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 

Abstract—The transfer matrix is proposed to describe the 

coherent cross-polarization coupling (CPC) induced by a single 

point-like perturbation (PLP) in optical fibers. This matrix 

remains independent of the fiber length, making it suitable for 

characterizing the PLP that have a zero-dimensional impact on 

fiber length. Consequently, the fiber can be fully characterized by 

a matrix combining the transfer matrix of CPC and the Jones 

matrix of the fiber birefringence. The polarization performance of 

fibers exhibiting both CPC and birefringence is analyzed using 

the developed combined model. 

 
Index Terms—Birefringence, Cross-polarization coupling, 

Jones matrix, Optical fibers, Polarization cross talk, Polarization 

extinction ratio, Transfer matrix. 

 

I. INTRODUCTION 

ROSS-POLARIZATION COUPLING (CPC) is a factor limiting 

the performance of single-mode fibers (SMFs) [1], [2], 

especially the interferometric sensor employing them such as 

fiber-optic gyroscopes (FOGs)  [3]-[5]. It is from the mode 

coupling between the two orthogonal polarizations of the 

fundamental mode, i.e., the eigen polarization modes [6] or the 

principal states of polarization [7]. It causes the polarization 

mode dispersion [8], polarization fluctuation [9], and 

polarization noise [10] in fiber telecommunication and sensing 

applications. The very weak CPC in SMFs is induced by the 

fluctuations in the effective refractive index of the fiber, which 

is from the tiny imperfection in the manufacturing process [11]. 

However, it is quite sensitive to various environmental 

perturbations such as thermal, magnetic, and stress fields, 

which degrade the CPC in SMFs [12] - [14]. To prevent the 

CPC aggravation from those external perturbations, a special 

SMF, polarization-maintaining fibers (PMFs) was developed 

for interferometric fiber applications [15]. The input 

polarization of PMFs is usually one of the two orthogonal eigen 
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or principal states of polarization, which is linearly polarized 

along one of the two principal axes of fiber birefringence [16]. 

It could be hold unchanged during the propagation along the 

PMF, since its intrinsic linear birefringence is high and could 

resistance the CPC degradation from external perturbations 

[11], [13] - [17]. This polarization maintaining ability makes 

the PMF suitable to interferometric fiber sensors such as FOGs 

[18]. Then the CPC represents the quality of a PMF [15], i.e., its 

immunity against environments, and hence the corresponding 

system performance employing them [19]. Unfortunately, it 

was found recently that the birefringence intrinsic to the PMF 

itself can be another error source for high performance FOGs 

[20], [21].  

The CPC in fibers is described by two similar parameters, 

polarization cross talk (PCT) [22] and polarization extinction 

ratio (PER) [23]. Both parameters are from the ratio of optical 

powers in the two output polarizations under the condition that 

only one of them was inputted. For the weak CPC case of 

interest, most power remains in the input polarization, major 

polarization, and few are coupled by the CPC into the 

orthogonal, minor polarization. Early works established a 

random coupling model for the CPC in fibers to mathematically 

calculate the PER or PCT. The model assumed that there are 

many point-like perturbations (PLPs) distributed along the fiber 

length. It explained the PER of the fiber as the statistic result of 

CPC from all these PLPs. However, the PER or PCT of the 

CPC from a single PLP and its physical mechanism, which 

should be the base of the model, were not reported yet. 

Meanwhile, there are two assumptions in the early CPC model, 

and both make the model not accurate enough. The first is 

based on the idea that only one polarization (the major 

polarization) is excited at the input, and the power in the other 

polarization (the minor polarization) is zero. It is obviously 

impossible to achieve this ideal inputting condition of linear 

polarization in practice. The second is that the CPC is 

unidirectional, i.e., there is only the CPC from the major to the 

minor polarizations in the fiber. The opposite CPC, i.e., the 

CPC from the minor to the major polarizations, was typically 

not considered. This assumption holds true only in the situation 

of the weak CPC. In reality, the weak CPC intrinsic to the fiber 

can become significant under some external environment such 

as temperature variations, especially for the coiled fiber in fiber 

sensors. As a result, the PER or PCT of a real fiber never be 

theoretically calculated, only can be measured [24], [25]. 
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On the other hand, there has not been a unified description 

for both birefringence and CPC simultaneously existed in the 

fiber. It is due to the lack of mathematical relation between 

them, since that models for them are independently established 

and separately used in early works. The model for birefringence 

was represented in terms of two amplitudes of the orthogonal 

polarizations, treating the fiber as a sequence of two lumped 

optical elements [26]. In contrast, the CPC model was 

described in terms of powers of the orthogonal polarizations 

[11]. The early CPC model depended on fiber length, which 

typically included multiple PLPs, and the CPC induced by a 

single PLP has not been analytically calculated or predicted. At 

the same time, the independence of the two models have been 

responsible for the fact that birefringence and CPC of a fiber 

have never been considered simultaneously, but individually 

and separately, such as their effect on FOGs [4], [5], [20], [21], 

[27].  

In this paper, we have developed a comprehensive model for 

calculating the CPC from a single PLP for improving the 

accuracy of FOGs. This model characterizes both the amplitude 

and phase of the CPC using a transfer matrix, and can be 

seamlessly integrated with the existing fiber birefringence 

model. The combined model provides a complete description of 

a fiber exhibiting both birefringence and CPC. Numerical 

results, based on this proposed model, demonstrated that the 

position and the strength of the CPC, the linear and circular 

birefringence of the fiber, as well as the initial phase and the 

PER of the input light, are crucial to the measured CPC of the 

fiber. 

II. THEORY 

The matrix representation of a fiber in this section has been 

extended to encompass both the CPC originating from a PLP 

and the distributed birefringence along the fiber, utilizing the 

principles of Jones calculus. 

A. Jones calculus for a fiber with birefringence 

According to Jones [28], the propagation of field in an 

optical system such as a fiber could be described by 

 E ME ,          (1) 

where 

x

y

E

E

 
   

 
E  and 

x

y

E

E

 
  
 

E       (2) 

are Jones vectors of the output and input fields, respectively, 

which are expressed by complex amplitudes of the two basis 

orthogonal polarizations, i.e., denoted by x - and y - 

polarizations here, respectively. Jones matrix of the system is 

11 12

21 22

m m

m m

 
  
 

M .        (3) 

There are relationships of 12 21m m  and 
22 11m m  for the 

Jones matrix established in the fixed laboratory coordinate 

system. 

According to Kapron [26], for the optical propagation in a 

fiber with a given length L , the fiber can be represented as an 

equivalent cascade of two lumped elements. One is a retarder 

with linear retardation L , where 

2
x y


     


,         (4) 

is the difference in propagation constants of the slow and the 

fast axes for the linear birefringence of the fiber, i.e., x  and 

y  here, respectively, and   is beat length. Then Jones matrix 

of the linear birefringence in the fiber can be written as [20] 
2

2

0

0

i L

i L

L i L

e
e

e








 

 
  

 
β ,      (5) 

where 

  2x y    ,        (6) 

is the mean propagation constant of the fiber. The other is a 

rotator with a polarization rotation L , where [20] 

g            (7) 

is the circular birefringence through photo-elastic effect 

induced by the fiber twisting at rate  , here 0.17g    is the 

material constant of the fiber core. 

Then Jones matrix of the circular birefringence for the fiber 

can be written as 

cos( ) sin( )

sin( ) cos( )
L

L L

L L

 

 

 
  

 
α .      (8) 

Here, it is assumed that the positive polarization rotation 

follows a counterclockwise direction. There is no circular 

birefringence resulting from the internal rotation of 

birefringence axes in PMFs in (8), which differs from our 

previous work [20]. Since the internal rotation occurs at the 

melt temperature during the fiber drawing, and there is no stress 

to support photo-elastic effect. 

The birefringence matrix of the fiber be written as a rotator 

followed by a retarder [26] 

i L

L L L

A B
e

B A



 

 
   

 
B β α ,      (9) 

or the matrix from the reversed order as pointed out in [20], 

i L
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e
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
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
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 
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where the elements are 

cos( )

sin( )

i L

i L

A e L

B e L
















        (11) 

for the fiber with linear birefringence (4) and circular 

birefringence (7) uniformly distributed on its length L . 

Three notes should be addressed here. 

Firstly, the relationships between the elements of 

birefringence matrices (9) and (10) for a fiber are different from 

the original Jones matrix (3) of a bulk optics. This difference 

arises because that the original Jones matrix was established in 

the fixed laboratory coordinate system, which necessitates the 

use of a second rotation matrix with an opposite sense for 

detecting the output light. Conversely, the birefringence matrix 

of a fiber is defined within the principal axes coordinate system 

of its linear birefringence, where the second rotation matrix is 



not necessary since the system is already rotated by the circular 

birefringence inherent to the fiber itself at the output end. 

Secondly, the relationship between matrices (9) and (10) 

involves a mutual transposition with a negative sign for 

off-diagonal elements, as opposed to a pure transpose, as we 

previously demonstrated in [20]. This difference arises from the 

invariance introduced by a helix due to the circular 

birefringence distributed along the fiber length. The concept of 

a pure transpose is derived from the original Jones matrix, 

where off-diagonal elements remain unchanged. This 

distinction is particularly important in systems involving 

counter-propagations, such as FOGs, where most early studies 

utilized the pure transpose approach. 

Thirdly, in practical measurements of PCT or PER for a fiber, 

a manually rotatable analyzer in optical path or an 

automatically one is integrated in the setups. Such an analyzer 

ensures that all measurements are consistently performed 

within the principal axes coordinate system of the fiber linear 

birefringence. Consequently, matrix (9) or (10) should be 

employed consistently in these measurements. We have used 

the form presented in (9) for the sake of clarity. 

B. Transfer matrix of the CPC from a single PLP 

Here, we propose the transfer matrix to describe the CPC 

induced by a single PLP (zero dimension in fiber length) as 

shown in Fig. 1 by analogy. Assuming that the CPC is 

symmetric and lossless, there is a transfer matrix for the CPC 

with a real number for the CPC ratio   in 0 1  : 

( )

1

1

i

i

e

e



 

 

 

  
  

   

χ ,      (12) 

where   is the phase shift of CPC with 0    . The sum of 

the two phase shifts for CPC, one from the major to the minor 

polarization and the other for opposite CPC from the minor to 

the major polarization,  , is determined from the relationship 

between phase shifts associated with the refraction and the 

transmission of a beam splitter [29]. It could be confirmed that 

the law of energy conservation is satisfied for χ  given in (12) 

by simply calculating the optical powers before and after the 

CPC. This shows the theoretical validity of the matrix (12) for 

the CPC from a single PLP. 

It is noted that the CPC transfer matrix (12) also can be 

written as 

1

1

i

i

e

e





 

 

  
  
  

χ       (13) 

by trigonometric equalities. It shows clearer relationships 

between its elements. Specifically, two important relationships 

emerge: (i) conjugate between diagonal elements and (ii) 

negative conjugate between off-diagonal elements. These 

relationships in the CPC transfer matrices (12) and (13) align 

perfectly with those in the birefringence matrices (9) and (10). 

The alignment shows the non-reciprocity of the CPC from the 

same PLP within a fiber for both forward and backward 

propagations such as in FOGs. It is from the presence of 

identical relationships in the CPC matrices as observed in the 

birefringence matrices between the forward and backward 

propagations. 

C. Transfer matrix of a fiber with birefringence and a CPC 

Using the Jones matrix for the fiber birefringence and the 

transfer matrix for the CPC, the transfer matrix of a fiber with 

birefringence and CPC can be written as 

2 1
M B χB ,         (14) 

with 
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 
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       
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,(15) 

where 1A , 1B , and 2A , 2B  are from (11) with corresponding 

fiber length shown in Fig. 1. It can be shown that there still exist 

21 12m m   and 
22 11m m  as in (9) or (10), and (12) or (13), 

indicating the non-reciprocity of the fiber with both 

birefringence and CPC for opposite propagations. This mirrors 

what is observed in cases of pure birefringence (without CPC), 

as discussed in reference [20]. 

D. Measured PCT and PER of the output light 

In practical measurements, the PER   is usually defined by 

the maximum power maxP  and the minimum power minP  as 

maxmin

max min

10log 10log 0
PP

P P
     ,                 (16) 

and the extreme powers are polarized in orthogonal directions. 

On the other hand, the PCT   is also defined by the same 

extreme powers as 

min

max min

10log 0
P

P P
  


.      (17) 

Obviously, there is 0    when 10    dB, which is 

of significant interest in practice. In following we take PER for 

simplicity. 

By assuming the initial phase difference   between the 

input orthogonal polarizations, the minor polarization 
yE  with 

the minimum power minP  could be expressed in the major 

xE

yE

xE

yE



1z L0z  z L

1L 2L

z

x

y

 

Fig. 1.  Schematic diagram of the CPC from a single PLP in optical fibers. The 

PLP located at 
1z L  from the input end 0z  . It divides the original fiber 

length L  into two sections of length 
1L  and 2L  with the same linear 

birefringence 2     and circular birefringence  . At the output end 

z L , field in each polarization is the linear superposition of two parts: the 

remained original and the coupled orthogonal polarizations. 



polarization xE  with the maximum power maxP  through input 

PER   as 

2010 i

y xE E e  .       (18) 

Substituting (18) into (1) and employing (14)-(16) we finally 

get the output PER   of a fiber with a single CPC under the 

input PER   is 

 
 

10 20

21 21 22 22 21 22 21 22

10 20
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10 10
log

10 10
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   



      

      

   

  

  

.

 (19) 

Equation (19) analytically links the output PER to the 

properties and the input light of the fiber. It contains all factors 

influencing the measurement of CPC in fibers. 

III. RESULTS 

Using the developed analytical model of the CPC in optical 

fibers, the output PER could be numerically calculated using 

MATLAB to show the effects of various factors on the output 

PER. 

A. Strength of the CPC 

Figure 2 illustrates the impact of CPC strength across its 

entire range under various input PER. As expected, the output 

PER consistently decreases as the coupling strength increases. 

The symmetry observed in the output PER values with respect 

to zero dB output PER ( 0  dB) confirms the presence of 

opposite coupling from the minor to the major polarizations. It 

occurs at CPC ratio 0.5   for any input PER. Furthermore, 

apart from this special ratio, higher input PER values lead to 

higher output PER values at any fixed CPC ratio. This 

highlights the first requirement for accurate CPC measurement, 

emphasizing the need for a high input PER, as originally 

assumed an ideal input (single polarization). 

The negative values of output PER observed when 0.5   

occur due to the power exchange between the major and the 

minor polarizations resulting from the strong coupling at this 

region. It also gives out the second requirement for the precise 

CPC measurement. There should be 0.5   to ensure a 

correct measurement since the instrument cannot distinguish 

between powers in slow polarization ( xP ) and in fast 

polarization (
yP ), can only distinguish between maxP  and minP  

i.e., the maximum and the minimum of optical power, 

respectively. When there exists 0.5   (the output PER 

3  dB) for strong coupling, we will not be able to tell 

whether the CPC ratio is   or 1  . 

Figure 3 depicts a scenario of particular interest with weak 

CPC, which is prevalent in most situations. For the sake of 

convenient comparison, the CPC ratio here is presented in 

logarithm form (dB), which corresponds to the PCT. In this 

figure, there are two approximated linear parts (ALPs) 
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Fig. 3.  Dependency of output PER on PCT corresponding to CPC ratio. There 

are three parts in all curves: a nonlinear part at the middle region where input 
PER is comparable to CPC, two ALPs at the opposite end where input PER far 

away from CPC. The output PER is close to the lower one in the two ALPs. A 

proper range for the nonlinear part is 10  dB. 
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Fig. 4.  Dependency of output PER on the phase shift of CPC when input PER 

is higher than CPC itself. The input PER is lower (closer to CPC), the 
resonance of output PER is larger. Maxima of output PER are higher than the 

CPC itself, which shows the interference of the coherent model. 
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Fig. 2.  Dependency of output PER on CPC ratio. The output PER becomes 

lower when CPC ratio is higher. High input PER gives high output PER for 

any fixed CPC ratio. The output PER is 0-dB at CPC ratio 0.5   for any 

input PER. 



noticeable. The first one (ALP-1) pertains to cases where the 

input is exceedingly low on the left side, resulting in the output 

being equal to the input PER due to relatively weak coupling. 

Conversely, the second (ALP-2) is associated with situations 

where the coupling is much stronger compared to the input, as 

observed in the rightmost portion of Fig. 3. The third portion, 

situated between the two ALPs, exhibits a significant 

non-linear decline. The non-linear segment typically occurs at 

approximately ± 10 dB outside of the CPC region. The 

interference phenomena occur in this non-linear portion, as will 

be discussed in the subsequent section to consider the phase 

shift of the CPC. 

The linear birefringence denoted by beat length  , circular 

birefringence  , and length L  of the fiber, as well as phase 

shift   of the CPC, and initial phase difference   of the input 

polarizations, are all considered as constants, i.e., could be 

predefined with arbitrary values. 

B. Phase shift of the CPC 

Figures 4, 5, and 6 show the influence of the phase shift   of 

CPC with a constant weak coupling ( 0.0001   or 

40   dB) for three high (45, 50, and 60-dB), low (20, 25, 

and 30-dB), and comparable (37, 40, and 43-dB) input PERs, 

respectively. They are under constant birefringence and fiber 

length with arbitrary values. They represent the initial phase 

difference 0   between orthogonal polarizations of the input 

light, given their sensitivity to this parameter. The range of 

phase shift   of the CPC is extended for the sake of clarity and 

improved observation. 

There are obvious but special periods: they are not 

symmetric between maxima at (2 1)n   (here 1,2,3,n  ) 

and minima at 2n . Firstly, the distances of these points to the 

real CPC (40-dB here) are different. For the distances to the 

CPC, the maxima‟ are farther than the minima‟. Secondly, the 

peaks above the CPC are narrower compared to the troughs 

below it. The unique pattern suggests a larger probability for 

the minima in practical measurements, which shows a lower 

output PER than the CPC. The periodic behavior comes from 
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Fig. 7.  Dependency of output PER on position of the PLP for high input PER. 

The positions are given by the beat length of linear birefringence for a clear 

demonstration. 

0 90 180 270 360 450 540 630 720
20

40

60

80

100

120

140

Phase shift of CPC,  (deg)

O
u

tp
u

t 
P

E
R

, 
 

' (
d

B
)

 

 

 = 37 dB

 = 40 dB

 = 43 dB

 = const.

 = const.

L = const.

 = const.

 = 10
-4

 ( = -40 dB)

 
Fig. 6.  Dependency of output PER on position of on the phase shift of CPC 

when input PER is comparable to CPC itself. The resonance occurs when 

input PER (40-dB) is equal to CPC itself (
410  or 40   dB). 

0 90 180 270 360 450 540 630 720
10

15

20

25

30

35

40

45

50

 

 

O
u

tp
u

t 
P

E
R

, 
 

' (
d

B
)

Phase shift of CPC,  (deg)

  = 20 dB

  = 25 dB

  = 30 dB

 = 10
-4

 ( = -40 dB)

 = const.

 = const.

L = const.

 = const.

 
Fig. 5.  Dependency of output PER on the phase shift of CPC when input PER 
is lower than CPC itself. The input PER is higher (closer to CPC), the 

oscillation of output PER is larger. Maximums of output PER are lower than 

the CPC itself, which means the output reflects the input, instead of the CPC. 
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Fig. 8.  Dependency of output PER on position of the PLP for low input PER. 

The positions are given by the beat length of linear birefringence for a clear 

demonstration. 



the interference in superposition of the remained original 

signals with the coupled orthogonal polarization. Another piece 

of evidence supporting the interference is that the maximum 

output PER for the lower input PER is higher than that for 

higher input PER. It exceeds the input PER itself for the 45-dB 

input, since it is closer to the real CPC (40-dB). 

There are indeed probabilities of observing the real CPC for 

all higher input PERs, as evidenced by the fact that all curves 

intersect at 40-dB, as illustrated in Fig. 4. Conversely, for lower 

input PER values, as illustrated in Fig. 5, there are no 

probabilities of encountering the real CPC. Resonance 

phenomena occur precisely when the input equals to the CPC 

itself, resulting in the spikes observed in Fig. 6, which are from 

the interference in this coherent model for CPC. These spikes 

are a consequence of the interference effects presented in this 

coherent model for CPC. It could be predicted that the 

resonance will occur again due to the birefringence of the fiber. 

In the subsequent analysis, we will focus on cases involving 

higher and lower inputs to avoid resonances near the point of 

equality. These higher and lower input cases correspond to the 

CPC originating from a single PLP and a whole fiber with 

multiple PLPs, respectively. 

C. Position of the CPC 

Figures 7 and 8 show the effects of the PLP position where 

the CPC occurs for high and low input PERs, respectively. The 

position is expressed via the beat length of linear birefringence 

for a clear demonstration. There are more clear interferences 

for lower and higher input PER in Figs. 7 and 8, respectively, 

i.e., closer to CPC itself, as expected from the coherent model. 

The interference period precisely corresponds to the beat length 

of the linear birefringence in fibers. 

The similarity between Figures 7 and 4, as well as 8 and 5 

indicated the influence of phase on the output PER in the 

coherent scenario. There are also resonances similar to Fig. 6 

for the effect of CPC position on the output PER when input 

PER is comparable to the CPC itself. The rare resonance 

phenomenon occurring in the special case when input PER is 
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Fig. 10.  Dependency of output PER on beat length from linear birefringence 
under different circular birefringence and same input PER. The periodical 

variations come from nonzero polarization rotation (product of circular 

birefringence and fiber length). 
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Fig. 11.  Dependency of output PER on circular birefringence of the fiber 

under difference beat length (linear birefringence). The perturbation point is 

located at the middle point of the fiber length. There are same periods and 
extreme values for different linear birefringence and input PER. The same 

periods are from the same fiber length, on which the polarization rotation from 

the circular birefringence (fiber twist) is accumulated. 
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Fig. 12.  Dependency of output PER on circular birefringence of the fiber 
under same beat length (linear birefringence) for different fiber length. The 

numbers of periods are proportional to the fiber length.  
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Fig. 9.  Dependency of output PER on beat length from linear birefringence 
under different circular birefringence and high input PER. The periodical 

variations are from nonzero circular birefringence, and more periods are from 

higher circular birefringence for constant fiber length. 



close to CPC ratio is not show here again and hereafter. 

D. Linear birefringence of the fiber 

Figures 9 and 10 illustrate the influence of the linear 

birefringence on output PER for both higher and lower input 

PER values, respectively. In both cases, there is periodic 

dependency introduced by the presence of nonzero circular 

birefringence. When the fiber is untwisted, meaning that 

circular birefringence is zero, the output PER remains constant, 

as shown by 0   in both figures. This observation suggests 

that the periodic dependency of output PER indeed arises from 

the nonzero circular birefringence inherent to the fiber. 

Conversely, the magnitude of the constant output PER is 

affected by the linear birefringence and the CPC characteristics 

of the fiber under the same fiber length. Curves for 1   

deg/m and 2   deg/m for same length in Fig. 10 and 

different length in Fig. 9 indicate that this periodicity comes 

from the polarization rotation, i.e., the accumulation of circular 

birefringence over the fiber length. 

E. Circular birefringence of the fiber 

Figures 11 and 12 show the effects of circular birefringence 

of the fiber for different linear birefringence and fiber lengths, 

respectively. The PLP is located at the middle of the fiber 

length, and the CPC ratio is constant at 410   

(corresponding to a PCT of 40   dB). The input PER for 

both figures is set at 40  dB, which equals the CPC itself. 

Resonances at peaks in these figures are obvious. For a constant 

fiber length, the linear birefringence of the fiber does not 

influence the output, as shown in Fig. 11. For a constant linear 

birefringence, the longer fiber length results in more periods of 

output oscillation, as shown in Fig. 12, which arise from the 

accumulations of the retardation and rotation induced by the 

linear and the circular birefringence of the fiber. 

F. Initial phase of the input light 

Figures 13 and 14 show the effects of the initial phase 

difference between the orthogonal polarizations of the input 
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Fig. 14.  Dependency of output PER on initial phase difference between 

orthogonal polarizations of input light for input PER lower than CPC ratio. 
Peaks are clearer for higher input PERs, i.e., closer to CPC ratio itself, in 

which resonances are easier to occur. 
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Fig. 16. Dependency of output PER on input PER for a fixed CPC ratio. 

Circular birefringence from fiber twist dominates the output PER when input 

PER is higher than CPC ratio. 
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Fig. 13.  Dependency of output PER on initial phase difference between 

orthogonal polarizations of input light for input PER higher than CPC ratio. 

Peaks are clearer for lower input PERs, i.e., closer to CPC ratio itself, in which 

resonances are easier to occur. 
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Fig. 15.  Dependency of output PER on input PER for a fixed CPC ratio. The 

same tendency of them under small circular birefringence is similar to 
dependency on CPC ratio shown in Fig. 3. CPC measurements need an input 

PER higher than CPC ratio. 



light for high and low input PERs, respectively. A single PLP 

with CPC ratio 410   ( 40   dB) is located at the middle 

of the fiber length again. There are seven periods for the initial 

phase differences in the ranges of from 0  to 45 . It does not 

depend on the length and the linear birefringence of the fiber. 

Lower input PERs in Fig. 13 and higher input PERs in Fig. 14 

(closer to CPC ratio) result larger amplitudes of interference 

again. Phase shift on CPC and circular birefringence will 

translate the curves parallel to abscissa and ordinate axes, 

respectively, while maintaining the period invariant. However, 

the circular birefringence also influences the amplitude of the 

oscillation in all curves. 

G. PER of the input light 

Figures 15 and 16 show the effects of input PER on the 

output PER for different linear and circular birefringence when 

the PLP with a CPC ratio 410  ( 40   dB) and 

1010  ( 100   dB) is located at the middle of the fiber 

length, respectively. It can be seen that the circular 

birefringence from the fiber twist contributes the significant 

drop of the output PER, in addition to the impact of the CPC 

itself shown in Fig. 2 and, notably Fig. 3. It also reaffirms the 

importance of the input PER in practical measurements. 

IV. DISCUSSION 

The advantage of the coherent model for the CPC in optical 

fibers is that it could be combined with birefringence model to 

completely describe the fiber, which is promising for 

fiber-optic interferometers such as FOGs. The limitation of the 

model is that it is too complicated to calculate the CPC from a 

real fiber with multiple PLPs instead of a single one. 

There are a few methods to verify the coherent model 

proposed here for the CPC in optical fibers. 

The basic method is using fiber-optic interferometers such as 

FOGs. A single PLP should be intentionally introduced in the 

arm of the balanced interferometer in this method. The phase 

shift and coupling ratio of the CPC induced by the PLP could be 

detected by the optical interference. Actually the performance 

of a FOG is influenced by the synthetic of both birefringence 

and CPC of the coiled fiber, in which specific crossovers are 

introduced by fiber coiling. The crossover in coiled sensing 

fibers is a typical PLP inducing CPC, which should be 

described by the present model. Multiple crossovers are 

inevitable for the coiled fiber in FOGs, and their description 

will be addressed by simplified the coherent model into an 

inherent one to calculate multiple PLPs in a further work. 

An alter method is the PER measurement of a fiber also 

under an intentional PLP. In this method only the CPC ratio of 

the PLP could be investigated, since phase information is not 

included in the routine PER measurements. 

There still are two works to be done for the conduction of 

methods mentioned above. One is the intentional and 

controllable PLP to be introduced on the fiber. A feasible PLP 

is the lateral pressure on a sufficiently small section of the fiber. 

It could be introduced by tailored clamps with quantifiable 

surface and pressure. The other is the physical mechanism of 

the CPC induced by the PLP, which is still not found now. Both 

will be addressed in our further works.  

V. CONCLUSION 

By proposing a transfer matrix for the cross-polarization 

coupling from a single point-like perturbation in optical fibers, 

shown that the output polarization of the fiber strongly depends 

on the strength and the phase shift of the CPC, the position 

along the fiber length of the perturbation point, the linear and 

the circular birefringence of the fiber, as well as the input 

polarization and the initial phase difference between the two 

orthogonal polarizations of the input light. The analytical 

model combined the cross-polarization coupling and 

birefringence of the fiber. It provides a complete description for 

the polarization property of optical fibers. It also highlights the 

need for thoroughly considering these factors in design and 

analysis of optical fiber systems and its measurements. 
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