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VRSTNN: Visual-Relational Spatio-Temporal
Neural Network for Early Hazardous Event
Detection in Automated Driving Systems

Dannier Xiao1, Mehrdad Dianati1,2, Paul Jennings1 and Roger Woodman1

Abstract—Reliable and early detection of hazardous events
is vital for the safe deployment of automated driving systems.
Yet, it remains challenging as road environments can be highly
complex and dynamic. State-of-the-art solutions utilise neural
networks to learn visual features and temporal patterns from
collision videos. However, in this paper, we show how visual
features alone may not provide the essential context needed to
detect early warning patterns. To address these limitations, we
first propose an input encoding that captures the context of the
scene. This is achieved by formulating a scene as a graph to
provide a framework to represent the arrangement, relationships
and behaviours of each road user. We then process the graphs
using graph neural networks to identify scene context from: 1)
the collective behaviour of nearby road users based on their
relationships and 2) local node features that describe individual
behaviour. We then propose a novel visual-relational spatio-
temporal neural network (VRSTNN) that leverages multi-modal
processing to understand scene context and fuse it with the visual
characteristics of the scene for more reliable and early hazard
detection. Our results show that our VRSTNN outperforms state-
of-the-art models in terms of accuracy, F1 and false negative rate
on a real and synthetic benchmark dataset: DOTA and GTAC.

Index Terms—Hazardous event detection, spatio-temporal neu-
ral networks, visual and relational graph networks, visual con-
volutional networks, automated and autonomous vehicles

I. INTRODUCTION
Automated driving systems (ADS) have the potential to

greatly reduce the 1.35 million global road fatalities per year
[1] and offer many other benefits [2]. However, to realise their
full potential, higher levels of autonomy are required, i.e., SAE
Level 3+ [3]. To enable the safe deployment of L3+ functions,
the ADS must be able to detect scenarios that may lead to
harm (i.e., hazardous events) and do so early, to enable a safe
handover in L3 and a minimum-risk manoeuvre in L4.

Due to complex and diverse road environments, the accurate
and timely detection of hazardous events is a challenging
spatio-temporal pattern recognition problem. It requires un-
derstanding how scene objects like vehicles and pedestrians
interact in space (spatial) and tracking how those interactions
change in time (temporal). Interactions refer to how road users
affect and respond to each other and provide the essential
scene context to detect hazardous events early. For example in
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Fig. 1: Seeing is not the same as understanding: context
is required to detect hazardous events accurately and early.
For example, in the motorway merge illustrated in (a), the
difference between a safe or hazardous merge requires context
based on actor distances and speeds in relation to other road
users. To provide scene context, our VRSTNN model fuses (b)
visual scene features from image data with (d) context from
graph-encoded actor data describing actor relationships (xrel.)
and state information (xactor), e.g., speed and heading.

Fig. 1a, the difference between a safe and hazardous highway
merge is difficult to assess visually without context or history:
it may be safe if one car slows down to allow the other to
merge but is hazardous if highway traffic fails to slow and the
merging vehicle does not match the speed of highway traffic.

Herein referred to as hazard detection, traditional techniques
propose physics-based methods to predict colliding trajectories
[4] but struggle to capture the frequent interactions between
drivers that cause sudden changes in trajectory (e.g., mo-
torway merge or exit). Consequently, state-of-the-art (SOTA)
hazard detection methods utilise deep learning models to
capture complex interactions in both space and time using
spatio-temporal neural networks (STNNs). SOTA works [5]–
[7] propose classifying hazardous events by taking collision
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videos as input and processing each frame with a convolutional
neural network (CNN) to learn visual features, followed by a
recurrent neural network (RNN) to extract temporal patterns.

CNNs are widely used to extract visual features from
images. Though, sole reliance on visual features may draw
spurious patterns [8]–[11] and perception errors have been
linked to 53% of Waymo incidents [12]. This highlights that
seeing is not equal to understanding. Real-world driving often
diverges from textbook guidelines and thus, context from actor
interactions is crucial. However, identifying object relations is
difficult for traditional CNNs, which use filters to extract visual
features and lack explicit memory or attention [13]–[15].

Given the need for early hazard detection to enable a safe
handover or minimum risk manoeuvre [16]–[18], this paper
demonstrates the importance of context and proposes a real-
time hazard detection system for the timely and accurate
detection of hazardous events and benchmark against SOTA
models and human response time to unexpected road hazards
from the literature (1.1-1.8s [19]–[21], detailed in IV-C).

To achieve this, we first investigate different input encodings
and feature extractors to understand what scene features are
needed and how to process these features to identify hazards.
From our results, we highlight the importance of scene context
and propose a novel graph encoding of scene data that provides
a framework to represent the arrangement, relationships and
behaviours of each road user (i.e., actors). We achieve this by
representing the road users as nodes and their relationships as
edges, which is detailed in III-C2. At each node, we encode
state data that describes actor acceleration, trajectory and other
key kinematic indicators that precede accidents [16], [22].

We then investigate how to process the graphs to extract
the context needed to capture early warning patterns. For this
purpose, we use GNNs to extract scene context from the global
graph structure and from the local node relationships. GNNs
are considered to be versatile data-driven models. Our review
of graph-based hazard detection methods revealed 19% higher
accuracy [23] and 9x faster inference [18] of GNNs over CNN
counterparts. In this study, we compare our GNN processing
of actor state data against SOTA CNNs processing of image
input to reveal a synergy between the networks. CNNs can
extract visual features from semantically complex images but
may lack contextual understanding. Thus, GNNs can provide
this context by interpreting graph relations and structure.

Motivated by the above strength of the GNN and CNN-
based approaches, we leverage the synergy between them
to propose a novel visual-relational spatio-temporal neural
network (VRSTNN) that fuses visual features with scene
context to enable early detection, as illustrated in Fig. 1.
Our VRSTNN model leverages CNN’s ability to recognise
hazardous visual patterns irrespective of position in the image
(i.e., translation invariance). In addition, it leverages GNN’s
ability to recognise anomalies in graph structure that represent
road user arrangement and relationships, irrespective of node
order (i.e., permutation invariance). We then fuse the latent
representation from each spatial block by concatenation along
the feature dimension before temporal processing with a long-
short-term memory (LSTM) network. Our study shows that the
proposed VRSTNN approach helps achieve higher accuracy

and earlier detection than the SOTA models in the literature.
In summary, the contributions of this paper are:
• Investigation of different visual and relational input en-

codings and spatial feature extractors to understand what
scene features are necessary and how to process them.

• Proposition of a novel relational encoding of actor state
based on leading kinematic indicators [16], [22]. 12 types
of actor state and 8 spatial relation types are encoded in a
bespoke relational graph structure to represent local and
global context for GNN processing. In addition to a tensor
structure to test CNN’s ability to learn relational features.

• A novel VRSTNN architecture for hazard detection that
utilises multi-modal input and processing to enable early
detection through scene context. VRSTNN utilises a CNN
and GNN respectively to extract visual features from
image input, fused with scene context from graph input
that represents road user arrangement and relationships.

• Evaluation of the proposed model that outperforms the
SOTA on a real and synthetic dataset. In addition to the
introduction of a new metric to evaluate the ability to
predict using partial sequences for early detection. This
also allows us to evaluate the minimum history required,
to be used as a design parameter to tune detection.

The rest of the paper is organised as follows: Section II
summarises key related works, III describes the methodology,
IV explains our experimental setup V presents the results. VI
discusses our key findings, and VII draws conclusions.

II. RELATED WORK

To improve hazard detection, diverse scene representation
and learning models are crucial, yet underexplored. To this
end, this section presents the key literature on various input
encodings and the subsequent models to extract spatial and
temporal features for prediction. Thus, we give an overview
of the SOTA and present the limitations we aim to address.

A. Input Encoding

The foundation of any learning model begins with the input.
In this section, we discuss how scene data is encoded as it
provides the essential information needed to learn the patterns
used for prediction. The most common type of raw scene
data comes from onboard cameras that capture a video of the
collision. Thus, the most common input encodings are image-
based, as seen in SOTA works [5]–[7]. These input encodings
are created by splitting videos into image frames and processed
with a grayscale transform and resized to reduce computational
complexity and improve generalisation by allowing models to
learn features independent of colour channel or aspect ratio.

Image encodings capture the visual characteristics of a scene
through a grid of pixels that encode colour and intensity. While
they represent visual features, they don’t encode how the pixels
relate or interact. This is a drawback as understanding how
road users interact, gives the essential context needed to detect
hazardous events early. Therefore, models using image input
have the difficult task of identifying entities of interest and
inferring their relationships, as this is a type of relational
feature extraction that CNNs are not optimised for [13]–[15].
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As a result, graph encodings have emerged as a promising
solution to better represent relational problems [24]–[26]. A
graph G is formally defined as a pair of sets G = (N,E),
where N is a set of nodes, connected by a set of edges
E [27], [28]. Since traffic flow is highly relational, it is
rational to model a traffic scene as a relational graph structure.
This structure helps decompose a complex driving scene into
entities of interest that can be represented as nodes and linked
by edge relationships to represent how they interact. Road
users are commonly encoded as nodes and edge weights are
used to represent qualitative spatial relations (e.g. right, left,
near, far) [18], [23], [29]. To generate a graph, monocular
camera images are used to detect and project actors to a bird’s
eye view (BEV) map, which is used to derive spatial relations.

In the works of [18], [23], actors (e.g. vehicle and pedes-
trian) and static traffic objects (e.g. lane markings and traffic
signs) are detected in image frames and mapped into BEV
to calculate spatial relationships. The authors then repre-
sent vehicle actors and lanes as graph nodes with qualita-
tive relations stored as edges to denote distance categories
(e.g., ”NearCollision” (1.2m), ”Near” (4.9m) and directional
categories composed of longitudinal and lateral pairs (e.g.,
”Front Left”, ”Rear Right”). Though semantically descriptive,
the node and edge features remain limited to five distance
categories and eight directional relations in [18], [23]. This
approach is also adopted in other related works of [29], [30].
One drawback of this approach is that categorical encoding
requires discretization which may incur data loss. Yet, few
authors explored unprocessed encodings of actor state, such as
[31], but the features remain limited to location and heading.

In [18], [23], the authors also mixed vehicles, road lanes,
traffic signs and traffic lights as nodes in one graph to capture
the interaction between different traffic elements. However,
vehicles have different effects on the scene than static traffic
objects and thus, heterogeneous graphs may be difficult to
scale for large traffic networks as their complex structure not
only increases computational cost but adds model complexity.
Thus, other works separate graphs by node type [32] to allow
models to differentiate the unique characteristics of each type.

Given the aforementioned gaps, our work makes two key
contributions to input encoding. Firstly, with limited studies of
different input encodings, we investigate six different encoding
schemes to contrast visual and relational scene encoding
techniques. Furthermore, we study encodings of varying com-
plexity to investigate if abstraction can help guide learning.

Secondly, the current relational encodings utilise limited
actor features and may introduce complexity using heteroge-
neous graphs. The use of actor state remains generally limited
in the literature to ego vehicle position, speed, acceleration in
[5] and categorical spatial relations in [18], [23], [29], [30].
Conversely, our paper proposes a novel relational encoding
using 12 types of actor state and 8 spatial relation types
based on leading kinematic indicators from the literature [16],
[22]. Actor state and inter-actor relations are encoded in a
bespoke relational graph to represent local and global context
and encoded both quantitively and qualitative to study the
complexity against data loss trade-off.

B. Prediction Models

In this section, we discuss how the input encodings are then
used by SOTA prediction models to identify hazardous events.
While the specific model may vary, the hazard detection
problem is often framed as a time-series anomaly detection
task, where input encodings are processed sequentially to
identify anomalous/hazardous event patterns over time. Due to
domain complexity and event variety, STNN models have been
proposed using different spatial and temporal blocks to extract
spatial features and their temporal patterns for classification.

Traditionally, CNN spatial blocks have been used to process
image data, as they can effectively extract visual features
and are based on receptive field theory. As a well-established
method for image-based anomaly detection, such models have
been covered extensively in the literature [33]–[35]. CNNs use
convolutional layers that consist of learnable filter matrices
that scan over the image and apply a transformation. The
output results in a new set of features that can be fed to the next
layer to learn hierarchical features. Thus, this enables complex
patterns to be generalised with translation invariance, i.e., the
ability to detect irrespective of position within the image.

To classify collision scenes and anomalies, influential works
such as [5], [36] propose pairing a CNN spatial block with
an LSTM temporal block and acts as the benchmark for this
study. Implementations such as [36] utilised monocular image
input and integrated the ConvLSTM with an AutoEncoder to
detect anomalies by predicting what the future frame should
look like to compare for anomalies in appearance or motion.
However, continuous frame generation leads to a high compu-
tational load that may be impractical for real-time operation.

In contrast, [5] directly utilised a three-layer ConvLSTM to
assist hierarchical feature extraction and multi-camera input.
This work also concatenated the extracted visual features with
ego vehicle (EV) telemetry of position, speed and acceleration.
However, with limited EV telemetry and no data on other actor
states, this extension only yields a 0.29% accuracy gain.

To overcome the limitations of CNN spatial blocks, re-
searchers have proposed the use of graph theory and GNNs to
target relational reasoning [37]–[39]. Using a graph, complex
road scenes can be decomposed into actors as nodes and their
relationships as edges, as discussed in II-A. The graphs are
then processed by specialised neural networks called GNNs,
which extract features by iteratively aggregating and updating
node features based on neighbouring nodes using permutation
invariant aggregation functions to create an encoding that is
independent of node or edge order, i.e., permutation invariant.
As such, the resulting encoding aims to generalise features
applicable across similar road scenes. This process gives
GNNs their key advantage in capturing collective behaviour
that considers both the global structure and the local features
of nodes and edges. This helps model complex interactions,
which can be difficult to generalise using other networks.

Our study builds upon previous work, where the use of
GNNs for hazard detection was reviewed in our survey paper
[40]. For this current paper, we highlight the iterative works
of [18], [23], where the authors classified hazardous lane-
change videos using a relational graph convolutional network
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(RGCN). The RGCN was selected to directly learn actor
relations, such that hazardous actor interactivity can be bet-
ter generalised by understanding how different graph nodes
interact and the importance of different relations. After spatial
processing, an LSTM was then used to extract temporal pat-
terns, followed by a fully connected layer for final prediction.
To represent the scene, actors and lanes were modelled as
nodes with categorical spatial relations as edges to describe
distance and relation e.g., near, behind, right and left.

For hazard classification, [23] first proposes a model that
performs binary sequence classification. In addition, accuracy
and interpretability were enhanced by adding attention-based
graph pooling to the RGCN and temporal attention to isolate
hazardous actors and time frames for visualisation. Binary
sequence classification was then extended in [18] to frame
classification. Thus, allowing early detection by updating the
prediction at each frame [18] and demonstrates 39% earlier
detection than CNN counterparts. However, graph features
were limited to categorical spatial relations. Moreover, testing
on real-world complexity was limited to training on 1043 self-
generated synthetic scenes and 571 real-world videos.

Motivated by the above gaps, our work makes three key con-
tributions to prediction models. Firstly, given single processing
methods of visual CNNs and relational GNNs, we propose
the integration of both modalities. We build upon works such
as [5] where authors concatenated image features with ego
vehicle telemetry data without dedicated processing, resulting
in only 0.29% accuracy gain. Whereas, we propose a method
that uses dedicated spatial processing for each input type to
optimally capture the unique features in image and graph data.

Secondly, given the importance of early detection, we intro-
duce a new metric to evaluate a model’s ability to capture early
warning patterns and predict using partial sequences where the
collision is not visible. This allows us to analyse the minimum
sequence history as a design parameter to tune detection.

Thirdly, we address the issues of overfitting to a small
dataset and applicability to real-world scenarios, as previous
works relied on small or synthetic datasets [5], [18], [23].
To overcome this, we use a large real-world dataset of 4775
scenes to improve generalisability to real-world complexity.

III. PROPOSED METHOD

This section begins with the system model and problem
definition in III-A, followed by an overview III-B and a
description of the proposed VRSTNN model in III-C - III-F.

A. System Model and Problem Definition

The goal of runtime hazard detection is to identify all
potential scenarios that could lead to harm, i.e., hazardous
events. In this study, we define collision events as hazardous
events as harm is materialised. To maximise impact, we focus
on collisions caused by road users as 83-94% of accidents
have been linked to human fault [41], [42].

We consider a system that consists of an ADS with a
camera sensor and sufficient local processing to handle the
automated driving functions. The ADS receives scene data,
such as raw image data from egocentric camera sensors and

Fig. 2: Proposed VRSTNN pipeline: Multi-modal spatial fea-
tures are extracted from image inputs via CNN for visual fea-
tures and from actor state data via GNN for relational features.
Fusion of both modalities is achieved by concatenating latent
encodings and is processed by an LSTM for temporal pattern
extraction and finally by an MLP for binary classification.

object detections from computer vision (CV) algorithms. In
addition, we assume actor state data such as their speed and
heading can be obtained through CV-based state estimation
or vehicle-to-vehicle cooperative awareness messages (CAMs)
[43]. These data are then structured into input encodings for
the runtime hazard detection module as time series data points.

To this end, we formulate the hazardous event detection
task as a time series classification problem. The intended
solution is expected to classify a sequence of input encodings
as hazardous ŷt = 1 or non-hazardous ŷt = 0 at each time step
t, given n number of previous input encodings to assess the
temporal history. We denote the encoded input at time step t
as xt. Therefore, the problem can be formulated as a mapping
function, denoted by f in (1), which produces a binary output
for a given sequence of encoded inputs:

ŷt = f(x0...,xt−1,xt), (1)

where ŷt ∈ 0, 1 is the prediction of a hazardous event at
time step t and xt is the input encoding at time t.

B. Method Overview

The processing pipeline of the proposed VRSTNN is il-
lustrated in Fig. 2. The pipeline includes a multi-modal ar-
chitecture to fuse visual scene features from image data with
context from graph-encoded actor data describing road user
arrangement, relationships and behaviour.

First, VRSTNN takes scene input in the form of raw image
data from camera sensors and actor state data. To process the
image data, a transformation is applied to improve generalisa-
tion and computational efficiency of the model. Concurrently,
actor state data are encoded into a relational graph structure.
The separate image and graph encodings are then passed to
their dedicated spatial feature extractors: a CNN for images
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(a) Visual Grayscale (b) Visual Bounding Box (c) Our Relational Graph Structure (d) Our Relational Adjacency Matrix

Fig. 3: Visual and relational input encodings used in this study to examine their capacity to generalise hazardous event patterns

and a GNN for graphs. The extracted spatial features are then
fused and passed to an LSTM network to extract temporal
patterns. Finally, a multi-layer perceptron (MLP) outputs a
binary prediction to classify the scene as safe or hazardous.

Each step is described in detail in the following sections
as follows: input encoding III-C, spatial processing III-D,
temporal processing III-E and finally the output layer III-F.

C. Input Encoding

We investigated different visual and relational encoding
schemes, as shown in Fig. 3. Among visual encodings, we
contrast detailed input with an abstraction to guide learning,
Fig. 3a, 3b. Then among relational encodings, we examine
different graph and matrix encodings of actor state to describe
how actors behave and interact in a scene, Fig. 3c, 3d.

1) Visual Encoding: We take raw RBG image input ximg
t

of variable resolution and standardise it to 256x256 pixels
through bilinear interpolation to minimise data loss and allow
for efficient training. We study two types of image inputs.
First, a conventional grayscale transform to represent visually
rich input independent of colour channel, Fig. 3a. However,
raw camera data can be noisy and complex, thus we compare
this to a simplified binary map showing only actor bounding
box (BBox) outlines, Fig. 3b. The BBox encoding encodes
the background as 0 (black) and actors as 1 (white) to reduce
noise and complexity by creating an abstract representation
that guides learning towards actor interactions. The resulting
encoding is denoted ximg∗

t and is shown in Fig. 2.
2) Relational Encoding: We propose a novel graph encod-

ing of scene data to provide a framework that represents the
relationships between road users and information on each user,
shown in Fig. 3c. The nodes encode the actors in a scene and
their relationships as edges. For each actor, we encode state
data based on key kinematic indicators that precede accidents

TABLE I: ACTOR FEATURES

Type Quantitative Qualitative

Actor
speed, acceleration, >avg vel, >avg acceleration,
heading, yaw rate, >avg heading, >avg yaw rate,
pitch rate, roll rate >avg pitch rate, >avg roll rate

Relations

time to collision, time to col: (<1s, 1s, 2s, +4s),
eucli distance, eucli rel: (1m, 0.5c∗, 1c∗, +1c∗),

eucli longitudinal, long rel: (to side, ahead, behind),
eucli lateral lateral rel: (same lane, left, right)

c*: car lengths

[16], [22] and connect each actor using an edge to create a
fully connected (FC) graph that traces their interactions.

In this study, a FC graph is used to model the complex
interactions among road users as the influence of one road user
on another is not known. This approach allows us to input all
connections and utilise the GNN to learn the significance of
each connection through training, as a popular approach when
the node number is small [44]. This is motivated by similar
works in trajectory planning [45]–[47], where a FC graph
allows the GNN to discern significant connections among road
users by learning from all potential interactions. We note the
FC representation is a first step to build a platform for future
work, as the effect of road users on others is not yet quantified.

To encode each graph xgraph
t at time t, we encode each

node i with actor state data xactor
i and encode each edge with

relational features xrel.
i,j for each node i and neighbour j. For

the relational features, we convert the quantitative values into
categorical values and ranges which are each given a unique
index e.g., {0: ahead, 1: behind, 2: left, 3: right}. We tabulate
the features in Table I and study a quantitative (i.e., numerical)
and simpler qualitative encoding (i.e., categorical) to study the
complexity against data loss trade-off, see Table I.

The numerical features were then scaled using min-max
normalisation to reduce the effect of varying magnitudes
and units. Our qualitative actor features represent a novel
discretization that compares the numerical average of the
surrounding actors. The encoding is inspired by focal attention,
where humans focus on abnormal behaviour. Similarly, our
qualitative features represent a categorical discretization of the
numerical equivalents, to simplify out noise and complexity.

Secondly, we propose a novel matrix equivalent using
an adjacency matrix to test SOTA CNN’s ability to learn
relational features and perform non-visual numerical analysis.
The rows and columns index n number of actors, such that
matrix elements represent actor relations xrel. and the leading
diagonal represents actor kinematics xactor, shown in Fig. 3d.

D. Spatial Feature Extractor

After the inputs are processed, they are fed to their respec-
tive CNN and GNN spatial feature extractors.

1) Convolutional Neural Network: To process image input
and extract the visual scene features, we utilise a SOTA CNN-
based hazardous event classifier [5] as a suitable benchmark
used by related works [18], [23]. The model consists of a 3-
layer convolutional and recurrent LSTM network.
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To allow feature fusion in our VRSTNN model, We isolate
the CNN spatial block that takes as input, the processed
images ximg∗

t and extract the visual features to create an
intermediate representation x̀img

t . The CNN block consists
of 3 convolutional layers stacked sequentially. This stacking
allows the initial layers to extract low-level patterns such as
edges, which are refined by later layers into higher-order
representations such as shapes. This is critical for reliable
hazard detection as it enables CNNs to learn generalised
patterns for use in diverse and unpredictable road conditions.

In the forward pass of the CNN spatial block, the 2D con-
volution plays a key role in feature extraction. This operation
calculates the output feature map F from an 2D input matrix
I using a convolution kernel K and is formulated in (2):

F [i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[i−m, j−n] ·K[m,n] (2)

where:
F [i, j] : value of the output feature map F at position i, j.
I ∗K : convolution operation ∗ between input matrix I and

kernel K.∑
m

∑
n : double summation over indices m and n, representing

the summing operation across the rows and columns
of the convolution kernel K and the corresponding
region of the input matrix I .

I[...] : value in the input matrix I at the adjusted position,
correlating with the kernel’s position at i−m, j − n.

K[m,n] : value at position [m,n] in the convolution kernel.

2) Graph Neural Network: To process graph input xgraph
t ,

we utilise a GNN to extract scene context from road user rela-
tions and state information. The GNN is based on the RGCN
from the seminal work of [48] due to its effectiveness in graph
classification using multi-relational data [48], [49]. This aligns
with our task of hazard detection by graph classification, where
the nodes represent road users with multi-relational edges that
depict the relationships in Table I.

Our GNN is composed of two layers stacked sequentially to
progressively refine the extracted features. The forward pass
to calculate a hidden representation for each node i using
neighbouring node j is formulated in (3) [48]:

hl+1
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W(l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (3)

where:
hl+1
i : hidden representation h of node i in layer l + 1
σ : non-linear activation function∑

r∈R : sum over all relation types r, r is a set of relations R∑
j∈N r

i
: sum over all neighbour nodes j, j is a set of nodes
N that neighbour the node i with relation type r

1
ci,r

: normalisation constant c for node i and relation r

W
(l)
r : weight matrix Wr shared by all neighbour nodes for

layer l and relation type r

h
(l)
j : hidden representation of neighbour node j in layer l.

W
(l)
0 : weight matrix W0 for layer l, to learn individual

importance of central node i

h
(l)
i : hidden representation of node i at previous layer l

The hidden representation hi for each target node i is
computed from information aggregated from its neighbours
and from node i itself. In our case, the forward pass will
calculate a representation hi for each vehicle node i that
represents information on nearby vehicles and vehicle i itself.

To calculate neighbouring node information, the network
aggregates information from all neighbour nodes j with the
same relation type r, where r represents a categorical index
given to each qualitative relation e.g., {0: ahead, 1: behind,
2: left, 3: right}, see Table I. When aggregating neighbour-
ing node information, the features are transformed using
the relation-specific weight matrix Wr and normalized by a
constant 1

ci,r
based on the number of neighbours. To exemplify

the role of Wr, we consider nearby vehicle j and its relation r
to target vehicle i. If relation r tells us that the nearby vehicle
is behind the target vehicle, a dedicated weight matrix Wr for
each relation r, is used to transform the features of the nearby
vehicle. This adjustment is crucial because, e.g., if a vehicle is
behind another, its acceleration may be weighted higher due
to the increased risk of collision. Thus, Wr helps the network
learn which features from nearby road users matter and in
what contexts (over which relation r). After transforming the
features of vehicle j, these features are aggregated using mean
operation and this aggregation is performed over all neighbour
nodes N , expressed in

∑
j∈N r

i
and over all relation types R,

expressed in
∑

r∈R, shown in Equation (3)
To calculate the features from node i, the network trans-

forms the node’s current features hi using a weight matrix
W

(l)
0 that learns which node features are most important for

prediction. For example, the encoded yaw rate may signal an
evasive manoeuvre and may be weighted higher.

Using both Wr and W0, the network balances both local
node and global neighbourhood information to combine how
individual and collective behaviours influence prediction. The
resulting aggregated neighbour and node i features are then
passed through a non-linear activation function σ.

The resulting representation of the RGCN forward pass
is then passed to a global pooling layer to better generalise
collective behaviour that is more permutation invariant across
similar unseen scenarios. Pooling is applied by summation
across the node feature dimension to create an intermediate
representation of the graph x̀graph

t , as formulated in (4).

x̀graph
t =

∑
i∈N

hi, (4)

where:
x̀graph
t : intermediate representation of graph at time step t∑
i∈N : sum over nodes i, i is a set of all nodes N
hi : hidden representation of node i

3) Spatial Feature Fusion: Fusion is then implemented to
enrich learning with the extracted features from heterogeneous
input and processing. With intermediate representation from
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both CNN x̀img
t and GNN x̀graph

t networks, a fused spatial
encoding x̀s

t is created at each time step t, by concatenating
along the feature dimension to preserve the ordinal sequence.

Fusion is performed after feature extraction due to the
heterogeneous image and graph inputs with different structures
and semantically different scene encodings. This preserves
input integrity and allows dedicated spatial processing.

E. Temporal Feature Extractor

For the temporal block shown in (5), an LSTM is used
to encode the spatio-temporal encoding x̀st

t at each time step.
This study utilises the popular LSTM network for its ability to
capture long-term dependencies, as seen in SOTA works in the
area [5], [18], [23], [36]. The LSTM was selected for its ability
to learn over long sequences due to feedback connections
that selectively retain or forget information, as needed to
capture complex event evolution of various types and sequence
lengths. The LSTM takes the fused spatial encoding x̀s

t−1 and
hidden state ht−1 at the previous time step t− 1, and updates
its current cell state ct and hidden state ht at each time step.

ht, ct = LSTM(ht−1, x̀
s
t−1). (5)

F. Output Prediction Layer

The spatio-temporal encoding x̀st
t+1 at each time step is then

fed to a 3-layer MLP, to output the confidence values for each
class to form the final prediction ŷ = 0: safe, 1: hazardous.
The predicted confidence values Ŷ from batch training are
then compared with the ground-truth labels Y to calculate
cross entropy loss and backpropagated. Once trained the model
predicts the class from the highest confidence score.

IV. EXPERIMENTAL SETUP

This section presents the experimental setup regarding
dataset preparation, model configuration and metrics used to
evaluate the performance of the proposed method.

A. Dataset Description and Preparation

Annotated datasets were used to train and test our model
and were split 80% for training and 20% for testing. In this
study, we define collision scenes as hazardous as the harm
is materialised. To this end, we prepare two datasets: first a
high-volume synthesised dataset with actor state and second
from real-world scenes to capture real-world complexity. The
datasets include scenes that vary across day and night and
include diverse road environments such as urban and rural.

1) Synthesised Dataset: As real-world datasets lack ac-
tor state, researchers utilise simulation environments such
as CARLA [50]; however it lacks environmental diversity
and realism as actors require manual waypoints and do not
consistently respond to EV actions. Therefore, the GTA Crash
(GTAC) dataset [51] was used due to its realistic and random-
izable actor models and scenarios that are popular for testing
end-to-end control and computer vision [52]–[54].

We utilise 11298 GTAC scenes, with a 1:2.1 safe-to-
hazardous scene ratio that we upsample to a 1:1 ratio to avoid

bias. Scenes were filtered to contain a maximum of 20 unique
actors per scene to capture 99.3% of the dataset while creating
a standardised graph size that allows each actor to be assigned
a unique node that retains actor history and allows interactions
to be identified from the graph topology.

Scenes include a diverse range of environments and sce-
narios such as hazardous lane change, overtake and sudden
braking, which reflect the most common crash events [41].
Each scene consists of 20 frames captured at 10 frames per
second (FPS) and provides actor data (e.g., position, speed)
for the ego vehicle and surrounding actors, with ego-centric
camera data with actor bounding boxes, full details in [51].

To generate the BBox image encoding, the included actor
bounding box annotations were utilised following the method
described in III-C1. To generate the relational graph encoding,
the included actor state data was encoded at the nodes and re-
lationships (euclidean distance, longitudinal, lateral and time-
to-collision) were calculated using actor position, heading and
speed. The equivalent qualitative expressions were then de-
rived to discretize absolute values into categories (e.g. in front,
left, right) and boolean values comparing actor kinematics to
the average from surrounding road users, as inspired by human
focal attention that focuses on actors behaving unusually.

2) Real-World Dataset: A real-world dataset was also
compiled to show generalisability for real domain complexity.
The recent Detection of Traffic Anomaly (DOTA) dataset [55]
is used as the largest public dataset of real collision scenes
at the time of publication, with high resolution and detailed
annotations across real-world dashcam videos. To provide
scenes for the safe class, scenes were sampled from Berkeley
Deep Drive (BDD) dataset [56]. The dataset was prepared
following the steps in III-C1, resulting in 4775 videos with
a 0.84:1 safe-to-hazardous scene ratio, which was upsampled.
To match the synthesised dataset, the scenes were also filtered
to a maximum of 20 unique actors per scene for consistency
with GTAC. Each scene consists of 50 frames, at 10 FPS, with
diverse locations and environments across day and night.

To generate the BBox image encoding, actor bounding
boxes were generated using SOTA CV algorithms: Yolov8 [57]
object detection and StrongSort tracking [58].

To generate the relational graph encoding, actor state was
not available and thus, the qualitative actor relations such as
distance were derived by comparing the spatial positions of
actor-bounding box centroids to provide a rough estimation.
Though, we are aware of the limitations of utilising pixel space
and only use it as a pragmatic first approach, as seen in similar
literature [17]. This approach was adopted as the study’s focus
is to demonstrate the viability of our proposed method on a
real dataset and not on computer vision-based localization.

Moreover, due to the dangerous nature of collision events,
the dataset collects scenes from publicly available sources and
thus, the scenes vary in quality, camera setup and software
artefacts like telemetry overlay. Therefore, to avoid the de-
tector utilising software artefacts to differentiate hazardous
scenes, we mask the artefacts by padding the top and bottom
300 pixels in both classes, in line with artefact sizes.
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TABLE II: MODEL PERFORMANCE

Input Features Accuracy3 F13 FNR3 FPR3

Dataset Model Actor
Qual.

Actor
Quan.

Img.
BBox

Img.
Gray

Scene
100%

Scene
50%

Scene
100%

Scene
50%

Scene
100%

Scene
50%

Scene
100%

Scene
50%

x 0.627 0.500 0.667 0.000 0.253 1.000 0.492 0.000
x 0.500 0.500 0.000 0.000 1.000 1.000 0.000 0.000

x 0.758 0.573 0.797 0.599 0.049 0.363 0.434 0.490CNN-LSTM

x 0.648 0.500 0.615 0.000 0.439 1.000 0.266 0.000
x 0.877 0.814 0.881 0.819 0.086 0.159 0.161 0.212GNN-LSTM x 0.744 0.743 0.782 0.748 0.080 0.238 0.431 0.276

x1 x2 0.881 0.821 0.889 0.834 0.042 0.099 0.196 0.259

GTAC

11298

FUSION-LSTM x1 x2 0.864 0.812 0.872 0.826 0.067 0.106 0.206 0.269
x 0.664 0.500 0.701 0.667 0.212 0.000 0.459 1.000

x 0.716 0.500 0.747 0.667 0.161 0.000 0.408 1.000CNN-LSTM
x 0.809 0.500 0.821 0.000 0.128 1.000 0.253 0.000

GNN-LSTM x 0.681 0.656 0.732 0.702 0.129 0.191 0.508 0.496
x1 x2 0.732 0.681 0.730 0.665 0.274 0.367 0.263 0.270

DOTA

4775
FUSION-LSTM x1 x2 0.767 0.730 0.782 0.755 0.164 0.168 0.301 0.373

1Features processed with a GNN network
2Features processed with a CNN network
3We evaluate the ability to correctly predict initiating patterns for early detection by varying the number of frames removed from the end of collision
Frame prediction evaluated at the last timestep when given i) 100% of the sequence ii) first 50%

B. Experimental Settings
Training was performed on an Intel i9-10980XE CPU, 128

GB RAM and Nvidia RTX 3090 GPU with 24 GB VRAM.
Models were written with PyTorch, with deterministic model
behaviour enabled to aid reproducibility. In addition, random
seeds were set to 1 to reduce random variability and the model
hyperparameters were found using a systematic grid search.

The models were trained using stochastic gradient descent
with a maximum of 100 epochs with early stopping after a
loss plateau of 20 epochs. Trained with a batch size of 8,
a learning rate (lr) of 1x10−4 and a learning rate scheduler
to reduce lr by a factor of 0.5 after a loss stagnation over 10
epochs. Moreover, to avoid the classifier developing a systemic
bias from class imbalance, the minority class was randomly
upsampled to match the majority class.

For visual learning, we utilise the publicly available archi-
tecture and hyperparameters from the SOTA implementation of
[5]. Each of the 3 ConvLSTM layers has a hidden dimension
of 8, spatial dropout of 0.75 and a final MLP with output 2.
We enhanced the original input image from 64x64 to 256x256
to avoid excessive downscaling and used bilinear interpolation
to avoid significantly affecting perceptual character.

For relational learning, a 2-layer RGCN model was used,
with a hidden dimension of 256 and a pooling layer with ratio
1/20, equivalent to total nodes per graph. This is followed
by an LSTM with temporal dropout of 0.25 and MLP of
output 2. For fair comparison, relational feature learning using
the SOTA CNN model was also tested with an equivalent
relational Euclidean encoding as discussed in III-C2.

The fused VRSTNN model utilised the spatial layers from
the ConvLSTM and RGCN to process each input modality
sequentially before concatenating each latent representation
and passing it to the LSTM layer and MLP with output 2. For
convenience, the networks will be referred to as CNN-LSTM,
GNN-LSTM and Fusion-LSTM respectively.

C. Model Evaluation Metrics
Hazardous event detection is critical for safety, thus it is

essential to detect correctly and quickly. As such we evaluate

using accuracy (ACC) and prioritise false negative rate (FNR)
to highlight missed detections. To minimise false alarms, we
also utilise the false positive rate (FPR). Furthermore, we
evaluate the F1 score to represent the harmonic mean of
precision and recall that ranges between 0 and 1, where 1
signifies a perfect ability to correctly detect hazardous events
(precision) and detect all hazardous instances (recall).

Moreover, we introduce a new metric to evaluate the ability
to predict early warning patterns using partial sequences. We
start by evaluating the prediction at the last timestep given
the entire sequence (@scene100%). We then remove the end
frames where collision is visible and evaluate the prediction
given the first 25% (@scene25%) and 50% (@scene50%) of
the sequence for comparison. This allows us to evaluate the
minimum history required for early detection, to be used as a
design parameter to optimise the FNR and FPR trade-off.

Lastly, we review response time (RT), to measure how
quickly the system identifies a hazardous event after the first
signs of initiation, as provided by the datasets. RT is crucial
as it impacts the ability to take mitigating action. For realistic
RT, we report the first of three consecutive positive detections
to simulate a warning at deployment that filters out transient
anomalies by ensuring temporal consistency. As such, we
report the average value and standard deviation to give a
general overview. In addition, we provide the 90th percentile
to represent the majority of cases where 90% of the values fall
and the 99th percentile to represent the worst-case scenarios.

V. RESULTS

In this study, we evaluate the characteristics of visual and
relational input encodings and spatial feature extractors for
binary frame classification of collision scenes. We present our
fused VRSTNN model and compare it against SOTA GNN-
LSTMs and CNN-LSTMs. We present model performance in
Table II given full and partial sequences to discuss results on
input encoding, inference time, response time, transfer learning
from simulation to real-world and present an ablation study.
We also note that model comparisons are made in terms of
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absolute percentage difference and not relative difference so
that readers can easily retrace the given calculations.

A. Full Scene Prediction

Given the full sequence @scene100%, our proposed fused
model performed best on GTAC with 88.1% ACC, 88.9% F1
and 4.2% FNR. It outperforms the best CNN by 9.2% and
GNN by 0.7% in F1. On DOTA, fusion achieved 76.7% ACC,
78.2% F1 and 16.4% FNR @scene100%, with an expected
drop in the real-world dataset with mixed image quality,
higher scene complexity and event variety. Moreover, DOTA
lacked actor state information, which had to be estimated
with computer vision, as described in III-C1. Thus, the CNN
networks leveraged their advantage on DOTA and achieved the
highest performance @scene100%, but drastically dropped in
early detection. We also stipulate the visual networks were able
to utilise extraneous image artefacts, as discussed in IV-A2.
This is supported by the 9.4% ACC drop when trained on
visual BBox input that limited extrinsic artefacts.

Of the individual models, the relational GNNs utilising
qualitative features performed better than CNNs on GTAC
given the entire sequence, with 88.1% F1, 8.6% FNR and
outperformed the best CNN by 8.4% in F1. For fair input
comparison, the CNN was trained on the same qualitative actor
features but saw 21.4% lower F1 and 16.8% FNR. This is
similarly reflected on DOTA, indicating CNN’s preference for
visual extraction over numerical analysis. This saw CNNs per-
form better on DOTA due to their advantage of only requiring
image input, as opposed to GNNs reliance on accurate actor
state which is not yet available in real hazard-focused datasets.

B. Early Detection

As shown in Table III, fusion particularly enhances early
detection stability at both @scene50% and @scene25%, show-
ing the best performance across datasets. In contrast, the best
CNN model saw -19.9% F1 drop on GTAC and -82.1% on
DOTA @scene50%. Whereas, the fused network reduced F1
drop 3.6-fold to -5.5% on GTAC and 29.9-fold to -2.7% on
DOTA. Compared to the best CNN models, fusion improved
F1 drop by an average of 16.7-fold @scene50% and 22.6-fold
scene25% across datasets.

Of the individual models, superior GNN performance be-
comes increasingly prominent. GNN maintains good stability
across datasets, exhibiting a F1 drop ≤ 6.2% @scene50% and
≤ 10.1% @scene25%. While almost all CNN models were

TABLE III: EARLY DETECTION

Model Configuration ACC3 F13 FNR3

Dataset Model Actor
Qual.

Img.
BBox

Img.
Gray

Scene
25%

Scene
25%

Scene
25%

CNN x 0.499 0.004 0.998
GNN x 0.773 0.780 0.194GTAC

11298 FUS x1 x2 0.784 0.802 0.126
CNN x 0.500 0.000 1.000
GNN x 0.648 0.695 0.199DOTA

4775 FUS x1 x2 0.734 0.760 0.158
Features processed with a: 1GNN network, 2CNN network
3Prediction at the last timestep given the first 25% of sequence frames

unable to predict when the collision frames were removed
and predicted all scenes as safe resulting in a FNR of 1 and
F1 score of 0 or all scenes as hazardous, resulting in a FNR
of 0 and F1 of 0.667. Moreover, this behaviour can also be
evidenced by the near 0.5 ACC score on the balanced datasets.

C. Input Encoding

Regarding input encodings, we demonstrate synergy from
multi-modal inputs that improve the detection of early warn-
ing patterns across datasets. In general, given accurate actor
state data, the graph encoding performed better than visual
encodings on GTAC but lacked this information on DOTA.

In addition, input abstraction to guide learning enhanced
models with the simplified qualitative graph encoding of actor
features enhancing F1 by 9.9% over the quantitative encoding.
Similarly, the preference for abstraction is mirrored in the
CNNs, with the visual BBox encoding achieving 18.3% higher
F1 over grayscale images on GTAC. However, grayscale was
7.4% higher on DOTA as the bounding boxes needed to be
estimated and highlight the importance of accurate actor data.

Regarding the encoding of actor state data, graph encodings
were better than matrix encodings as graph structure provided
a better encoding for actor features and relationships. This is
shown as the CNN using the same qualitative actor state data
exhibited 21.4% lower F1 when processed with the CNN on
GTAC and 3.1% lower on DOTA, compared to the GNNs.

In addition, the GNN model was able to learn with the
quantitative actor features and exhibited greater early predic-
tion stability, with a maximum F1 drop of -5.9%, whereas
the qualitative encoding showed almost double the drop of -
10.1% across datasets. Regarding processing, CNNs struggled
to learn with quantitative actor features with an F1 of 0, further
indicating CNN’s inclination towards visual encoding.

D. Real-Time Operation and Scalability

In real-time applications, at least 10 FPS is required for
computer vision systems in ADS applications [59]. To assess
performance, timing was measured per scene, simulating real-
world continuous processing over extended sequences without
interruptions. This mitigates inaccuracies and overhead due to
timing functions and data transfer. Since the frames per scene
are known, we calculate the average time per frame and FPS,
as shown in Table IV. All models exceed the minimum 10
FPS requirement [59] and range between 277 to 3327 FPS.

GNNs were the most efficient and at least x2 faster on
GTAC and 3.37x on DOTA. In contrast, the visual CNNs

TABLE IV: MODEL INFERENCE TIME

Model Configuration
Dataset Model Actor

Data
Img.
Data

Time3
(ms) FPS4 No.

Param.

CNN x 0.67 1498 1.68E+07
GNN x 0.30 3327 4.36E+05GTAC

11298 FUS x1 x2 1.60 625 3.68E+08
CNN x 0.76 529 1.68E+07
GNN x 0.21 1885 4.36E+05DOTA

4775 FUS x1 x2 1.44 277 3.68E+08
Features processed with a: 1GNN network, 2CNN network
3Average time to process one frame, 4Average frames per second
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exhibited slower inference due to their larger input sizes
and computationally expensive matrix multiplications from
multiple convolutional layers. Conversely, graph encodings
are compact and enable efficient processing using highly
parallelisable GNN message-passing algorithms.

Our fused VRSTNN model surpassed the minimum FPS
requirement at 625 FPS and was positioned as the third
most efficient after the CNN and GNN-based models. This
is expected as the VRSTNN model fuses the spatial feature
extracted from both CNN and GNN models to leverage the
advantages of both architectures. This synergy bolsters perfor-
mance, justifying a reasonable trade-off in inference speed due
to a larger intermediate representation at each step. However,
future optimisation is possible by parallelising spatial blocks.

Regarding scalability, the models are designed to process
entire video clips of up to 5 seconds for hazard detection.
In deployment, the model will utilize a fixed sliding window
corresponding to the video lengths tested, ensuring practical
real-time performance. This sliding window method ensures
scalability to continuous data streams. To further improve
real-time performance, trends in computational power are also
predicted to continue improving, as driven by the increase in
AI development and adoption. Recent studies have found that
the computing power for training AI models has been doubling
every 10 months from 2015 to 2022 [60] and are expected
to continue with AI-specialized hardware and more efficient
algorithms that will only speed up inference times.

E. Response Time

It is important for models to predict both correctly and
quickly for mitigating to be taken. Across datasets, the fusion
models had the best response time across metrics. In particular,
the fusion model with features least reliant on accurate actor
data: grayscale image and qualitative actor features.

Table V tabulates RT and in general, the average RTs across
models and datasets range from 0.21-0.57s and the majority
of cases seen in the 90th percentile range from 0.2-1.6s, in
line with human driver performance of 1.1-1.8s [19]–[21]. The
only models to outperform humans across datasets were the
leading fusion model and GNNs. However, as a safety-critical
task, it is also important to evaluate the 99th percentile for
the worst-case scenarios. Given accurate actor data on GTAC,

TABLE V: RESPONSE TIME (RT)

Model Configuration
Dataset Actor

Qual.
Img.
BBox

Img.
Gray

AVG
(s)

STD
(s)

90TH
(s)

99TH
(s)

x2 0.283 0.380 0.8 1.8
x2 0.294 0.372 0.8 1.7

x2 0.571 0.603 1.6 1.9
x1 0.250 0.362 0.7 1.8
x1 x2 0.214 0.313 0.4 1.7

GTAC
11298

x1 x2 0.210 0.295 0.4 1.6
x2 0.400 0.875 0.7 4.4

x2 0.438 0.845 1.3 3.7
x2 0.306 0.769 0.4 4.3

x1 0.373 0.879 0.7 4.2
x1 x2 0.643 0.879 1.7 4.0

DOTA
4775

x1 x2 0.245 0.568 0.2 3.4
Features processed with a: 1GNN network, 2CNN network

TABLE VI: TRANSFER LEARNING

Model Configuration ACC1 F11
Model Actor

Qual.
Img.
BBox

Img.
Gray Base Transfer Base Transfer

x 0.664 0.665 0.701 0.711
x 0.716 0.744 0.747 0.753CNN

x 0.809 0.847 0.821 0.839
GNN x 0.681 0.687 0.732 0.736
FUS x1 x2 0.732 0.776 0.730 0.746
FUS x1 x2 0.767 0.707 0.782 0.712

Features processed with a: 1GNN network, 2CNN network
3Pre-trained model on GTAC transferred on a real-world DOTA dataset

the 99th percentile shows human-level performance from the
GNN and fusion models but on DOTA, we see models fall
short with a range of 3.4-4.4s. Thus, the results indicate a need
to further improve detection given increased scene complexity
and primarily image-only real-world datasets.

F. Transfer Learning

Starting with a pre-trained model on the simulation-based
GTAC, we show fine-tuning on a real-world DOTA dataset
in Table VI. We show up to 4.4% enhanced ACC and 1.8%
F1 across leading models. The grayscale encoding enhanced
learning the most, indicating good generalisability of such
input as it did not rely on accurate actor data. The only model
not showing enhancement was the fused model utilising qual-
itative actor features and grayscale images, indicating a more
advanced fusion technique may be necessary to generalise
features between datasets.

G. Ablation Study

Through fusion, we give networks a more comprehensive
scene input to better generalise hazardous events. Table VII
shows all fused model permutations, that led to the selection of
the optimal VRSTNN configuration. Qualitative actor features
enhanced performance across datasets and image encodings
varied depending on the availability of accurate actor data on
GTAC. In addition, the fusion of both types of actor data saw
improvements on base quantitative actor models but led to
longer inference times and marginal or lower performance than
the qualitative model as we stipulate the latent representation
becomes too large and introduces complexity and noise.

TABLE VII: ABLATION STUDY

Model Configuration ACC F1 FNR
Dataset Actor

Qual.
Actor
Quan.

Img.
BBox

Img.
Gray

Scene
100%

Scene
100%

Scene
100%

x1 x2 0.881 0.889 0.042
x1 x2 0.864 0.872 0.067

x1 x2 0.863 0.858 0.171
x1 x2 0.784 0.812 0.070

x1 x1 x2 0.876 0.886 0.038

GTAC
11298

x1 x1 x2 0.818 0.843 0.027
x1 x2 0.732 0.730 0.274DOTA

4775 x1 x2 0.767 0.782 0.164
Features processed with a: 1GNN network, 2CNN network
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VI. DISCUSSION

Key Contribution: This study proposes a multi-modal
hazard detection model VRSTNN, as an independent warning
system to enhance the safe operation of ADSs. Applied as a
warning system to enable a safe handover in L3 and below,
and a future trigger for minimum-risk manoeuvres above L3.

To achieve this, this, our model tackles the challenge of
early and reliable hazard detection to enable the safe deploy-
ment of L3+ ADS. Our results highlight the critical role of
scene context for early detection and we demonstrate how
SOTA CNN accuracy drops to ∼50% once the frames showing
the collision are removed. This may indicate an over reliance
on prominent visual cues, e.g., vehicles directly in contact and
a lower proficiency to capture early warning patterns.

To address these limitations, we propose a novel multi-
modal VRSTNN model to fuse: 1) visual scene features from
image data with 2) scene context from graph-encoded actor
data that describes the arrangement, relationships and be-
haviours of road users. Our results demonstrate that VRSTNN
outperforms SOTA models and matches human RT. VRSTNN
achieves 88.1% ACC, 4.2% FNR, 0.21s average RT in syn-
thetic GTAC with accurate state data. Even in the real-world
DOTA dataset which lacks state data, VRSTNN achieves
76.7% ACC, 16.4% FNR, 0.25s average RT and predicts up
to 3.75s before collision with an F1 of 76%.

Learning early warning patterns requires scene context and
our VRSTNN achieves this through dedicated GNN processing
that utilises our graph encodings of scene data to learn the
global graph structure that describes road user arrangement
and the local interactions from actor relationships. Thus, our
VRSTNN fuses this scene context with visual features to
interpret complex scene data and learn early warning patterns.

The VRSTNN architecture was built upon our findings
studying different input encodings and feature extractors to un-
derstand what features and processing are necessary to identify
hazardous event patterns. From our results on input encoding,
we found that the model using accurate actor state data in
GTAC outperformed the models using only visual data across
all evaluation metrics. In addition, we found that unprocessed
scene data can overload the model with complexity and noise,
whereas simplified input encodings can guide learning. For
example, the qualitative encoding of actor state showed 9.9%
higher F1 and similarly, image BBox encoding showed 18.3%
higher F1 over grayscale on GTAC.

To process the input encodings, our results showed that
relational GNNs outperform visual CNNs in synthetic GTAC
across all evaluation metrics, given accurate actor data. How-
ever, without state data in the real-world DOTA, GNN only
outperforms in early detection and this reliance on actor
state signifies a current limitation. To avoid input bias, we
also processed actor state data using CNNs but showed poor
performance which further indicates CNN’s preference for
visual analysis that remains invaluable for real-world datasets
that lack actor state. Therefore, given the advantages and
limitation of both networks, we propose the fused VRSTNN
to leverage the advantages from both networks and represents
a new multi-modal learning approach.

Comparison to Literature: Our findings are supported by
other works [5], [61], which have highlighted the need for
heterogeneous processing and multi-modal inputs for better
scene understanding and more reliable detection. However,
the optimal input encoding remains undefined in literature
[62], [63] and thus, we expand early works that utilise ego
position and speed [5]. In our work, we capture all scene
actors with 12 telemetry and 8 relational encodings each,
to learn advanced actor interactions encoded in a relational
graph structure. The work in [5] concatenates telemetry with
the extracted visual features, whereas we apply dedicated
heterogeneous processing to optimise learning by input mode.
As a result, we demonstrate fused visual relational learning.
Whereas other authors have claimed superior performance
by one learning paradigm over the other [18], [23], we
demonstrate heterogeneous synergy from fusion.

Limitations: While our study presents a fused VRSTNN
capable of real-time operation on a real dataset, a challenge
remains in obtaining actor state data and manually annotated
actor bounding boxes in large real-world collision datasets.
Though ESTI standards for CAMs exist [43], the inclusion of
actor state data in collision datasets remains limited.

In addition, this study focuses on establishing a foundational
understanding to motivate further investigation. While the ex-
periments conducted provide valuable insights, they are limited
by the scope of public datasets. Recognizing the importance
of practical validation, we acknowledge the necessity of incor-
porating case studies to identify the safe operating range and
behaviour of the system before deployment. Therefore, future
work should integrate case studies that offer a more granular
understanding of the method’s applicability and limitations.

Moreover, fusion was performed after feature extraction as
the multi-modal inputs required dedicated spatial processing.
To demonstrate fusion, the extracted features were concate-
nated along the feature dimension to preserve the ordinal se-
quence. However, as heterogeneous fusion remains a research
question in itself, future work could explore different fusion
schemes regarding how to fuse and when to fuse.

VII. CONCLUSION
In this study, we addressed the need for accurate and timely

hazard detection for the safe deployment of L3+ ADSs. To
achieve this, we investigated different input encodings to rep-
resent scene data and how to process that data to enhance early
warning prediction and generalisation to unseen scenarios.

Our results on input encoding suggested that raw image
and actor state data can overload the model with complexity
and noise. Whereas, simplified encoding can improve perfor-
mance by guiding learning towards areas of interest. From our
findings, we proposed a relational graph encoding for scene
data that provides a framework to represent the arrangement,
relationships and behaviours of road users. We then processed
the graph encodings with GNNs to learn essential scene
context to detect hazardous events early using the global graph
structure that describes road user arrangement and the local
interactions from individual actor relationships.

Tests on individual models revealed superior GNN perfor-
mance in early detection and processing of actor state data
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and indicated CNN preference for visual analysis that remains
invaluable on real-world datasets that lack actor state.

Given the unique advantages of the features gained from
image data and actor state data, we proposed a novel VRSTNN
that leverages multi-modal processing by integrating a CNN to
extract visual cues and a GNN to provide the essential scene
context needed for early and reliable detection. Our evaluation
results show that our VRSTNN outperforms SOTA models
in terms of accuracy, F1 and FNR on a real and synthetic
benchmark dataset and matches human-level and RT.

In conclusion, we present our proposed VRSTNN as a
new learning approach that emphasises the fusion of visual
cues with relational context to enrich scene understanding. As
scene context is crucial for early and reliable hazard detection,
we present a method to help extract this information for
prediction. Ultimately, we present these innovations to help
contribute to the safe development of L3+ driving systems.
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