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Abstract
In this study, we analyse the famous Aw–Rascle system in which the differ-
ence between the actual and the desired velocities (the offset function) is a
gradient of a singular function of the density. This leads to a dissipation in the
momentum equation which vanishes when the density is zero. The resulting
system of PDEs can be used to model traffic or suspension flows in one dimen-
sion with the maximal packing constraint taken into account. After proving the
global existence of smooth solutions, we study the so-called ‘hard congestion
limit’, and show the convergence of a subsequence of solutions towards a weak
solution of a hybrid free-congested system. This is also illustrated numerically
using a numerical scheme proposed for the model studied. In the context of
suspension flows, this limit can be seen as the transition from a suspension
regime, driven by lubrication forces, towards a granular regime, driven by the
contacts between the grains.
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1. Introduction

The purpose of this work is to study a singular limit ε→ 0 for the following generalization of
the Aw and Rascle [3] and Zhang [36] system

{
∂tρε + ∂x (ρεuε) = 0, (1a)

∂t (ρεwε)+ ∂x (ρεuεwε) = 0, (1b)

on one-dimensional periodic domain Ω= T. The unknowns of the system are the density ρε
and the velocity of motion uε. The quantity wε denotes the desired velocity of motion and it
differs from the actual velocity uε by the offset function. This function describes the cost of
moving in certain direction and it depends on the congestion of the flow. In our case the offset
function is equal to the gradient of pε = pε(ρε), more precisely:

wε = uε + ∂xpε (ρε) , (2)

where

pε (ρε) = ε
F(ρε)

(1− ρε)
β
, with F(s) →

s→0
0, β > 1. (3)

This singular function plays formally the role of a barrier by preventing the density to exceed
the maximal fixed threshold ρ̄≡ 1. The motivation to study this model and its asymptotic limit
ε→ 0 comes mainly from two areas of applications:

The Aw–Rascle model for traffic [3]. The system (1) with scalar offset function, i.e. with
wε = w= u+ ργ for γ > 1, usually known as the Aw–Rascle system (or sometimes ARZ
model) has been derived from the Follow the Leader (FTL) microscopic model of one lane
vehicular traffic in [2]. The drawback of that model is that the offset function ργ , does not
preserve the maximal density constraint, i.e. solutions satisfy the maximal density constraint
ρ0 ⩽ ρ̄ initially but evolve in finite time to a state which violates this constraint. Moreover, the
velocity offset should be very small unless the density ρ is very close to the maximal value,
ρ̄= 1. Indeed, the drivers do not reduce their speed significantly if the traffic is not congested
enough. To incorporate these features the authors of [6] proposed to work with the asymp-
totic limit (ε→ 0) of (1) with wε = uε + pε(ρε), and a singular scalar offset function pε given
by (3). The singular Aw–Rascle system and its asymptotic limit ε→ 0 has been studied numer-
ically in [8], and derived from a FTL approximation in [7]. To be able to use this model in the
multi-dimensional setting, where velocity and offset function should have the same physical
dimension, a possible waywould be to take for the offset a gradient rather than a scalar function
(see the recent paper [5] for a proposition and analysis of a multi-d extension of the classical
Aw–Rascle model). The use of a gradient can be interpreted as ability of the driver to relax
their velocity to an average of the speed of the front and the rear vehicles, weighted according
to the local density. So, unlike in the classical Aw–Rascle model, both front and rear inter-
actions would have to be incorporated at the level of the particle model. This seems to be a
reasonable assumption for interactions between vehicles that can change lanes and overtake
each others.

The lubrication model. Equations (1)–(3) appear also in modeling of suspension flows,
i.e. flows of grains suspended in a viscous fluid. To explain this context better, note that system
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(1) with wε given by (2) can be rewritten (formally) as the pressureless compressible Navier–
Stokes equations with density dependent viscosity coefficient{

∂tρε + ∂x (ρεuε) = 0, (4a)

∂t (ρεuε)+ ∂x
(
ρεu2ε

)
− ∂x (λε (ρε)∂xuε) = 0, (4b)

where

λε (ρε) = ρ2εp
′
ε (ρ) . (5)

In system (4) the singular diffusion coefficient λε(ρε) represents the repulsive lubrication
forces and ε is linked to the viscosity of the interstitial fluid. This system has been derived
from a microscopic approximation in [23]. The limit ε→ 0 models the transition between the
suspension regime, dominated by the lubrication forces, towards the granular regime dictated
by the contacts between the solid grains.

Formally, performing the limit ε→ 0 in (1) (or equivalently in (4)), we expect to get the
solution (ρ,u) of the compressible pressureless Euler system, at least when ρ< 1. In the region
where ρ= 1we expect that the singularity of the offset function (3) (equivalently the singularity
of the viscosity coefficient (5)) will prevail giving rise to additional forcing term. The limiting
equations then read

∂tρ+ ∂x (ρu) = 0 (6a)

∂t (ρu+ ∂xπ)+ ∂x ((ρu+ ∂xπ)u) = 0 (6b)

0⩽ ρ⩽ 1, (1− ρ)π = 0, π ⩾ 0, (6c)

where π is the additional unknown obtained as a limit of certain singular function of ρε, that
will be specified later on. This limiting system has been derived formally before in the papers
of Lefebvre–Lepot and Maury [23] and then the Lagrangian solutions based on an explicit for-
mula using the monotone rearrangement associated to the density were constructed by Perrin
and Westdickenberg [32]. As explained in this latter work, system (6) is related to the con-
strained Euler equations

∂tρ+ ∂x (ρu) = 0,

∂t (ρu)+ ∂x
(
ρu2
)
+ ∂xP= 0,

ρ⩽ 1, (1− ρ)P= 0, P⩾ 0,

(7)

studied for instance by Berthelin in [4] or Preux and Maury [26], by splitting the momentum
equation (6b) as follows:{

∂t (ρu)+ ∂x
(
ρu2
)
+ ∂xP= 0,

∂tπ + u∂xπ = P.

Consequently, solutions to system (6) are particular solutions to (7). In [4] the constrained
Euler equations are obtained through the sticky blocks approximation, while in [1, 9, 18], the
constrained Euler system is approximated by the compressible Euler equations with singular
pressure Pε = Pε(ρε).

Similar asymptotic limit passage ε→ 0 was analysed in the multi-dimensional setting by
Bresch, Necasova and Perrin [14] in the case of heterogeneous fluids flows described by com-
pressible Birkmann equations with singular pressure and bulk viscosity coefficient. The full
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compressible Navier–Stokes system with exponentially singular viscosity coefficients and
pressure was considered by Perrin in [29, 30]. The asymptotic limit when ε→ 0 in the sin-
gular pressure term that leads to the two-phase compressible/incompressible Navier–Stokes
equations was considered even earlier in the context of crowd dynamics, see Bresch, Perrin and
Zatorska [15], Perrin and Zatorska [33], Degond, Minakowski and Zatorska [20], Degond et al
[19]. Moreover, an interested reader can also consult Lions and Masmoudi [25] and Vauchelet
and Zatorska [35] for different approximation of the two-phase system. For an overview of
results and discussion of models described by the free/congested two-phase flows we refer
to [31].

Our paper contains two main results: the existence of strong solutions to (1) at ε fixed, and
the convergence as ε→ 0 of the solutions towards a solution of the limit system (6). Let us be
a little bit more precise about the framework and the difficulties associated to system (1).

To study (1) at ε fixed, we take advantage of the reformulation (4) as (pressureless) Navier–
Stokes equations with a density dependent viscosity. It is now well-known that, in addition to
the classical energy estimate which provides a control of

√
λε∂xuε, the BD entropy (BD for

Bresch and Desjardins [13]) yields a control of a gradient of some density function. We show
in this paper, that this estimate is precisely the key ingredient to ensure the maximal density
constraint, namely we will show that ∥ρε∥L∞t,x ⩽ Cε for some constant Cε < 1 tending to 1 as
ε→ 0.

As ε→ 0, the main issue which is common to the analysis of Navier–Stokes equations
with (degenerate close to vacuum) density dependent viscosities, is the fact that, a priori,
we do not have any uniform control in Lp of ∂xuε. Therefore, the identification of the limit
of the nonlinear convective term ρεu2ε is not direct. An important difference and difficulty in
comparison with [30] or other studies on Navier–Stokes equations with degenerate viscosities,
is that the viscosity vanishes, namely the viscosity λε(ρ) goes to 0 as ε→ 0 for any ρ< 1. As
a result, the control of the gradient of ρε provided by the BD entropy is not uniform with
respect to ε. This prevents us from using the Mellet–Vasseur type of estimates [28] to pass to
the limit in the convective term. An alternative approach was provided by Boudin in his work
[12] devoted to the the vanishing viscosity limit for pressureless gases. He studied system (4)
in which the singular viscosity term ∂x(λε∂xuε) is replaced by the non-singular term ε∂2xuε.
The key ingredient of [12] is the concept of duality solutions for the limit pressureless gas
equations. In this framework, introduced by Bouchut and James in [10, 11], it is particularly
important to ensure a one-sided Lipschitz condition, or the Oleinik entropy condition, on the
velocity field. It is related to the compressive property of the dynamics which turns out to
be useful also in other ‘compressive systems’ such as aggregation equations (see for instance
the works of James and Vauchelet [21, 22]). Note that Berthelin in [4] derived the estimate
∂xu⩽ 1/t for solutions of the constrained Euler equations obtained through the sticky blocks
approximation. Building upon the recent developments of Constantin et al [17] (see also [16])
around the regular solutions for the Navier–Stokes equations, we derive the ε-uniform one-
sided Lipschitz condition ∂xuε ⩽ C on the approximate solution. This estimate requires no
vacuum at the level of fixed ε. The (ε-dependent) lower bound on the density ρε is derived by
imposing a specific behavior of ε-dependent viscosity close to vacuum (see (8)–(9) below).

The outline of this paper is to first show that for ε fixed, (ρε,uε) is a regular solution to (4).
We prove the existence of regular solutions to this system in section 3 following the approach
of Constantin et al [17]. Then, we derive estimates uniform with respect to ε, including the
one-sided Lipschitz condition, in section 4. We justify the limit passage ε→ 0 in section 5
and show that the limit is solution to the constrained Euler equations. Finally, we propose in
section 6 a numerical scheme to illustrate the behavior of the solutions to (4) as ε→ 0. For
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the convenience of the reader we included in the Apendix all details of technical estimates of
higher regularity of solutions for ε fixed.

2. Main results

Our first main result concerns the existence of strong solutions to system (1) for specific con-
stitutive laws. With a slight abuse of notation, we re-define the functions pε, wε, and λε(ρε),
from the introduction.

We consider system (1) with wε given by

wε = uε + ∂xpε (ρε)+ ∂xφε (ρε) , (8)

where

pε (ρε) = ε
ργε

(1− ρε)
β
, φε (ρε) =

ε

α− 1
ρα−1, γ > 0, β > 1, α ∈

(
0,

1
2

)
. (9)

It means that in (3) we considerF(ρ) = ργ +(α− 1)−1(1− ρ)βρα−1 instead ofF(ρ) = ργ , for
example. Note however, that due to additional approximation φε we have lims→0F(s) =−∞
and not lims→0F(s) = 0.

The approximation of (4) can be written in the following form{
∂tρε + ∂x (ρεuε) = 0, (10a)

∂t (ρεuε)+ ∂x
(
ρεu2ε

)
− ∂x (λε (ρε)∂xuε) = 0, (10b)

with λε re-defined as

λε (ρ) = ρ2p ′
ε (ρ)+ ρ2φ ′

ε (ρ) = ρ2p ′
ε (ρ)+ ερα.

Given the values of the parameters, α,β,γ, we observe that the behavior of λε is dictated by
ρ2φ ′

ε(ρ) close to vacuum, and it is dictated by the singularity of p ′
ε(ρ) close to the maximal

density constraint ρ̄≡ 1.
We supplement this system with the following set of initial conditions

ρε|t=0 = ρ0ε, uε|t=0 = u0ε. (11)

The existence of unique global smooth solution to the approximate problem (10) at ε> 0 fixed
is stated in the theorem below.

Theorem2.1. Let ε> 0 be fixed, and let pε, φε be given by (9). Assume that the initial data (11)
satisfy ρ0ε,u

0
ε ∈ H3(T), with 0< ρ0ε < 1.

Then, for all T> 0, there exists a unique global solution (ρε,uε) to system (10) such that
0< ρε(t,x)< 1 for all t ∈ [0,T], x ∈ T, and

ρε ∈ C
(
[0,T] ;H3 (T)

)
, uε ∈ C

(
[0,T] ;H3 (T)

)
∩L2

(
0,T;H4 (T)

)
. (12)

We further show that solutions ρε,uε from the class (12) satisfy some uniform in ε estimates
that allow us to justify the asymptotic limit ε→ 0 in the weak sense. To this end, we rewrite
system (10) as follows
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{
∂tρε + ∂x (ρεuε) = 0, (13a)

∂t (ρεuε + ∂xπε (ρε))+ ∂x ((ρεuε + ∂xπε (ρε))uε) = 0, (13b)

where we denoted

π ′
ε (ρε) = ρεp

′
ε (ρε)+ ρεφ

′
ε (ρε) . (14)

We show that for ε→ 0 the solutions of (13) converge to an entropy weak solution of (6) with
the unknowns ρ, u, π in the sense specified in the following result.

Theorem 2.2. Let assumptions from theorem 2.1 be satisfied, and moreover let

0< ρ0ε (x)⩽ 1−C0ε
1
β ∀ x ∈ T, (15)

max
(
esssup

(
λε
(
ρ0ε
)
∂xu

0
ε

)
,0
)
⩽ C1ε

1
1−2α , (16)

∥
√
ρ0εu

0
ε∥L2x ⩽ C, (17)

∥∂xπε
(
ρ0ε
)
∥L2x + ∥

√
ρ0ε∂xφε

(
ρ0ε
)
∥L2x ⩽ C, (18)

0<M0 ⩽M0
ε =

ˆ
T
ρ0ε dx⩽M

0
< |T|, (19)

for some C0,C1,C,M
0,M

0
> 0 independent of ε. Then:

1. The solution (ρε,uε) given by theorem 2.1 satisfies the following uniform estimates

Cε
2

1−2α ⩽ ρε (t,x)⩽ 1−Cε
1

β−1 ∀ (t,x) ∈ [0,T]×T, (20)

∥πε∥L∞t H1
x
⩽ C, (21)

and the one-sided Lipschitz condition

∂xuε (t,x)⩽ C ∀ (t,x) ∈ [0,T]×T, (22)

for some C> 0, independent of ε. Moreover, the following inequality holds for any S ∈
C1(R) convex:

∂t (ρεS(uε))+ ∂x (ρεuεS(uε))− ∂x (λε (ρε)∂xS(uε))⩽ 0, ∀ (t,x) ∈ (0,T)×T.

2. Let in addition

ρ0ε → ρ0 weakly in L2 (T) ,
ρ0εu

0
ε → ρ0u0 weakly in L2 (T) ,

∂xπε
(
ρ0ε
)
→ ∂xπ

0 weakly in L2 (T) .
(23)

Then there exists a subsequence (ρε,uε,πε(ρε)) of solutions to (13)–(14) with initial datum
(ρ0ε,u

0
ε,πε(ρ

0
ε)), which converges to (ρ,u,π) a weak solution of (6) with initial datum

(ρ0,u0,π0).

6
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More precisely we have 0⩽ ρ⩽ 1 a.e. and the following convergences hold:

ρε → ρ weakly-∗ in L∞ ((0,T)×T) ,
πε (ρε)→ π weakly-∗ in L∞

(
0,T;H1 (T)

)
,

uε → u weakly-∗ in L∞ ((0,T)×T) .

Moreover, for the limiting system, the following (entropy) conditions hold:

• one-sided Lipschitz condition

∂xu⩽ C in D ′, (24)

• entropy inequality:

∂t (ρS(u))+ ∂x (ρuS(u))− ∂xΛS ⩽ 0 in D ′, (25)

for any convex S ∈ C1(R), and ΛS ∈M((0,T)×T) satisfying |ΛS|⩽ LipS|Λ| where
−Λ =−λε(ρ)∂xu ∈M+((0,T)×T).

Remark 2.3. Let us first comment on the choice of initial datum:

• The assumptions for the initial velocity include the upper bound for (λε(ρ0ε)∂xu
0
ε)+ to deduce

the one-sided Lipschitz condition discussed in the introduction. This control amounts to take
small values of (∂xu0ε)+, except in the low density regions.

• The initial condition (19) implies that the limit system (for ε= 0) cannot be fully congested.
This condition is required to control the singular potential πε(ρε) in section 4.1. Analogous
constraint has been imposed to study the asymptotic limit of the compressible Navier–Stokes
equations with singular pressure, see [33, 34].

Remark 2.4. The choice of the approximate function φε provides uniform lower bound of the
density. It was shown in [28] that, for viscosity coefficient proportional to ρα withα ∈ [0,1/2),
the weak solutions to compressible Navier–Stokes equations have density bounded away from
zero by a constant. We use this property at the level of ε being fixed in order to derive the one-
sided Lipschitz condition, but we also show that in the limit passage ε→ 0, φε converges to
zero strongly. We also remark that the lower bound for the density could be obtained without
the use of φε, by assuming more regularity on the initial data uniformly w.r.t. ε, see [27].

Remark 2.5. The main difficulty in studying the ε→ 0 limit passage is to justify convergence
of the nonlinear terms. In particular, to pass to the limit in the convective term ρεuε one needs
compactness of the velocity sequence w.r.t. space-variable. For compressible Navier–Stokes
equations with constant viscosity coefficient this sort of information is deduced directly from
the a-priori estimates. When the viscosity coefficient is degenerate, one can compensate lack
of the a-priori estimate by higher regularity of the density via the so-called Bresch-Desjardins
estimate. Here, the compactness w.r.t. space follows directly from the one-sided Lipschitz
condition, which is possible to deduce because the system is pressureless.

Remark 2.6 (more general singular functions pε). The specific form of the function pε
(which blows up close to 1 like a power law) is used in the paper to exhibit the small scales
associated to the singular limit ε→ 0 (see in particular lemma 3.3). Nevertheless, we expect
similar results for more general (monotone) hard-sphere potentials. All the estimates will then
depend on the specific balance between the parameter ε and the type of the singularity close
to 1 encoded in the function pε.
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3. Proof of theorem 2.1

The first step of the proof is to construct local in time unique regular solution to (10). Thanks
to the presence of the approximation term φε this can be done following the iterative scheme,
described for example in appendix B of Constantin et al [17]. The extension of this solution
to the global in time solution requires some uniform (with respect to time) estimates that are
presented below.

3.1. Basic energy estimates

In this section we assume that ρε,uε are regular solutions to (10) in the time interval [0,T] in
the class (12), and that ρε is non-negative. For such solutions we first obtain straight from the
continuity equation (10a) that

∥ρε∥L1x (t) = ∥ρ0ε∥L1x , (26)

for all t ∈ [0,T]. Multiplying the momentum equation (10b) by uε and integrating by parts we
obtain the classical energy estimate.

Lemma 3.1. For a regular solutions of system (10), we have

∥√ρεuε∥2L∞t L2x
+ ∥
√
λε (ρε)∂xuε∥2L2t L2x ⩽ CE0,ε, (27)

with

E0,ε := ∥
√
ρ0εu

0
ε∥2L2x .

The next energy estimate is an analogue of Bresch–Desjardins entropy for the compressible
Navier–Stokes equations. We first introduce the quantity

H ′
ε (ρε) = pε (ρε)+φε (ρε) . (28)

Lemma 3.2. For a regular solution of system (10), we have

∥√ρεwε∥2L∞t L2x
+ ∥Hε (ρε)∥L∞t L1x

+ ∥√ρε∂x (pε (ρε)+φε (ρε))∥2L2t L2x ⩽ CE1,ε (1+T) , (29)

with

E1,ε := ∥
√
ρ0εw

0
ε∥2L2x + ∥Hε

(
ρ0ε
)
∥L1x .

Proof. Recall that at the level of regular solutions, the system (10) can be reformulated as (1)
with wε given by (8). Therefore, multiplying the equation (1b) by wε and integrating by parts
we easily obtain

∥√ρεwε∥L∞t L2x
⩽ ∥
√
ρ0εw

0
ε∥L2x .

Using again formula (8) to substitute for uε in (10a) we obtain a porous medium equation for
ρε, namely:

∂tρε + ∂x (ρεwε)− ∂x (ρε∂x (pε (ρε)+φε (ρε))) = 0. (30)

8
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Multiplying this equation by H ′
ε(ρε) and integrating over space and time, we get

sup
t∈(0,T)

ˆ
T
Hε (ρε)dx+ ∥√ρε∂x (H ′

ε (ρε))∥2L2t L2x ⩽
ˆ
T
Hε

(
ρ0ε
)
dx+C∥√ρεwε∥2L2t L2x

⩽
ˆ
T
Hε

(
ρ0ε
)
dx+CT∥

√
ρ0εw

0
ε∥2L2x .

Note thatHε consists of two components: one positive but singularHs
ε(ρ) =

´ ρ
0 pε(r)dr, and a

non-singular negative one Hn
ε(ρ) =

´ ρ
0 φε(r)dr since α< 1 (see (9)). However we can absorb

this negative contribution in Hs
ε(ρ) as follows. Let us first observe that

Hs
ε (ρ) ∼

ρ→1−

ε

(1− ρ)
β−1 ,

and therefore, for any C1,C2 > 0 (independent of ε) there exist C ′
1,C

′
2 (also independent of ε)

such that

Hs
ε (ρε)1{

ρε⩾1−C ′
1 ε

1
β−1

} ⩾ C1ρ
α
ε 1{

ρε⩾1−C ′
1 ε

1
β−1

};
ˆ
T
Hs

ε (ρε)1{
1−C ′

2 ε
1

β−1 ⩽ρε⩽1−C ′
1 ε

1
β−1

}dx⩾ C2ε.

Hence, splitting the integral of Hn
ε into two parts, we get

ˆ
T
|Hn

ε (ρε) |dx=
ˆ
T

ε

α(1−α)
ραε 1{

ρε⩽1−C ′
1 ε

1
β−1

}dx+ˆ
T

ε

α(1−α)
ραε 1{

ρε⩾1−C ′
1 ε

1
β−1

}dx
⩽ ε

α(1−α)
|T|+

ˆ
T
|Hs

ε (ρε) |1{
ρε⩾1−C ′

1 ε
1

β−1

}dx
⩽
ˆ
T
|Hs

ε (ρε) |1{
1−C ′

2 ε
1

β−1 ⩽ρε⩽1−C ′
1 ε

1
β−1

}dx+ˆ
T
|Hs

ε (ρε) |1{
ρε⩾1−C ′

1 ε
1

β−1

}dx

for sufficiently large C ′
1,C

′
2 > 0, independent of ε.

This gives the result of the lemma.

3.2. The upper and lower bounds on the density

The purpose of this section is to prove that ρε is uniformly (in time) bounded from above by
ρε and from below by ρ

ε
. This will be done in the two lemmas below.

Lemma 3.3 (upper bound on the density). Let T> 0, and let (ρε,uε) be a solution to (10)
in the class (12) satisfying the energy estimates (27) and (29). Assume moreover that initially
E0,ε and E1,ε, defined in lemmas 3.1 and 3.2, are bounded uniformly with respect to ε. Then
there exists a positive constant C independent of ε and T such that

ρε (t,x)⩽ 1−C

(
ε

1+
√
T

) 1
β−1

=: ρε ∀ t ∈ [0,T] , x ∈ T. (31)

9
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Proof. First of all, the L∞t L
1
x bound (29) on H

s
ε provides the upper bound

∥ρε∥L∞t,x ⩽ 1.

One can actually derive a more precise upper bound on the density thanks to the previous
estimates. First the Nash inequality provides

∥Hs
ε (ρε (t, ·))∥L2x ⩽ C∥Hs

ε (ρε (t, ·))∥
2/3
L1x

∥∂xHs
ε (ρε (t, ·))∥

1/3
L2x

+C∥Hs
ε (ρε (t, ·))∥L1x ,

and we have by Sobolev inequality that

∥Hs
ε (ρε (t, ·))∥L∞x ⩽ ∥Hs

ε (ρε (t, ·))∥
1/2
L2x

∥∂xHs
ε (ρε (t, ·))∥

1/2
L2x

+ ∥Hs
ε (ρε (t, ·))∥L2x

⩽ C
(
∥Hs

ε (ρε (t, ·))∥
1/3
L1x

∥∂xHs
ε (ρε (t, ·))∥

2/3
L2x

+ ∥Hs
ε (ρε (t, ·))∥

1/2
L1x

∥∂xHs
ε (ρε (t, ·))∥

1/2
L2x

+ ∥Hs
ε (ρε (t, ·))∥

2/3
L1x

∥∂xHs
ε (ρε (t, ·))∥

1/3
L2x

+ ∥Hs
ε (ρε (t, ·))∥L1x

)
. (32)

Now, we observe that due to p ′
ε(ρε),φ

′
ε(ρε)> 0, the estimate (29) provides the bound

∥√ρεp ′
ε (ρε)∂xρε∥2L∞t L2x

⩽ C(E1,ε (1+T)+E0,ε) , (33)

and on the other hand

∥√ρεp ′
ε (ρε)∂xρε∥2L∞t L2x

=

∥∥∥∥√ρε p ′
ε (ρε)

pε (ρε)
∂xH

s
ε (ρε)

∥∥∥∥2
L∞t L2x

.

Since

p ′
ε (ρε) = ε

ργ−1
ε

(1− ρε)
β+1 [γ (1− ρε)+βρε] ,

we deduce that

√
ρε
p ′
ε (ρε)

pε (ρε)
=

[γ (1− ρε)+βρε]ρ
−1/2
ε

1− ρε

=

(
γ+β

ρε
1− ρε

)
ρ−1/2
ε

⩾ γ∥ρε∥−1/2
L∞ .

Therefore

∥∂xHs
ε (ρε)∥L∞t L2x

⩽ γ−1∥ρε∥1/2L∞t,x
∥√ρεp ′

ε (ρε)∂xρε∥L∞t L2x

⩽ C∥ρε∥1/2L∞t,x

√
(E1,ε (1+T)+E0,ε)

⩽ C
√

(E1,ε (1+T)+E0,ε),

and so, coming back to (32):

∥Hs
ε (ρε)∥L∞t,x ⩽ C

√
(E1,ε (1+T)+E0,ε). (34)

10
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Finally, it is easy to show that this latter bound yields

∥ρε∥L∞t,x ⩽ 1−C

(
ε

1+
√
T

) 1
β−1

,

for some constantC independent of ε and T, provided that E1,ε and E0,ε are bounded uniformly
w.r.t. ε.

Remark 3.4. This upper bound ensures that ρε never reaches 1 at ε> 0 fixed in finite time,
and so pε(ρε) remains bounded by a constant which depends a-priori on ε. Indeed, we have

pε (ρε (t,x))⩽
ε

(1−∥ρε∥∞)
β
⩽ C

(
1+

√
T
) β

β−1
ε−

1
β−1 ∀ t ∈ [0,T] , x ∈ T. (35)

Note that the same type of estimate holds for the potential πε(ρε) defined in (14).

In the next step we progress with the lower bound on the density. This is the only place
where the artificial approximation term φε matters.

Lemma 3.5 (lower bound on the density). Let the assumptions of Lemma 3.3 be satisfied.
Then for a constant C> 0 independent of ε and T we have:∥∥∥∥ 1

ρε

∥∥∥∥
L∞t,x

⩽ Cε−
2

1−2α (1+T)
1

1−2α =:
1
ρ
ε

. (36)

Proof. The estimate (29) ensures that
√
ρε∂xφε(ρε) is controlled uniformly w.r.t. ε in L∞t L

2
x ,

and so, there exists C> 0 independent of ε and T such that:

∥∂x
(
ερ

α− 1
2

ε

)
∥2L∞t L2x

⩽ C(E1,ε (1+T)+E0,ε) . (37)

On the other hand, we have by conservation of mass

ˆ
T
ρε (t,x)dx=

ˆ
T
ρ0ε (x)dx=M0

ε,

and by hypothesis (19) we ensure that

0<M0 ⩽M0
ε < |T|,

for some M0 independent of ε. Therefore, for any time t, there exists some x̄(t) = x̄(t,ε) ∈ T
such that

ρε (t, x̄(t))⩾
M0

|T|
.

For all t ∈ (0,T] and x ∈ T we can write

ε(ρε (t,x))
α−1/2 − ε(ρε (t, x̄(t)))

α−1/2
=

ˆ x

x̄(t)
ε∂x (ρε (t,x))

α−1/2
,

11
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so that

ε(ρε (t,x))
α−1/2 ⩽ ε(ρε (t, x̄(t)))

α−1/2
+ |x− x̄(t) |1/2∥∂x

(
ερ

α− 1
2

ε

)
∥L2x

⩽ ε

(
M0

|T|

)α−1/2

+ |T|1/2∥∂x
(
ερ

α− 1
2

ε

)
∥L2x .

Hence, ε
(
ρε(t,x)

)α−1/2 ⩽ C
√
1+T and finally

ρ−1
ε (t,x)⩽ Cε−

1
1/2−α (1+T)

1
1−2α ∀ t> 0, x ∈ T.

Remark 3.6. For the sake of simplicity we sometimes estimate ρ
ε
as follows

ρ−1
ε

= Cε−
1

1/2−α (1+T)
1

1−2α ⩽ C(T)ε−2.

3.3. Further regularity estimates

3.3.1. Control of the singular diffusion. In the next step we provide the estimates of

Vε := λε (ρε)∂xuε, (38)

following the reasoning of Constantin et al [17] (Vε corresponds to what is called active poten-
tial in [17]).

Lemma 3.7. The variable Vε satisfies

∂tVε +

(
uε +

λε (ρε)

ρ2ε
∂xρε

)
∂xVε −

λε (ρε)

ρε
∂2xVε =− (λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2 V2

ε. (39)

Proof. Dividing (10) by ρε > 0 and using the continuity equation we get

∂tuε + uε∂xuε −
1
ρε
∂xVε = 0.

Next, taking the space derivative we obtain

∂t∂xuε + ∂x (uε∂xuε)− ∂x

(
1
ρε
∂xVε

)
= 0.

On the other hand, multiplying (10a) by λ ′
ε(ρε), we get

∂tλε (ρε)+ ∂xλε (ρε)uε +λ ′
ε (ρε)ρε∂xuε = 0.

12
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Hence

∂tVε =λε (ρε)∂t∂xuε + ∂xuε∂tλε (ρε)

=−λε (ρε)∂x (uε∂xuε)+λε (ρε)∂x

(
1
ρε

∂xVε

)
− ∂xλε (ρε)uε∂xuε −λ ′

ε (ρε)ρε (∂xuε)
2

=− ∂x (uεVε)+ ∂x

(
λε (ρε)

ρε
∂xVε

)
−λ ′

ε (ρε)ρε

(
Vε

λε (ρε)

)2

− ∂xλε (ρε)

ρε
∂xVε

=− uε∂xVε −
1

λε (ρε)
V2ε + ∂x

(
λε (ρε)

ρε
∂xVε

)
−λ ′

ε (ρε)ρε

(
Vε

λε (ρε)

)2

− ∂xλε (ρε)

ρε
∂xVε,

(40)

from which (39) follows.

Lemma 3.8. We have

∥Vε∥2L∞t L2x
+ ε∥∂xVε∥2L2t L2x

⩽ C∥Vε (0)∥2L2x exp

T(ε−3∥R∥4L∞t L2x
+

ε−1

√ρ
ε

∥√ρεuε∥2L∞t L2x

)
+

ε−3

ρ
8
3α
ε

(1− ρε)
4
3 (β+2)

∥Vε∥2L2t L2x


(41)

where

∥R∥L∞t L2x
:=

∥∥∥∥∂xλε (ρε)ρε

∥∥∥∥
L∞t L2x

⩽ C
√ρ

ε
(1− ρε)

(
1+

√
T
)
.

Proof. We multiply (39) by Vε and integrate w.r.t. space to get

d
dt

ˆ
T

V2
ε

2
dx+

ˆ
T

λε (ρε)

ρε
(∂xVε)

2 dx

=−
ˆ
T
∂x

(
λε (ρε)

ρε

)
Vε∂xVε dx−

ˆ
T

λε (ρε)

ρ2ε
∂xρε∂xVεVε dx−

ˆ
T
uε∂xVεVε dx

−
ˆ
T

(λ ′
ε (ρε)ρε +λε (ρε))

(λε (ρε))
2 V3

ε dx

=−
ˆ
T

∂xλε (ρε)

ρε
∂xρε∂xVεVε dx−

ˆ
T
uε∂xVεVε dx−

ˆ
T

(λ ′
ε (ρε)ρε +λε (ρε))

(λε (ρε))
2 V3

ε dx

= I1 + I2 + I3.

Observe that

λε (ρε)

ρε
= ρεp

′
ε (ρε)+ ερα−1

ε ⩾ ε. (42)

We will use this estimate to control each of the terms I1, I2, I3 separately below.
Control of I1. We have

|I1|⩽
ˆ
T

∣∣∣∣∂xλε (ρε)ρε

∣∣∣∣︸ ︷︷ ︸
:=R

|∂xVε||Vε| dx⩽ ∥R∥L2x∥∂xVε∥L2x∥Vε∥L∞x .

13
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Let us estimate ∥R∥L∞t L2x
. To this purpose we split λε(ρε) to the singular and the non-singular

parts denoted by

λsε = ρ2εp
′
ε (ρε) , λnε = εραε .

For the singular part we have∥∥∥∥∂xλsερε

∥∥∥∥
L∞t L2x

=

∥∥∥∥2ρεp ′
ε (ρε)+ ρ2εp

′ ′
ε (ρε)

ρε
∂xρε

∥∥∥∥
L∞t L2x

⩽
∥∥∥∥∥2

√
ρε + ρ

3/2
ε p ′ ′

ε (ρε)/p ′
ε (ρε)

ρε

∥∥∥∥∥
L∞

∥√ρεp ′
ε (ρε)∂xρε∥L∞t L2x

⩽ C

(
1

√ρ
ε

+
1

√ρ
ε
(1− ρε)

)
∥√ρεp ′

ε (ρε)∂xρε∥L∞t L2x
,

and for the non-singular part∥∥∥∥∂xλnερε

∥∥∥∥
L∞t L2x

=
∥∥εαρα−2

ε ∂xρε
∥∥
L∞t L2x

⩽ Cρ−1/2
ε

∥∥∥ερα−3/2
ε ∂xρε

∥∥∥
L∞t L2x

.

Therefore, using estimate (29), we get

∥R∥L∞t L2x
⩽ C

1+
√
T

√ρ
ε
(1− ρε)

. (43)

Coming back to the control of I1, we have:

|I1|⩽ ∥Vε∥L∞x ∥∂xVε∥L2x∥R∥L2x
⩽ C∥∂xVε∥L2x

(
∥∂xVε∥1/2∥Vε∥1/2L2x

+ ∥Vε∥L2x
)
∥R∥L2x

⩽ C̄ε
4
∥∂xVε∥2L2x +C

(
ε−3∥Vε∥2L2x∥R∥

4
L2x
+ ε−1∥Vε∥2L2x∥R∥

2
L2x

)
. (44)

Control of I2. Using the Hölder and the Young inequalities we obtain

|I2|⩽
ˆ
T
|uε||∂xVε||Vε| dx

⩽ ∥∂xVε∥L2x∥Vε∥L2x∥uε∥L∞x

⩽ C̄ε
4
∥∂xVε∥2L2x +Cε−1∥Vε∥2L2x∥uε∥

2
H1
x
,

with

∥uε∥2H1
x
⩽ ∥uε∥2L2x +

∥∥∥∥ 1
λε (ρε)

∥∥∥∥2
L∞

∥Vε∥2L2x ⩽ ρ−1/2
ε

∥√ρεuε∥2L2x + ε−2ρ−2α
ε

∥Vε∥2L2x

⩽ ρ−1/2
ε

∥√ρεuε∥2L2x + ε−2ρ−2α
ε

∥Vε∥2L2x ,

14
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hence

|I2|⩽
C̄ε
4
∥∂xVε∥2L2x +Cε−1ρ−1/2

ε
∥Vε∥2L2x∥

√
ρεuε∥2L2x +Cε−3ρ−α

ε
∥Vε∥4L2x . (45)

Control of I3. We apply the Nash inequality and the Hölder inequality to get

|I3|⩽
ˆ
T

∣∣∣∣∣ (λ ′
ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

∣∣∣∣∣ |Vε|3 dx

⩽
∥∥∥∥∥ (λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

∥∥∥∥∥
L∞

(
∥∂xVε∥1/2L2x

∥Vε∥5/2L2x
+ ∥Vε∥3L2x

)
⩽ C

ε−1

ρ2α
ε

(1− ρε)
β+2

(
∥∂xVε∥1/2L2x

∥Vε∥5/2L2x
+ ∥Vε∥3L2x

)
⩽ C̄ε

4
∥∂xVε∥2L2x +C

ε−4/3−1/3(
ρ2α
ε

(1− ρε)
β+2
)4/3 ∥Vε∥5/2×4/3

L2x
+C

ε−1

ρ2α
ε

(1− ρε)
β+2 ∥Vε∥3L2x .

Putting everything together, we get

d
dt
∥Vε∥2L2x +Cε∥∂xVε∥2L2x

⩽ C

ε−3∥Vε∥2L2x∥R∥
4
L2x
+ ε−1∥Vε∥2L2x∥R∥

2
L2x
+ ε−1ρ−1/2

ε
∥Vε∥2L2x∥

√
ρεuε∥2L2x

+ε−3ρ−α
ε

∥Vε∥4L2x +
ε−5/3(

ρ2α
ε

(1− ρε)
β+2
)4/3 ∥Vε∥10/3L2x

+
ε−1

ρ2α
ε

(1− ρε)
β+2 ∥Vε∥3L2x


⩽ C∥Vε∥2L2x

ε−3∥R∥4L2x + ε−1ρ−1/2
ε

∥√ρεuε∥2L2x +
ε−3(

ρ2α
ε

(1− ρε)
β+2
)4/3 ∥Vε∥2L2x

 ,
and (41) follows by Gronwall’s inequality.

From the above result we infer the estimates on ∂xuε (which are not uniform with respect
to ε).

Lemma 3.9. We have:

(i) ∂xuε is bounded in L2t L
2
x with the estimate

∥∂xuε∥L2t L2x ⩽
∥∥∥∥∥ 1√

λε (ρε)

∥∥∥∥∥
L∞t,x

∥
√
λε (ρε)∂xuε∥L2t L2x ⩽ Cε−1/2ρ−α/2

ε
E1/2
0,ε . (46)

(ii) ∂xuε is bounded in L∞t L
2
x with the estimate

∥∂xuε∥L∞t L2x
⩽
∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞t,x

∥Vε∥L∞t L2x
. (47)
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(iii) ∂2xuε is bounded in L
2
t L

2
x with the estimate

∥∂2xuε∥L2t L2x ⩽ C

∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞t,x

∥∂xVε∥L2t L2x

+C

∥∥∥∥ 1
λε (ρε)

∥∥∥∥2
L∞t,x

∥∂xλε (ρε)∥L∞t L2x

(
∥∂xλε (ρε)∥L∞t L2x

+ 1
)
∥∂xuε∥L2t L2x .

(48)

Proof. Part (i) follows immediately from (27). Part (ii) results from the definition of Vε and
the control of Vε in L∞t L

2
x is provided by estimate (41). And finally, part (iii) follows by dif-

ferentiating Vε, we get ∂xVε = ∂xλε∂xuε +λε∂
2
xuε, so that

∥∂2xuε∥L2t L2x

⩽
∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞t,x

(
∥∂xVε∥L2t L2x + ∥∂xλε∥L∞t L2x

∥∂xuε∥L2t L∞x
)

⩽ C

∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞t,x

(
∥∂xVε∥L2t L2x + ∥∂xλε∥L∞t L2x

(
∥∂xuε∥1/2L2t L2x

∥∂2xuε∥
1/2
L2t L2x

+ ∥∂xuε∥L2t L2x
))

.

3.3.2. The higher order regularity estimates. We begin with a formal derivation of higher
regularity estimates, for which we assume that the functions ρε,uε are sufficiently smooth.

Lemma 3.10. Let m⩾ 2 and let ρε ∈ C1([0,T];Cm(T)), uε ∈ C([0,T];Cm+1(T)) satisfy (10a),
then we have

1
2
d
dt
∥∂mx ρε∥2L2x ⩽ C

(
∥∂mx uε∥L2x∥∂

m
x ρε∥2L2x + ∥ρε∥L∞x ∥∂mx ρε∥L2x∥∂

m+1
x uε∥L2x

)
. (49)

Moreover, for l⩾ 1 and ρε ∈ C([0,T];Cl+1(Td)), uε ∈ C([0,T];Cl(Td)), Vε ∈
C1([0,T];Cl+2(Td)) satisfying (39), we have

1
2
d
dt

ˆ
T
|∂lxVε|2 dx=−

ˆ
T
∂lx

((
uε +

λε (ρε)

ρ2ε
∂xρε

)
∂xVε

)
∂lxVε dx

+

ˆ
T
∂lx

(
λε (ρε)

ρε
∂2xVε

)
∂lxVε dx

−
ˆ
T
∂lx

(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2 V2

ε

)
∂lxVε dx.

(50)

Proof. First, differentiating (10a) m times with respect to x and multiplying by ∂mx ρε, we
deduce

1
2
d
dt

ˆ
T
|∂mx ρε|2 dx=−

ˆ
T
∂mx ρε (∂

m
x (uε∂xρε)+ ∂mx (ρε∂xuε)) dx.

We introduce the commutator notation [D, f]g= D( fg)− fDg, where D is any differential
operator and f,g are sufficiently smooth functions. Using this notation we rewrite the above
equation as

16
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1
2
d
dt

ˆ
T
|∂mx ρε|2 dx=−

ˆ
T
∂mx ρε ([∂

m
x ,uε]∂xρε) dx−

ˆ
T
∂mx ρεuε∂

m+1
x ρε dx

−
ˆ
T
∂mx ρε ([∂

m
x ,ρε]∂xuε) dx−

ˆ
T
∂mx ρερε∂

m+1
x uε dx.

(51)

On the periodic domain, for any g ∈Wn,2(T) with n⩾ 3, we have

∥∂xg∥L∞x ⩽ C∥∂2xg∥L2x ⩽ C(n)∥∂nxg∥L2x , (52)

see f.i. [17, page 12]. Inequality (52) and the Kato–Ponce theory yield

∥
[
∂mx ,uε

]
∂xρε∥L2x ⩽ C

(
∥∂mx ρε∥L2x∥∂xuε∥L∞x + ∥∂mx uε∥L2x∥∂xρε∥L∞x

)
⩽ C

(
∥∂mx uε∥L2x∥∂

m
x ρε∥L2x

)
,

and similarly

∥
[
∂mx ,ρε

]
∂xuε∥L2x ⩽ C

(
∥∂mx uε∥L2x∥∂xρε∥L∞x + ∥∂mx ρε∥L2x∥∂xuε∥L∞x

)
⩽ C

(
∥∂mx uε∥L2x∥∂

m
x ρε∥L2x

)
.

Going back to (51), we notice that

−
ˆ
T
∂mx ρεuε∂

m+1
x ρε dx=

1
2

ˆ
T
∂xuε|∂mx ρε|2 dx.

This implies
ˆ
T
∂xuε|∂mx ρε|2 dx⩽ C∥∂xuε∥L∞x ∥∂mx ρε∥2L2x .

Combining all these estimates and plugging into (51) we finally obtain (49). Next, differenti-
ating (39) l times with respect to space and multiplying by ∂lxVε we obtain (50).

We already have the estimate of Vε in L∞t L
2
x and ∂xVε in L2t L

2
x from (41). Also, lemma 3.3

and estimate (37) give

∥∂xρε∥L∞t L2x
=

(
α− 1

2

)−1 1
ε

∥∥∥ρ 3
2−α
ε ∂x

(
ερ

α− 1
2

ε

)∥∥∥
L∞t L2x

⩽ 1
ε
C(ρ̄ε,α,T,E0,E1) . (53)

Using the formulas from lemma 3.10, we want to derive the estimates for two further orders
of regularity:

• First, the case corresponding to m= 2 and l= 1 in (49) and (50), respectively.
• Then, the case corresponding to m= 3 and l= 2 in (49) and (50), respectively.

The obtained result is summarised in the statement below.

Proposition 3.11. Let ε> 0 be fixed and (ρε,uε) be a regular solution of system (10) with

E3,ε = E1,ε + ∥∂2xu0ε∥L2x + ∥∂2xρ0ε∥L2x + ∥∂3xu0ε∥L2x + ∥∂3xρ0ε∥L2x . (54)

Then we have

∥∂3xρε∥L∞t L2x
+ ∥∂2xVε∥L∞t L2x

+ ∥∂3xVε∥L2t L2x + ∥∂3xuε∥L∞t L2x
+ ∥∂4xuε∥L2t L2x

⩽ C
(
ε,E3,ε,ρε,ρε,T

)
. (55)
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Proposition 3.11 is an analogue of [17, lemma 4.3] and it is based on the lemma A.1 which
in turns is an analogue of [17, lemma 4.2]. For completeness we include the proofs of both
results, see the appendix.

4. Estimates uniform in ε

In this section we first recall and derive additional uniform w.r.t. ε estimates which eventually
will allow us to let ε→ 0. The two key estimates of this section are: the one-sided Lipschitz
condition on uε, and the control of the singular potential πε.

4.1. Estimates based on the energy bounds

First note that the lemmas 3.1 and 3.2 are already uniform with respect to ε, and so we have
the following uniform bounds

Proposition 4.1. Let the initial data ρ0ε,u
0
ε be such that

E0,ε +E1,ε ⩽ C (56)

for some C independent of ε. Then ρε,uε enjoy the following bounds:

∥√ρεuε∥L∞t L2x
⩽ C,

∥√ρεwε∥L∞t L2x
⩽ C,

∥
√
λε (ρε)∂xuε∥L2t L2x ⩽ C,

∥ρε∥L∞t L∞x ⩽ 1.

(57)

4.2. One-sided Lipschitz condition on ∂xuε

The purpose of this subsection is to prove that uε satisfies a one-sided Lipschitz condition,
which will yield a control of the full norm of the ∂xuε.

Proposition 4.2. Let ρε,uε be solution to system (10), and set

Aε :=max
(
esssup

(
λε
(
ρ0ε
)
∂xu

0
ε

)
,0
)
.

Then

Vε = λε (ρε)∂xuε ⩽ Aε. (58)

In particular:

• If Aε → 0 as ε→ 0, then

(λε (ρε)∂xuε)+ → 0 as ε→ 0; (59)

• If Aε ⩽ λε(ρε)⩽ C̄ε
1

1−2α , for some C̄ independent of ε, then

∂xuε ⩽ C̄. (60)
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Proof. The starting point is derivation of equation for

Ṽε = (KεAεt+ 1)Vε.

Similarly to proof of proposition 3.7 we can show that

∂tṼε + ∂x

(
uεṼε

)
− ∂x

(
λε (ρε)

ρε
∂xṼε

)

=
KεAε

KεAεt+ 1
Ṽε −

λ ′
ε (ρε)ρε

(KεAεt+ 1)

(
Ṽε

λε (ρε)

)2

− ∂xλε (ρε)

ρε
∂xṼε,

(61)

which for ε fixed holds pointwisely. We now derive the renormalised equation for Ṽε. To this
purpose we multiply (61) by S ′(Ṽε), where S is smooth, increasing and convex function, we
obtain

∂tS
(
Ṽε
)
+ ∂x

(
uεS
(
Ṽε
))

− ∂x

(
λε (ρε)

ρε
S ′
(
Ṽε
)
∂xṼε

)
=
(
S
(
Ṽε
)
− S ′

(
Ṽε
)
Ṽε
)
∂xuε − S ′ ′

(
Ṽε
)
λε (ρε)

ρε

(
∂xṼε

)2
+

KεAε
KεAεt+ 1

S ′
(
Ṽε
)
Ṽε −

S ′
(
Ṽε
)
λ ′
ε (ρε)ρε

(KεAεt+ 1)

(
Ṽε

λε (ρε)

)2

− ∂xλε (ρε)

ρε
∂xS
(
Ṽε
)

=
(
S
(
Ṽε
)
− S ′

(
Ṽε
)(

Ṽε −Aε
))

∂xuε − S ′ ′(Ṽε)
λε(ρε)

ρε

(
∂xṼε

)2
+

Aε
KεAεt+ 1

S ′(Ṽε)Ṽε

(
Kε −

1
λε(ρε)

)
− S ′(Ṽε)λ ′

ε(ρε)ρε
(KεAεt+ 1)

(
Ṽε

λε(ρε)

)2

− ∂xλε(ρε)

ρε
∂xS(Ṽε)

(62)

We set S(y) = Fη(y) where Fη, η > 0, is a regularization of (· −Aε)+:

Fη (y) =


0 if y−Aε ⩽ η
y−Aε − η

2
+

η

2π
sin
(
π y−Aε

η

)
if η ⩽ y−Aε ⩽ 2η

y−Aε −
3η
2

if y−Aε ⩾ 2η

. (63)

For η > 0 fixed, F ′ ′
η ⩾ 0, 0⩽ F ′

η ⩽ 1, and

|Fη (y)− (y−Aε)F
′
η (y) |⩽

(
3
2
+

1
2π

)
η = κη. (64)

Note that for such choice of S the second and the fourth terms on the rhs of (62) are non-
positive. Therefore, integrating (62) in space, we then get:

d
dt

ˆ
T
Fη

(
Ṽε (t)

)
dx⩽

ˆ
T

∣∣∣Fη

(
Ṽε

)
−F ′

η

(
Ṽε

)(
Ṽε −Aε

)∣∣∣|∂xuε|dx
+

ˆ
T

Aε

KεAεt+ 1
F ′
η

(
Ṽε

)
Ṽε

(
Kε −

1
λε (ρε)

)
dx

+

ˆ
T

∣∣∣∣∂x(∂xλε (ρε)ρε

)∣∣∣∣Fη

(
Ṽε

)
dx.

(65)
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The first term on the rhs can be controlled using (64) and (57), and the ε-dependent bound
from below for ρε (36), we obtain

ˆ T

0

ˆ
T

∣∣∣Fη

(
Ṽε

)
−F ′

η

(
Ṽε

)(
Ṽε −Aε

)∣∣∣|∂xuε|dxdt⩽ κη

ˆ T

0

ˆ
T
|∂xuε|dxdt⩽ κC(T)ηε−α ′

(66)

with some α ′ > 0. For the second term of the right-hand side of (65), we notice that

ˆ
T

Aε

KεAεt+ 1
F ′
η

(
Ṽε

)
Ṽε

(
Kε −

1
λε (ρε)

)
dx

=

ˆ
T

Aε

KεAεt+ 1
F ′
η

(
Ṽε

)
Ṽε

(
Kε −

1
λε (ρε)

)
1Ṽε⩾Aε

dx. (67)

Now, we recall that ρε ⩽ 1−C1ε
1

β−1 , with C1 > 0 independent of ε, so that λε(ρε)⩽
C2ε

− 2
β−1 . Hence, taking

Kε ⩽ C−1
2 ε

2
β−1 (68)

we observe that the integral (67) is non-positive so that, by Gronwall’s inequality,

ˆ
T
Fη

(
Ṽε (t)

)
⩽
[ˆ

T
Fη

(
Ṽε (0)

)
+Cη

ˆ
T
|∂xuε|

]
exp

(∥∥∥∥∂x(∂xλε (ρε)ρε

)∥∥∥∥
L1t L∞x

)

Passing to the limit η→ 0, and observing that initially (Ṽε(0)−Aε)+ = (Vε(0)−Aε)+ = 0,
we conclude that

ˆ
T

(
Ṽε (t)−Aε

)
+
dx⩽ 0.

This implies that

Vε (t,x)⩽
Aε

KεAεt+ 1
⩽ Aε. (69)

This concludes the proof of (58). The implication (59) is straightforward, and (60) follows
from (58) and the lower bound of the density (36).

Remark 4.3. Note that we have from (69) an Oleinik entropy condition at ε> 0 fixed, namely
a decreasing in time: (λε∂xuε)+ ⩽ (Kεt)−1. Unfortunately, due to the condition on Kε (68),
this estimate degenerates as ε→ 0.

As a consequence of proposition 4.2 and due to the periodicity of the domain, we can control
the whole norm of the velocity gradient.

Corollary 4.4. We have

∥∂xuε∥L∞t L1x
⩽ C (70)

for a constant C independent of ε. As a consequence of it, we deduce

∥uε∥L∞t,x ⩽ C. (71)
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Proof. Let us denote Dε := (∂xuε)+. We have, for any t

ˆ
T
|∂xuε (t,x) |dx

=

ˆ
T
(2Dε (t,x)− ∂xuε (t,x))dx

=

ˆ
T
2Dε (t,x) dx

one-sided Lip. (60)
⩽ 2C̄.

Taking the supremum w.r.t. t we finally obtain the uniform control of ∥∂xuε∥L∞t L1x
. As a con-

sequence of estimates (57) and nonnegativity of the density, one obtains

∥uε∥L∞t L1x
⩽ C,

applying the generalized Poincaré inequality (see proposition A.2 in appendix). Finally from
the Sobolev embedding, we obtain the L∞t,x bound.

4.3. Improved potential estimate

Note that so far we are lacking the uniform bound on the singular part of the potential πε(ρε)
(defined in (14), recall also remark 3.4 and estimate (35)). This is the purpose of the next
lemma.

Lemma 4.5. Let the conditions of the previous proposition be satisfied and assume further-
more the condition (19). We have then

∥πε (ρε)∥L∞t L1x
+ ∥∂xπε (ρε)∥L∞t L2x

⩽ C, (72)

for a positive constant C independent of ε.

Proof. We start with the control of the gradient ∂xπε(ρε) which easily derived from estim-
ate (57)

∥∂xπε (ρε)∥L∞t L2x
⩽ ∥√ρε∥L∞t,x ∥

√
ρε∂x (pε (ρε)+φε (ρε))∥L∞t L2x

⩽ ∥√ρε∥L∞t,x
(
∥√ρεwε∥L∞t L2x

+ ∥√ρεuε∥L∞t L2x

)
⩽ C. (73)

Assume that T can be identified with [0,1] supplemented with periodic boundary condi-
tions. We first multiply equation (10b) by

ψ (t,x) =
ˆ x

0
(ρε (t,y)−< ρε >)dy,

where

< ρε >:=
M0

ε

|T|
.
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Note that ψ is periodic in space. After time and space integration, we get:

ˆ t

0

ˆ
T
ρ2εp

′
ε (ρε)∂xuε (ρε −⟨ρε⟩)dxdt ′+

ˆ t

0

ˆ
T
ρ2εφ

′
ε (ρε)∂xuε (ρε −⟨ρε⟩)dxdt ′

=

ˆ t

0

ˆ
T
ρεu

2
ε (ρε −⟨ρε⟩)dxdt ′ +

ˆ t

0

ˆ
T
(ρεuε)∂tψ dxdt ′

+

ˆ
T
(ρεuεψ)(0,x)dx−

ˆ
T
(ρεuεψ)(t,x)dx.

(74)

From the boundedness of the initial conditions and due to (57), we get that the last two terms
are uniformly bounded. By the same token, noticing that

∂tψ =

ˆ x

0
∂tρεdy=−

ˆ x

0
∂x (ρεuε)dy= ρεuε (t,0)− ρεuε (t,x) ,

and using in addition the uniform bound (71), the third term on the rhs of (74) is bounded as
well. The first of the rhs of (74) is bounded thanks to (57). Ultimately, we infer that∣∣∣∣ˆ t

0

ˆ
T
ρ2εp

′
ε (ρε)∂xuε (ρε −⟨ρε⟩)dxdt ′+

ˆ t

0

ˆ
T
ρ2εφ

′
ε (ρε)∂xuε (ρε −⟨ρε⟩)dxdt ′

∣∣∣∣⩽ C. (75)

Now, for b(ρ) := (ρ−< ρ0ε >)πε(ρ), we have

∂tb(ρε)+ ∂x (b(ρε)uε) =−(b ′ (ρε)ρε − b(ρε))∂xuε,

that is

∂t
[(
ρε −⟨ρ0ε⟩

)
πε (ρε)

]
+ ∂x

[(
ρε −⟨ρ0ε⟩

)
πε (ρε)uε

]
=−

[
ρε
(
ρε −⟨ρ0ε⟩

)
π ′
ε (ρε)+ ⟨ρ0ε⟩πε (ρε)

]
∂xuε.

Integrating over space and time we have

ˆ
T

(
ρε −⟨ρ0ε⟩

)
πε (ρε)(t) dx=

ˆ
T

(
ρ0ε −⟨ρ0ε⟩

)
πε
(
ρ0ε
)
dx

−
ˆ t

0

ˆ
T

(
ρε
(
ρε −⟨ρ0ε⟩

)
π ′
ε (ρε)

)
∂xuε dx dt

′

−
ˆ t

0

ˆ
T

(
⟨ρ0ε⟩πε (ρε)

)
∂xuε dx dt

′ = I1 + I2 + I3.

The hypothesis (15) on the initial data yields directly the control of the first integral. Indeed,
since we assumed 0< ρ0ε ⩽ 1−Cε

1
β , we have

πε
(
ρ0ε
)
⩽ C

ε

(1− supx ρ0ε)
β
+Cε

(
sup
x
ρ0ε

)α

⩽ C,

so that |I1|⩽ C.
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For the second integral, we recall that π ′
ε(ρε) = ρεp ′

ε(ρε)+ ρεφ
′
ε(ρε). Hence, estimate (75)

yields

|I2|⩽
∣∣∣∣ˆ t

0

ˆ
T
ρ2εp

′
ε (ρε)∂xuε

(
ρε −⟨ρ0ε⟩

)
dxdt ′ +

ˆ t

0

ˆ
T
ρ2εφ

′
ε (ρε)∂xuε

(
ρε −⟨ρ0ε⟩

)
dxdt ′

∣∣∣∣
⩽ C.

Finally, performing an integration by parts, we deduce from estimates (71) and (73)

|I3|=
∣∣∣∣ˆ t

0

ˆ
T
⟨ρ0ε⟩∂xπε (ρε) uεdxdt ′

∣∣∣∣
⩽ ⟨ρ0ε⟩∥uε∥L∞t,x ∥∂xπε (ρε)∥L1t,x
⩽ C∥uε∥L∞t,x ∥∂xπε (ρε)∥L∞t L2x

⩽ C.

Therefore, we have∣∣∣∣ˆ
T
(ρε−< ρ0ε >)πε(ρε)) dx

∣∣∣∣⩽ C. (76)

From the hypotheses (15)–(19), we ensure that

< ρ0ε >⩽ ρ̂=
M

0

|T|
< 1, (77)

and we define ρmε =
1+< ρ0ε >

2
⩽ 1+ ρ̂

2
. In order to estimate

ˆ
T
πε (ρε) dx,

we split the integral as
ˆ
T
πε (ρε) dx=

ˆ
T
πε (ρε)1ρε<ρmε dx+

ˆ
T
πε (ρε)1ρε⩾ρmε dx.

When ρε < ρmε , the term πε(ρε) remains far from the singularity uniformly with respect to ε
and therefore ˆ

T
πε (ρε)1ρε<ρmε

dx⩽ C.

Since, ρmε ⩽ 1+ ρ̂

2
, we have

C⩾
∣∣∣∣ˆ

T
(ρε−< ρ0ε >)πε(ρε)) dx

∣∣∣∣⩾ 1− ρ̂

2

ˆ
T
πε(ρε)1ρε⩾ρmε

dx.

Therefore, we obtain our desired result

∥πε (ρε)∥L∞t L1x
⩽ C.
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Corollary 4.6. We have

∥λε (ρε)∂xuε∥L1t,x ⩽ C (78)

for a constant C independent of ε.

Proof. Note that for ε fixed, sε = ρεpε(ρε) satisfies the following equation

∂tsε (ρε)+ ∂x (sε (ρε)uε) =−ρ2εp ′
ε (ρε)∂xuε. (79)

Now, considering the cases of ρε far away from 1 and close to 1 separately, and observing that
sε(ρ) and πε(ρ) have the same singularity when ρ is close to 1, with the help of estimate (72),
we obtain

∥sε (ρε)∥L∞t L1x
⩽ C.

Integrating equation (79), and using the control of the initial density (15) we deduce∣∣∣∣ˆ t

0

ˆ
T
ρ2εp

′
ε (ρε)∂xuε dx

∣∣∣∣⩽ C. (80)

Nest, we proceed exactly in the same way as in the proof of corollary 4.4 for Vε = λε(ρε)∂xuε
by combining the control (80) of |

´ t
0

´
TVε dxdt| with the control of the positive part given

by (58).

5. Passage to the limit ε→0

The purpose of this section is to prove theorem 2.2.Wewill show that when ε→ 0 the sequence
of solutions (ρε,uε,πε(ρε)) converges to (ρ,u,π), the distributional solution of (6).

Proof of theorem 2.2. Thanks to the uniform bounds from the previous section, there exist
ρ ∈ [0,1], u, and π ⩾ 0 such that

ρε ⇀ρ weakly-∗ in L∞ ((0,T)×T) ,
uε ⇀ u weakly-∗ in L∞ ((0,T)×T) ,
πε (ρε)→ π weakly-∗ in L∞

(
0,T;H1 (T)

)
,

up to a selection of a subsequence.
We can immediately justify that

(1− ρε)πε (ρε)→ 0 strongly in Lq ((0,T)×T) , q> 1, (81)

and that the approximate viscosity term converges to 0 strongly, i.e.

ρεφε (ρε)→ 0 strongly in L∞ ((0,T)×T) .

To pass to the limit in the nonlinear terms we first use the continuity and momentum
equations of system (10) to deduce that for any p<∞ we have

∥∂tρε∥L∞t W−1,p
x

+ ∥∂t (ρεuε)∥L∞t W−1,2
x

⩽ C, (82)
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where to estimate the time derivative of momentum, we use that λε(ρε)≈ πε(ρε)
1+ 1

β , along
with uniform estimates (57) and (72).

Combining the control of ∂tρε with the control of ∂xπε(ρε) we can apply the standard
compensated compactness argument (see, lemma 5.1 from [24]) to justify that

(1− ρε)πε (ρε)⇀ (1− ρ)π in D ′,

and so, from (81), we deduce that (1− ρ)π = 0 a.e. in (0,T)×T with 1− ρ⩾ 0, π ⩾ 0.
Similarly, combining the control of gradient of velocity (70) with the uniform estimates for

the time derivatives (82) we can justify that

ρεuε → ρu and ρεu
2
ε → ρu2 (83)

in the sense of distributions.
Finally, we can use the equation for ∂t∂xπε(ρε)

∂t∂xπε (ρε)+ ∂x (uε∂xπε) =−∂x (λε (ρε)∂xuε)

to deduce that

∂tπε (ρε) ∈ L2tW−1,1
x , (84)

so, repeating the previous argument we can justify that also

uε∂xπε (ρε)→ u∂xπ, (85)

in the sense of the distributions. With this argument, we can justify completely the passage to
the limit in the equations leading to system (6).

The last part is to verify the entropy conditions for the limiting system. First, it is clear that
the one-sided Lipschitz estimate holds on the limit velocity u:

∂xu⩽ C in D ′.

Next, we write that for fixed ε, smooth function S:

∂t (ρεS(uε))+ ∂x (ρεuεS(uε))− ∂x (S
′ (uε)λε (ρε)∂xuε) = S ′ ′ (uε)λε (ρε)(∂xuε)

2
,

hence, for convex function S:

∂t (ρεS(uε))+ ∂x (ρεuεS(uε))− ∂x (S
′ (uε)λε (ρε)∂xuε)⩽ 0.

As previously, we pass to the limit in the sense of distribution in the first two nonlinear terms
thanks to compensated compactness arguments. Next, since (λε(ρε)∂xuε)ε is bounded in L1t,x
from (78), it converges to some Λ ∈M((0,T)×T). Recall that (uε)ε is bounded in L∞t,x , so
(S ′(uε)λε(ρε)∂xuε)ε is bounded in L1t,x and converges to some ΛS ∈M((0,T)×T), where
|ΛS|⩽ LipS|Λ|. Finally, we have proven that:

∂t (ρS(u))+ ∂x (ρuS(u))− ∂xΛS ⩽ 0.
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In addition, from (59) we have for all t ∈ [0,T], x ∈ T

λε (ρε (t,x))(∂xuε (t,x))+ → 0 as ε→ 0,

and therefore

Λ⩽ 0. (86)

The proof of the theorem 2.2 is therefore complete.

6. Numerical approximations and illustrations

In this section, we first propose a discretization of model (1)–(3) (dropping the viscosity φε)
and then performs numerical simulations to illustrate the behavior of the solutions in the limit
ε→ 0. In particular, we compare with the dynamics the Euler equation with density con-
straint (7).

6.1. Numerical scheme

We consider the following formulation of the system:

∂tρ+ ∂x (ρw)− ∂x (ρ∂xpε (ρ)) = 0,

∂t (ρw)+ ∂x
(
ρw2

)
− ∂x (ρw∂xpε (ρ)) = 0,

and look for a numerical solution on [0,T]× [0,L]. The density equation involves a non-linear
diffusion operator, with unbounded diffusion coefficient ρp ′

ε(ρ). Therefore implicit schemes
are required to avoid too stringent stability condition (in particular with respect to ε).

6.1.1. Time semi-discretization. We denote by (ρn,wn) the quantities at the discrete time
tn = n∆t, with n ∈ N and where∆t> 0 denotes the time step. We consider the following time
semi-discretization scheme:

ρn+1 − ρn

∆t
+ ∂x

(
(ρw)n

)
− ∂x

(
ρn∂xpε

(
ρn+1

))
= 0, (87)

(ρw)n+1 − (ρw)n

∆t
+ ∂x

((
ρw2

)n)− ∂x
(
(ρw)n ∂xpε

(
ρn+1

))
= 0. (88)

In order to prevent the density from exceeding themaximal density equal to 1, the first equation
in solved in singular pressure variable pn+1:

ρε
(
pn+1

)
− ρε (pn)

∆t
+ ∂x (ρw)

n− ∂x
(
ρn∂xp

n+1
)
= 0, (89)

where ρε(p) is the inverse function of pε(ρ). In practice, at the nth iteration, we first solve the
elliptic equation (89) to get pn+1 and deduce ρn+1 = ρε(pn+1) which is less than 1 due to the
singularity of the pressure law. Finally wn+1 is obtained from (88).
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6.1.2. Full discretization. Let us consider the (ρnj ,w
n
j ) on a uniform mesh xj = ( j+ 1/2)∆x,

with ∆x> 0 and j ∈ {0, . . . ,J− 1}, with J∆x= L. We use finite-volume discretization for-
mula for the advection terms and finite difference discretizations for the elliptic operators:

ρε

(
pn+1
j

)
− ρ
(
pnj
)

∆t
+
Fn
ρ,j+ 1

2
−Fn

ρ,j− 1
2

∆x
(90)

−

(
ρnj+1 + ρnj

) (
pn+1
j+1 − pn+1

j

)
−
(
ρnj + ρnj−1

) (
pn+1
j − pn+1

j−1

)
2∆x2

= 0,

(ρw)n+1
j − (ρw)nj
∆t

+
Fn
ρw,j+ 1

2
−Fn

ρw,j− 1
2

∆x

−

(
(ρw)nj+1 +(ρw)nj

) (
pn+1
j+1 − pn+1

j

)
−
(
(ρw)nj +(ρw)nj−1

) (
pn+1
j − pn+1

j−1

)
2∆x2

= 0, (91)

where the fluxes are Lax–Friedrichs fluxes given by:

Fn
ρ,j+ 1

2
=

(ρw)nj +(ρw)nj+1

2
− 1

2
Cn
(
ρnj+1 − ρnj

)
,

Fn
ρw,j+ 1

2
=

(
ρw2

)n
j
+
(
ρw2

)n
j+1

2
− 1

2
Cn
(
(ρw)nj+1 − (ρw)nj

)
,

where Cn =maxj{|unj |}=maxj{|wnj − (pε(ρnj+1)− pε(ρnj−1))/(2∆x)|} is an approximation
of the maximal effective velocity. Gathering all the explicit terms on the right-hand side,
equation (90) can be written as follows:

ρε

(
pn+1
j

)
−∆t

(
ρnj+1 + ρnj

) (
pn+1
j+1 − pn+1

j

)
−
(
ρnj + ρnj−1

) (
pn+1
j − pn+1

j−1

)
2∆x2

= ρε
(
pnj
)
−∆t

Fn
ρ,j+ 1

2
−Fn

ρ,j− 1
2

∆x
. (92)

This equation can be complemented by periodic or Dirichlet boundary conditions according
to the test case. This is a non-linear equation solved using Newton’s algorithm. To summarize,
at the n-th iteration, we first compute (ρn+1

j )j with equation (92) and then we compute (wn+1
j )j

with equation (91). Note that the time step should satisfy the CFL stability condition: Cn∆t⩽
∆x, for all n ∈ N.

6.2. Numerical results

Here, we propose two numerical tests to illustrate the behavior of the numerical solutions as
ε→ 0. We compare the results with numerical simulations of the Euler system with maximal
density constraints. These latter are obtainedwith the numerical scheme proposed in [32] based
on a Lagrangian formulation.

6.2.1. Test case 1: compressive initial condition. We first consider the following initial
condition:

ρ0 (x) = 0.5, w0 (x) = 0.5 sin(2π x) ,
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Figure 1. Solution at time T = 0.3 with compressive initial condition for different ε. For
ε> 0: numerical scheme presented in section 6.1 with ∆t= 0.001, J= 150. For ε= 0:
Lagrangian scheme [32] for the congested Euler system with 400 discretization points.

on the domain [0,1] with periodic boundary conditions. The compressive desired velocity w0,
which is positive for x< 0.5 and negative for x> 0.5, induces an increase of density in the
middle of the domain. The numerical parameters are as follows: ∆t= 0.001 and J= 150 and
we consider γ = β = 2 in the definition (1) of pε. For the congested Euler system, we use 400
discretization points.

Figure 1 shows the solution at time T = 0.3 for different values of ε: we plot the density
(left), the velocity u= w− ∂xpε(ρ) and the adhesion potential−πε(ρ) defined in (14). Curves
labeled by ‘ε= 0’ correspond to the numerical solutions of the constrained Euler system (7). As
expected, the approximated solutions tend the solution to the congested Euler system as ε→ 0.
In particular, at the limit, the solution solution presents a discontinuity between a congested
phase with constant velocity (incompressibility condition ∂xu= 0) and a free phase.

6.2.2. Test case 2: dilatant initial condition. We then perform a dilatant test-case in the con-
gested regime. We consider the following initial data:

ρ0ε (x) = 1− 2ε
1
β , w0 (x) = tanh((x− 0.5)/σ) ,

with σ= 0.05, on the domain R. The initial density has been chosen such that pε(ρ0ε) tends to
a positive value as ε→ 0: this is the critical scale to approach a congested regime. In practice,
we use Neumann boundary conditions for the approximated system with J= 200 points and
free boundary conditions for the congested Euler model with 200 discretization points on the
interval.

On figure 2, we compare the solutions at time T = 0.03 for different ε. We still observe that
the solutions tends to the congested Euler dynamics as ε→ 0. We note that the asymptotic
adhesion potential equals zero: indeed, due to desired increasing velocity profile, there is no
congested force. In consequence, the desired velocity is constant in time.
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Figure 2. Solution at time T = 0.03 with dilatant initial condition for different ε.
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Appendix

Here our goal is to prove proposition 3.11. To do so, we first state the following lemma, which
provides an estimate of ρε and Vε for the case m= 2 in (49) and l= 1 in (50). Then using this
lemma we derive the higher order regularity estimates for ρε and Vε and conclude the proof
of proposition 3.11.

Lemma A.1. Let ε> 0 be fixed and (ρε,uε) be a regular solution of system (10) with

E2,ε = E1,ε + ∥∂2xu0ε∥L2x + ∥∂2xρ0ε∥L2x . (93)

Then we have

∥∂2xρε∥L∞t L2x
+ ∥∂xVε∥L∞t L2x

+ ∥∂2xVε∥L2t L2x + ∥∂2xuε∥L∞t L2x
+ ∥∂3xuε∥L2t L2x

⩽ C
(
ε,E2,ε,ρε,ρε,T

)
. (94)

Proof. Here we recall our estimate of ∂xρε in L∞t L
2
x :

∥∂xρε∥L∞t L2x
=

(
α− 1

2

)−1 1
ε

∥∥∥ρ 3
2−α
ε ∂x

(
ερ

α− 1
2

ε

)∥∥∥
L∞t L2x

⩽ 1
ε
C(ρ̄ε,α,T,E0,E1) .
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We consider the case that corresponds to m= 2 in (49). Therefore, we have

1
2
d
dt
∥∂2xρε∥2L2x ⩽ C

(
∥∂2xuε∥L2x∥∂

2
xρε∥2L2x + ∥∂2xρε∥L2x∥∂

3
xuε∥L2x

)
.

On the other hand, integrating by parts with l= 1 in (50) gives us

1
2
d
dt

ˆ
T
|∂xVε|2dx+

ˆ
T

λε (ρε)

ρε
|∂2xVε|2dx

=

ˆ
T

(
uε +

λε (ρε)

ρ2ε
∂xρε

)
∂xVε∂

2
xVε +

ˆ
T

(λ ′
ε (ρε)ρεdx+λε (ρε))

(λε (ρε))
2 V2

ε∂
2
xVεdx.

From the observation

λε (ρε)

ρε
= ρεp

′
ε (ρε)+ ερα−1 ⩾ ε

we deduce that

1
2
d
dt

ˆ
T
|∂xVε|2dx+ ε

ˆ
T
|∂2xVε|2dx

⩽
ˆ
T
uε∂xVε∂

2
xVεdx+

ˆ
T

λε (ρε)

ρ2ε
∂xρε∂xVε∂

2
xVεdx

+

ˆ
T

(λ ′
ε (ρε)ρεdx+λε (ρε))

(λε (ρε))
2 V2

ε∂
2
xVεdx :=

3∑
i=1

Ji.

Control of J1. We proceed similarly as in the case of I2 of lemma 3.8. We have

|J1|⩽ ∥uε∥L∞x ∥∂xVε∥L2x∥∂
2
xVε∥L2x ⩽

ε

16
∥∂2xVε∥2L2x +

4
ε
∥uε∥2L∞x ∥∂xVε∥2L2x .

We recall

∥uε∥2H1
x
⩽ ρ−1/2

ε
∥√ρεuε∥2L2x + ε−2ρ−2α

ε
∥Vε∥2L2x

to conclude

|J1|⩽
ε

16
∥∂2xVε∥2L2x + 4

(
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
∥∂xVε∥2L2x . (95)

Control of J2. For this term, we observe

|J2|⩽ C
(
ρ̄ε,ρε

)
∥∂xρε∥L∞x ∥∂xVε∥L2x∥∂

2
xVε∥L2x

⩽ ε

16
∥∂2xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂xρε∥2L∞x ∥∂xVε∥2L2x ,

from which we deduce

|J2|⩽
ε

16
∥∂2xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂2xρε∥2L2x∥∂xVε∥2L2x . (96)
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Control of J3. The bound for

∥∥∥∥∥
(
λ ′
ε(ρε)ρε +λε(ρε)

)(
λε(ρε)

)2
∥∥∥∥∥
L∞x

implies

|J3|⩽
ε

16
∥∂2xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)ˆ
T
|Vε|4dx.

Moreover, using the Nash inequality we obtain

∥Vε∥4L4x ⩽ C
(
∥Vε∥3L2x∥∂xVε∥L2x + ∥Vε∥4L2x

)
.

Thus we deduce

|J3|⩽
ε

16
∥∂2xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)(
∥Vε∥3L2x∥∂xVε∥L2x + ∥Vε∥4L2x

)
. (97)

Finally combining (95)–(97), we get

1
2
d
dt

ˆ
T
|∂xVε|2dx+

13
16
ε

ˆ
T
|∂2xVε|2dx

⩽ 4
(
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
∥∂xVε∥2L2x

+C
(
ε, ρ̄ε,ρε

)
∥∂2xρε∥2L2x∥∂xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)(
∥Vε∥3L2x∥∂xVε∥L2x + ∥Vε∥4L2x

)
.

(98)

Now we want to derive an expression for ∂3xuε in terms of Vε and its derivatives. A direct
calculation gives us

∂2xVε = 2∂x (λε (ρε))∂
2
xuε + ∂2x (λε (ρε))∂xuε +λε (ρε)∂

3
xuε.

Using the relation between ∂xVε and ∂xuε, we have

∂3xuε =
1

λε (ρε)
∂2xVε −

2∂xλε (ρε)
λε (ρε)

∂xVε + 2

(
∂xλε (ρε)

λε (ρε)

)2

Vε

−

(
λ ′
ε (ρε) |∂xρε|2 +λ ′ ′

ε (ρε)∂
2
xρε

λε (ρε)
2

)
Vε :=

4∑
i=1

Bi.

Denoting Ã=
∂xλε(ρε)

λε(ρε)
, we observe that

∥Ã∥L∞x ⩽ C
(
ρ̄ε,ρε

)
∥∂xρε∥L∞x ⩽ C

(
ρ̄ε,ρε

)
∥∂2xρε∥L2x .
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Using the above estimate, we obtain the following bounds:

∥B1∥L2x ⩽
∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞x

∥∂2xVε∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂2xVε∥L2x ;

∥B2∥L2x ⩽ C∥Ã∥L∞x ∥∂xVε∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂2xρε∥L2x∥∂xVε∥L2x ;

∥B3∥L2x ⩽ C∥Ã∥L∞x ∥Ã∥L2x∥Vε∥L∞x ⩽ C
(
ρ̄ε,ρε

)
∥∂xρε∥L∞x ∥∂xρε∥L2x∥Vε∥H1

x

⩽ C
(
ρ̄ε,ρε

)
∥∂2xρε∥L2x∥∂xρε∥L2x∥Vε∥H1

x
;

∥B4∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂xρε∥L∞x ∥∂xρε∥L2x∥Vε∥H1

x
+C

(
ρ̄ε,ρε

)
∥∂2xρε∥L2x∥Vε∥H1

x

⩽ C
(
ρ̄ε,ρε

)(
∥∂2xρε∥L2x∥∂xρε∥L2x∥Vε∥H1

x
+ ∥∂2xρε∥L2x∥Vε∥H1

x

)
.

Therefore, we have

∥∂3xuε∥L2x ⩽C
(
ρ̄ε,ρε

)(
∥∂2xVε∥L2x +

(
∥∂xρε∥L2x∥Vε∥H1

x
+ ∥Vε∥H1

x

)
∥∂2xρε∥L2x

)
. (99)

We recall

1
2
d
dt
∥∂2xρε∥2L2x ⩽ C

(
∥∂2xuε∥L2x∥∂

2
xρε∥2L2x + ∥∂2xρε∥L2x∥∂

3
xuε∥L2x

)
and substitute (99) in the estimate for ∂2xρε, we get

1
2
d
dt
∥∂2xρε∥2L2x ⩽ C

(
ρ̄ε,ρε

)
∥∂2xVε∥L2x∥∂

2
xρε∥L2x

+C
(
ρ̄ε,ρε

)(
∥∂2xuε∥L2x + ∥Vε∥H1

x
+ ∥∂xρε∥L2x∥Vε∥H1

x

)
∥∂2xρε∥2L2x .

Now we add the above estimate with (98) to obtain

1
2
d
dt
∥∂2xρε∥2L2x +

1
2
d
dt
∥∂xVε∥2L2x +

13
16
ε∥∂2xVε∥2L2x

⩽ C
(
ρ̄ε,ρε

)
∥∂2xVε∥L2x∥∂

2
xρε∥L2x

+C
(
ρ̄ε,ρε

)(
∥∂2xuε∥L2x + ∥Vε∥H1

x
+ ∥∂xρε∥L2x∥Vε∥H1

x
+ ∥∂xVε∥2L2x

)
∥∂2xρε∥2L2x

+ 4
(
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
∥∂xVε∥2L2x

+C
(
ε, ρ̄ε,ρε

)(
∥Vε∥3L2x∥∂xVε∥L2x + ∥Vε∥4L2x

)
.

Using the Young’s inequality we deduce

∥∂2xVε∥L2x∥∂
2
xρε∥L2x ⩽

ϵ

16
∥∂2xVε∥2L2x +

4
ϵ
∥∂2xρε∥2L2x .

Similarly, we derive the following inequality:

1
2
d
dt
∥∂2xρε∥2L2x +

1
2
d
dt
∥∂xVε∥2L2x +

3
4
ϵ∥∂2xVε∥2L2x ⩽ F1 (t)∥∂2xρε∥2L2x +F2 (t)∥∂xVε∥2L2x +G(t) ,

(100)
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where

F1 (t) = C
(
ε, ρ̄ε,ρε

)(
∥∂2xuε∥L2x + ∥Vε∥H1

x
+ ∥∂xρε∥L2x∥Vε∥H1

x
+ ∥∂xVε∥2L2x + 1

)
F2 (t) = 4

(
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)

and

G(t) = C
(
ε, ρ̄ε,ρε

)(
∥Vε∥3L2x∥∂xVε∥L2x + ∥Vε∥4L2x

)
.

From our earlier estimates on the time interval (0,T) described in Lemma 3.8, we have

∥F1∥L1t ⩽ C
(
ε, ρ̄ε,ρε,T

)(
∥∂2xuε∥L2t L2x + ∥Vε∥L2t H1

x
+ ∥∂xρε∥L∞x L2x

∥Vε∥L2t H1
x
+ ∥∂xVε∥2L2t L2x +T

)
,

∥F2∥L1t ⩽ C
(
ε, ρ̄ε,ρε,T

)(
ρ−1/2
ε

ε−1∥√ρεuε∥2L∞t L2x
+ ε−3ρ−2α

ε
∥Vε∥2L∞t L2x

)
,

∥G∥L1t ⩽ C
(
ε, ρ̄ε,ρε,T

)(
∥Vε∥3L∞t L2x

∥∂xVε∥L2t L2x + ∥Vε∥4L∞t L2x

)
,

and consequently

∥F1∥L1t + ∥F2∥L1t + ∥G∥L1t ⩽ C
(
ε, ρ̄ε,ρε,E1,ε,T

)
.

Integrating equation (100) with respect to time, and using the additional hypothesis on initial
data (93) and Grönwall’s inequality, we conclude

∥∂2xρε∥L∞t L2x
+ ∥∂xVε∥2L∞t L2x

+
ε

2
∥∂2xVε∥2L2t L2x ⩽ C

(
ε,E2,ε,ρε,ρε,T

)
.

From this we deduce the following estimates:
The L∞t L

2
x estimate for ∂

2
xuε.

∥∂2xuε∥L∞t L2x

⩽
∥∥∥∥ 1
λε (ρε)

∥∥∥∥
L∞t,x

(
∥∂xVε∥L∞∞L2x

+ ∥λ ′
ε (ρε)∥L∞t,x

(
∥∂2xρε∥L∞t L2x

+ ∥∂xρε∥L∞t L2x

)
∥∂xuε∥L∞t L2x

)
⩽ C

(
ε,E2,ε,ρε,T

)
.

The L2t L
2
x estimate for ∂

3
xuε.We write

∂3xuε =
1

λε (ρε)
∂2xVε −

2∂xλε (ρε)
λε (ρε)

∂xVε + 2

(
∂xλε (ρε)

λε (ρε)

)2

Vε

−

(
λ ′
ε (ρε) |∂xρε|2 +λ ′ ′

ε (ρε)∂
2
xρε

λε (ρε)
2

)
Vε,
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and from (99), we get

∥∂3xuε∥L2t L2x ⩽C
(
ρ̄ε,ρε

)(
∥∂2xVε∥L2t L2x +

(
∥∂xρε∥

1
2
L∞t L2x

∥Vε∥L∞t H1
x

) 4
3

+ ∥∂2xρε∥2L2t L2x + ∥Vε∥H1
x
∥∂2xρε∥L2x

)
+C

(
ρ̄ε,ρε

)(
∥∂xρε∥L∞t L2x

+ ∥∂xρε∥2L∞t L2x

)
∥Vε∥L∞t H1

x
.

The proof of the lemma is complete.

Having the above lemma at hand, we next prove the regularity estimates from proposition
3.11 with the initial data satisfying (54).

Proof of proposition 3.11. In order to prove the proposition, at first we notice that this cor-
responds to the case m= 3 and l= 2 in (51) and (50), respectively.

For m= 3 in (49) we obtain

1
2
d
dt
∥∂3xρε∥2L2x ⩽ C

(
∥∂3xuε∥L2x∥∂

3
xρε∥2L2x + ∥∂3xρε∥L2x∥∂

4
xuε∥L2x

)
. (101)

Similarly, l= 2 in (50) gives us

1
2
d
dt

ˆ
T
|∂2xVε|2dx=−

ˆ
T
∂2x

((
uε +

λε (ρε)

ρ2ε
∂xρε

)
∂xVε

)
∂2xVεdx

+

ˆ
T
∂2x

(
λε (ρε)

ρε
∂2xVε

)
∂2xVεdx

−
ˆ
T
∂2x

(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2 V2

ε

)
∂2xVεdx.

(102)

Applying integration by parts for the terms on the right side of the above equation, followed
by an adjustment of the terms, we get

1
2
d
dt

ˆ
T
|∂2xVε|2 dx+

ˆ
T

λε (ρε)

ρε
|∂3xVε|2 dx

=

ˆ
T
uε∂

2
xVε∂

3
xVε +

ˆ
T
∂xuε∂xVε∂

3
xVε dx+

ˆ
T

λε (ρε)

ρ2ε
∂2xρε∂xVε∂

3
xVε dx

+

ˆ
T

(
ρελ

′
ε (ρε)−λε (ρε)

λ2ε

)
|∂xρε|2∂xVε∂

3
xVε dx

+

ˆ
T
∂x

(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

)
V2
ε∂

3
xVε dx

+ 2
ˆ
T

(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

)
Vε∂xVε∂

3
xVε dx :=

6∑
i=1

Ki.

We use lemma A.1 to estimate terms Ki for i = 1, · · · ,6. First, we recall the inequality
λε(ρε)

ρε
⩾ ε to conclude

ˆ
T

λε (ρε)

ρε
|∂3xVε|2 dx⩾ ε

ˆ
T
|∂3xVε|2 dx.
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Control of K1. Here we have

|K1|⩽ ∥uε∥L∞x ∥∂2xVε∥L2x∥∂
3
xVε∥L2x ⩽

ε

16
∥∂3xVε∥2L2x +

4
ε
∥uε∥2L∞x ∥∂2xVε∥2L2x .

Proceeding similarly as in (95), we obtain

|K1|⩽
ε

16
∥∂3xVε∥2L2x + 4

(
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
∥∂2xVε∥2L2x . (103)

Control of K2. Also, for this term we use Young’s inequality and the inequality (52) to get

|K2|⩽ ∥∂xuε∥L2x∥∂xVε∥L∞x ∥∂3xVε∥L2x ⩽
ε

16
∥∂3xVε∥2L2x +

8
ε
∥∂xuε∥2L2x∥∂

2
xVε∥2L2x .

Hence, we have

|K2|⩽
ε

16
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)(
∥∂xuε∥2L2x∥∂

2
xVε∥2L2x + ∥∂xuε∥2L2x∥∂xVε∥2L2x

)
. (104)

Control of K3. We note that

|K3|⩽
∥∥∥∥λε (ρε)ρ2ε

∥∥∥∥
L∞t

∥∂2xρε∥L∞x ∥∂xVε∥L2x∥∂
3
xVε∥L2x

⩽ ε

16
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂xVε∥2L2x∥∂

3
xρε∥2L2x . (105)

Control of K4. We start with the following estimate:

|K4|⩽
∥∥∥∥ρελ ′

ε (ρε)−λε (ρε)

λ2ε

∥∥∥∥
L∞x

∥∂xρε∥2L∞x ∥∂xVε∥L2x∥∂
3
xVε∥L2x .

Additionally, we apply Young’s inequality to get

|K4|⩽
ε

16
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂xVε∥2L2x∥∂

2
xρε∥4L2x . (106)

Control of K5. A direct calculation gives us the following identity:

∂x

(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

)

=

[
1

λε (ρε)
2 (λ

′ ′
ε (ρε)ρε + 2λ ′

ε (ρε))−
λ ′
ε (ρε)

λε (ρε)
3 (λ

′
ε (ρε)ρε +λε (ρε))

]
∂xρε.

As a consequence of the above identity, we obtain∥∥∥∥∥
[

1

λε (ρε)
2 (λ

′ ′
ε (ρε)ρε + 2λ ′

ε (ρε))−
λ ′
ε (ρε)

λε (ρε)
3 (λ

′
ε (ρε)ρε +λε (ρε))

]∥∥∥∥∥
L∞x

⩽ C
(
ρ̄ε,ρε

)
,
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followed by

|K5|⩽ C
(
ρ̄ε,ρε

)
∥∂xρε∥L2x∥Vε∥2L∞x ∥∂3xVε∥L2x .

By using the Young inequality, we can further deduce

|K5|⩽
ε

16
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂xρε∥2L2x∥Vε∥4H1

x
. (107)

Control for K6. Here we observe that

|K6|⩽
∥∥∥∥∥
(
(λ ′

ε (ρε)ρε +λε (ρε))

(λε (ρε))
2

)∥∥∥∥∥
L∞x

∥∂xVε∥L2x∥Vε∥L∞x ∥∂3xVε∥L2x .

This implies

|K6|⩽
ε

16
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥Vε∥4H1

x
. (108)

Therefore, adding inequalities (103)–(108), we have

1
2
d
dt

ˆ
T
|∂2xVε|2 dx+

5
8
ε

ˆ
T
|∂3xVε|2 dx

⩽ C
(
ε, ρ̄ε,ρε

)
∥∂xVε∥2L2x∥∂

3
xρε∥2L2x

+C
(
ε, ρ̄ε,ρε

)((
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
+ ∥∂xuε∥2L2x

)
∥∂2xVε∥2L2x

+C
(
ε, ρ̄ε,ρε

)(
∥∂xVε∥2L2x∥∂

2
xρε∥4L2x +

(
1+ ∥∂xρε∥2L2x

)
∥Vε∥4H1

x

)
.

(109)

Next, we would like to estimate ∥∂4xuε∥L2x . A direct computation leads to the following identity:

∂4xuε =
1

λε (ρε)
∂3xVε −

(
λ ′
ε (ρε)

λε (ρε)
2 +

2λ ′
ε (ρε)

λε (ρε)

)
∂xρε∂

2
xVε

−

((
2λ ′

ε (ρε)

λε (ρε)

) ′

−

(
2λ ′

ε (ρε)
2

λε (ρε)
2 − λ ′

ε (ρε)

λε (ρε)
2

))
|∂xρε|2∂xVε

−

(
2
λ ′
ε (ρε)

λε (ρε)
+
λ ′
ε (ρε)

λε (ρε)
2

)
∂2xρε∂xVε

+

(
2

(
2λ ′

ε (ρε)
2

λε (ρε)
2 − λ ′

ε (ρε)

λε (ρε)
2

)
−
(
λ ′
ε(ρε)

λε(ρε)2

) ′
)
∂xρε∂

2
xρεVε

+

(
2λ ′

ε(ρε)
2

λε(ρε)2
− λ ′

ε(ρε)

λε(ρε)2

) ′

(∂xρε)
3Vε −

(
λ ′
ε(ρε)

λε(ρε)2

)
∂3xρεVε.
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We rewrite the above expression as

∂4xuε =R1
(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
∂3xVε +R2

(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
∂xρε∂

2
xVε

+R3
(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
|∂xρε|2∂xVε +R4

(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
∂2xρε∂xVε

+R5
(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
∂xρε∂

2
xρεVε +R6

(
λε (ρε) ,λ

′
ε (ρε) ,λ

′ ′
ε (ρε)

)
(∂xρε)

3Vε

+R7(λε(ρε),λ
′
ε(ρε),λ

′ ′
ε (ρε))∂

3
xρεVε :=

7∑
i=1

Di ,

where for each i = 1, · · · ,7 we have

∥Ri (λε (ρε) ,λ
′
ε (ρε) ,λ

′ ′
ε (ρε))∥L∞x ⩽ C

(
ρ̄ε,ρε

)
.

Therefore, we get the following estimates:

∥D1∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂3xVε∥L2x ;

∥D2∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂2xVε∥L2x∥∂xρε∥L∞x ⩽ C

(
ρ̄ε,ρε

)
∥∂2xVε∥L2x∥∂

2
xρε∥L2x ;

∥D3∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂xVε∥L2x∥∂xρε∥

2
L∞x

⩽ C
(
ρ̄ε,ρε

)
∥∂xVε∥L2x∥∂

2
xρε∥2L2x ;

∥D4∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥∂xVε∥L2x∥∂

2
xρε∥L∞x ⩽ C

(
ρ̄ε,ρε

)
∥∂xVε∥L2x∥∂

3
xρε∥L2x ;

∥D5∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥Vε∥L∞x ∥∂xρε∥L∞x ∥∂2xρε∥L2x ⩽ C

(
ρ̄ε,ρε

)
∥Vε∥H1

x
∥∂2xρε∥2L2x ;

∥D6∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥Vε∥L∞x ∥∂xρε∥L∞x ∥∂xρε∥2L2x ⩽ C

(
ρ̄ε,ρε

)
∥Vε∥H1

x
∥∂xρε∥3L2x ;

∥D7∥L2x ⩽ C
(
ρ̄ε,ρε

)
∥Vε∥L∞x ∥∂3xρε∥L2x ⩽ C

(
ρ̄ε,ρε

)
∥Vε∥H1

x
∥∂3xρε∥L2x .

Now, going back to (101) and plugging the above estimate in it, we obtain

1
2
d
dt
∥∂3xρε∥2L2x ⩽ C

(
ρ̄ε,ρε

)
∥∂3xVε∥L2x∥∂

3
xρε∥L2x

+C
(
ρ̄ε,ρε

)(
∥Vε∥H1

x
+ ∥∂3xuε∥L2x

)
∥∂3xρε∥2L2x

+C
(
ρ̄ε,ρε

)(
∥ρε∥H2

x
∥∂3xρε∥L2x∥∂

2
xVε∥L2x

)
+C

(
ρ̄ε,ρε

)(
∥Vε∥H1

x

(
∥ρε∥H2

x
+ ∥ρε∥2H2

x
+ ∥ρε∥3H2

x

))
∥∂3xρε∥L2x .

Now we add the above inequality with (109) and use the following inequality

C
(
ρ̄ε,ρε

)
∥∂3xVε∥L2x∥∂

3
xρε∥L2x ⩽

ε

8
∥∂3xVε∥2L2x +C

(
ε, ρ̄ε,ρε

)
∥∂3xρε∥2L2x

to deduce

1
2
d
dt
∥∂3xρε∥2L2x +

1
2
d
dt
∥∂2xVε∥2L2x +

1
2
ε∥∂3xVε∥2L2x ⩽ F̃1 (t)∥∂3xρε∥2L2x + F̃2 (t)∥∂2xVε∥2L2x + G̃(t)

(110)
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where

F̃1 (t) = C
(
ε, ρ̄ε,ρε

)(
∥Vε∥H1

x
+ ∥∂3xuε∥L2x + ∥∂xuε∥L2x + ∥∂2xVε∥2L2x + ∥Vε∥2H1

x
+ ∥ρε∥2H1

x
+ 1
)
,

F̃2 (t) = C
(
ε, ρ̄ε,ρε

)((
ρ−1/2
ε

ε−1∥√ρεuε∥2L2x + ε−3ρ−2α
ε

∥Vε∥2L2x
)
+ ∥∂xuε∥2L2x + ∥ρε∥2H2

x

)
and

G̃(t) = C
(
ε, ρ̄ε,ρε

)(
∥∂2xuε∥2L2x + ∥∂3xuε∥2L2x +

(
6∑

k=1

∥ρε∥kH2
x

)(
4∑

k=1

∥Vε∥kH1
x

))
.

From lemmas 3.8 and A.1, we have

∥F̃1∥L1t + ∥F̃2∥L1t + ∥G̃∥L1t ⩽ C
(
ε, ρ̄ε,ρε,E2,T

)
.

Now, we introduce an additional hypothesis

∥∂3xρ0ε∥L2x + ∥∂2xV0
ε∥L2x <∞.

Again we use Grönwall’s inequality to conclude

∥∂3xρε∥2L∞t L2x
+ ∥∂2xVε∥2L∞t L2x

+
ε

2
∥∂3xVε∥2L2t L2x ⩽ C

(
ε,E3,ε,ρε,ρε,T

)
,

where

E3,ε = E2,ε + ∥∂3xρ0ε∥L2x + ∥∂2xV0
ε∥L2x .

We proceed analogously as in the proof of lemma A.1 to obtain the L∞t L
2
x estimate of ∂3xuε

and the L2t L
2
x estimate of ∂4xuε.

Next, we state and prove a generalized Poincaré inequality:

Proposition A.2. Let r be non-negative function r such that

0<M0 ⩽
ˆ
T
r dx<∞, r ∈ L∞x (T) . (111)

Then, there exists a positive constant C (depending onM0 > 0) such that the following inequal-
ity holds

∥u∥L1x ⩽ C

(
∥∂xu∥L1x +

ˆ
T
r|u|dx

)
, (112)

for any u ∈W1,1(T).
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Proof. We prove the statement by methods of contradiction. Suppose (112) is not true, then
there exists a sequence {un}n∈N and {rn}n∈N such that

∥un∥L1x = 1, ∥∂xun∥L1x +
ˆ
T
rn|un| dx⩽

1
n

and

rn → r weakly-∗ in L∞x .

Therefore, we have

∥un∥W1,1
x

⩽ 2.

As a consequence of compact embedding of W1,1
x in L1x , we obtain

un → u strongly in L1x .

Next, the bound ∥∂xun∥L1x ⩽
1
n yields

∂xun → 0 strongly in L1x .

The above two statements imply

un → u strongly in W1,1
x and ∂xu= 0 a.e..

Now, note that the weak-∗ convergence of rn in L∞x and strong convergence of un in L1x helps
us to deduce

ˆ
T
r dx= 0,

that contradicts the hypothesis (111).
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[14] Bresch D, Nečasová Š and Perrin C 2019 Compression effects in heterogeneous media J. l’École
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