implications of this result, we discuss how real analyticity facilitates nonparametric

and semi-nonparametric identification, extrapolation to hypothetical counterfactuals, numerical

implementation of demand inverses, and numerical implementation of the Maximum Likelihood

Estimator.
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1 Introduction

Real analyticity is an extreme form of smoothness of a function’s dependence on its arguments: a real

analytic function f(x) is an infinitely differentiable function whose Taylor series at any point x0 in

its domain converges to f(x) for x in a neighborhood of x0 (Rudin, 1976). Intuitively, a real analytic

function can be represented as a power series (i.e., an infinite degree polynomial) and manipulated in

the same way as polynomials within an open interval of convergence. In the context of discrete choice

models of demand, the restrictions imposed by real analyticity can limit the realism of a demand

model (e.g., ruling out kinks and discontinuities) but, when economically affordable, they can also

facilitate econometric implementation. While some recent papers have relied on the high-level use of

real analyticity for specific identification (Allen and Rehbeck, 2020; Fox and Gandhi, 2016; Fox, Kim,

Ryan, and Bajari, 2012; Wang, 2023) and estimation (Wang, 2023) results, it is unclear how broad the

class of real analytic discrete choice models of demand is and in which sense the restrictions imposed

by real analyticity can be econometrically and/or numerically advantageous.

We consider a class of discrete choice models of demand with an index structure in the indirect

utilities (possibly non-linear), with any distribution of random coefficients, and—in line with Berry,

Levinsohn, and Pakes (1995)—which can include endogenous regressors. In the first part of the paper,

we demonstrate that this class of models has a dense real analytic subset: any demand model in this

class (which needs not be real analytic) can be approximated uniformly and arbitrarily well by a real

analytic demand model from the same class. We obtain this result by showing that the mixed logit

(McFadden and Train, 2000) and the mixed probit (Hausman and Wise, 1978) are real analytic for any

distribution of random coefficients, and then by relying on an approximation property of finite mixtures

of Gumbel and Gaussian distributions (Nguyen, Nguyen, Chamroukhi, and McLachlan, 2020).

In prior work, Fox, Kim, Ryan, and Bajari (2012) showed that the mixed logit model with random

coefficients defined over a compact support is real analytic. This compact support condition however

rules out distributions of random coefficients such as the normal and the log-normal, which are com-

monly used by applied researchers. We generalize this result and demonstrate that the mixed logit is

real analytic for any distribution of random coefficients. Differently, we are not aware of prior work

showing that the mixed probit is real analytic: for example, Stinchcombe and White (1998) state

(without proof) that the normal cumulative distribution function is not supposed to be real analytic

(first sentence after Theorem 3.10, pp. 305). We instead prove that also the mixed probit model is

real analytic for any distribution of random coefficients. In addition, we further show that any discrete

choice model of demand belonging to our class (not necessarily a mixed logit or a mixed probit) can be
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approximated uniformly and arbitrarily well by a real analytic finite mixture of mixed logits and/or

mixed probits.

The class of discrete choice models of demand we consider is economically “broad” in the sense

of McFadden and Train (2000). In their famous “possibility result,” McFadden and Train (2000)

(Theorem 1, pp. 451) showed that any random utility model within a large class can be approximated

by a flexible mixed logit model belonging to the class we consider. Our result then implies that one

can approximate uniformly and arbitrarily well any such mixed logit approximant by a real analytic

demand model, therefore uniformly approximating any random utility model in the class considered

by McFadden and Train (2000). In other words, when dealing with any random utility model in the

class considered by McFadden and Train (2000), one can restrict attention to a subset of real analytic

demand models without any loss of precision.

In the second part of the paper, we discuss the econometric advantages of real analytic demand

models in terms of nonparametric and semi-nonparametric identification, extrapolation to hypothetical

counterfactuals, numerical implementation of demand inverses in the context of aggregate market-level

data, and numerical implementation of the Maximum Likelihood Estimator (MLE) in the context of

disaggregate individual-level data.

In order to reduce the potential for misspecification, researchers are often interested in the non-

parametric identification of discrete choice models of demand (Berry and Haile, 2014, 2018). This

allows demand models to be robust with respect to a broad range of consumer preferences and behav-

iors, including complex substitution patterns, continuous quantity choices, complementarities across

products, and consumer inattention, and consequently it allows researchers to perform more realistic

counterfactual simulations, such as hypothetical mergers or the introduction of new taxes (Compiani,

2022). Without further restrictions, nonparametrically identified demand models can only be used

to predict counterfactual outcomes within the support spanned by the data. However, it is possible

for counterfactual outcomes of interest to fall outside the support of the data, e.g., equilibrium prices

that significantly increase after a hypothetical merger. Identifying such counterfactual outcomes is an

extrapolation exercise for which nonparametric identification may not be sufficient without additional

restrictions on the demand model. We show that real analyticity implies a form of identification

extensibility that overcomes this challenge.

Real analyticity also facilitates the semi-nonparametric identification of discrete choice models of

demand. In this approach, the researcher assumes, for example, a mixed logit or a mixed probit model,

and then wishes to identify the distribution of random coefficients nonparametrically. Without real

analyticity, the semi-nonparametric identification of demand models usually requires covariates with
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large support (restrictive for example with price variables, known to be positive) and prevents the

inclusion of interactions among covariates (Fox and Gandhi, 2016; Fox, Kim, Ryan, and Bajari, 2012;

Masten, 2018). These standard assumptions, in some cases, limit the economic content of discrete

choice models of demand. For example, the approximation result by McFadden and Train (2000)

crucially relies on the inclusion of interactions among covariates (see pp. 466). The identification

results by Fox, Kim, Ryan, and Bajari (2012), however, explicitly rule out interactions among covari-

ates (Assumptions 2 and 3, pp. 207-208). Differently, by generalizing the mixed logit identification

result in Wang (2023) to real analytic discrete choice models of demand, we show that the distribu-

tion of random coefficients is nonparametrically identified also in the presence of interactions among

covariates.

In the context of aggregate market-level data, both the parametric BLP (Berry, Levinsohn, and

Pakes, 1995) and the semi-nonparametric approach (Wang, 2023) require the computation of a de-

mand inverse for each market and at each iteration of the Generalized Method of Moments (GMM)

minimization. Inversion can be numerically challenging (Knittel and Metaxoglou, 2014), motivating

different numerical approaches such as fixed point algorithms (Berry, Levinsohn, and Pakes, 1995; Lee

and Seo, 2016), MPEC (Dubé, Fox, and Su, 2012a; Su and Judd, 2012), and the use of an approximate

inverse (Salanié and Wolak, 2019). The real analyticity of the demand model mitigates this challenge

by guaranteeing the desirable numerical performance of Newton-Raphson algorithms.

As is well known, the Newton-Raphson algorithm can achieve quadratic convergence to the unique

solution giving rise to the demand inverse when the starting value of the iterations is “close” to the

unique solution and the demand function is twice continuously differentiable (Lee and Seo, 2016).

However, the extent of the proximity of the starting value to the unique solution typically depends on

knowledge of the demand model that is not available to the researcher before estimation. In addition,

numerical convergence is usually determined by the researcher, who must choose some tolerance within

which to stop the iterations. Unfortunately, though, there is little theoretical guidance on how to

choose such level of tolerance, which is often calibrated using heuristic rules of thumb. In fact,

despite achieving numerical convergence on the basis of such rules of thumb, it is still possible for

the Newton-Raphson algorithm to be divergent. Unguided choices of starting values and of stopping

criteria represent a challenge for the numerical convergence of Newton-Raphson algorithms to the

unique solution giving rise to the demand inverse (Conlon and Gortmaker, 2020; Dubé, Fox, and Su,

2012a; Lee and Seo, 2016).

Building on Smale’s alpha-theory (Smale, 1986), we show that the real analyticity of the demand

model leads to simple and verifiable sufficient conditions that do not require prior knowledge of the
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parameters one is trying to estimate and that guarantee the supra-exponential convergence of the

Newton-Raphson algorithm to the unique solution giving rise to the demand inverse.1 These verifiable

sufficient conditions are simple to compute, do not require the implementation of any Newton-Raphson

iteration, and provide theoretical guidance for the selection of robust starting values and stopping

criteria that guarantee the quick convergence of the Newton-Raphson algorithm. In Monte Carlo

simulations, we investigate the practical performance of these sufficient conditions both when used in

stand-alone Newton-Raphson algorithms and when embedded in a hybrid algorithm that combines

fixed point and Newton-Raphson iterations (Iskhakov, Lee, Rust, Schjerning, and Seo, 2016; Rust,

1987). We show that the proposed hybrid algorithm is guaranteed to converge from any starting value

and that its numerical performance in the context of demand inverses is superior to those of both

stand-alone fixed point and stand-alone Newton-Raphson algorithms.2

In the context of demand estimation with disaggregate individual-level data, researchers often rely

on (parametric) MLE (Dubois, Griffith, and O’Connell, 2020; Goolsbee and Petrin, 2004; Train and

Winston, 2007). For reasons similar to those discussed above, the real analyticity of the demand

model (and so of the log-likelihood function) also guarantees the desirable numerical performance

of Newton-Raphson algorithms for the implementation of the MLE. The practical performance of

Newton-Raphson algorithms to implement the MLE is subject to the same challenges mentioned

above: the appropriate choices of starting values and of stopping criteria often depends on knowledge

of the demand model one is trying to estimate. As for the computation of demand inverses, we show

that the real analyticity of the log-likelihood function gives rise to simple and verifiable sufficient

conditions for the supra-exponential convergence of Newton-Raphson algorithms to a local maximum

of the log-likelihood function that do not require any prior knowledge of the parameters one is trying

to estimate. By speeding up the computation of all local maxima of the log-likelihood function, these

sufficient conditions also prove useful in mitigating the consequences of multiplicity of local maxima

in the numerical implementation of the MLE.

Some caution is needed in interpreting the econometric implications of real analyticity discussed

in the second part of the paper, as they apply directly only to the real analytic demand models and

to the real analytic approximants described in the first part of the paper, but not necessarily to more

general demand models that are not real analytic, e.g., demand models that exhibit discontinuities

and kinks (Smith, 1935). While in this paper we show that a large class of these more general demand
1As shown in Rheinboldt (1988), the supra-exponential rate is of the same order as the rate of quadratic convergence.
2Stand-alone fixed point algorithms based on contraction mappings are guaranteed to converge to the unique solu-

tion from any starting value, but at a slower rate than the proposed hybrid algorithm. Stand-alone Newton-Raphson
algorithms may instead fail to converge from starting values that are not in the basin of attraction of the unique solution.
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models can be approximated uniformly and arbitrarily well by real analytic demand models, it is not

known whether some form of “transitivity” holds between the real analytic approximants and the

targets of approximation, and so whether any of the econometric implications of real analyticity also

hold for the approximated models.

The rest of the paper is organized as follows. Section 2 introduces the notation and the class

of discrete choice models of demand we consider. Section 3 defines the concept of real analyticity

and presents the main results of the paper. Section 4 discusses the implications of real analyticity

for nonparametric and semi-nonparametric identification. Section 5 discusses the implications of real

analyticity for the numerical implementation of demand inverses and of the MLE. Section 6 reports

some Monte Carlo simulations related to the results from Section 5. Section 7 concludes the paper.

All the proofs, intermediate results, and details about the Monte Carlo simulations are reported in

the Appendix. The MATLAB code used to perform the Monte Carlo simulations is available on the

authors’ webpages.

2 A Class of Demand Models

In this section, we describe the class of discrete choice models of demand studied in the paper.

Each individual i in cell t (e.g., a time period, a market, or a combination of both) is observed to

choose an alternative from choice set {0, 1, ..., J}, where 0 denotes the outside option. Individual i’s

indirect utility from choosing alternative j = 1, ..., J in t is:

Uijt = gj(xjt, di;βi) + ξjt + εijt, (1)

where gj is a known alternative-specific function of j’s observed K-dimensional characteristics xjt
(e.g., price), individual i’s observed demographics di (e.g., gender, income, education), and a finite-

dimensional vector of individual-specific random coefficients βi (e.g., price coefficient); ξjt is an unob-

served (j, t)-specific intercept common to all individuals in cell t (e.g., demand shock at the product-

market level), and εijt is an idiosyncratic error term. Individual i’s indirect utility from choosing the

outside option 0 in t is normalized to εi0t:

Ui0t = εi0t.

Remark 1. Our results apply to both cross-sectional and panel data. Each individual can either be

observed only once making a choice from a specific cell t (cross-sectional data) or repeatedly making
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choices over several t’s (panel data).

Remark 2. We place no restriction on (ξjt, xjt, di), which can be of any type (e.g., discrete or con-

tinuous, with unbounded or bounded support) and, in line with Berry, Levinsohn, and Pakes (1995),

allow for the possibility of correlation between ξjt and xjt (e.g., price endogeneity).

Remark 3. The function gj(xjt, di;βi) does not impose any restriction on the interactions among its

arguments and only needs to be known up to the finite-dimensional vector of random coefficients βi.

For example, as required by the approximation result in McFadden and Train (2000), one could use

sieves or polynomials to specify a flexible linear index gj(xjt, di;βi) = Xj(xjt, di)βi with Xj(xjt, di) a

known vector of interactions among the elements of (xjt, di).

We assume that in each cell t, the idiosyncratic errors (εijt)Jj=0 are distributed according to G and

independently of all other components of (Uijt)Jj=0. Moreover, conditional on the observed demograph-

ics di, βi is distributed according to F (·; di) and independently of (ξjt, xjt)Jj=1 and (εijt)Jj=0. Then,

individual i’s choice probability of j in t is:

pijt = σj(ξt;Xt, F, di, G)

=
∫

1{Uijt > Uijr,∀r 6= j}dF (βi; di)dG(εi0t, ..., εiJt),
(2)

where ξt = (ξjt)Jj=1, Xt = (xjt)Jj=1, and σj(·) is the choice probability function of j.

Discrete choice model (2) can be used in most settings of interest for applied researchers, including

disaggregate individual-level data (Dubois, Griffith, and O’Connell, 2020; Goolsbee and Petrin, 2004;

Train and Winston, 2007), aggregate market-level data (Berry, Levinsohn, and Pakes, 1995; Petrin,

2002; Wang, 2023), and combinations of both (Berry, Levinsohn, and Pakes, 2004). With aggregate

market-level data, the researcher only observes market shares (pjt)Jj=1, rather than individual choices,

and the distribution of demographics within each market t, Πt(di). In this case, σj(ξt;Xt, F, di, G) is

typically further integrated over di, so that pjt =
∫
σj(ξt;Xt, F, di, G)dΠt(di).

3 Real Analyticity

In this section, we first define the concept of real analyticity. We then show that when the distribution

G of the J + 1 idiosyncratic errors (εijt)Jj=0 is either i.i.d. Gumbel or non-degenerate multivariate

Gaussian, the resulting mixed logit or mixed probit model in (2) is real analytic. Finally, we state

our main real analytic approximation result: any demand model (2) (i.e., for any distributions F and
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G) can be approximated arbitrarily well by a real analytic finite mixture of mixed logit and/or mixed

probit models as in (2).

We use ‖ · ‖ to refer to the Euclidean norm and ‖ · ‖Lp to the Lp norm of a function for p > 0.

Moreover, we use F to denote the set of all possibles distributions F .

Definition: Real Analyticity. We define σj(ξt;Xt, F, di, G), j = 1, ..., J , to be real analytic with

respect to ξt at ξt0 (and with respect to Xt at Xt0) if:

1. σj(ξt;Xt, F, di, G) is infinitely differentiable with respect to ξt at ξt0 (and with respect to Xt at

Xt0);

2. There exists an open neighborhood of ξt0 (and Xt0) such that the Taylor series of

σj(ξt;Xt, F, di, G) at ξt0 (and Xt0) converges to σj(ξt;Xt, F, di, G) for any ξt (and Xt) in this

neighborhood.3

When a function is real analytic with respect to one of its arguments at each point in the corresponding

domain, we say that the function is real analytic with respect to this argument in the domain. The

first requirement holds whenever the distribution G is sufficiently smooth. Violations happen, for

example, when the distribution function G exhibits jumps, so that the resulting demand function is

discontinuous, or again when G has kinks, so that the demand function is non-differentiable (even

though potentially continuous).4 Despite these important exceptions, the first requirement is trivially

satisfied by both the mixed logit and the mixed probit models. In contrast, even for these two relatively

simple models, it is not trivial to verify whether the second requirement holds, mainly because of the

unconstrained distribution of random coefficients F we consider.

To understand the nature of this challenge, suppose G is i.i.d. Gumbel, so that model (2) is a mixed

logit. Denote by Supp(F ) the support of F . The simplest possible case occurs when Supp(F ) = {β},

i.e., Pr(βi = β) = 1. Then, (2) further simplifies to a logit model:

pijt = σj(ξt;Xt, F, di, G)

= exp{ξjt + gj(xjt, di;β)}
1 +∑J

j′=1 exp{ξj′t + gr(xj′t, di;β)}
.

(3)

Because exp{ξj′t + gr(xj′t, di;β)} is real analytic with respect to ξj′t ∈ R for j′ = 1, ..., J , then

the real analyticity of σj(ξt;Xt, F, di, G) holds trivially. Similarly, when F has finite support, say
3Following Rudin (1976)’s Theorem 8.4 (pp. 176), this definition of real analyticity is equivalent to Rudin (1976)’s

definition based on power series (pp. 172).
4Smith (1935) provides an example of a discontinuous demand function, where the discontinuities are generated by

the presence of marginal buyers.
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Supp(F ) = {β1, ..., βM}, (2) is a mixture of M logit models each with βi = βm, m = 1, ...,M .

Because each logit model is real analytic and has positive radius of convergence at any ξt ∈ RJ ,

denoted by rm(ξt;G) > 0, then the finite mixture also has positive radius of convergence at ξt,

r(ξt;F,G) := infm=1,...,M rm(ξt;G) > 0. For ‖ξ′t−ξt‖ < r(ξt;G), the Taylor series of σj(ξ′t;Xt, F, di, G)

at ξt converges to σj(ξ′t;Xt, F, di, G) and the second requirement is thus satisfied.

When Supp(F ) is bounded, i.e., βi is bounded, intuitively, rm(ξt;F,G) is a continuous function of

m in the closure of Supp(F ). Because rm(ξt;F,G) is always positive, then its minimum in the closure

of Supp(F ) is guaranteed to be positive and therefore r(ξt;F,G) = infm∈Supp(F ) rm(ξt;G) > 0. As a

result, the mixed logit with bounded random coefficients is also real analytic.

However, when Supp(F ) is unbounded, e.g., F is Gaussian with Supp(F ) = RJ or log-normal with

Supp(F ) = RJ+, the argument above does not apply. Even though each logit model in the mixture

has positive radius of convergence rm(ξt;F ) > 0, it is not straightforward to see that their infimum in

Supp(F ), r(ξt;F,G), is still positive. The following proposition deals with this challenge by showing

that r(ξt;F,G) can be uniformly bounded away from zero by a constant that depends neither on

ξt ∈ RJ nor on the support of F , so that the radius of convergence of both the mixed logit and the

mixed probit with any distribution F is always positive at any ξt.

Theorem 1. For j = 1, ..., J , σj(ξt;Xt, F, di;G) is real analytic with respect to ξt ∈ RJ and

inf
ξt∈RJ ,F∈F

r(ξt;F,G) > 0 when

(a) (mixed logit) G is i.i.d. Gumbel, or

(b) (mixed probit) G is multivariate Gaussian.

In particular, inf
ξt∈RJ ,F∈F

r(ξt;F,G) = +∞ when G is multivariate Gaussian.

Theorem 1(a) highlights that the radius of convergence of mixed logit (2) for given F at ξt depends

neither on ξt nor on F . Theorem 1(b) shows that the real analyticity of mixed probit (2) is even

stronger, with the radius of convergence being infinity. This stronger result is a consequence of tighter

bounds on the higher-order derivatives of the mixed probit function with respect to ξt, which alleviate

the requirement on the size of the radius of convergence.5

3.1 Real Analytic Approximations

In this section, we build on Theorem 1 to construct a set of real analytic demand models (2) that

combine mixed logit and mixed probit models and that can be used to approximate arbitrarily well
5We thank an anonymous referee for pointing out the importance of these bounds and their potential usefulness in

strengthening several results in this paper.
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any demand model (2), i.e., not necessarily a real analytic demand model.

We start by defining a set of demand models (2) to which we can extend the real analyticity from

Theorem 1 and that will serve as approximants. First, we define a set of density functions generated

by finite mixtures of density h: RJ+1 → R+:

Mh =
{∑m

i=1 ci
1

ςJ+1
i

h

(
(εj)Jj=0−µi

ςi

)
,
∑m
i=1 ci = 1, ci > 0, µi ∈ RJ+1, ςi > 0, 1 ≤ i ≤ m;m ∈ N

}
. (4)

When h = φ is a Gaussian density, Mφ defines the family of Gaussian mixtures generated by φ. When

h = ψ is the i.i.d. Gumbel density, Mψ defines the family of i.i.d. Gumbel mixtures generated by ψ.

We also define a more general family of mixture distributions which includes both Mφ and Mψ:

Mφ + Mψ = {rg1 + (1− r)g2, r ∈ [0, 1], g1 ∈Mφ, g2 ∈Mψ}. (5)

To simplify exposition, we use the notation G ∈Mh or F ∈Mh to refer to the fact that the density

function corresponding to G or to F belongs to Mh.

Second, we define a family of distributions Fe whose absolute moments can increase at most at

an exponential rate:

Fe = {F : ∃A > 1 such that any α = (α1, ..., αK)th absolute moment of F, mF
α ≤ A

∑K

k=1 αk}, (6)

where mF
α :=

∫ ∏K
k=1 |βk|αkdF (β1, ..., βK). Leading examples in Fe are distributions with bounded

support, i.e., there exists some A > 1 such that |βik| ≤ A almost surely for k = 1, ...,K. Similarly, we

define a family of distributions whose absolute moments can increase at a rate that is the product of

an exponential and the squared root of a factorial rate:

Fe+ =
{
F : ∃A > 1 such that any α = (α1, ..., αK)th absolute moment of F, mF

α ≤ A
∑K

k=1 αk
√∏K

k=1 αk!
}
. (7)

It is clear that Fe ⊂ Fe+. Because the moments of the Gaussian distribution increase at a double

factorial rate, the multivariate Gaussian distribution with βik
i.i.d.∼ N(0, 1) belongs to Fe+ (but not

to Fe).6 Finally, we define the set of density functions generated by finite mixtures of density fe+,

6To see this, denote by Φ the distribution function of the multivariate Gaussian with βik
i.i.d.∼ N(0, 1). Note that the

α = (α1, ..., αK)th absolute moment of Φ is mΦ
α =

∏K

k=1(αk!!)
(

1{αk is odd}
√

2/π + 1{αk is even}
)
, where the double

factorial αk!! = (αk)(αk − 2)(αk − 4) · · · 2 if αk is even or αk!! = (αk)(αk − 2)(αk − 4) · · · 1 if αk is odd. For any even
αk, αk! = αk!!× (αk − 1)!! = (αk!!)2

(
1 + 1

αk−1

)
× ...× 2 ≤ (αk!!)22αk/2. For any odd αk, αk! ≤ (αk!!)2(3/2)(αk−1)/2 ≤

(αk!!)22αk/2. As a result, mΦ
α ≤

√
2
∑K

k=1
αk/2∏K

k=1 αk! and Φ ∈ Fe+.
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where fe+ is the density corresponding to the distribution function Fe+ ∈ Fe+:

Mfe+ =
{∑m

i=1 ci
1
ςKi
fe+

(
(βk)Kk=1−µi

ςi

)
,
∑m
i=1 ci = 1, ci > 0, µi ∈ RK , ςi > 0, 1 ≤ i ≤ m;m ∈ N

}
. (8)

Corollary 1.

(a) Suppose that G ∈ Mφ + Mψ in (5). Then, (σj(ξt;Xt, F, di;G))Jj=1 is real analytic with respect

to ξt ∈ RJ and inf
ξt∈RJ ,F∈F

r(ξt;F,G) > 0.

(b) Suppose that G ∈ Mφ + Mψ in (5), gj(xjt;βi) = xjtβi, and F ∈ Fe in (6).

Then, (σj(ξt;Xt, F, di;G))Jj=1 is real analytic with respect to (ξt, Xt) ∈ RJ × RJ×K and

inf
ξt∈RJ ,Xt∈RJ×K

r(ξt, Xt;G) > 0, where r(ξt, Xt;G) = infm∈Supp(F ) rm(ξt, Xt;G).

(c) (Mixed probit) Suppose that G ∈Mφ in (4), gj(xjt;βi) = xjtβi, and F ∈Mfe+ in (8) with Fe+ ∈

Fe+ in (7). Then, (σj(ξt;Xt, F, di;G))Jj=1 is real analytic with respect to (ξt, Xt) ∈ RJ × RJ×K

and inf
ξt∈RJ ,Xt∈RJ×K

r(ξt, Xt;G) > 0.

Corollary 1(a) extends Theorem 1 to any finite mixture of mixed logit and mixed probit models (2).

Focusing on the linear index specification, Corollaries 1(b) and 1(c) extend real analyticity with respect

to ξt to real analyticity with respect to (ξt, Xt). Because of the stronger real analytic property of the

mixed probit (relative to the mixed logit), Corollary 1(c) extends real analyticity with respect to Xt

to any finite mixture of mixed probit models (2) with moments of the random coefficients increasing

at a faster rate, such as the squared root of a factorial rate (e.g., the Gaussian distribution or mixtures

of it).

An important implication of Corollary 1 is that any demand model (2)—not necessarily real

analytic—can be approximated, in terms of ξt (and Xt), by a sequence of real analytic demand

models. This is important because, while the real analytic demand models in Corollary 1 are subject

to restrictions (in terms of G and, in Corollaries 1(b) and 1(c), also F and gj(xjt;βi)), finite mixtures

of these preserve real analyticity and can approximate any more general demand model (2) that does

not need to satisfy the restrictions of Corollary 1. As an example, consider a finite mixture of mixed

probit models. According to Nguyen, Nguyen, Chamroukhi, and McLachlan (2020) (their Theorem

5(f)), for any distribution G with density g, we can find a sequence of distributions Gφm ∈ Mφ such
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that ‖g − gφm‖L1 → 0 as m→∞. Then,

sup
j,ξt

∣∣σj(ξt;Xt, F, di, G)− σj(ξt;Xt, F, di, G
φ
m)
∣∣ ≤ sup

j,ξt

∫
1{Uijt > Uijr,∀r 6= j}dF (βi; di)

∣∣g(ε)− gφm(ε)
∣∣ dε

≤MF ‖g − gφm‖L1

→ 0,

(9)

whereMF = max
{

1, supβ∈B
dF (β;di)

dβ

}
and B is the subset of the support of βi that excludes any mass

point. According to Corollary 1(a), σj(ξt;Xt, F, di, G
φ
m) is real analytic with respect to ξt ∈ RJ . We

can then obtain a uniform approximation of σj(ξt;Xt, F, di, G) by a sequence of σj(ξt;Xt, F, di, G
φ
m)

that are real analytic with respect to ξt ∈ RJ . Similarly, we can achieve such uniform approximation

jointly in terms of (ξt, Xt) on the basis of the real analytic demand models in Corollaries 1(b) and

1(c). The next proposition formalizes these approximation results.

Theorem 2. For any G and F with densities g and f defined in RJ+1 and RK , respectively, there exists

a sequence of real analytic demand systems {σ(ξt;Xt, F, di, Gm)}+∞m=1 and {σ(ξt;Xt, Fm, di, Gm)}+∞m=1

with Gm ∈Mφ + Mψ in (5) and Fm ∈ Fe in (6) such that

(a) lim
m→∞

supj,ξt |σj(ξt;Xt, F, di, G)− σj(ξt;Xt, F, di, Gm)| = 0.

(b) Suppose gj(xjt;βi) = xjtβi. Then lim
m→∞

supj,ξt,Xt |σj(ξt;Xt, F, di, G)− σj(ξt;Xt, Fm, di, Gm)| =

0.

(c) (Mixed probit) Suppose gj(xjt;βi) = xjtβi. Then for any G and F with densities g and f

defined in RJ+1 and RK , respectively, there exists a sequence of real analytic demand systems

{σ(ξt;Xt, Fm, di, Gm)}+∞m=1 with Gm, Fm ∈Mφ in (4) such that

lim
m→∞

sup
j,ξt,Xt

|σj(ξt;Xt, F, di, G)− σj(ξt;Xt, Fm, di, Gm)| = 0.

Theorem 2(a) presents a uniform approximation in terms of ξt by the real analytic demand models

in Corollary 1(a), while Theorems 2(b) and 2(c) restrict attention to linear indices and characterize

uniform approximations in terms of (ξt, Xt) by the real analytic demand models in Corollaries 1(b)

and 1(c), respectively. On the one hand, the approximants in Theorems 2(b) and 2(c) rely on the

same linear indices as the demand models to be approximated. On the other hand, the two results

rely on distinct families of distributions (Fe and Mφ, respectively) for the approximation in terms of

Xt: Gm and Fm in Theorem 2(b) belong to different families, while they are both Gaussian mixtures

in Theorem 2(c).
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An immediate implication of the joint approximations in terms of (ξt, Xt) in Theorems 2(b) and

2(c) is that any Random Utility Model (RUM) in the class considered by McFadden and Train (2000)

(see paper for details) can be approximated arbitrarily well by a real analytic demand model.

Remark 4. For any RUM in the class considered by McFadden and Train (2000), there exists a

sequence of real analytic demand models as defined in Theorem 2(b) (or 2(c)) that uniformly converges

to it in terms of (ξt, Xt) ∈ RJ × RJ×K .

Remark 4 builds on McFadden and Train (2000), who show that any RUM can be approximated in

terms of (ξt, Xt) by a mixed logit model with linear indices (including polynomials of Xt, see Remark

3 above) and a flexible F . Note that the mixed logit approximant proposed by McFadden and Train

(2000) is more flexible in terms of F than the real analytic demand models considered in Corollaries

1(b) and 1(c), and thus its real analyticity does not follow from these. However, using Theorem 2(b)

(or 2(c)) and the fact that polynomials of Xt are also real analytic, one can approximate uniformly

and arbitrarily well any such flexible mixed logit approximant by a real analytic demand model with

the same index structure, therefore uniformly approximating the original RUM (see Appendix C).

To summarize, Theorem 2 and Remark 4 imply that, when dealing with demand models generated

by (2) or any RUM in the class considered by McFadden and Train (2000), one can restrict attention

to a subset of real analytic demand models without any loss of precision. In the reminder of the

paper, we discuss the econometric advantages of dealing with such real analytic demand models in

terms of both identification and numerical implementation. To facilitate exposition, we suppress from

our notation di when referring to σj and the subscript i when referring to pijt.

4 Implications for Identification

In this section, we discuss how real analyticity facilitates the nonparametric and semi-nonparametric

identification of demand model (2) with linear indices gj(xjt;βi) = xjtβi. In this case, (2) can be

equivalently expressed as σj(δt;Xt, F,G), a function of the J-dimensional vector of average utilities

δt = (δjt)Jj=1 with jth element δjt = xjtβ + ξjt, where β is the population average of the vector of

random coefficient βi and βi = β + ∆βi. Define σ(δt;Xt, F,G) = (σj(δt;Xt, F,G))Jj=1. Analogously,

the real analyticity of σ(δt;Xt, F,G) with respect to ξt (and Xt) can be equivalently restated with

respect to δt (and Xt).
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4.1 Nonparametric Identification

Researchers are often interested in identifying σ(δt;Xt, F,G) as a function of (δt, Xt), what can be re-

ferred to as the nonparametric approach (Berry and Haile, 2014, 2018). In this approach, one wishes to

remain agnostic about the functional forms of G and F , so to reduce the potential for misspecification.

This flexibility allows demand model (2) to subsume a broad range of consumer preferences and behav-

iors, including complex substitution patterns, continuous quantity choices, complementarities across

products, or consumer inattention, and consequently it allows researchers to perform more realistic

counterfactual simulations, e.g., hypothetical mergers or the introduction of new taxes (Compiani,

2022).

The real analyticity of demand model (2) implies a powerful form of identification extensibility,

which is crucial to enable researchers to perform hypothetical counterfactuals on the basis of the non-

parametric approach. Without further restrictions on σ(δt;Xt, F,G), the nonparametric identification

of σ(δt;Xt, F,G) in the support of (δt, Xt) spanned by the data, Ω, only allows the researcher to pre-

dict counterfactual outcomes within the same support. However, it is possible for some counterfactual

outcomes to fall outside of Ω, e.g., new equilibrium prices that significantly increase after a hypothet-

ical merger or the introduction of a new tax. Identifying such counterfactual outcomes is essentially

an extrapolation exercise for which the nonparametric identification of σ(δt;Xt, F,G) in Ω may not be

sufficient in the absence of additional restrictions on σ(δt;Xt, F,G).7 The identification extensibility

due to real analyticity proved in the next proposition overcomes this challenge: the nonparametric

identification of a real analytic σ(δt;Xt, F,G) is sufficient for any extrapolation outside of Ω.

Corollary 2 (Identification extensibility). Denote by Ω the support of (δt, Xt). Suppose that G ∈

Mφ + Mψ in (5) and that Ω contains an open subset.

(a) Denote by Ωδ the domain of δt. Then, for any Xt,

σ(δt;Xt, F,G) is identified for δt ∈ Ωδ =⇒ σ(δt;Xt, F,G) is identified for δt ∈ RJ .

(b) Suppose F ∈ Fe in (6). Then,

σ(δt;Xt, F,G) is identified for (δt, Xt) ∈ Ω =⇒ σ(δt;Xt, F,G) is identified for (δt, Xt) ∈ RJ×RJ×K .
7Differently, the semi-nonparametric approach we discuss below in section 4.2 does not suffer from this extrapolation

problem: once F is identified, one can evaluate demand model (2) at any value of (δt, Xt).
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(c) Suppose G,F ∈Mφ in (4). Then,

σ(δt;Xt, F,G) is identified for (δt, Xt) ∈ Ω =⇒ σ(δt;Xt, F,G) is identified for (δt, Xt) ∈ RJ×RJ×K .

Corollary 2 holds due to two properties highlighted in Theorem 1 and Corollary 1. First, because

σ(δt;Xt, F,G) is real analytic for any (δt, Xt) ∈ RJ × RJ×K , then for any ‖(δ′t, X ′t) − (δt, Xt)‖ <

r(δt, Xt;F,G), where r(δt, Xt;F,G) is the radius of convergence at (δt, Xt), we have:

σ(δ′t;X ′t, F,G) = σ(δt;Xt, F,G)

+
∞∑
L=1

∑
∑J(P+1)

k=1 αk=L

∏J
j=1(δ′jt − δjt)αj

∏
j≤J ;p≤P (xjp′t − xjpt)αpJ+j∏J(P+1)
k=1 αk!

J∏
j=1

∂
αj
δj

∏
j≤J ;p≤P

∂
αpJ+j
xjp σ(δt;Xt, F,G),

(10)

or, in words, the Taylor series of σ(δ′t;X ′t, F,G) at (δt, Xt) converges to σ(δ′t;X ′t, F,G). Be-

cause σ(δt;Xt, F,G) is identified for (δt, Xt) ∈ Ω, we then identify all its derivatives∏J
j=1 ∂

αj
δj

∏
j≤J ;p≤P ∂

αpJ+j
xjp σ(δt;Xt, F,G) for (δt, Xt) ∈ Ω. Second, we know from Theorem 1 and

Corollary 1 that r = infδt∈RJ ,Xt∈RJ×K r(δt, Xt;F ) > 0. As a result, when (δt, Xt) approaches the

boundary of Ω, we can extrapolate σ(δ′t;X ′t, F,G) using the identified right-hand side of (10) for

‖(δ′t, X ′t) − (δt, Xt)‖ < r and (δ′t, X ′t) /∈ Ω, identifying σ(δ′t;X ′t, F,G) in Ω(1)
r = {(δ′t;X ′t) : ∃(δt;Xt) ∈

Ω such that ‖(δ′t;X ′t) − (δt;Xt)‖ < r}. By repeating the procedure, we identify σ(δt;Xt, F,G) in

RJ × RJ×K .8,9

To illustrate the usefulness of Corollary 2 for the nonparametric identification of hypothetical

counterfactuals, we discuss two common examples from industrial organization (Dubois, Griffith, and

O’Connell, 2020; Nevo, 2000) that are typically hard to evaluate absent identification extensibility.

Example 1 (Merger). Suppose J = 2, with each product being sold by a different firm who chooses its

price pj, j = 1, 2. Suppose the two products are substitutes and the cross-price elasticities are always

positive. The variable profits of the two firms are:

π1(p1; p2) = (p1 − c1)σ1(p1; p2),

π2(p2; p1) = (p2 − c2)σ2(p2; p1).

8In the same spirit but in the context of identification, Allen and Rehbeck (2020) obtain the nonparametric identifi-
cation of indirect utility functions by relying on the unique continuation property implied by real analyticity (see their
Corollary 3). Similarly, one of the key identifying assumptions in Fox and Gandhi (2016), Assumption 4 (pp. 127),
is satisfied by multivariate real analytic utility functions again because of the unique continuation property (see their
Appendix).

9This extension procedure also implies a constructive estimation of σ(δt;Xt, F,G) for (δt, Xt) /∈ Ω by estimating its
(higher-order) derivatives and extrapolating using its estimated Taylor series (up to a finite order). This is beyond the
scope of the paper and we leave it for future research.
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The observed prices p∗1 and p∗2 are generated by a simultaneous Bertrand pricing game with constant

marginal costs c1 < p∗1 and c2 < p∗2, respectively. Then, the corresponding first-order conditions

(FOCs) are:
∂π1(p∗1; p∗2)

∂p1
= 0 ⇐⇒ ∂σ1(p∗1, p∗2)

∂p1
(p∗1 − c1) + σ1(p∗1, p∗2) = 0,

∂π2(p∗2; p∗1)
∂p2

= 0 ⇐⇒ ∂σ2(p∗1, p∗2)
∂p2

(p∗2 − c2) + σ2(p∗1, p∗2) = 0.

In the case of a hypothetical merger between the two firms, the merged entity maximizes the joint

profits generated by both products, π1(p1; p2) + π2(p2; p1), and post-merger equilibrium prices (pm1 , pm2 )

satisfy the following FOCs:

∂σ1(p1, p2)
∂p1

(p1 − c1) + ∂σ2(p1, p2)
∂p1

(p2 − c2) + σ1(p1, p2) = 0,

∂σ2(p1, p2)
∂p2

(p2 − c2) + ∂σ1(p1, p2)
∂p2

(p1 − c1) + σ2(p1, p2) = 0.
(11)

Because ∂σ1
∂p2

> 0 and ∂σ2
∂p1

> 0, both FOCs in (11) are then positive when evaluated at the observed

prices (p∗1, p∗2):

∂σ1(p∗1, p∗2)
∂p1

(p∗1 − c1) + ∂σ2(p∗1, p∗2)
∂p1

(p∗2 − c2) + σ1(p∗1, p∗2) = ∂σ2(p∗1, p∗2)
∂p1

(p∗2 − c2) > 0

∂σ2(p∗1, p∗2)
∂p2

(p∗2 − c2) + ∂σ1(p∗1, p∗2)
∂p2

(p∗1 − c1) + σ2(p∗1, p∗2) = ∂σ1(p∗1, p∗2)
∂p2

(p∗1 − c1) > 0.

Under standard regularity conditions on (σj)Jj=1 (e.g., single-peak property), this implies that the

merged entity has an incentive to increase post-merger prices relative to (p∗1, p∗2) and therefore pmj > p∗j

for j = 1, 2. If products 1 and 2 are strong substitutes (i.e., ∂σ2(p∗1,p∗2)
∂p1

and ∂σ1(p∗2;p∗1)
∂p2

are very positive),

then pmj may exceed the maximal value of p∗j observed in the data and the corresponding counterfactual

demand (σ1(pm1 ; pm2 ), σ2(pm2 ; pm1 )) may not be identified.

Example 2 (Tax). Consider a similar setting to that in Example 1 but with only one product (so

we suppress the subscript referring to products). In the observed data, the firm chooses the price by

maximizing variable profit:

π1(p) = (p− c)σ(p).

Then the observed optimal price p∗ satisfies the FOC:

∂σ(p∗)
∂p

(p∗ − c) + σ(p∗) = 0.

Suppose that the government announces an ex-factory tax τ > 0 such that the final price consumers
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face will be pτ = p+ τ . Then, the equilibrium price p∗τ satisfies:

∂σ(p)
∂p

(p− c− τ) + σ(p) = 0, (12)

where the ex-factory tax τ is equivalent to an increase in the marginal cost of production. Because
∂σ(p)
∂p < 0 (i.e., the law of demand), then FOC (12) evaluated at p = p∗ (the observed optimal price in

the absence of the tax) is positive:

∂σ(p∗)
∂p

(p∗ − c− τ) + σ(p∗) = −∂σ(p∗)
∂p

τ > 0.

As a result, if the tax τ is large enough, p∗τ may exceed the maximal value of p∗ observed in the data

and the corresponding σ(p∗τ ) may not be identified.

4.2 Semi-Nonparametric Identification

Real analyticity also facilitates the semi-nonparametric identification of demand model (2) with linear

indices gj(xjt;βi) = xjtβi. In this approach, the researcher takes G as known (e.g., i.i.d. Gumbel or

Gaussian) and aims at identifying the distribution of the random coefficients F . The main advantage

of this approach is that knowledge of G and of F allows the quantification of the distribution of welfare

effects resulting from hypothetical counterfactuals, a task for which the nonparametric approach may

be inadequate (Compiani, 2022).

Without real analyticity, the semi-nonparametric identification of discrete choice model (2) with

linear indices usually requires large support for Xt (restrictive for example with price variables, known

to be positive) and prevents the inclusion of interactions among covariates (Fox and Gandhi, 2016;

Fox, Kim, Ryan, and Bajari, 2012; Masten, 2018). These standard assumptions, in some cases, limit

the economic content of discrete choice models. For example, the approximation result by McFadden

and Train (2000) mentioned after Remark 4 above, crucially relies on the inclusion of interactions

among covariates (see pp. 466). The identification results by Fox, Kim, Ryan, and Bajari (2012),

however, explicitly rule out interactions among covariates (Assumptions 2 and 3, pp. 207-208).

Differently, as shown by Wang (2023), when G is i.i.d. Gumbel, the identification of F can be ob-

tained by relying on at most one single variation in Xt (i.e., the support of Xt is not singleton).10 This

support requirement on Xt substantially relaxes standard conditions routinely used in the literature

and is satisfied in most settings. In particular, it allows for interactions among covariates as required
10For details, see Wang (2023)’s Theorems 1 and 2 and the discussion therein.
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by the approximation result by McFadden and Train (2000). Wang (2023)’s identification result for

mixed logit models crucially relies on the identification of σ(δt;Xt, F,G) as a function of δt ∈ RJ .

According to the identification extensibility property from Corollary 2(a) above, when σ(δt;Xt, F,G)

is real analytic, this can be achieved as long as σ(δt;Xt, F,G) is identified for δt in a (bounded) open

set. Importantly, this local condition is not only weaker, but also consistent with standard economic

models. For instance, Wang (2023) shows that, in the context of Berry, Levinsohn, and Pakes (1995),

it is implied by a simultaneous price-setting game of complete information among producers.

The next proposition extends Wang (2023)’s identification result for mixed logit models with linear

indices to any demand model (2) with linear indices and G ∈Mφ + Mψ.

Corollary 3. Suppose that G ∈Mφ + Mψ in (5) and the following two conditions hold:

1. σ(δt;Xt, F,G) is identified as a function of (δt, Xt) ∈ Ω, where the domain of δt, Ωδ, contains

an open set in RJ .

2. There exists (δt, Xt) ∈ Ω such that Xt is of full column rank.

Then, F is identified.

5 Implications for Numerical Implementation

Depending on the type of data, different methods can be used to estimate model (2). We discuss the

implications of real analyticity for the numerical implementation of two methods routinely used in

the empirical literature for the estimation of demand models: on the one hand, the parametric BLP

(Berry, Levinsohn, and Pakes, 1995) and the semi-nonparametric approach (Wang, 2023) dealing with

aggregate market-level data; on the other, the Maximum Likelihood Estimator (MLE) dealing with

disaggregate individual-level data (Dubois, Griffith, and O’Connell, 2020; Goolsbee and Petrin, 2004;

Train and Winston, 2007). In both cases, we focus on the linear index specification gj(xjt;βi) = xjtβi.

5.1 BLP and Semi-Nonparametric Implementation

In the context of demand estimation with aggregate market-level data, both the parametric BLP and

the semi-nonparametric approach require the computation of a demand inverse for each market and

at each iteration of the GMM minimization. For given market t, observed pt, and guess F ′, one must
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look for a δ′t such that:11

pt = σ(δ′t;Xt, F
′, G). (13)

This can be numerically challenging on a computer (Knittel and Metaxoglou, 2014), motivating dif-

ferent numerical approaches in the economics literature, such as fixed point approaches (Berry, Levin-

sohn, and Pakes, 1995), MPEC (Dubé, Fox, and Su, 2012a; Su and Judd, 2012), and the use of an

approximate inverse (Salanié and Wolak, 2019).

The real analyticity of σ(δt;Xt, F
′, G) with respect to δt mitigates this challenge by guaranteeing

the desirable numerical performance of Newton-Raphson methods. In the Newton-Raphson imple-

mentation of the unique solution of (13), starting from δ(0), one performs the following iteration from

n = 1 until numerical convergence:

δ(n) = δ(n−1) −
[
∂δσ(δ(n);Xt, F

′, G)
]−1 (

σ(δ(n);Xt, F
′, G)− pt

)
, (14)

where ∂δ refers to the derivative with respect to δ. The common wisdom regarding (14) is that if

δ(0) is “close” to the solution δ′t (i.e., δ(0) is in the basin of attraction of δ′t), then (14) can achieve

quadratic convergence as long as σ(δ;Xt, F
′, G) is twice continuously differentiable with respect to

δ.12 Achieving quadratic convergence then crucially relies on selecting a starting value δ(0) which

is close to δ′t, but the extent of such proximity typically depends on knowledge of the true δ′t (or

∂δσ(δ′t;Xt, F
′, G)) that is not available to the researcher before estimation. In addition, numerical

convergence is usually determined by the researcher, who sets some small tolerance for the step lengths∥∥∥δ(n+1) − δ(n)
∥∥∥ and

∥∥∥σ(δ(n);Xt, F
′, G)− pt

∥∥∥. However, there is little theoretical guidance on how to

choose such levels of tolerance, which are often calibrated using heuristic rules of thumb. In fact,

despite achieving numerical convergence on the basis of such rules of thumb, it is still possible for

(14) to be divergent. Together, unguided choices of starting values and of stopping criteria represent

a challenge for the numerical convergence of Newton-Raphson methods to the unique solution of (13)

(Conlon and Gortmaker, 2020; Dubé, Fox, and Su, 2012b; Lee and Seo, 2016).

We show that the real analyticity of σ(δ;Xt, F
′, G) gives rise to simple and verifiable sufficient

11When demographics di enter σ, demand system (13) is defined as

pt =
∫
σ(δt;Xt, F, di, G)dΠ(di).

The result presented in this section solely depends on the real analyticity with respect to δt, i.e., Corollary 1(a). Train
and Winston (2007) also implement inverses of this demand system in the context of MLE with individual-level data.
Instead of inverting market shares, they invert choice probabilities obtained from observed individual choices.

12Quadratic convergence means that there exists a constant M such that ‖δ(n+1) − δ(n)‖ ≤M‖δ(n) − δ(n−1)‖2.
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conditions that do not require knowledge of the true δ′t (or ∂δσ(δ′t;Xt, F
′, G)) and that guarantee

the convergence of (14) to the unique solution of (13). Following Smale (1986), we define δ(0) as an

approximate zero of (13) if δ(0) satisfies:13

∥∥∥δ(n) − δ(n−1)
∥∥∥ ≤ (1

2

)2n−1−1 ∥∥∥δ(1) − δ(0)
∥∥∥ , for n ≥ 1. (15)

If the iterations in (14) start with an approximate zero δ(0), then δ(n) is guaranteed to converge

to δ′t at supra-exponential rate,
∥∥∥δ(n) − δ′t

∥∥∥ ≤ 7
4

(
1
2

)2n−1 ∥∥∥δ(1) − δ(0)
∥∥∥ (Proposition 1 at pp. 188 of

Smale (1986)), a rate of the same order as the rate of quadratic convergence (see Rheinboldt (1988)

for details) and that does not depend on the dimension of the demand system (i.e., the number of

alternatives J). For example, with n = 6, we have 7
4

(
1
2

)2n−1

≈ 4.07× 10−10.

When σ(δt;Xt, F
′, G) is real analytic with respect to δt ∈ RJ , Smale (1986)’s Theorem A charac-

terizes a sufficient condition for δ(0) to be an approximate zero:

α(δ(0)) =
∥∥∥∥[∂δσ(δ(0);Xt, F

′, G)
]−1

(σ(δ(0);Xt, F
′, G)− pt)

∥∥∥∥ γ(δ(0)) < α0 ≈ 0.130707, (16)

where

γ(δ) := sup
k>1

∥∥∥∥∥[∂δσ(δ;Xt, F
′, G)

]−1 ∂
k
δ σ(δ;Xt, F

′, G)
k!

∥∥∥∥∥
1

k−1

,

with the operator ∂kδ denoting the kth derivative with respect to δ as a k-linear map (see Chapter XIII

of Lang (2012) for a definition), and the norm ‖ · ‖ of a linear operator L : E →W defined as:

‖L‖ := sup
v∈E,‖v‖E=1

‖L(v)‖W ,

with ‖ · ‖E and ‖ · ‖W denoting norms defined in the spaces E and W , respectively. In theory, one can

compute each component of α(δ(0)) and then compare it to α0 to verify whether δ(0) is an approximate

zero. In practice, while computing [∂δσ(δ;Xt, F
′, G)]−1 σ(δ;Xt, F

′, G) is straightforward, computing

γ(δ) is more involved due to the higher-order derivatives and the sup operator. However, relying

on our previous results (Lemmas 2 and 3 in Appendix A), when G ∈ Mφ + Mψ, we can derive

simple upper bounds for the higher-order derivatives of σ(·;Xt, F
′, G) and for γ(δ). This allows us to

obtain a practically simpler (but stronger than (16)) sufficient condition for approximate zeros that

circumvents the computational complexity in the general formulation of Theorem A by Smale (1986).
13For the original definition of an approximate zero, see pp. 187 of Smale (1986). A value of δ that is an approximate

zero is also in the basin of attraction of the unique solution of (13), but the converse does not need to be true.
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Denote ς := min{ς11, ..., ςm11, ς12, ..., ςm22} as the minimal standard variance among the distributions

in the mixture that defines G ∈Mφ + Mψ (see (34)).

Corollary 4. Suppose that G ∈Mφ + Mψ in (5). Then, for δ ∈ RJ :

γ(δ) ≤
J‖[∂δσ(δ;Xt, F

′, G)]−1‖sup
k>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

2 min{1, ς2}
,

where C is a constant defined in (32) (that does not depend on J) and r is the probability of the

Gaussian mixtures in G (see (34) in Appendix B). Moreover, any δ is an approximate zero as long as

ᾱ(δ) : =
∥∥∥[∂δσ(δ;Xt, F

′, G)
]−1 (σ(δ;Xt, F

′, G)− pt)
∥∥∥

×
J‖[∂δσ(δ;Xt, F

′, G)]−1‖sup
k>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

2 min{1, ς2}

< α0.

Given δ, one can easily obtain ᾱ(δ) by computing
∥∥∥[∂δσ(δ;Xt, F

′, G)]−1 σ(δ;Xt, F
′, G)

∥∥∥ and∥∥∥[∂δσ(δ;Xt, F
′, G)]−1

∥∥∥, where [∂δσ(δ;Xt, F
′, G)]−1 is the inverse of the Jacobian matrix

∂δσ(δ;Xt, F
′, G) and

∥∥[∂δσ(δ;Xt, F
′, G)]−1∥∥ is its maximal eigenvalue. Then, it is straightforward

to establish whether the starting value δ(0) is an approximate zero by verifying whether ᾱ(δ(0)) < α0,

an operation that does not require any Newton-Raphson iteration.

More in general, at any iteration n of (14) one can compute

ᾱ(δ(n)) =
∥∥∥δ(n+1) − δ(n)

∥∥∥×∥∥∥[∂δσ(δ(n);Xt, F
′, G)]−1

∥∥∥ sup
k>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

2 min{1, ς2}
J

and verify whether the step length

∥∥∥δ(n+1) − δ(n)
∥∥∥ < ∆∗ := 2α0 min{1, ς2}

J
∥∥[∂δσ(δ(n);Xt, F ′, G)]−1

∥∥ sup
k>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

.

When this condition holds, one can conclude that δ(n) is an approximate zero and so that supra-

exponential convergence is guaranteed thereafter, ruling out any improper numerical convergence

(i.e.,
∥∥∥δ(n+1) − δ(n)

∥∥∥ is “small” while (14) is divergent). The computation of ∆∗ is usually immediate.
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For example, in the case of the mixed logit model it can be simply approximated by (see Appendix

E.1 for details):

∆∗ ≈ α0p0t min1≤j≤J{pjt}
2.64J , (17)

where p0t = 1 −∑J
j=1 pjt. For instance, with J = 10, min1≤j≤J pjt = 0.05, and p0t = 0.4, we would

obtain ∆∗ ≈ 10−4.

In practice, while Newton-Raphson algorithm (14) converges to the unique solution much faster

than classic fixed point algorithms from a starting value that is an approximate zero (due to the

supra-exponential convergence of (14) versus the exponential convergence of fixed point algorithms

based on contraction mappings), in general it is not guaranteed that any δ(0) is an approximate zero

or even in the basin of attraction of the unique solution (see footnote 13). As is well known, when

δ(0) is not in the basin of attraction of the unique solution, then (14) may not converge. In contrast,

the convergence of classic fixed point algorithms based on contraction mappings is guaranteed from

any starting value, even though it may take a long time. Some researchers address this trade-off by

proposing hybrid algorithms that combine the relative advantages of both fixed point and Newton-

Raphson algorithms: the numerical search starts with a fixed point algorithm based on a contraction

mapping to generate a starting value in the basin of attraction of the unique solution and then switches

to a Newton-Raphson algorithm until convergence.14 In the context of demand inverses, such hybrid

algorithm can be expressed as:

Algorithm 1 (Hybrid Algorithm). Starting at δ(0),

FP step. From n = 0, update δ(n) to δ(n+1) using a fixed point algorithm based on a contraction mapping

until n = N − 1.

NR step. From n = N , update δ(n) to δ(n+1) using a Newton-Raphson (14) until numerical convergence.

The number of iterations in the fixed point (FP) step, N , is calibrated by the practitioner. If N is

“too” small, the starting value for the Newton-Raphson (NR) step, δ(N+1), may not be in the basin of

attraction of the unique solution and therefore the convergence of (δ(n))n≥N+1 may not be guaranteed.

Differently, if N is “too” large, δ(N+1) is likely to be in the basin of attraction and (δ(n))n≥N+1 to

converge, but the total execution time of Algorithm 1 could be “too” long due to unnecessary extra

iterations in the FP step instead of an earlier switch to the NR step.

Corollary 4 provides theoretical guidance for the calibration of N in the context of Algorithm 1.

Because of the supra-exponential rate of convergence of (14) after reaching an approximate zero, we
14See Rust (1987) and Iskhakov, Lee, Rust, Schjerning, and Seo (2016) for examples in the setting of dynamic discrete

choice models.
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propose an implementation of Algorithm 1 that switches from the FP step to the NR step when δ(N)

is guaranteed to be an approximate zero. In the case of the mixed logit model, Corollary 4 implies the

following sufficient condition for δ(N) in the FP step to be an approximate zero (see Appendix E.1 for

details): ∥∥∥δ(N+1) − δ(N)
∥∥∥ < ∆∗H = ∆∗p0t. (18)

where p0t = 1−∑J
j=1 pjt. Because an approximate zero is guaranteed to be in the basin of attraction

of the unique solution, but not the converse (see footnote 13), it is also plausible for more lenient

criteria than (18) to work well in practice. As we illustrate in Section 6, we find in Monte Carlo simu-

lations that Algorithm 1 with N calibrated according to our proposed criteria always converges from

“distant” starting values (i.e., starting values from which the Newton-Raphson algorithm alone does

not converge) and it is faster than classic fixed point implementations of demand inverses commonly

used in practice.

5.2 MLE Implementation

In the context of demand estimation with disaggregate individual-level data, researchers often rely

on (parametric) MLE by assuming that G is known and specifying βi = Σvi, where the distribution

of vi ∈ RP×1, Fv, is given (e.g., multivariate Gaussian) and Σ is an unknown matrix of size K ×

P . Consider a cross-sectional setting in which for each cell t = 1, ..., T , the researcher observes I

individuals each making one choice, denoted by yit ∈ {0, 1, ..., J}, alternatives’ characteristics (xjt)Jj=1,

and demographic information di. Given these data, the researcher wishes to estimate the “fixed effects”

ξ = (ξjt)1≤j≤J,1≤t≤T and the parameters Σ of the distribution of random coefficients Fv.15,16 Denote
15The population mean of xjtβi is absorbed by ξjt and is not a parameter to be estimated. The results in this section

also hold if one observes xijt rather than xjt. Moreover, it is possible that the researcher has panel data and observes
multiple choices for the same individual over time. This complicates the individual likelihood function (see footnote 17)
but the results in this section continue to apply.

16When T is large enough (i.e., a nonlinear panel model with large I and large T ), one can also directly estimate
(βi)Ii=1 rather than the distribution F . See Dubois, Griffith, and O’Connell (2020) for such an empirical specification
and Mugnier and Wang (2022) for theoretical results. In this case, model (2) is often simpler and real analytic (e.g.,
simple multinomial logit or probit) and the results in this section apply.
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by `it(ξ,Σ) the log-likelihood function for individual i in cell t:17

`it(ξ,Σ) := `(ξ,Σ;xit, yit) = ln
∫ J∏

j=1
[σij(ξt + xitΣvi;G)]1{yit=j} dFv(vi),

where σij(·;G) is the choice probability function of an individual with random coefficients βi = Σvi,

and L (ξ,Σ) = ∑
i,t `it(ξ,Σ). In the Newton-Raphson implementation of this likelihood maximization,

starting from (ξ(0),Σ(0)) one performs the following iteration from n = 1 until numerical convergence:

(ξ(n+1),Σ(n+1)) = (ξ(n),Σ(n))−
[
∂2

(ξ,Σ)L (ξ(n),Σ(n))
]−1

∂(ξ,Σ)L (ξ(n),Σ(n)). (19)

Similar to (14), under standard regularity conditions (such as the non-singularity of ∂2
(ξ,Σ)L (ξ,Σ)

at a true solution), Newton-Raphson method (19) can achieve quadratic convergence by starting

from a (ξ(0),Σ(0)) that is “close” to a true solution as long as `it (and therefore L ) is “smooth

enough.” However, the practical performance of Newton-Raphson method (19) is subject to the same

challenges mentioned in the previous section in the context of (14): the appropriate choices of a

starting point and of a stopping criterion usually depend on prior knowledge of the demand model

one is trying to estimate. For reasons similar to those behind Corollary 4, the real analyticity of

`it with respect to (ξ,Σ) alleviates both such challenges also in the implementation of MLE. Denote

a := inf1≤i≤I,1≤t≤T,1≤j≤J `(ξ,Σ;xit, j) and x̄ = maxi,t |xit|max, where | · |max indicates the maximal

absolute value of the elements in xit.

Corollary 5. Suppose that G ∈ Mφ + Mψ in (5) and that Fv ∈ Fe in (6), or alternatively that

G,Fv ∈Mφ in (4). Then, for (ξ,Σ):

γ(ξ,Σ) ≤ 1
IT

∥∥∥∥∥
[
∂2

(ξ,Σ)L (ξ,Σ)
IT

]−1
∥∥∥∥∥max

{
1,
∥∥∥∥∥
[
∂2

(ξ,Σ)L (ξ,Σ)
IT

]−1
∥∥∥∥∥
}(

max
{

1, AvJ(e−1)ς−1x̄(a+1)1/(JT+KP )

(a+1)1/(JT+KP )−1

})3 (
JT+KP

3

)3/2
,

where Av is the constant corresponding to Fv when Fv ∈ Fe, and Av = 4√2 when Fv ∈ Mφ (see
17 In a panel setting, instead of having an it-specific log-likelihood function, we have an i-specific log-likelihood because

βi is common among the choices over time of the same individual:

`i(ξ,Σ) = ln
∫ T∏

t=1

J∏
j=1

[σij(ξt + xitΣvi;G)]1{yit=j} dFv(vi).
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footnote 6). Moreover, any (ξ(0),Σ(0)) is an approximate zero of (19) as long as

ᾱ(ξ(0),Σ(0)) : = 1
IT

∥∥∥∥[∂2
(ξ,Σ)L (ξ(0),Σ(0))

]−1
∂(ξ,Σ)L (ξ(0),Σ(0))

∥∥∥∥
∥∥∥∥∥∥∥
∂2

(ξ,Σ)L (ξ(0),Σ(0))
IT

−1
∥∥∥∥∥∥∥max

1,

∥∥∥∥∥∥∥
∂2

(ξ,Σ)L (ξ(0),Σ(0))
IT

−1
∥∥∥∥∥∥∥


< α0

(
max

{
1, AvJ(e− 1)ς−1x̄(a+ 1)1/(JT+KP )

(a+ 1)1/(JT+KP ) − 1

})−3 (
JT +KP

3

)−3/2
.

(20)

When G is i.i.d. Gumbel or Gaussian (or a mixture of both), given yit, because of Corollaries 1(b)

and 1(c), ∏J
j=1 [σij(ξt + xitΣvi;G)]1{yit=j} = σiyit(ξt+xitΣvi;G) is real analytic with respect to (ξt,Σ)

in their domains with a uniform radius of convergence and its higher-order derivatives are bounded

by factorial rates (as in Lemmas 2 and 3 in Appendix A) as long as Fv ∈ Fe (or Fv ∈ Mfe+

when G ∈ Mφ, with fe+ the density corresponding to the distribution Fe+ ∈ Fe+). Consequently,∫ ∏J
j=1 [σij(ξt + xitΣvi;G)]1{yit=j} dFv(vi) is still real analytic with a uniform radius of convergence

and its higher-order derivatives are bounded by factorial rates. As shown in Lemma 4 in Appendix

F, these two properties still hold after the log transformation in `it(ξ,Σ) and lead to Corollary 5 by

following the same strategy as in the proof of Corollary 4.

Different from the demand inverse of (13), which has a unique solution, L (ξ,Σ) will often have

multiple local maxima and therefore ∂(ξ,Σ)L (ξ,Σ) = 0 multiple solutions. Corollary 5 guarantees

the practical usefulness of the Newton-Raphson method also in mitigating the consequences of such

multiplicity. Thanks to the supra-exponential convergence rate of (19) (see discussion around (15)

above), one will be able to quickly back out all the solutions of (19) by performing the Newton-

Raphson method multiple times for different starting values. For each of the starting values, one finds

a local maximum by performing a few more iterations after having established that (ξ(n),Σ(n)) is an

approximate zero, using (20):

∥∥∥(ξ(n+1),Σ(n+1))− (ξ(n),Σ(n))
∥∥∥ < IT

α0

(
max

{
1,AvJ(e−1)ς−1x̄(a+1)1/(JT+KP )

(a+1)1/(JT+KP )−1

})−3

(JT+KP
3 )−3/2∥∥∥∥∥

[
∂2
(ξ,Σ)L (ξ(n),Σ(n))

IT

]−1
∥∥∥∥∥max

{
1,

∥∥∥∥∥
[
∂2
(ξ,Σ)L (ξ(n),Σ(n))

IT

]−1
∥∥∥∥∥
} . (21)

Once all solutions of (19) are recovered, one can finally select the global maximum (i.e., the MLE) as

the solution corresponding to the largest value of the log-likelihood function.
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6 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to illustrate the practical uses of Corollary 4 in

implementing demand inverses in the context of the BLP approach.18 As documented by Conlon and

Gortmaker (2020) in extensive numerical experiments, Newton-type methods can be more effective

than classic fixed point algorithms to implement demand inverses. While Conlon and Gortmaker

(2020) focus on starting values in the basin of attraction of the unique solution (i.e., “close” starting

values),19 it is however possible for Newton-Raphson algorithms not to converge when the starting

values are “distant” from the unique solution. In contrast, as discussed in Section 5.1, while slower in

the proximity of the unique solution, the convergence of fixed point algorithms based on contraction

mappings is guaranteed from any starting value. This suggests that hybrid algorithms along the lines

of Algorithm 1 may be more effective in the case of “distant” starting values.

We investigate these possibilities relying on a data generating process along the lines of Conlon

and Gortmaker (2020). In a first set of experiments, we study the role of approximate zeros in

the numerical performance of fixed point algorithms based on contraction mappings versus Newton-

Raphson algorithm (14) in the case of “close” starting values (i.e., close to the unique solution). In

a second set of experiments, we then investigate the relative performance of fixed point algorithms

based on contraction mappings versus hybrid algorithms (Algorithm 1 above) in the case of “distant”

starting values (i.e., starting values from which Newton-Raphson algorithms alone typically do not

converge). In what follows we summarize the results of our numerical experiments, while we report

the details of the data generating process, the generation of “close” and ‘distant” starting values, and

the formulation of the fixed point algorithm in Appendix G.

On the one hand, Corollary 4 implies that Newton-Raphson algorithm (14) converges to the unique

solution at supra-exponential rate after reaching an approximate zero. However, from a starting value

that is “close” to the unique solution, the theory is silent regarding the number of iterations required to

reach an approximate zero. On the other hand, fixed point algorithms based on contraction mappings

are ensured to achieve exponential convergence from any starting value. As a consequence, if (14)

takes a short time to reach an approximate zero, the overall convergence time could be shorter than

that of a fixed point algorithm. Otherwise, if (14) takes a long time to reach an approximate zero, even

in the case of “close” starting values, fixed point algorithms could be numerically more convenient.
18The MATLAB code of the simulations can be downloaded from the authors’ websites.
19Conlon and Gortmaker (2020) use the vector of log-shares (log(pj)− log(p0))Jj=1, where p0 = 1−

∑
j
pj , as starting

values. This would be the unique solution of the demand system in the case of a multinomial logit model (without
random coefficients). Their numerical results illustrate that these conventional starting values are “close” to the unique
solution, in the sense that the Newton-type methods they implement always converge to it.
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Table 1 reports the execution times of Fixed Point (FP) and of Newton-Raphson (NR) algorithms

in the case of “close” starting values. We study scenarios with different choice set sizes (J = 25, 50,

and 100) and with or without a random coefficient on price. For each scenario and algorithm, Table

1 summarizes the time needed to reach an approximate zero (i.e., to satisfy condition (17)) from a

“close” starting value, the time needed for convergence from an approximate zero, and the total of the

two. All times are measured in seconds and are computed as the average among 200 randomly drawn

starting values within a close distance from the unique solution. In line with the numerical findings by

Conlon and Gortmaker (2020), from “close” starting values the Newton-Raphson algorithm is much

faster than the fixed point algorithm to achieve numerical convergence in all scenarios considered:

between 6 and 8.5 times faster and, in relative terms, faster for larger demand systems (larger J).

Decomposing the total execution times, we find both that the Newton-Raphson algorithm is faster

in reaching an approximate zero than the fixed point algorithm and that, after having reached an

approximate zero, the Newton-Raphson algorithm greatly accelerates its speed of convergence while

the fixed point algorithm does not.

Table 1: Fixed Point (FP) versus Newton-Raphson (NR): “Close” Starting Values

Num. products J = 25 J = 50 J = 100
Algorithm FP NR FP NR FP NR

No random coefficient on price
Execution time (seconds)
Total time 0.1542 0.0248 0.2567 0.0368 0.3741 0.0441
Time before approx. zero 0.0643 0.0203 0.1193 0.0309 0.1985 0.0379
Time after approx. zero 0.0899 0.0045 0.1374 0.0059 0.1756 0.0062

Random coefficient on price
Execution time (seconds)

Total time 0.1506 0.0243 0.2632 0.0358 0.3696 0.0449
Time before approx. zero 0.0622 0.0200 0.1220 0.0303 0.1948 0.0385
Time after approx. zero 0.0884 0.0043 0.1412 0.0055 0.1748 0.0064
Notes: Step tolerance level is 10−14. Average statistics over 200 starting values randomly drawn
within a distance of [δj − 1, δj + 1] along each dimension j around the unique solution (δj)Jj=1.
Max number of iterations is 1000. See Appendix G for specification of data generating process
and further details.

When the starting values are “distant” from the unique solution, the Newton-Raphson algorithm

may take a long time to converge or even fail to converge. In such cases, fixed point algorithms

still deliver numerical convergence in theory, but potentially at a slow pace. As discussed in Section

5.1, some existing papers (e.g., Rust (1987) and Iskhakov, Lee, Rust, Schjerning, and Seo (2016))

propose hybrid algorithms (such as Algorithm 1 above) that combine a FP step with a NR step, so to
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benefit from the relative strengths of both procedures. While, in general, it is unclear after how many

iterations of the FP step to switch to the NR step, Corollary 4 suggests to switch to the NR step after

having reached an approximate zero, i.e., when, during the FP step, condition (18) is satisfied. Note

that, because not all points in the basin of attraction of the unique solution need to be approximate

zeros, switching rule (18) is sufficient but may not be necessary for an efficient switch to the NR step.

To explore this possibility, we also implement a more lenient switching rule than (18) that replaces

∆∗H by the larger threshold 3
√

∆∗H.

Table 2 reports the execution times of the fixed point algorithm (FP) and the hybrid algorithm

(HA, Algorithm 1 in Section 5.1) in the case of “distant” starting values. We study the same scenarios

as in Table 1 and decompose execution times into its FP and NR components (for the case of the

“pure” FP algorithm, the total execution time only corresponds to the “FP time”). All times are

measured in seconds and are computed as the average among 200 randomly drawn starting values

within a large distance from the unique solution.20 We use two different switching rules to implement

the HA, one based on the sufficient condition for an approximate zero,
∥∥∥δ(n+1) − δ(n)

∥∥∥ < ∆∗H, (denoted

by HA ∆∗H) and the other based on the more lenient
∥∥∥δ(n+1) − δ(n)

∥∥∥ < 3
√

∆∗H (denoted by HA 3√∆∗H).

Across all scenarios considered, as expected, both FP and HA always converge to the unique

solution despite the “distant” starting values. Moreover, HA ∆∗H tends to converge to the unique

solution in approximately half the time needed by FP, and in turn HA 3
√

∆∗H tends to require half the

time needed by HA ∆∗H. This suggests that switching to the NR step guarantees large time savings

when an approximate zero is identified, but also that switching rule (18) may be “too” stringent.

Increasing the switching threshold from ∆∗H to 3
√

∆∗H leads to significant time savings, implying that

efficient switches to the NR step can be implemented prior to satisfying (18), in that the more lenient

switching threshold 3
√

∆∗H already identifies the basin of attraction of the unique solution.

Practical Suggestions for Numerical Implementation. Taken together, the theoretical results

from the previous section and the Monte Carlo simulations highlight some practical recommendations

useful to speed up the numerical implementation of demand inverses in the BLP approach:

• To start with, one can use the vector of log-shares (log(pj)− log(p0))Jj=1 as starting values (see

footnote 19) and a Newton-Raphson (NR) algorithm along the lines of (14) with (i) step tolerance

level of 10−14 and (ii) 1000 as maximal number of iterations.

• When the NR algorithm (14) does not converge within the maximal number of iterations, this is
20With these “distant” starting values, in more than 90% of cases the Newton-Raphson algorithm alone fails to

converge, stressing the practical importance of the FP step to initialize the NR step.
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Table 2: Fixed Point (FP) versus Hybrid Algorithm (HA): “Distant” Starting Values

Num. products J = 25 J = 50 J = 100
Algorithm FP HA ∆∗H HA 3

√
∆∗H FP HA ∆∗H HA 3

√
∆∗H FP HA ∆∗H HA 3

√
∆∗H

No random coefficient on price
Execution time (seconds)
Total time 0.1597 0.0804 0.0434 0.2745 0.1436 0.0743 0.3910 0.2245 0.1175
FP time 0.1597 0.0702 0.0300 0.2745 0.1309 0.0568 0.3910 0.2123 0.0923
NR time − 0.0102 0.0134 − 0.0127 0.0175 − 0.0122 0.0252

Random coefficient on price
Execution time (seconds)
Total Time 0.1664 0.0805 0.0471 0.2848 0.1453 0.0721 0.4049 0.2204 0.1133
FP time 0.1664 0.0709 0.0328 0.2848 0.1328 0.0554 0.4049 0.2086 0.0893
NR time − 0.0096 − 0.0143 0.0125 0.0167 − 0.0118 0.0240

Notes: Step tolerance level is 10−14. Average statistics over 200 starting values randomly drawn within a distance of
[δj − 5, δj + 5] along each dimension j around the unique solution (δj)Jj=1. The hybrid algorithm HA (Algorithm 1 in Section
5.1) is implemented using two switching rules: “HA ∆∗H” switches from the FP step to the NR step when an approximate zero
is reached (

∥∥δ(n+1) − δ(n)
∥∥ < ∆∗H), while “HA 3

√
∆∗H” is more lenient and switches from the FP step to the NR step when∥∥δ(n+1) − δ(n)

∥∥ < 3
√

∆∗H. Max number of iterations is 1000. See Appendix G for specification of data generating process and
further details.

evidence of considerable unobserved heterogeneity and that the multinomial logit starting values

may be “distant” from the unique solution.

• In this case, one can still rely on the same starting values (log(pj)− log(p0))Jj=1 but use an

Hybrid Algorithm (HA) along the lines of Algorithm 1 with (i) step tolerance level of 10−14, (ii)

1000 as maximal number of iterations, and (iii) switching rule between the FP step and the NR

step along the lines of 3
√

∆∗H (with ∆∗H = ∆∗p0t and ∆∗ as defined in (17)).

• If the procedure at the previous bullet point fails to converge, the lenient switching rule 3
√

∆∗H
is then too loose. In this case, we suggest to tighten the switching rule between the FP step

and the NR step to ∆∗H so that numerical convergence is guaranteed (at the cost of a longer

execution time).

7 Conclusions

We consider a class of discrete choice models of demand with an index structure in the indirect utilities,

with any distribution of random coefficients, and which can include endogenous regressors. In the

first part of the paper, we demonstrate that any model in this class can be approximated uniformly

and arbitrarily well by a real analytic demand model. In the second part of the paper, we discuss

the econometric advantages of real analytic demand models in terms of nonparametric and semi-

nonparametric identification, extrapolation to hypothetical counterfactuals, numerical implementation
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of demand inverses in the context of aggregate market-level data, and numerical implementation of

the Maximum Likelihood Estimator (MLE) in the context of disaggregate individual-level data.

On the one hand, these results are encouraging as Theorem 1 and Corollary 1 illustrate that the

class of real analytic demand models is relevant in practice, in that—to the best of our knowledge—

most empirical papers dealing with demand estimation in applications with more than a few products

typically specify mixed logit or mixed probit models. In addition, for any other demand model which is

not real analytic, Theorem 2 shows that there exists a real analytic counterpart that can approximate

it uniformly and arbitrarily well.

On the other hand, however, these results are subject to at least two caveats whose investigation

we leave to future research. First, Theorem 2 is an “existence” or “possibility” result which does not

provide practical guidance on how to select the real analytic approximants: they exist and they have

the general mixed logit and mixed probit forms described in the Theorem, but we may not know how to

specify them in concrete examples. Second, the econometric advantages discussed in the paper apply

directly to the real analytic demand models described in Theorem 1 and Corollary 1 and to the real

analytic approximants in Theorem 2, but not necessarily to demand models that are not real analytic.

Lack of real analyticity can occur, for example, when the distribution function G has jumps, so that the

resulting demand function is discontinuous (Smith, 1935). Or again when the distribution function

G has kinks, so that the resulting demand function is non-differentiable (even though potentially

continuous). In such cases, Theorem 2 is silent on whether any of the properties of the real analytic

approximant carries through the underlying demand model targeted by the approximation.

While this paper studies some of the econometric advantages of real analyticity for a class of static

demand models along the lines of Berry, Levinsohn, and Pakes (1995), future research could extend

the investigation to other popular classes of economic models. In particular, the estimation of many

structural models relies on fixed point inner loops which are similar in nature to solving demand

inverses in the BLP approach. For example, dynamic demand models (Gowrisankaran and Rysman,

2012; Rust, 1987) and (static and dynamic) entry models with incomplete information (Aguirregabiria

and Mira, 2007; Seim, 2006) share this common feature. On the one hand, solving such fixed point inner

loops typically gives rise to numerical problems similar to those faced in the context of demand inverses

and sometimes even worse due to additional complexities such as large state spaces or multiplicity of

equilibria. On the other hand, however, many of these structural models are real analytic and their

practical implementation could be greatly simplified thanks to numerical advantages similar to those

presented in this paper.
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Appendix

To simplify exposition, we refer to F (·; di) simply as F and suppress from the notation di, t, and

G, when these are all held constant. We also suppress G from the notation of the radius of conver-

gence r(ξt;F,G). Throughout the Appendix, we use the following inequality that follows from the

Multinomial Theorem:

(
L+ J − 1

L

)
=

∑∑J

r=1 lr=L

(1) ≤
∑∑
lr=L

L!∏J
r=1 lr!

= JL. (22)

A Proof of Theorem 1

Proof of Statement (a), Mixed Logit. When G is i.i.d. Gumbel, we obtain:

σj(ξ;X,F ) =
∫ exp{ξj + gj(xj ;βi)}

1 +∑J
r=1 exp{ξr + gr(xr;βi)}

dF (βi).

For simplicity, we denote σij = exp{ξj+gj(xj ;βi)}
1+
∑J

r=1 exp{ξr+gr(xr;βi)}
. The key of the proof is to bound the higher-

order derivatives of σij with respect to ξ, ∂lσij∏J

r=1 ∂ξ
lr
r

, where l is an integer and ∑J
r=1 lr = l. This is

achieved by the following two Lemmas.

Lemma 1. For any non-negative integer l,

sup
ξ,βi,j,r

∣∣∣∣∣∂lσij∂ξlr

∣∣∣∣∣ ≤ All!
where Al = (e− 1)l∑l

k=0
1

(e−1)kk! .
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Proof. Define al = sup
ξ,βi,j,r

∣∣∣∣∂lσij∂ξlj

∣∣∣∣ and note that:

exp{ξj + gj(xj ;βi)} = σij ×
(

1 +
J∑
r=1

exp{ξr + gr(xr;βi)}
)
,

1{r = j} exp{ξj + gj(xj ;βi)} = ∂l exp{ξj + gj(xj ;βi)}
∂ξlr

=
∂l
[
σij ×

(
1 +∑J

s=1 exp{ξs + gs(xs;βi)}
)]

∂ξlr

=
l∑

k=0

(
l

k

)
∂kσij
∂ξkr

×
∂l−k

(
1 +∑J

s=1 exp{ξs + gs(xs;βi)}
)

∂ξl−kr

= ∂lσij
∂ξlr

(
1 +

J∑
r=1

exp{ξr + gr(xr;βi)}
)

+
l−1∑
k=0

(
l

k

)
∂kσij
∂ξkr

exp{ξr + gr(xr;βi)},

∂lσij
∂ξlr

= σir ×
(

1{r = j} −
l−1∑
k=0

(
l

k

)
∂kσij
∂ξkr

)
,

∣∣∣∣∣∂lσij∂ξlr

∣∣∣∣∣ ≤ 1 +
l−1∑
k=0

(
l

k

) ∣∣∣∣∣∂kσij∂ξkr

∣∣∣∣∣ ≤ 1 +
l−1∑
k=0

(
l

k

)
ak

(23)

for any j, r = 1, ..., J . Then,

al ≤ 1 +
l−1∑
k=0

(
l

k

)
ak,

al
l! ≤

1
l! +

l−1∑
k=0

ak
k!

1
(l − k)! .

We now show that al
l! ≤ Al by induction. For l = 0, the result holds trivially. For l = 1, we have

a1 = sup
ξ,βi,j,r

∣∣∣∂σij∂ξr

∣∣∣ = sup
ξ,βi,j,r

{σij(1 − σij), σijσir} ≤ 1 < e = A1. Suppose that ak
k! ≤ Ak holds for

k = 1, ..., l − 1. Note that Al = 1
l! + (e− 1)Al−1 > Al−1, for any l ≥ 0. Then,

al
l! ≤

1
l! +

l−1∑
k=0

ak
k!

1
(l − k)!

≤ 1
l! +

l−1∑
k=0

Ak
1

(l − k)!

≤ 1
l! +Al−1

l−1∑
k=0

1
(l − k)!

≤ 1
l! +Al−1(e− 1)

= Al.

(24)
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As a consequence, the inequality holds for any l > 0 and al = sup
ξ,βi,j,r

∣∣∣∂lσij
∂ξlr

∣∣∣ ≤ All!. This completes the

proof of Lemma 1.

The next Lemma controls ∂lσij∏J

r=1 ∂ξ
lr
r

.

Lemma 2. For any j = 1, ..., J , l ≥ 0, and ∑J
r=1 lr = l,

sup
ξ∈RJ ,βi∈RK

∣∣∣∣∣ ∂lσij∏J
r=1 ∂ξ

lr
r

∣∣∣∣∣ ≤ e1/(e−1)(e− 1)l
J∏
r=1

lr!.

Proof. We prove the result by induction. For l = 0, the result holds trivially. For l = 1, the result

follows directly from Lemma 1 with l = 1. Suppose that l = 2. When lr = 2, according to Lemma 1

we have
∣∣∣∣∂2σij
∂ξ2
j

∣∣∣∣ ≤ A22!. Note that A2 = (e−1)2
(
1 + 1

e−1 + 1
2(e−1)2

)
≤ e1/(e−1)(e−1)2. For lr = ls = 1,

r 6= s,

exp{ξj + gj(xj ;βi)} = σij ×
(

1 +
J∑
r=1

exp{ξr + gr(xr;βi)}
)
,

0 = ∂2σij
∂ξr∂ξs

(
1 +

J∑
r=1

exp{ξr + gr(xr;βi)}
)

+ ∂σij
∂ξr

exp{ξs + gs(xs;βi)}+ ∂σij
∂ξs

exp{ξr + gr(xr;βi)},

∂2σij
∂ξr∂ξs

= −σis
∂σij
∂ξr
− σir

∂σij
∂ξs

.

By using
∣∣∣∂σij∂ξr

∣∣∣ , ∣∣∣∂σij∂ξs

∣∣∣ ≤ 1 and σis + σir < 1, we have supξ,βi
∣∣∣ ∂2σij
∂ξr∂ξs

∣∣∣ ≤ 1 < e1/(e−1)(e − 1)2. As a

consequence, the conclusion holds for l = 2.

Suppose that for k = 0, ..., l − 1 the inequality holds for any ∑J
r=1lr = k. First, remember that

Al = (e−1)l∑l
k=0

1
(e−1)kk! , as defined in Lemma 1, is smaller than e1/(e−1)(e−1)l. Hence, the conclusion

holds for any l > 0 with lr = l. It remains to show that the conclusion holds also when lr, ls > 0, for

some r 6= s.

By taking lthr derivatives of both sides of the first equation in (23) with respect to ξr, we obtain:

1{r = j} exp{ξj+gj(xj ;βi)} = ∂lrσij

∂ξlrr

(
1 +

J∑
s=1

exp{ξs + gs(xs;βi)}
)

+
lr−1∑
k=0

(
lr
k

)
∂kσij
∂ξkr

exp{ξr+gr(xr;βi)}.

(25)

Note that, by taking derivatives of both sides of equation (25) with respect to ξs, s 6= r, the left
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hand-side vanishes. We then have:

0 = ∂lr+lsσij

∂ξlrr ∂ξ
ls
s

(
1 +

J∑
m=1

exp{ξm + gm(xm;βi)}
)

+ exp{ξs + gs(xs;βi)}
ls−1∑
k=0

(
ls
k

)
∂lr+kσij

∂ξlrr ∂ξks
+ exp{ξr + gr(xr;βi)}

lr−1∑
k=0

(
lr
k

)
∂k+lsσij

∂ξkr ∂ξ
ls
s

.

Finally, using ∑J
r=1 σir < 1, we obtain:

0 = ∂lσij∏J
r=1 ∂ξ

lr
r

(
1 +

J∑
m=1

exp{ξm + gm(xm;βi)}
)

+
J∑
s=1

exp{ξs + gs(xs;βi)}
ls−1∑
k=0

(
ls
k

)
∂l−ls+kσij

∂ξks
∏
m6=s ∂ξ

lm
m

,

∂lσij∏J
r=1 ∂ξ

lr
r

= −
J∑
r=1

σir

lr−1∑
k=0

(
lr
k

)
∂l−lr+kσij

∂ξkr
∏
s 6=r ∂ξ

ls
s

,

(
1∏J

r=1 lr!

)(
∂lσij∏J
r=1 ∂ξ

lr
r

)
= −

J∑
r=1

σir

lr−1∑
k=0

[
1

(lr − k)!k!∏s 6=r ls!

]
∂l−lr+kσij

∂ξkr
∏
s6=r ∂ξ

ls
s

,

∣∣∣∣∣
(

1∏J
r=1 lr!

)(
∂lσij∏J
r=1 ∂ξ

lr
r

)∣∣∣∣∣ ≤ max
r=1,...,J


lr−1∑
k=0

1
(lr − k)!

∣∣∣∣∣
(

1
k!∏s 6=r ls!

)(
∂l−lr+kσij

∂ξkr
∏
s 6=r ∂ξ

ls
s

)∣∣∣∣∣
 .

(26)

Consequently, applying the conclusion for any k = 0, ..., l− 1 to the last inequality in (26), we obtain:

sup
ξ,βi

∣∣∣∣∣ 1∏J
r=1 lr!

∂lσij∏J
r=1 ∂ξ

lr
r

∣∣∣∣∣ ≤ e1/(e−1) max
r=1,...,J


lr−1∑
k=0

1
(lr − k)! (e− 1)l−lr+k


= e1/(e−1)(e− 1)l max

r=1,...,J


lr∑
k=1

1
k! (e− 1)−k


≤ e1/(e−1)(e− 1)l(e(e−1)−1 − 1)

< e1/(e−1)(e− 1)l.

(27)

Hence, supξ,βi
∣∣∣∣ ∂lσij∏J

r=1 ∂ξ
lr
r

∣∣∣∣ ≤ e1/(e−1)(e − 1)l∏J
r=1 lr! and the conclusion holds for ∑J

r=1lr = l. This

completes the proof of Lemma 2.
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Using Lemmas 1 and 2, we can express the Taylor series of σj(ξ′;X,F ) at ξ as:

∣∣∣∣∣∣
∞∑
L=0

1
L!

[
J∑
r=1

(ξ′r − ξr)
∂

∂ξr

]L
σj(ξ;X,F )

∣∣∣∣∣∣ ≤
∞∑
L=0

1
L!d

L
∑∑
lr=L

L!∏J
r=1 lr!

∣∣∣∣∣∂Lσj(ξ;X,F )∏J
r=1 ∂ξ

lr
r

∣∣∣∣∣
≤ e1/(e−1)

∞∑
L=0

1
L!d

L
∑∑
lr=L

L!∏J
r=1 lr!

(e− 1)L
J∏
r=1

lr!

≤ e1/(e−1)
∞∑
L=0

(e− 1)LdL
∑∑
lr=L

(1)

≤ e1/(e−1)
∞∑
L=0

dL[J(e− 1)]L,

(28)

where the last inequality results from (22) and d = ‖ξ′− ξ‖. Consequently, whenever d < d∗ = 1
J(e−1) ,

the Taylor series (28) converges. Finally, given any d̃ < d∗, by applying Taylor’s Theorem to the

multivariate function σj(ξ′;X,F ), we obtain that uniformly for ‖ξ′ − ξ‖ < d̃,

∣∣∣∣∣∣σj(ξ′;X,F )−
R∑
L=0

1
L!

[
J∑
r=1

(ξ′r − ξr)
∂

∂ξr

]L
σj(ξ;X,F )

∣∣∣∣∣∣
≤d̃R+1 ∑∑

lr=R+1

1∏
lr!

sup‖ξ′−ξ‖<d̃

∣∣∣∣∣∂R+1σj(ξ′;X,F )∏J
r=1 ∂ξ

lr
r

∣∣∣∣∣
≤e1/(e−1)(d̃(e− 1)J)R+1

→0

as R→∞. To conclude, the Taylor series of σj(ξ′;X,F ) at ξ converges to σj(ξ′;X,F ) and σj(ξ′;X,F )

is therefore real analytic with respect to ξ′ at ξt. Finally, the radius of convergence r(ξt;F ) is at least

d∗ = 1
J(e−1) and only depends on J but not on ξt and F . As a result, infξt∈RJ ,F r(ξt;F ) > 0. This

completes the proof of Theorem 1, statement (a).

Proof of Statement (b), Mixed Probit. Without loss of generality, suppose that j = 1 and

ε̃ = (εi0 − εi1, εi2 − εi1, ..., εiJ − εi1) follows a centered multivariate Gaussian distribution with a

positive-definite variance-covariance matrix.21 Denote by ΣΣT the unique Cholesky decomposition of

the variance-covariance matrix with Σ > 0. It then follows that:

σ1(ξ;X,F ) = κ(ξ̃) : =
∫ J∏

j=1
Φ
(
ξ̃j + g̃(xj ;βi)

)
dF (βi),

21One can include the mean of εij as a constant in the definition of gj such that each εij is centered. Moreover, the
variance-covariance matrix of ε̃ is positive-definite as long as (εi0, ..., εiJ) is a non-degenerate Gaussian random vector.
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where Φ denotes the standard normal distribution function and

ξ̃ = Σ−1 (ξ1, ξ1 − ξ2, ..., ξ1 − ξJ)T ,

g̃(x;βi) = Σ−1(g1(x1;βi), g1(x1;βi)− g2(x2;βi), .., g1(x1;βi)− gJ(xJ ;βi))T.

Proving statement (b) of Theorem 1 is equivalent to proving that κ(ξ̃) is real analytic with respect to

ξ̃ ∈ RJ and the radius of convergence is +∞ at any ξ̃. To start, we first prove the following Lemma.

Lemma 3. For
∑J
j=1 lj = L, we have

∣∣∣∣∣∣ ∂
Lκ(ξ̃)∏J
j=1 ∂ξ̃

lj
j

∣∣∣∣∣∣ ≤ (C/
√

2π)J
J∏
j=1

√
lj !

where C is a constant defined in (32).

Proof. First, we prove the statement for lj ≥ 1 for any j = 1, ..., J . Denote by φ the standard normal

density function. Note that

∂Lκ(ξ̃)∏J
j=1 ∂ξ̃

lj
j

=
∫ J∏

j=1

∂lj−1φ(ξ̃j + g̃j(xj ;βi))
∂ξ̃

lj−1
j

dF (βi)

= π−
J
2 (−1)J+L2−

L
2

∫ J∏
j=1

Hlj−1

(
ξ̃j + g̃j(xj ;βi)√

2

)
exp

−
(
ξ̃j + g̃j(xj ;βi)√

2

)2
 dF (βi)

= π−
J
2 (−1)J+L2−

L
2

∫ J∏
j=1

√√√√√H2
lj−1

(
ξ̃j + g̃j(xj ;βi)√

2

)
exp

−
(
ξ̃j + g̃j(xj ;βi)√

2

)2
exp

{
−(ξ̃j + g̃j(xj ;βi))2

4

}
dF (βi),

where Hm(x) = (−1)m exp{x2} dmdxm exp{−x2} is the Hermite polynomial of order m. According to

Theorem 1 in Krasikov (2004), for any m ≥ 6 we have:

H̄2
m := sup

x∈R
H2
m(x) exp{−x2} ≤ 2Cm

3(2m)1/6 exp
{15

8

[
1 + 12

4(2m)1/3 − 9

]}
, (29)

where

Cm =


2m
√

4m−2(m!)2
√

8m2−8m+3((m/2)!)2 if m is even
√

16m2−16m+6m!(m−1)!√
2m−1[((m−1)/2)!]2 if m is odd.

Using Stirling’s formula to approximate m!,

√
2πm(m/e)m exp

{ 1
12m+ 1

}
< m! <

√
2πm(m/e)m exp

{ 1
12m

}
, (30)
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we can bound Cm by Cm ≤ Em × 2mm!, where

Em =
√

2
π

exp
{ 1

12(m− 1)(6m− 5)

}
max


√

8m2 − 8m+ 3
8m2 − 12m+ 4 ,

√
8m2 − 4m

8m2 − 8m+ 3

 .
Then, for m ≥ 6, we have:

H̄m ≤
√

2Em
3(2m)1/6 exp

{15
16

(
1 + 12

4(2m)1/3 − 9

)}
× 2m/2

√
m!.

While for m = 0, 1, ..., 5, we have:

H̄m ≤ max
0≤m≤5

{
H̄m

2m/2
√
m!

}
× 2m/2

√
m!.

Note that max0≤m≤5
{

H̄m
2m/2

√
m!

}
is finite. Moreover,

√
2Em

3(2m)1/6 exp
{

15
16

(
1 + 12

4(2m)1/3−9

)}
is decreasing

in m and therefore bounded by its value at m = 6. We can then write:

H̄m = sup
x∈R
|Hm(x)| exp{−x2/2} ≤ C × 2m/2

√
m! (31)

where

C = max
{√

2E6
3(12)1/6 exp

{15
16

(
1 + 12

4× (12)1/3 − 9

)}
, max

0≤m≤5

{
H̄m

2m/2
√
m!

}}
. (32)

As a result, plugging (31) in ∂Lκ(ξ̃)∏J

j=1 ∂ξ̃
lj
j

, we obtain:

∣∣∣∣∣∣ ∂
Lκ(ξ̃)∏J
j=1 ∂ξ̃

lj
j

∣∣∣∣∣∣ ≤ (C/
√

2π)J
J∏
j=1

√
(lj − 1)!

∫ J∏
j=1

exp
{
−(ξ̃j + g̃j(xj ;βi))2

4

}
dF (βi)

≤ (C/
√

2π)J
J∏
j=1

√
lj !.

Second, without loss of generality, suppose there exists j = 1, ..., k such that lj = 0. Then,

∂Lκ(ξ̃)∏J
j=1 ∂ξ̃

lj
j

=
∫ k∏

j=1
Φ(ξ̃j + g̃j(xj ;βi))

J∏
j=k+1

∂lj−1φ(ξ̃j + g̃j(xj ;βi))
∂ξ̃

lj−1
j

dF (βi)

= π−
J−k

2 (−1)J−k+L2−
L−k

2

∫ k∏
j=1

Φ(ξ̃j + g̃j(xj ;βi))
J∏

j=k+1

√√√√√H2
lj−1

(
ξ̃j + g̃j(xj ;βi)√

2

)
exp

−
(
ξ̃j + g̃j(xj ;βi)√

2

)2
exp

{
−(ξ̃j + g̃j(xj ;βi))2

4

}
dF (βi).
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Using the same arguments as above, C ≥
√

2π, Φ ≤ 1, and k > 0. We then obtain:

∣∣∣∣∣∣ ∂
Lκ(ξ̃)∏J
j=1 ∂ξ̃

lj
j

∣∣∣∣∣∣ ≤ (C/
√

2π)J
J∏
j=1

√
lj !.

The proof is completed.

As in the derivation of inequality (28), we can bound the Taylor series of κ(ξ̃′) at ξ̃:

∣∣∣∣∣∣
∞∑
L=0

1
L!

[
J∑
r=1

(ξ̃′r − ξ̃r)
∂

∂ξ̃r

]L
κ(ξ̃)

∣∣∣∣∣∣ ≤
∞∑
L=0

1
L!d

L
∑∑
lr=L

L!∏J
r=1 lr!

∣∣∣∣∣ ∂Lκ(ξ̃)∏J
r=1 ∂ξ̃

lr
r

∣∣∣∣∣
≤ (C/

√
2π)J

∞∑
L=0

dL
∑∑
lr=L

1√∏J
r=1 lr!

≤ (C/
√

2π)J
∞∑
L=0

dL
√√√√ ∑∑

lr=L

1∏J
r=1 lr!

∑∑
lr=L

(1)

≤ (C/
√

2π)J
∞∑
L=0

(
√
Jd)L√
L!

,

(33)

where d = ‖ξ̃′ − ξ̃‖. Note that the radius of convergence of the power series (as a function of d) on

the right-hand side of (33) is limL→∞

∣∣∣∣ (
√
J)L/

√
L!

(
√
J)L+1/

√
(L+1)!

∣∣∣∣ = +∞. Consequently, the convergence of the

Taylor series in (33) is always achieved. Then, for any d∗ > 0 and uniformly for ‖ξ̃′ − ξ̃‖ < d∗:

∣∣∣∣∣∣κ(ξ̃′)−
R∑
L=0

1
L!

[
J∑
r=1

(ξ̃′r − ξ̃r)
∂

∂ξ̃r

]L
κ(ξ̃)

∣∣∣∣∣∣ ≤ (C/
√

2π)J (
√
Jd∗)R+1√
(R+ 1)!

→ 0

as R → ∞. Therefore, the Taylor series of κ(ξ̃′) at ξ̃ converges to κ(ξ̃′) and κ(ξ̃′) is real analytic

with respect to ξ̃′ at ξ̃ and the radius of convergence is +∞. This completes the proof of Theorem 1,

statement (b).

B Proof of Corollary 1

In statements (a) and (b), we suppose that

G(ε) = r
m1∑
i=1

ci1Φi(ε) + (1− r)
m2∑
i=1

ci2Ψi(ε)

= r
m1∑
i=1

ci1
1

ςJ+1
i1

Φ
(

(εj)Jj=0 − µi1
ςi1

)
+ (1− r)

m2∑
i=1

ci2
1

ςJ+1
i2

Ψ
(

(εj)Jj=0 − µi2
ςi2

)
,

(34)
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where Φi := Φ
(

(εj)Jj=0−µi1
ςi1

)
, Ψi := Ψ

(
(εj)Jj=0−µi2

ςi2

)
, and Φ and Ψ are, respectively, the distribution

functions of i.i.d. standard Gaussian random variables and of i.i.d. Gumbel random variables in RJ+1.

Then,

σj(ξ;X,F,G) = r
m1∑
i=1

ci1σj(ξ;X,F,Φi) + (1− r)
m2∑
i=1

ci2σj(ξ;X,F,Ψi)

= r
m1∑
i=1

ci1σj(ς−1
i1 (ξ − µ̄i1); ς−1

i1 X,F,Φ) + (1− r)
m2∑
i=1

ci2σj(ς−1
i2 (ξ − µ̄i2); ς−1

i2 X,F,Ψ),

where µ̄i1 = (µij1)Jj=1 − µi01 and µ̄i2 = (µij2)Jj=1 − µi02. Without loss of generality, we prove the

corollary for j = 1.

Proof of Statement (a). Because of Theorem 1, σ1(ξ;X,F,Φi) and σ1(ξ;X,F,Ψi) are real analytic

with respect to ξ ∈ RJ with radii of convergence uniformly bounded away from zero for ξ ∈ RJ and

F . Then, σj(ξ;X,F,G) is real analytic with respect to ξ ∈ RJ and inf
ξ∈RJ ,F

r(ξ;F ) > 0.

Proof of Statement (b). It suffices to prove that σj(ξ;X,F,Ψ) and σj(ξ;X,F,Φ) are real analytic

with respect to (ξ,X) ∈ RJ ×RJ×K with radii of convergence uniformly bounded away from zero for

(ξ,X) ∈ RJ ×RJ×K . For both cases, the proof is similar to that of Theorem 1 and the key is to bound
∂Lσj(ξ;X,F,G)∏J

j=1 ∂ξ
lj0
j

∏
1≤j≤J,1≤k≤K ∂x

ljk
jk

with L = ∑
j,k ljk.

When G = Ψ, because of gj(xjt;βi) = xjtβi, we have:

∂Lσj(ξ;X,F,Φ)∏J
j=1 ∂ξ

lj0
j

∏
1≤j≤J,1≤k≤K ∂x

ljk
jk

=
∫ K∏

k=1
β

∑J

j=1 ljk

ik

∂Lσij∏J
j=1 ∂ξ

∑K

k=0 ljk
j

dF (βi).

Then, using Lemma 2 and F ∈ Fe, we obtain:

∣∣∣∣∣∣ ∂Lσj(ξ;X,F,Φ)∏J
j=1 ∂ξ

lj0
j

∏
1≤j≤J,1≤k≤K ∂x

ljk
jk

∣∣∣∣∣∣ ≤ e1/(e−1)AL(e− 1)L
J∏
j=1

(
K∑
k=0

ljk)!

where L = ∑
1≤j≤J,0≤k≤K ljk and the constant A is detailed in the definition of Fe. Then, the Lth
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term in the Taylor series of σj(ξ′;X,F,Ψ) at ξ can be bounded as:

∣∣∣∣∣∣∣
1
L!

 J∑
r=1

(ξ′r − ξr)
∂

∂ξr
+ (x′rk − xrk)

∑
1≤r≤J,1≤k≤K

∂

∂xrk

L σj(ξ;X,F,Φ)

∣∣∣∣∣∣∣
≤ dL

L!
∑∑

1≤r≤J,0≤k≤K lrk=L

L!∏
1≤r≤J,0≤k≤K ljk!

∣∣∣∣∣ ∂Lσj(ξ;X,F,Φ)∏J
r=1 ∂ξ

lr0
r
∏

1≤r≤J,1≤k≤K ∂x
lrk
rk

∣∣∣∣∣
≤ e1/(e−1)[dA(e− 1)]L

∑∑J

r=1 Lr=L

∑
(lrk)r,k:

∑K

k=0 lrk=Lr,1≤r≤J

J∏
r=1

Lr!∏
0≤k≤K lrk!

= e1/(e−1)[dA(e− 1)]L
∑∑J

r=1 Lr=L

J∏
r=1

 ∑∑
0≤k≤K lrk=Lr

Lr!∏
0≤k≤K lrk!


= e1/(e−1)[dA(e− 1)]L

∑∑J

r=1 Lr=L

J∏
r=1

(K + 1)Lr

≤ e1/(e−1)[dAJ(e− 1)(K + 1)]L,

where d = ‖(ξ′, X ′)− (ξ,X)‖.22 Note that uniformly for ‖(ξ′, X ′)− (ξ,X)‖ ≤ 1
2dAJ(e−1)(K+1) , the sum

of the residuals beyond the Lth term is bounded by 1/2L−1 and converges to zero as L → ∞. Then,

following the proof of Theorem 1, statement (a), we obtain that σj(ξ;X,F,Ψ) is real analytic with

respect to (ξ,X) ∈ RJ × RJ×K and that its radius of convergence is uniformly bounded away from

zero (and it is at least equal to 1
2dAJ(e−1)(K+1)).

When G = Φ, following the same strategy as for the proof of Theorem 1, statement (b), it suffices to

show that κ in Lemma 3, which here equals

κ(ξ̃, x̃) =
∫ J∏

j=1
φ(ξ̃j + x̃jβi)dF (βi)

is real analytic with respect to (ξ̃, x̃) ∈ RJ×RJ×K . To do so, we control the bound of the higher-order

derivative of κ with respect to (ξ̃, x̃). We derive the bound for the case of ∑K
k=0 ljk ≥ 1 for any

j = 1, ..., J , and the bound for the other case, i.e., ∑K
k=0 ljk = 0 for some j, can be obtained in a

similar manner. We compute:

∂Lκ(ξ̃, x̃)∏J
j=1 ∂ξ̃

lj0
j

∏
1≤j≤J,1≤k≤K ∂x̃

ljk
jk

=
∫ J∏

j=1

∂
∑K

k=0 ljkφ(ξ̃j + x̃jβi)
∂ξ̃

lj0
j

∏K
k=1 ∂x̃

ljk
jk

dF (βi)

= π−
J
2 (−1)J+L2−

L
2

∫ J∏
j=1

H∑K

k=0 ljk−1

(
ξ̃j + x̃jβi√

2

)
exp

−
(
ξ̃j + x̃jβi√

2

)2


K∏
k=1

β

∑J

j=1 ljk

ik dF (βi).

(35)

22The norm ‖ · ‖ should be understood as the Euclidean norm on the space of vectorized (ξ,X).
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Then, using the same techniques as in the proof of Theorem 1, statement (b), and F ∈ Fe, we obtain:

∣∣∣∣∣∣ ∂Lκ(ξ̃, x̃)∏J
j=1 ∂ξ̃

lj0
j

∏
1≤j≤J,1≤k≤K ∂x̃

ljk
jk

∣∣∣∣∣∣ ≤ AL(C/
√

2π)J
J∏
j=1

√√√√(
K∑
k=0

ljk)! (36)

and ∣∣∣∣∣∣∣
1
L!

 J∑
r=1

(ξ̃′r − ξ̃r)
∂

∂ξ̃r
+ (x̃′rk − x̃rk)

∑
1≤r≤J,1≤k≤K

∂

∂x̃rk

L κ(ξ̃, x̃)

∣∣∣∣∣∣∣
≤ dL

L!
∑∑

1≤r≤J,0≤k≤K lrk=L

L!∏
1≤r≤J,0≤k≤K ljk!

∣∣∣∣∣ ∂Lκ(ξ̃, x̃)∏J
r=1 ∂ξ̃

lr0
r
∏

1≤r≤J,1≤k≤K ∂x̃
lrk
rk

∣∣∣∣∣
≤ (C/

√
2π)J [dA]L

∑∑J

r=1 Lr=L

∑
(lrk)r,k:

∑K

k=0 lrk=Lr,1≤r≤J

J∏
r=1

√
Lr!∏

0≤k≤K lrk!

≤ (C/
√

2π)J [dA]L
∑∑J

r=1 Lr=L

1√∏J
r=1 Lr!

J∏
r=1

 ∑∑
0≤k≤K lrk=Lr

Lr!∏
0≤k≤K lrk!


= (C/

√
2π)J [dA]L

∑∑J

r=1 Lr=L

∏J
r=1(K + 1)Lr√∏J

r=1 Lr!

≤ (C/
√

2π)J [dA(K + 1)]L
√√√√√ ∑∑J

r=1 Lr=L

1∏J
r=1 Lr!

∑∑J

r=1 Lr=L

(1)

≤ (C/
√

2π)J [dA(K + 1)J ]L 1√
L!
,

where d = ‖(ξ′, X ′) − (ξ,X)‖. Then, given any d∗ and uniformly for ‖(ξ′, X ′) − (ξ,X)‖ ≤ d∗, the

sum of the residuals beyond the Lth term converges to zero as L → ∞. Then, following the proof of

Theorem 1, statement (b), we obtain that κ(ξ̃, x̃) is real analytic with respect to (ξ̃, x̃) ∈ RJ × RJ×K

with radius of convergence +∞.

Proof of Statement (c). The difference in the proof relative to that of statement (b) in the case

of G = Φ is the bound on
∣∣∣∣∣ ∂Lκ(ξ̃,x̃)∏J

j=1 ∂ξ̃
lj0
j

∏
1≤j≤J,1≤k≤K ∂x̃

ljk
jk

∣∣∣∣∣, because the moment E
[∏K

k=1 β

∑J

j=1 ljk

ik

]
may
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increase faster when F ∈Mfe+ . Note that

E
[
K∏
k=1
|βik|

∑J

j=1 ljk

]
=

m∑
r=1

cr
ςKr

∫ K∏
k=1
|βik|

∑J

j=1 ljkfe+

(
βi − µr
ςr

)
dβi

=
m∑
r=1

cr

∫ K∏
k=1
|ςrtik + µrk|

∑J

j=1 ljkfe+(ti)dti

=
m∑
r=1

crς
L
r

∫ K∏
k=1

∣∣∣∣tik + µrk
ςr

∣∣∣∣
∑J

j=1 ljk
fe+(ti)dti

≤
m∑
r=1

crς
L
r

∫ K∏
k=1

∑J

j=1 ljk∑
q=0

(∑J
j=1 ljk
q

)
|tik|q

∣∣∣∣µrkςr
∣∣∣∣
∑J

j=1 ljk−q
fe+(ti)dti

=
m∑
r=1

crς
L
r

∫ ∑J

j=1 lj1∑
q1=0

...

∑J

j=1 ljK∑
qK=0

K∏
k=1

(∑J
j=1 ljk
qk

) ∣∣∣∣µrkςr
∣∣∣∣
∑J

j=1 ljk−qk
 K∏
k=1
|tik|qkfe+(ti)dti

≤
m∑
r=1

cr max{1, A}LςLr

∑J

j=1 lj1∑
q1=0

...

∑J

j=1 ljK∑
qK=0

K∏
k=1

(∑J
j=1 ljk
qk

) ∣∣∣∣µrkςr
∣∣∣∣
∑J

j=1 ljk−qk
 K∏
k=1

√
qk!

≤
m∑
r=1

cr max{1, A}LςLr

∑J

j=1 lj1∑
q1=0

...

∑J

j=1 ljK∑
qK=0

K∏
k=1

(∑J
j=1 ljk
qk

) ∣∣∣∣µrkςr
∣∣∣∣
∑J

j=1 ljk−qk
 K∏
k=1

√√√√(
J∑
j=1

ljk)!

=
m∑
r=1

cr max{1, A}LςLr
K∏
k=1

√√√√(
J∑
j=1

ljk)!
K∏
k=1

∑J

j=1 ljk∑
q=0

(∑J
j=1 ljk
q

) ∣∣∣∣µrkςr
∣∣∣∣
∑J

j=1 ljk−q

≤ [max{1, A}(ς̄ + µ̄)]L
K∏
k=1

√√√√(
J∑
j=1

ljk)!

≤ ĀL
K∏
k=0

√√√√(
J∑
j=1

ljk)!
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where Ā = max{1, A}(ς̄ + µ̄), µ̄ = maxr=1,...,m;k=1,...,K{|µrk|}, and ς̄ = maxr=1,...,m{ςr}. As a result,

we only need to multiply the right-hand side of (36) by ĀL∏K
k=0

√
(∑J

j=1 ljk)!. Consequently,

∣∣∣∣∣∣∣
1
L!

 J∑
r=1

(ξ̃′r − ξ̃r)
∂

∂ξ̃r
+ (x̃′rk − x̃rk)

∑
1≤r≤J,1≤k≤K

∂

∂x̃rk

L κ(ξ̃, x̃)

∣∣∣∣∣∣∣
≤ (C/

√
2π)J [dAĀ]L

∑∑J

r=1 Lr=L

∑
(lrk)r,k:

∑K

k=0 lrk=Lr,1≤r≤J

J∏
r=1

Lr!∏
0≤k≤K lrk!

≤ (C/
√

2π)J [dAĀ]L
∑∑J

r=1 Lr=L

J∏
r=1

 ∑∑
0≤k≤K lrk=Lr

Lr!∏
0≤k≤K lrk!


= (C/

√
2π)J [dAĀ]L

∑∑J

r=1 Lr=L

J∏
r=1

(K + 1)Lr

≤ (C/
√

2π)J [dAĀ(K + 1)J ]L,

where d = ‖(ξ′, X ′)− (ξ,X)‖. Note that uniformly for ‖(ξ′, X ′)− (ξ,X)‖ ≤ 1
2AĀ(K+1)J , the sum of the

residuals beyond the Lth term converges to zero as L→∞. Then, κ(ξ̃, x̃) is real analytic with respect

to (ξ̃, x̃) ∈ RJ × RJ×K and its radius of convergence is uniformly bounded away from zero (and it is

at least equal to 1
2AĀ(K+1)J ). The proof is completed.

C Proofs of Theorem 2 and of Remark 4

Theorem 2, Statement (a). Similar to the proof for the case Mφ reported in the main text before

Theorem 2, the density of the i.i.d. Gumbel distribution satisfies the conditions of Theorem 5(f) in

Nguyen, Nguyen, Chamroukhi, and McLachlan (2020). Consequently, the family of finite mixtures

Mψ (and therefore Mφ + Mψ) has the same approximation property.

Theorem 2, Statement (b). For any distribution F with density f , we construct the following

sequence of distributions {Fm : m = m0,m0 + 1, ...} ⊂ Fe, where Pr(‖βi‖ ≤ m0) > 0 and23

fm(βi) =


f(βi)

Pr(‖βi‖≤m) if ‖βi‖ ≤ m

0 otherwise.

23The probability Pr(‖βi‖ ≤ m) is intended with respect to the distribution F .
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Then, as m→∞, we have

‖fm − f‖L1 =
( 1

Pr(‖βi‖ ≤ m) − 1
)∫
‖βi‖≤m

f(βi)dβi +
∫
‖βi‖>m

f(βi)dβi = 2 Pr(‖βi‖ > m)→ 0

and therefore

sup
j,(ξt,Xt)

|σj(ξt;Xt, F, di, G)− σj(ξt;Xt, Fm, di, Gm)| ≤ sup
j,(ξt,Xt)

∫
1{Uijt > Uijr, ∀r 6= j} |fm(βi; di)gm(ε)− f(βi; di)g(ε)| dβidε

≤ sup
j,(ξt,Xt)

∫
1{Uijt > Uijr, ∀r 6= j} |fm(βi; di)− f(βi; di)| dβigm(ε)dε

+ sup
j,(ξt,Xt)

∫
1{Uijt > Uijr, ∀r 6= j} |gm(ε)− g(ε)| dεf(βi; di)dβi

≤ ‖gm‖L1‖f − fm‖L1 + ‖f‖L1‖gm − g‖L1

→ 0.
(37)

According to Corollary 1(b), each σj(ξt;Xt, Fm, di, Gm) in the sequence is real analytic with respect

to (ξt, Xt) ∈ RJ × RJ×K .

Theorem 2, Statement (c). Because of the approximation property of Gaussian mixtures, we

can find a sequence of distributions F φm ∈Mφ such that ‖f − fφm‖L1 → 0 as m → ∞. Similar to the

proof of statement (b), we obtain that supj,(ξt,Xt)
∣∣∣σj(ξt;Xt, F, di, G)− σj(ξt;Xt, F

φ
m, di, G

φ
m)
∣∣∣→ 0 with

σj(ξt;Xt, F
φ
m, di, G

φ
m) being real analytic with respect to (ξt, Xt) ∈ RJ × RJ×K because of Corollary

1(c) and φ ∈ Fe+.

Proof of Remark 4. According to Theorem 1 in McFadden and Train (2000) (pp. 451), any

Random Utility Model (RUM) in the class considered by that paper (see McFadden and Train (2000)

for details) can be approximated arbitrarily well by a specification of mixed logit model (2) with

linear indices (Xj(xjt, di)βi)Jj=1 as in Remark 3. Because we can approximate arbitrarily well any

such mixed logit approximant using the models defined in Theorem 2(b) or Theorem 2(c) with the

same indices (Xj(xjt, di)βi)Jj=1, then we can approximate arbitrarily well the original RUM using these

models. Note that these models are real analytic with respect to (ξt,Xj(xjt, di)) in their domains and

Xj(xjt, di) are polynomials of Xt (and therefore real analytic with respect to Xt ∈ RJ×K). It then

follows that these models are real analytic with respect to (ξt, Xt) ∈ RJ × RJ×K .
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D Proof of Corollary 3

This proof follows that of Theorem 1 in Wang (2023) and consists of two steps. In the first step, we

identify the distribution of Xtβi conditional on Xt. In the second step, using Condition 2 of Corollary

3 and using the same strategy in the proof of Theorem 1 in Wang (2023), we identify the distribution

of βi, F .

We now adapt the proof in Wang (2023) to prove the identification of the distribution of Xtβi

conditional on Xt. First, we use Corollary 2(a) to extend the identification of σ(δt;Xt, F,G) for

δt ∈ Ωδ to RJ . Second, following the same argument in Appendix A (from equations A.1 to A.4) of

Wang (2023) and using Remark 2 in the same Appendix, it suffices to prove his Lemma 2 holds when

G ∈Mφ +Mψ, i.e., the zero set of the characteristic function of ε̄i = (εi1 − εi0, ..., εiJ − εi0) is of zero

Lebesgue measure. Following the strategy used in his proof of Lemma 2, it is then sufficient to prove

that the real (or imaginary) part of the characteristic function is real analytic. Note that because εi is

a finite mixture random vector with mixing parameters equal to (µi1, ςi1)m1
i=1 and (µi2, ςi2)m2

i=1 in (34),

ε̄i is then a finite mixture random vector with mixing parameters equal to (µ̄i1, ςi1)m1
i=1 and (µ̄i2, ςi2)m2

i=1:

Ḡ(ε̄) = r
m1∑
i=1

ci1
1
ςJi1

Φ̄
(
ε̄− µ̄i1
ςi1

)
+ (1− r)

m2∑
i=1

ci2
1
ςJi2

Ψ̄
(
ε̄− µ̄i2
ςi2

)
,

where Φ̄ and Ψ̄ are the distribution functions of ε̄i when εi is distributed according to Φ and Ψ with,

respectively, µ̄i1 = (µij1 − µi01)Jj=1 and µ̄i2 = (µij2 − µi02)Jj=1. Then, we can write E
[
exp{itTε̄i}

]
as:

E
[
exp{itTε̄i}

]
= r

m1∑
i=1

ci1 exp{itTµ̄i1}EΦ̄

[
exp{i(ςi1t)Tε̄i}

]
+(1−r)

m2∑
i=1

ci2 exp{it̃Tµ̄i2}EΨ̄

[
exp{i(ςi2t)Tε̄i}

]
,

where EΦ̄ and EΨ̄ refer to the expectations with respect to Φ̄ and Ψ̄, respectively. Note that Φ̄ is

still a Gaussian distribution and the real/imaginary part of its characteristic function is real analytic

with respect to tςi1 ∈ RJ and therefore t ∈ RJ . Moreover, according to the proof of Lemma 2 in

Wang (2023), the real/imaginary part of the characteristic function of Ψ̄ is real analytic with respect

to ςi2t ∈ RJ and therefore t ∈ RJ . Consequently, the real/imaginary part of E
[
exp{itTε̄i}

]
is real

analytic with respect to t ∈ RJ . The proof is completed.
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E Proof of Corollary 4

The norm ‖ · ‖ of a linear operator L : E →W is defined as:

‖L‖ := sup
v∈E,‖v‖E=1

‖L(v)‖W ,

where ‖ · ‖E and ‖ · ‖W denote norms defined in the spaces E and W , respectively. When E and W

are Euclidean spaces, we will use the corresponding Euclidean norms. Therefore, ‖L‖ is the maximal

eigenvalue of L.

Using Theorem A in Smale (1986), it suffices to prove that

γ(δ) ≤
J‖[∂δσ(δ;Xt, F

′, G)]−1‖ supk>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

2 min{1, ς2}
.

Note that

∥∥∥[∂δσ(δ;Xt, F
′, G)]−1∂kδ σ(δ;Xt, F

′, G)
∥∥∥ ≤ ‖[∂δσ(δ;Xt, F

′, G)]−1‖ × ‖∂kδ σ(δ;Xt, F
′, G)‖,

where ‖[∂δσ(δ;Xt, F
′, G)]−1‖ is equal to the reciprocal of the minimal eigenvalue of ∂δσ(δ;Xt, F

′, G).

Moreover, ∂kδ σ(δ;Xt, F
′, G) = (∂kδ σj(δ;Xt, F

′, G))Jj=1 defines a linear mapping from RJ×k to RJ and

can be written as: for m = 1, ..., J ,

∂kδ σm(δ;Xt, F
′, G)(v1, ..., vk) =

∑
(j1,...,jk):1≤js≤J,s=1,...,k

∂kδ σm(δ;Xt, F
′, G)(ej1 , ..., ejk)

k∏
s=1

vjss

=
∑

(j1,...,jk):1≤js≤J,s=1,...,k

∂kσm(δ;Xt, F
′, G)∏k

s=1 ∂δjs

k∏
s=1

vjss

=
∑

(js)ks=1∈{1,...,J}k

∂kσm(δ;Xt, F
′, G)∏J

j=1 ∂δ

∑k

s=1 1{js=j}
j

k∏
s=1

vjss,

where ej is the standard basis vector with the jth element being 1 and the others being 0 and

∂kδ σm(δ;Xt, F
′, G)(ej1 , ..., ejk) = ∂kσm(δ;Xt,F ′,G)∏k

s=1 ∂δjs
. In other words, ∂kδ σm(δ;Xt, F

′, G)(v1, ..., vk) is a

polynomial of (v1, ..., vk). Each term in this polynomial corresponds to a term in the polynomial∏k
s=1

(∑J
j=1 vjs

)
. For the term ∏s

s=1 vjss with (j1, ..., jk) ∈ {1, ...., J}k, the corresponding coefficient

is ∂kσm(δ;Xt,F ′,G)∏J

j=1 ∂δ

∑k

s=1 1{js=j}
j

, i.e., the (∑k
s=1 1{js = 1}, ...,∑k

s=1 1{js = J})th derivative of σm with respect
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to δ. Then,

‖∂kδ σm(δ;Xt, F
′, G)‖ = sup

‖(v1,...,vk)‖=1

∣∣∣∂kδ σm(δ;Xt, F
′, G)(v1, ...vk)

∣∣∣
≤ sup
‖(v1,...,vk)‖=1

∣∣∣∣∣∣∂
k
δ σm(δ;Xt, F

′, G)(v1, ...vk)∏k
s=1

(∑J
j=1 |vjs|

)
∣∣∣∣∣∣× sup
‖(v1,...,vk)‖=1

k∏
s=1

 J∑
j=1
|vjs|


≤ max

(l1,...,lJ ):
∑

lj=k

∣∣∣∣∣∣∂
kσm(δ;Xt, F

′, G)∏J
j=1 ∂δ

lj
j

∣∣∣∣∣∣×
√
Jk

kk
.

Using Lemmas 2 and 3, we then obtain:

‖∂kδ σm(δ;Xt, F
′, G)‖ ≤ 1

ςk

(
r

(
C√
2π

)J √
k! + (1− r)e1/(e−1)(e− 1)kk!

)√
Jk

kk

= k!
ςk

(
r

(
C√
2π

)J 1√
k!

+ (1− r)e1/(e−1)(e− 1)k
)√

Jk

kk
.

Because ‖[∂δσ(δ;Xt, F
′, G)]−1‖ > 1 and C ≥

√
2π, we finally obtain:

γ(δ) ≤ sup
k>1

‖[∂δσ(δ;Xt, F
′, G)]−1 1

ςk

(
r

(
C√
2π

)J 1√
k!

+ (1− r)e1/(e−1)(e− 1)k
)√

Jk

kk

 1
k−1

≤ ‖[∂δσ(δ;Xt, F
′, G)]−1‖

J supk>1

[(
r
(

C√
2π

)J 1√
k! + (1− r)e1/(e−1)(e− 1)k

)] 1
k−1

2 min{1, ς2}
.

E.1 The Case of the Mixed Logit Model

In the case of the mixed logit model, r = 0 and ς = 1 in the expression of γ(δ). Then,

γ(δ) ≤ ‖[∂δσ(δ;Xt, F
′, G)]−1‖Je

1/(e−1)(e− 1)2

2 ≈ 2.64J × ‖[∂δσ(δ;Xt, F
′, G)]−1‖.

We now bound the eigenvalues of ∂δσ(δ;Xt, F
′, G). Note that the Jacobian matrix

∂δσ(δ;Xt, F
′, G) =

∫
[σij1{j = r} − σijσir]j,r dF (βi) =

∫ [
Diag(σi)− σiσT

i

]
dF (βi),

where σi = (σi1, ...σiJ) denotes the vector of multinomial choice probabilities with the random coeffi-

cients β equal to βi. Denote by λi the minimal eigenvalue of Diag(σi)−σiσT
i and vi the corresponding

eigenvector. Without loss of generality, suppose that the maximal element of vi in absolute value is
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its first coordinate vi1 6= 0. Then, for any v ∈ RJ ,

vT∂δσ(δ;Xt, F
′, G)v =

∫
vT
[
Diag(σi)− σiσT

i

]
vdF (βi) =⇒ vT∂δσ(δ;Xt, F

′, G)v ≥
∫
λi‖v‖2dF (βi).

Moreover, we have:

[
Diag(σi)− σiσT

i

]
vi = λivi =⇒ σi1(vi1 −

J∑
j=1

σijvij) = λivi1

=⇒ λi = σi1

(
1−

∑J
j=1 σijvij

vi1

)

≥ σi1

(
1−

∑J
j=1 σij |vij |
|vi1|

)

≥ σi1

1−
J∑
j=1

σij


≥ σi1σi0,

where σi0 = 1 − ∑J
j=1 σij . Then, any eigenvalue of ∂δσ(δ;Xt, F

′, G) is greater than or equal to∫
σi0 min1≤j≤J σijdF (βi) ≈ σ0 min1≤j≤J σj .24 Then, plugging this inequality into the expression for

∆∗, we obtain the desired approximation of ∆∗.

To obtain ∆∗H in (18), note that, in the classic BLP fixed point algorithm based on contraction

mappings, δ(n+1) − δ(n) is:

δ(n+1) − δ(n) = ln σ(δ(n);Xt, F
′, G)− ln pt

≈ Diag (1/p1t, ..., 1/pJt) (σ(δ(n);Xt, F
′, G)− pt)

= −Diag (1/p1t, ..., 1/pJt)
[
∂δσ(δ(N);Xt, F

′, G)
] (
δ

(n+1)
NR − δ(n)

)
,

where δ(n+1)
NR − δ(n) refers to the (n+ 1)th step in Newton-Raphson algorithm (14) if one switches from

the FP step to the NR step at δ(n). Then,

∥∥∥δ(n+1) − δ(n)
∥∥∥ ≈ ∥∥∥Diag (1/p1t, ..., 1/pJt)

[
∂δσ(δ(N);Xt, F

′, G)
] (
δ

(n+1)
NR − δ(n)

)∥∥∥ .
When δ(N) is close to the unique solution, the minimal eigenvalue of

Diag (1/p1t, ..., 1/pJt)
[
∂δσ(δ(N);Xt, F

′, G)
]

24More precisely, Cov(σi0,min1≤j≤J σij) =
∫
σi0 min1≤j≤J σijdF (βi)−σ0 min1≤j≤J σj . The approximation holds when

Cov(σi0,min1≤j≤J σij) is small.
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is approximately p0t. Then,
∥∥∥δ(n+1)

NR − δ(n)
∥∥∥ is approximately bounded by

∥∥∥δ(n+1)
NR − δ(n)

∥∥∥ /p0t, and∥∥∥δ(N+1)
NR − δ(N)

∥∥∥ < ∆∗H = ∆∗p0t implies
∥∥∥δ(N+1)

NR − δ(N)
∥∥∥ < ∆∗, i.e., δ(N) is an approximate zero.

F Proof of Corollary 5

Lemma 4. Suppose τ(θ) : Θ → R is a positive real analytic function in Θ ⊂ Rm and τ(θ) ≥ a for

any θ ∈ Θ. Moreover, for any (l1, ..., lm) with
∑m
k=1 lk = L, we have:

∣∣∣∣∣ ∂Lτ(θ)∏m
k=1 ∂θ

lk
k

∣∣∣∣∣ ≤ AALτ
m∏
k=1

lk!, (38)

where A and Aτ are constants that do not depend on θ. Then, for L ≥ 1,

∣∣∣∣∣ ∂L ln τ(θ)∏m
k=1 ∂θ

lk
k

∣∣∣∣∣ ≤
(
Aτ (a+ 1)1/m

(a+ 1)1/m − 1

)L m∏
k=1

lk!. (39)

Proof. Without loss of generality, suppose A = 1. Otherwise, we can normalize τ(θ) to τ(θ)/A and

any derivative of ln(τ(θ)/A) will be equal to that of ln τ(θ).

The techniques used in this proof are similar to those used in Lemmas 1 and 2. Denote B =
(a+1)1/m

(a+1)1/m−1 . By induction, we first prove the Lemma for L = 1. For k = 1, ...,m, we have:

∣∣∣∣∂ ln τ(θ)
∂θk

∣∣∣∣ =

∣∣∣∣∣∣
∂τ(θ)
∂θk

τ(θ)

∣∣∣∣∣∣ ≤ Aτ
a
<

Aτ (a+ 1)1/m

(a+ 1)1/m − 1
.

The Lemma then holds for L = 1. Now suppose that the Lemma holds up to L− 1. Then, we have:

∂ ln τ(θ)
∂θk

=
∂τ(θ)
∂θk

τ(θ)

=⇒ τ(θ)∂ ln τ(θ)
∂θk

= ∂τ(θ)
∂θk

=⇒
l1−1∑
r1=0

l2∑
r2=0

...
lm∑

rm=0

(
l1 − 1
r1

)(
l2
r2

)
...

(
lm
rm

)
∂
∑m

k=1(lk−rk) ln τ(θ)∏m
k=1 θ

lk−rk
k

∂
∑m

k=1 rkτ(θ)∏m
k=1 θ

rk
k

= ∂Lτ(θ)∏m
k=1 θ

lk
k

=⇒
∣∣∣∣∣ ∂L ln τ(θ)∏m

k=1 ∂θ
lk
k

∣∣∣∣∣ ≤ 1
a

 ∑
0≤r1≤l1−1,0≤rk≤lk∀k≥2,

∑
rk>0

(
l1 − 1
r1

)
m∏
k=2

(
lk
rk

) ∣∣∣∣∣∂
∑m

k=1(lk−rk) ln τ(θ)∏m
k=1 θ

lk−rk
k

∂
∑m

k=1 rkτ(θ)∏m
k=1 θ

rk
k

∣∣∣∣∣+
∣∣∣∣∣ ∂Lτ(θ)∏m

k=1 θ
lk
k

∣∣∣∣∣


=⇒ 1
ALτ

∏
lk!

∣∣∣∣∣ ∂L ln τ(θ)∏m
k=1 ∂θ

lk
k

∣∣∣∣∣ ≤ 1
a

 ∑
0≤r1≤l1−1,0≤rk≤lk∀k≥2,

∑
rk>0

l1 − r1
l1

1

A

∑
(lk−rk)

τ
∏(lk − rk)!

∣∣∣∣∣∂
∑m

k=1(lk−rk) ln τ(θ)∏m
k=1 θ

lk−rk
k

∣∣∣∣∣ 1

A

∑
rk

τ
∏
rk!

∣∣∣∣∣∂
∑m

k=1 rkτ(θ)∏m
k=1 θ

rk
k

∣∣∣∣∣+ 1
ALτ

∏
lk!

∣∣∣∣∣ ∂Lτ(θ)∏m
k=1 θ

lk
k

∣∣∣∣∣


=⇒ 1
ALτ

∏
lk!

∣∣∣∣∣ ∂L ln τ(θ)∏m
k=1 ∂θ

lk
k

∣∣∣∣∣ ≤ 1
a

1 +
l1−1∑
r1=0

l2∑
r2=0

...
lm∑

rm=0
B
∑m

k=1(lk−rk) −BL

 ≤ 1
a

1 +BL
l1−1∑
r1=1

B−r1
l2∑

r2=0
B−r2 ...

lm∑
rm=0

B−rm −BL


=⇒ 1

ALτ
∏
lk!

∣∣∣∣∣ ∂L ln τ(θ)∏m
k=1 ∂θ

lk
k

∣∣∣∣∣ ≤ 1
a

(
1 +BL 1−B−l1

1−B−1

m∏
k=2

B−lk−1

1−B−1 −B
L

)
≤ 1
a

(
1 +BL 1

(1−B−1)m −B
L
)

= BL.

Consequently, the Lemma holds for any (l1, ..., lm) with ∑ lk = L. The proof is completed.
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We now prove Corollary 5 for the case of G ∈ Mφ + Mψ and Fv ∈ Fe using Lemma 4. Given yit,

the likelihood function `(ξ,Σ;xit, yij) = ln
∫
σiyit(ξt + xitΣvi;G)dFv(vi). First, for any j = 1, ..., J ,

applying Corollary 1(b),
∫
σij(ξt + xitΣvi;G)dFv(vi) is real analytic with respect to (ξt, xitΣ) in

their domains and its higher-order derivatives satisfy (38) with the corresponding constant A be-

ing equal to r(C/
√

2π)J + (1 − r)e1/(e−1) and Aτ being equal to Av(e−1)
ς , where C is a constant

defined in (32). Then,
∫
σij(ξt + xitΣvi;G)dFv(vi) is real analytic with respect to (ξt,Σ) in their

domains and its higher-order derivatives satisfy (38) with Aτ equal to AvJ(e−1)|xit|max
ς . Denote

m = JT + KP . Using Lemma 4, we obtain that the higher-order derivatives of `it are bounded

by
(
AvJ(e−1)ς−1|xit|max(a+1)1/m

(a+1)1/m−1

)L∏m
k=1 lk!. Consequently, the higher-order derivatives of L(ξ,Σ) are

bounded by
(
AvJ(e−1)ς−1(a+1)1/m

(a+1)1/m−1

)L∏m
k=1 lk!

∑
i,t |xit|Lmax. Following the arguments in the proof of

Corollary 4, we then obtain:

sup
‖(v1,...,vk)‖=1,v1,...,vk∈Rm

‖∂k(ξ,Σ)L(ξ,Σ)(v1, ..., vk)‖ ≤
(
AvJ(e− 1)ς−1(a+ 1)1/m

(a+ 1)1/m − 1

)k
k!

√
mk

kk

∑
i,t

|xit|kmax

and

γ(ξ,Σ) ≤ sup
k>1

∥∥∥∥∥∥
[
∂2

(ξ,Σ)L (ξ,Σ)
NT

]−1∥∥∥∥∥∥
1/(k−1) (AvJ(e− 1)ς−1(a+ 1)1/m

(a+ 1)1/m − 1

)k+1√
mk+1

(k + 1)k+1

∑
i,t |xit|k+1

max
NT

1/(k−1)

≤ max

1,

∥∥∥∥∥∥
[
∂2

(ξ,Σ)L (ξ,Σ)
NT

]−1∥∥∥∥∥∥

(

max
{

1, AvJ(e− 1)ς−1x̄(a+ 1)1/m

(a+ 1)1/m − 1

})3 (
m

3

)3/2
.

To prove the second statement, it suffices to replace γ(ξ,Σ) in the definition of α(ξ,Σ) by the upper

bound above. The proof is completed.

G Monte Carlo Simulations: Details

In this Appendix, we detail the data generating processes and the fixed point algorithm used in Section

6. Our Monte Carlo setting resembles that in Section 5 of Conlon and Gortmaker (2020). Because our

Monte Carlo experiments focus on the numerical performance of different implementations of demand

inverses rather than the GMM estimator, we simulate data for only one market and ignore the market

index t.

There are two firms that sell products j = 1, ..., bJ/2c and j = bJ/2c+ 1, ..., J , respectively, with
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constant marginal costs of production cj = [1, xj , wj ]γ + ωj . We specify

Uij = βi0pricej + βixxj + α+ ξj + εij ,

where (εij)Jj=0 is i.i.d. Gumbel (i.e., which gives rise to a mixed logit) and (pricej)Jj=1 is generated by

a simultaneous Bertrand price-setting game as in Conlon and Gortmaker (2020). Demand and supply

shocks (ξj , ωj) follow a mean-zero Gaussian distribution with σ2
ξ = σ2

ω = 0.2 and σξω = 0.1, and are

independent across j = 1, ..., J . Moreover, α = −1 and (βi0, βix) follows a Gaussian distribution:

(βi0, βix) ∼N

(−2, 6),

σ2
p 0

0 9


 .

The configuration “No random coefficient on price” in Tables 1 and 2 refers to σp = 0, i.e., βi0 = −2

for any i, and “Random coefficient on price” refers to σp = 0.2. To simulate market shares and prices,

we use 1000 independent draws of (βi0, βix) and for J = 25, 50, 100, where J = 50 is equal to the

maximal number of products in the configurations considered by Conlon and Gortmaker (2020).

The fixed point algorithm we use in Section 6 and in the FP step of Algorithm 1 is the original

one by Berry, Levinsohn, and Pakes (1995): for j = 1, ..., J ,

δ
(n+1)
j = δ

(n)
j − (ln pj − ln σj(δ(n); price, x,G)). (40)

“Close starting values” in Table 1 refer to a situation where we draw starting values from a small

neighborhood of the true values (δj)Jj=1 = (−2pricej + 6xj − 1 + ξj)Jj=1. In practice, we draw 200

starting values from the uniform distribution on a “tight” neighborhood of the true values [δ1−1, δ1 +

1] × ... × [δJ − 1, δJ + 1]. Instead, “Distant starting values” in Table 2 refer to a situation where we

draw the same number of starting values from a uniform distribution on the “wider” neighborhood of

the true values [δ1 − 5, δ1 + 5]× ...× [δJ − 5, δJ + 5].
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