
A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: 
http://wrap.warwick.ac.uk/184820 

Copyright and reuse:
This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. 
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications



M

A

E

G

NS

I

T A T

MOLEM

U
N

IV
ERSITAS  WARWIC

E
N

S
IS

Fine Analysis of Mean Curvature Flow

through Singularities

by

Joshua Daniels-Holgate

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Mathematics (Research)

Mathematics Institute

University of Warwick

September 2023



Contents

List of Figures iii

Acknowledgements iv

Declarations v

Abstract vi

1 Introduction 1
1.1 Singularities of Mean Curvature Flow . . . . . . . . . . . . . . . . . 2

1.1.1 Singularity formation . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Resolution of Singularities . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Flows with Surgery . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Well-posed problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Results for Mean Curvature Flows with Surgery . . . . . . . 10
1.3.2 Results for flow through Conical Singularities . . . . . . . . . 12

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 20
2.1 Gaussian Area and The Monotonicity formula . . . . . . . . . . . . . 21
2.2 Weak formulations of Mean Curvature Flow . . . . . . . . . . . . . . 22

2.2.1 Brakke flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Level set flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Inner and Outer Flows . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Tangent flows and Self-Similar solutions . . . . . . . . . . . . . . . . 26
2.4 Pseudolocality and Interior Estimates . . . . . . . . . . . . . . . . . 28

3 Mean Curvature flow with Surgery 30
3.1 Overview of 2-Convex Surgery . . . . . . . . . . . . . . . . . . . . . 30
3.2 Definitions for Local Surgery . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Barriers and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Existence and Convergence of Smooth Flows with Surgery . . . . . . 55
3.5 Applications of the Surgery . . . . . . . . . . . . . . . . . . . . . . . 59
3.A Boundary Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Mean Curvature Flow through Conical Singularities 63
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Motivation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Jacobi Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

i



4.2.2 Eigen-functions of the Linearised Operator . . . . . . . . . . 66
4.2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Regularity and Graphicality . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Behaviour away from the singular point . . . . . . . . . . . . 68
4.3.2 Results for flows satisfying the tangent flow assumption . . . 73
4.3.3 Separation and graphicality of smooth flows . . . . . . . . . . 75

4.4 Barriers from Linearised Dynamics . . . . . . . . . . . . . . . . . . . 79
4.4.1 Existence of Barriers . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Asymptotic properties of the barriers . . . . . . . . . . . . . . 82

4.5 Separation Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7 Fattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.A Linearisation of Geometric Quantities . . . . . . . . . . . . . . . . . 94

4.A.1 Derivation of Linearisation . . . . . . . . . . . . . . . . . . . 96
4.A.2 Error at a critical point . . . . . . . . . . . . . . . . . . . . . 97
4.A.3 Decomposition of the Error Operator . . . . . . . . . . . . . 99

4.B Cartographic considerations . . . . . . . . . . . . . . . . . . . . . . . 102
4.B.1 New coordinates from Old . . . . . . . . . . . . . . . . . . . . 102
4.B.2 Transforming between coordinate systems . . . . . . . . . . . 108

ii



List of Figures

1.1 Sketch of the barriers at rescaled time τ . . . . . . . . . . . . . . . . . 18

iii



Acknowledgements

I would like to begin by thanking Felix Schulze, my supervisor, who over the last
four years has provided near limitless support, humoured my mistakes, and, most
importantly, nurtured my mathematical ability. I would also like to thank Otis
Chodosh for his helpful comments on my research throughout my studies.

I am grateful for the welcoming and collaborative atmosphere created by the
members of the Geometric Analysis group at Warwick: Karen Habermann, Lucas
Lavoyer de Miranda, Mario Micallef, Luke Peachy, Felix Schulze, Arjun Sobnack,
Maxwell Stolarski, and Peter Topping. Additionally, those I met during my time at
UCL, in particular, Huy T. Nguyen, Albert Wood, and Louis Yudowitz.

I would like to thank the wider geometric analysis community for the hospitality
and encouragement, in particular, Alix Deruelle, Or Hershkovits, Jason Lotay, and
Miles Simon.

I wish to thank my family and friends. Thank you to my parents, David and
Phillipa, and sister, Naomi, for their endless love and support. Finally, thank you
to Louisa Sober for all of your support and encouragement.

This thesis was supported by the Warwick Mathematics Institute Centre for
Doctoral Training, and funding from the University of Warwick.

iv



Declarations

This thesis is submitted to the University of Warwick in support of my application
for the degree of Doctor of Philosophy. It has been composed by myself and has not
been submitted in any previous application for any degree.
The work presented was carried out by the author except in the cases outlined below:

• In Chapter 2, we summarise the classical results from the field relevant to the
present work, with references to the original works where appropriate.

• In Section 3.1, we recall the results for 2-convex surgery of Haslhofer–Kleiner,
[HK17b].

• In Section 4.1, we summarise the background material relevant to Chapter 4,
with references to the original works where appropriate.

Additionally, extensive references are given throughout the text.
Parts of this thesis were achieved in collaboration:

• The new results obtained in Chapter 4 were achieved in collaboration with
Felix Schulze and Otis Chodosh.

Parts of this thesis have been published by the author:

• Approximation of mean curvature flow with generic singularities by
smooth flows with surgery. Advances in Mathematics, Volume 410, Part A,
2022.

Explicitly, Section 1.3.1 and Chapter 3 appeared in [DH22a].

v



Abstract

We provide a short survey on the history of the mean curvature flow and the

theory of flow through singularities. We establish the existence of a smooth flow with

surgery approximating weak mean curvature flows with only spherical and neck-

pinch singularities, thereby dropping the standard global 2-convexity assumption.

This makes use of the resolution of the mean-convex neighbourhood conjecture of

Choi–Haslhofer–Hershkovits, and Choi–Haslhofer–Hershkovits–White and a barrier

argument for flows with surgery. We conclude our discussion of surgery by utilising

the surgery flow, in combination with results of Choi–Chodosh–Mantoulidis–Schulze

for generic flows, to increase the known entropy bound for the Schoenflies conjecture

in R4. We then consider mean curvature flow of compact hypersurfaces through

conical singularities. We demonstrate a uniqueness theorem for flows with tangent

flows modelled on the flow generated by a smooth, stable expander with a linearly

growing Jacobi field. Moreover, we demonstrate the forward tangent flow at the

conical singularity of the outer-most Brakke flows are modelled on the outer-most

expanders of the cone, when said expanders are smooth. Combined with work of

Ilmanen–White, this demonstrates genus drop for the outer-most flows through such

singularities, answering a conjecture of Ilmanen. Finally, we deduce the following

dichotomy in dimensions 2 ≤ n ≤ 6: The flow from a compact hypersurface with

isolated conical singularity fattens if and only if the flow from the model cone fattens.

vi



Chapter 1

Introduction

The field of Geometric Analysis encompasses the study of partial differential equa-

tions that govern the geometry of an object, where these equations are frequently

derived from an associated variational problem. The analysis of variational problems

originally arose as part of the description of physical phenomena through mathemat-

ics, indeed, the cornerstone of mathematical physics is the principle of least action,

which states the dynamics of a physical system are determined by the critical points

of the functional describing the energy of the system.

In the present work, we will be considering the mean curvature flow of hypersur-

faces. We say a family of smooth hypersurfaces, Mn
t ⊂ Rn+1, is a mean curvature

flow if (
∂

∂t
x

)⊥
= HMt(x), (1.1)

where HMt(x) = −H(x)νMt(x) is the mean curvature vector of Mt at a point x in

the hypersurface.

From the perspective of parameterised hypersurfaces, one may define the scalar

mean curvature, H, as the sum of the principal curvatures, however, the defini-

tion through the first variation formula is perhaps more physically pertinent. By

considering how the area of a hypersurface, Mn ⊂ Rn+1, changes under the varia-

tion generated by a compactly supported smooth vector field, X ∈ Vecc(Rn+1), one

deduces the first variation of area, first studied by Allard:

∂

∂t

∣∣∣∣
t=0

∫
ϕX
t (M)

dµt = −
∫
M

⟨X,H⟩ dµ,

where ϕXt is the variation generated by the vector-field X. From this variational

perspective, mean curvature flow is the L2-gradient flow for the area functional. We

note the above formula is valid for measure-theoretic generalisations of hypersurfaces

known as varifolds, where the variational definition is the only available definition

for the mean curvature vector. Certainly, the first variation formula motivates the
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interpretation of mean curvature as the surface tension, the ‘desire’ of fluid bound-

aries to reduce their area. In this manner, mean curvature appears in the equation

of capillarity, attributed to Young and Laplace, governing the shape of the interface

between two fluids in a tube, and as the elastic force in Germain’s study of vibrat-

ing plates. Famously, soap films and bubbles are described by the constant mean

curvature equation. The case of H = 0 is often distinguished as the minimal surface

equation, so called as minimal surfaces are the critical points of the area functional,

and non-zero constant mean curvature surfaces are critical points under constraints

on the volume of the domain bounded by the surface. The mean curvature vector

also appears as the normal velocity in models of the motion of grain boundaries in

annealing metals, where motion is driven by the surface tension. Indeed, this was

the physical motivation for Brakke’s foundational text on mean curvature flow.

Mean curvature flow belongs to a family of parabolic equations known as geo-

metric flows. It would be a disservice to the field to not mention the foundational

work of Eells–Sampson, [ES64], who introduced the harmonic map heat flow. Their

ideas propagated through the mathematical community, inspiring the definitions of

other flows, such as Ricci flow, Yamabe flow and the Yang–Mills flow.

Examining equation 1.1, we see that mean curvature flow of hypersurfaces is a

degenerate, 2nd order, scalar, parabolic equation. Moreover, by writing the mean

curvature of a hypersurface as the surface Laplacian of the position vector, we have(
∂

∂t
x

)⊥
= ∆Mtx.

In doing so, it is apparent mean curvature flow may be viewed as the heat equation

of the immersion. Indeed, mean curvature flow enjoys many of the properties of the

heat equation, and parabolic equations in general, such as short time existence and

uniqueness, and instantaneous improvement of regularity. The distance between two

hypersurfaces (at least one of which is compact) satisfies a maximum principle, a

staple of elliptic and parabolic equations, and is hence monotonic under the flow.

This property is known as the avoidance principle and demonstrates mean curvature

flow from a compact initial condition must form singularities in finite time, in stark

contrast to the heat equation.

1.1 Singularities of Mean Curvature Flow

Rather unusually, weak solutions of the mean curvature flow were studied before

smooth solutions. In [Bra78], Brakke considered families of varifolds moving by their

mean curvature. These measure-theoretic solutions to mean curvature flow have

become known as Brakke flows. A precise definition has been given in Definition

2.2.1. The flow is defined as a family of Radon measures, rather than smooth

manifolds, readily allowing us to consider flow from singular initial conditions and,
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crucially, through singularities that may form during evolution.

Another formulation of a weak solution to the mean curvature flow is that of

the Level-set Flow. Motivated by numerical simulations of Osher and Sethian,

[Set90],[OS88], the level-set flow was introduced as a viscosity solution to the mean

curvature flow independently by Evans–Spruck [ES91] and Chen–Giga–Goto [CGG91].

As the name suggests, one finds a function on the ambient space-time such that the

level-sets move by their mean curvature. Later, an equivalent geometric definition

was given by Ilmanen, [Ilm93, Ilm94], recasting the level-set flow purely in terms of

the avoidance principle. Ilmanen redefines the level-set flow as the ‘maximal motion’

of weak set flows - families of closed sets that avoid smooth mean curvature flows.

The notion of level-set flow agrees with classical mean curvature flow from smooth

hypersurfaces up to the first singular time. In [ES91], Evans–Spruck provide sin-

gular initial conditions from which the viscosity solutions develop an interior, a

phenomenon known as fattening. They pose the question: can the flow from a

smooth, compact hypersurface fatten? An example of such a surface was found nu-

merically by Angenent–Ilmanen–Chopp, [AIC95], and a construction was outlined

by Ilmanen and White, [Whi02]. By noting the support of any Brakke flow starting

from a given smooth hypersurface, M ⊂ Rn+1, defines a weak set flow, and is thus

contained in the level-set flow from M by maximality, one may characterise fat-

tening as capturing an essential non-uniqueness of the Brakke problem. We speak

of ‘essential non-uniqueness’ as the original definition of a Brakke flow allows for

instantaneous vanishing. To (partially) overcome this vanishing, one usually works

with unit-regular flows, Definition 2.2.3, which can be thought of as a condition

that forbids the flow to disappear at smooth points. Several conditions are known

to ensure non-fattening of the level-set flow through singularities: The flow from

star-shaped sets was shown not to fatten by Sonner, [Son93], mean-convex mean

curvature flow was shown not to fatten by Evans–Spruck, [ES91], and later White,

[Whi00], using a geometric argument, and more recently, Hershkovits–White [HW20]

demonstrated non-fattening assuming mean-convexity only in some neighbourhood

of the singular set. Hershkovits also demonstrated that Reifenberg initial conditions

do not immediately fatten, [Her17],[Her18].

1.1.1 Singularity formation

A standard tool for studying singularities in geometric flows is the tangent flow.

Colloquially speaking, a tangent flow is a parabolic ‘zooming in’ on a point to see

the first order behaviour of the flow. More formally, a tangent flow is the limiting

object attained by taking a (subsequential) limit of a sequence of increasing parabolic

dilations of the flow centred at a point. Through the introduction of the monotonicity

formula, Definition 2.1.3, Huisken, [Hui90], showed that the backwards tangent flow

of any point is modelled on a self-similarly shrinking solution to mean curvature

3



flow. A hypersurface Σ is said to be a self-shrinker if the family
{√

tΣ
}
t∈(−∞,0)

is a mean curvature flow, see Definition 2.3.2 for other equivalent definitions. In

[Whi97], White further explored singularities of mean curvature flow, stratifying the

structure singular set in terms of the parabolic Hausdorff dimension of the tangent

flows. Moreover, White calculated the Hausdorff dimension of each of the strata (L1

a.e. in time).

The introduction of the monotonicity formula motivated the study and classifi-

cation of self-shrinking solutions. Huisken was able to show the only mean-convex

self-shrinkers with bounded second fundamental-form are the spheres, Sn, and gen-

eralised cylinders, Sn−k × Rk, 1 ≤ k ≤ n− 1, [Hui90]. See also [CM12]. In [Wan16],

L.Wang demonstrated that the ends of a non-compact shrinker in R3 are asymptotic

to either a cylinder or a smooth cone. High genus examples of smooth, asymptot-

ically conical self-shrinkers in R3 were constructed independently by Kapouleas–

Kleene–Møller in [KKM18] and X.H. Nguyen [Ngu14], moreover, recent work of

Buzano–H.T. Nguyen–Schulz [BNS21], constructed shrinkers with arbitrary genus,

conjectured to have one asymptotically conical end. It is not yet known if it is pos-

sible to have a shrinker with ‘mixed’ ends, though such shrinkers are thought not

to exist in R3. Indeed, the No Cylinder Conjecture, [Ilm03, #12], states that the

only shrinker with a cylindrical end is a cylinder. In recent work of Chodosh–Choi–

Schulze, [CCS23], it was shown that mixed-end shrinkers can be disposed of in R3

by perturbing the initial condition.

Spheres and generalised cylinders were conjectured by Huisken to be the only

singularity models to occur generically, [Ilm03, #8]. Weak flows with only these sin-

gularities are known as generic flows, the study of which was pioneered by Colding–

Minicozzi in their works [CM12, CM15, CM16]. Through their introduction of the

entropy functional it was demonstrated that spheres and generalised cylinders are

the only linearly stable singularity models. For a definition of entropy, see Definition

2.1.7. Recent work of Chodosh–Choi–Mantoulidis–Schulze, [CCMS20, CCMS21] re-

solved the genericity conjecture in R3 for surfaces with entropy λ(M) ≤ 2 and in R4

for hypersurfaces with entropy λ(M) ≤ λ(S1×R2)+ε0. Here ε0 is a positive constant

and λ(S1 × R2) is the entropy of the bubble-sheet in R4. Generic flows are particu-

larly nice to work with, as the structure of their singular set is well understood, see

[Whi97, CM15, CM16].

A priori, tangent flows are non-unique. Examining the definition, Definition

2.3.1, one can see non-uniqueness enters the discussion in two ways. Firstly, one

works with subsequential convergence. It is hence possible the limit may depend on

the sub-sequence chosen. Secondly, one has the freedom to dictate the rate of dila-

tion along the sequence. Indeed, the limiting flows attained by dilating at different

rates could, hypothetically, extract different ‘modes’ of singularity formation. This

‘mode selection’ is certainly seen when performing an-isotropic blow-ups, as demon-

strated in the work of Angenent–Velázquez, [AV97], on the degenerate neck-pinch.
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A related notion to the tangent flow is the Type-II blow-up procedure of Hamilton,

[Ham95], which can be used to identify the translating ‘modes’ in the formation

of the degenerate neck-pinch. We note that the Type-II blow-up construction also

requires suitable base-point selection, rather than just dilating around a fixed point,

as in the tangent flow.

Uniqueness of (multiplicity one) tangent flows has been established for compact

tangent flows in all dimensions and codimensions, [Sch14], generalised cylinders for

(hyper)surface flows in all dimensions, [CM15], and smooth asymptotically conical

shrinkers for (hyper)surface flows in all dimensions, [CS21], and high co-dimension,

[LZ23]. Recall, this list of singularity models is believed to be the full range of

singularities that occur in mean curvature flow from smooth, compact surface in

R3, as ‘mixed-end’ shrinkers are conjectured not to exist. See the aforementioned

no-cylinder conjecture. The above uniqueness results were proven using  Lojasiewicz-

type inequalities motivated by the work of Simon, [Sim83], where, what has become

known as, the  Lojasiewicz-Simon inequality was used to prove uniqueness of tangent

cones for minimal surfaces. Tangent cones are the ‘elliptic analogue’ of tangent

flows. It should be noted that Colding–Minicozzi do not directly apply the abstract

methods of Simon, instead proving their  Lojasiewicz-type inequality by exploiting

the structure of the (generalised) cylinder.

1.1.2 Resolution of Singularities

The flow emerging from singularities that have formed is more elusive. The ground-

breaking resolution of the mean-convex neighbourhood conjecture by Choi–Haslhofer–

Hershkovits for surfaces (n = 2), [CHH22], and Choi–

Haslhofer–Hershkovits–White for hypersurfaces (n ≥ 3), [CHHW22], establishes a

canonical neighbourhood theorem, hence classifying the behaviour of the flow nearby

a neck-pinch singularity in space-time. Their canonical neighbourhood theorem

states, at smooth points near a neck-pinch singularity, the flow will look like either a

sphere, cylinder, ancient oval or bowl soliton at the scale of the mean curvature. In-

tuitively, this indicates singularity resolution of neck-pinches is governed by the bowl

soliton. Recent classification results of B. Choi, K. Choi, Daskalopoulos Du, Hasl-

hofer, Hershkovits and Šešum [CDD+22, DH21a, DH21b, DH22b, DH23, CHH23a,

CHH23b], for ancient 3-convex flows in R4 indicate there may be an analogous pic-

ture in a neighbourhood of a bubble-sheet singularity, S1 × R2.

If the tangent flow is modelled on a shrinker with only conical ends, the work of

Chodosh–Schulze, [CS21], shows that at the singular time, the limiting generalised

surface has an isolated conical singularity. An elementary blow up argument demon-

strates the forward tangent flow at isolated conical singularities will be modelled on

flows from the cone. The details of this argument are contained in proof of Theorem

4.6.7. Moreover, by noting the scaling invariance of the cone C and the maximality
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of the level-set flow, it is readily seen that the level-set flow from a cone C ⊂ Rn+1

is inherently self-similar. It is not given, however, that the level-set flow is a hyper-

surface, as one must be concerned as to whether the flow fattens. We find solace in

considering the (space-time) boundary of the level-set flow.

Provided one can show regularity, the space-time boundary will be an asymp-

totically conical self-expander. A hypersurface Σ is said to be a self-expander if the

family
{√

tΣ
}
t∈(0,∞)

is a mean curvature flow, see Definition 2.3.4 for other equiva-

lent definitions. Shown by Ilmanen, [Ilm95a] and expanded upon by Ding, [Din20],

there exists at least one (weak) expander asymptotic to any given cone. The recent

work of Chodosh–Choi–Schulze, [CCS23], confirms that when the boundary of the

level-set flow of cone is smooth, each connected component of the boundary is a

smooth expander, moreover, these expanders are one-sided minimizers of the ex-

pander energy. In particular, they show this is always true for the outermost flows

for a cone in dimensions 2 ≤ n ≤ 6. Similar ideas were discussed by Ilmanen [Ilm95a]

for surfaces (n = 2).

Optimistically, one might hope the resolution of a conical singularity is gov-

erned entirely by self-expanders, just as formation is governed by self-shrinkers.

Alas, there is no currently known forward monotonicity formula for compact flows.

Whilst Bernstein–Wang were able to prove a monotonicity formula for flows from

a cone proposed by Ilmanen, [BW22b], it does not rule out non-expanding flows.

Furthermore, recent work of L.Chen, [Che22], constructs rescaled mean curvature

flows flowing from an (unstable) expander towards another. Such flows are known

in the study of dynamical systems as heteroclinic orbits. In addition to establish-

ing existence, Chen shows these flows can occur as mean curvature flows from the

asymptotic cone. It is hence possible, though currently unknown, if these flows can

appear as forward tangent flows at conical singularities that form in the flow from

a smooth, compact initial condition.

Some of the more complicated behaviour seen during singularity resolution is

well illustrated by work on flows forming singularities modelled on the Simons cone.

The Simons cone of dimension n ≥ 7 is a singular, area minimising minimal surface,

moreover, it is a critical point of the expander energy, trivially asymptotic to itself.

In [Vel94], Velázquez constructed O(4) × O(4) symmetric smooth solutions that

form a Type-II singularity modelled on the Simons cone, moreover, a subset of

these solutions were shown by Stolarski, [Sto23], to have bounded mean curvature

up to the singular time. The work of Angenent–Daskalopoulos–Šešum, [ADS21],

shows that the generalised hypersurface formed at the singular time of (at least

one of) these flows can be used as initial data for mean curvature flow, rigorously

proving the existence of the continuation of the flow with bounded mean curvature,

formally proposed by Velázquez. It is believed that the compactification process

of Stolarski, [Sto22] can be used to compactify the Velázquez solutions, and the

Angenent–Daskalopoulos–Šešum continuation.
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In Chapter 4, we establish the relationship between the outermost flows from

a compact hypersurface with a conical singularity and the outermost flows from

the model cone, provided they are smooth expanders. Furthermore, we establish a

uniqueness result for the outermost flows from such a compact hypersurface. These

results determine the evolution past a conical singularity in dimensions 2 ≤ n ≤ 6,

however, in higher dimensions, regularity of solutions introduces complications. Re-

call, the regularity theory for minimal surfaces of Allard, Almgren, DeGiorgi, Fed-

erer, Flemming, and Simons demonstrates that the singular set of minimal surface

will have co-dimension k ≥ 7. Since expanders are minimal surfaces in the Gaussian

metric on Rn+1, in dimensions n ≥ 7 it is possible for expanders to have singular

points, see the previously discussed Simons cone. Currently, our results do not apply

to such expanders.

1.1.3 Flows with Surgery

Instead of using a weak flow to continue past a singularity, an alternate approach is to

approximate the flow by a piece-wise smooth flow, known as a flow with surgery. As

a general principle, such flows will have finitely many surgical modifications, making

them desirable for topological applications. Ricci flow with surgery was introduced

by Hamilton in [Ham97] for 4-manifolds with positive isotropic curvature. Hamilton

also proposed a surgery procedure for 3 dimensional Ricci flow as a method to

prove the Poincaré conjecture. This program culminated in the spectacular works

of Perelman, [Per02, Per03], proving Thurston’s geometrization conjecture.

The surgery procedure for mean curvature flow from a 2-convex hypersurface

of dimension n ≥ 3 was introduced by Huisken–Sinestrari in [HS09] and extended

to n = 2 by Huisken–Brendle [BH18]. Independently, Haslhofer–Kleiner [HK17a,

HK17b] established a surgery procedure that works for all dimensions n ≥ 2. By

classifying blow ups for a more general class of 2-convex flows, they showed regions

of high curvature in such flows have a canonical structure.

In both methodologies, existence of 2-convex surgery boils down to the classifica-

tion of regions of high curvature that develop: a canonical neighbourhood theorem

for 2-convex flow. As mentioned above, canonical neighbourhoods of neck-pinch

singularities for unit-regular cyclic (mod 2) Brakke flows of dimension n = 2 were

established in [CHH22] and for n ≥ 3 in [CHHW22], as a corollary to their resolu-

tion of the mean-convex neighbourhood conjecture for neck-pinch singularities. It is

from this result that we can extend the smooth mean curvature flow with surgery

to flows without a global curvature assumption.

Recall, a flow with surgery will have finitely many surgeries and hence allows

for topological information to be tracked in an elementary fashion. See Section

3.5, where we prove the low-entropy Schoenflies conjecture [CCMS21, Conjecture

1.9] in such a manner. Indeed finiteness is desirable, as despite the groundbreaking
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results concerning the structure and size of the singular set, see White [Whi97] and

Colding–Minicozzi [CM15], it is still unknown if there are finitely many singular

times, or if spherical singularities can accumulate to a neck-pinch singularity. See

the work of B.Choi–Haslhofer–Hershkovits [CHH21].

To highlight why existence of a surgical flow without global curvature assump-

tions is non-trivial, consider a hypersurface, M , whose weak mean curvature flow

has only spherical and neck-pinch singularities. Suppose there is an isolated (non-

degenerate) neck-pinch singularity at the first singular time, then, using the canoni-

cal neighbourhood theorems of [CHH22, CHHW22], one can follow the arguments of

[HK17b] to pick surgery parameters suitable for surgical modifications to be made

before the singular time. This process constructs a new hypersurface M ′. One

immediately runs into a problem: without assuming global 2-convexity, we do not

have any knowledge of how the flow from M ′ will proceed. In the worst case, it may

run into non-generic singularities. Moreover, the concatenation of these flows is no

longer a weak flow, so passing to global limits along sequences of modified flows

becomes impractical.

To overcome these difficulties, one needs to show that by choosing parameters

carefully, the surgery flows stay sufficiently close to the weak flow. This is achieved by

developing a technical framework that allows us to pass to limits locally. Further,

we show the flows with surgical modification converge, in a smooth sense, to the

original weak flow away from the singular set. This demonstrates that the surgery

process is in some sense stable, allowing for one to perform subsequent surgeries.

These stability results are dependent on showing that if the flow from a hypersurface

encounters only (multiplicity one) spheres and neck-pinches, then it is ‘well-posed’.

Explicitly, a flow with only these singularities is unique, moreover, the unit-regular

flows from hypersurfaces nearby to our initial condition also remain close to the

weak flow we seek to approximate, see Theorem 3.3.1 and Lemma 3.3.2.

1.2 Well-posed problems

A central question in the study of differential equations is whether the problem is

well-posed. Introduced by Hadamard in the context of modelling physical systems,

a problem is said to be well-posed if:

1. a solution exists,

2. the solution is unique,

3. the solutions vary ‘continuously’ in the initial data.

Of course, continuity must be defined using some ‘reasonable’ topologies on the

set of initial conditions and solutions.
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Well-posedness is considered a desirable property as it lends credence to ap-

proximating solutions via some suitable scheme. Certainly, one must consider if

the problem is well-posed when doing numerical simulations. Well-posedness also

plays an important role when evolving families of geometric objects under a geo-

metric flow, as one often requires a deformation that varies continuously along the

entire family. A notable example is the work of Bamler–Kleiner, [BK23], proving the

generalised Smale conjecture using Ricci flow. In [BK22], Bamler–Kleiner showed

weak Ricci flow in 3-dimensions is well-posed, confirming a conjecture of Perelman.

This enabled them to show that the diffeomorphism group of every 3-dimensional

spherical space form deformation retracts to its isometry group. Existence of this

notion of weak Ricci flow as the limit of surgery flows was shown in earlier work of

Kleiner–Lott, [KL17].

Showing mean curvature flow from smooth, closed initial conditions is well-posed

for some short-time follows readily from the avoidance principle and the Arzela–

Ascoli theorem. Unfortunately, the essential non-uniqueness captured by the fat-

tening of the level-set flow demonstrates the Brakke problem from smooth, compact

hypersurfaces can be ill-posed past singularities.

As mentioned above, there are several known situations in which fattening is

known not to occur. Recall, in [Whi00], White showed mean-convex mean curva-

ture flow does not fatten, additionally showing mean-convex mean curvature flow

does not develop higher multiplicity through singularities. As a consequence, we de-

duce the unit-regular Brakke problem from mean-convex hypersurfaces is well-posed.

Without imposing curvature conditions on the initial condition, generic singularities

offer reprieve to the notion of well-posedness in mean curvature flow. Combin-

ing the non-fattening result of Hershkovits–White, [HW20], with the resolution of

the mean-convex neighbourhood conjecture for neck-pinch singularities by Choi–

Haslhofer–Hershkovits–White, n = 2 [CHH22] and n ≥ 3 [CHHW22], shows that

the level-set flow from a hypersurface M does not fatten, provided that the flow from

M encounters only spherical and neck-pinch singularities. In R3, Choi–Haslhofer–

Hershkovits combined this observation with Brendle’s classification of non-trivial,

genus zero shrinkers, [Bre16], to deduce mean curvature flow of spheres in R3 is

well-posed, provided the multiplicity one conjecture holds.

Similarly, Theorem 3.3.1 shows that if the only singularities of the flow are

multiplicity one spheres and neck-pinches, then the unit-regular, cyclic mod 2 Brakke

problem is well-posed. This is not merely an academic observation, recalling the

recent work of Chodosh–Choi–Mantoulidis–Schulze, we see flows encountering only

spherical and neck-pinch singularities are generic in R3 assuming either λ(M) < 2

or the multiplicity one conjecture, and in R4 assuming low entropy i.e. λ(M) ≤
λ(S1 × R2) + ε0, [CCMS20, CCMS21].

The well-posed nature of flows with ‘generic singularities’ is one of the key ob-

servations required in Chapter 3 to show existence of the surgical solutions. In
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combination with an avoidance principle for surgeries, well-posedness is used to

show unit-regular Brakke flows from nearby hypersurfaces are barriers to flows with

surgical modifications, thereby showing surgical modification is ‘stable’ with respect

to the weak flow.

1.3 Overview of Results

1.3.1 Results for Mean Curvature Flows with Surgery

In Chapter 3, we will be considering an n-dimensional unit-regular, cyclic (mod 2)

integral Brakke flow M that encounters only spherical or neck-pinch singularities

(with multiplicity one), evolving from the smoothly embedded, closed hypersurface

Mn ⊂ Rn+1. We recall the definition of such singularities.

Definition 1.3.1. A (multiplicity-one) singularity is said to be

(a) spherical if it has the shrinking sphere,

(−∞, 0) ∋ t 7→ Sn
(√

−2nt
)
× R,

as a tangent flow,

(b) a neck-pinch if it has the shrinking cylinder,

(−∞, 0) ∋ t 7→ Sn−1
(√

−2(n− 1)t
)
× R,

as a tangent flow.

By the work of Hershkovits-White [HW20], and the resolution of the mean-

convex neighbourhood conjecture, a level-set flow with only these singularities does

not fatten. Moreover, these results, plus the recent work [CCMS21], provide the

tools required to prove a uniqueness theorem for weak mean curvature flows with

only spherical and neck-pinch singularities. In Theorem 3.3.1, we show that if the

outer flow from a given hypersurface Mn ⊂ Rn+1 encounters only spherical and

neck-pinch singularities, then it is the unique, unit-regular, cyclic (mod 2), integral

Brakke flow starting from M .

Our principal result concerns the existence of a smooth flow with surgery from a

given hypersurface. We adapt the definitions of [HK17b] to construct a unit-regular

Brakke flow with surgical modification. This gives one the freedom to localise the

surgery procedure of Haslhofer–Kleiner.∗

The existence of a surgery flow is dependent on two parameters, Hmin and Θ.

Recall, the parameters of surgery detailed in [HK17b] are: Hth, the scale at which

∗Ultimately, one will use the maximum principle to show the existence arguments can be applied
directly. There is no reason that the formalism of [HS09] and [BH18] could not be used, however,
the formalism of [HK17b] makes it very clear what data one has to control on the boundary.
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components are dropped, Hneck, the scale of the necks which we perform surgery

on, and Htrig, the trigger scale, at which we pause the flow and perform surgery.

The parameter Θ governs the ratios between these quantities. We say H ≥ Θ if

Htrig/Hneck ≥ Θ and Hneck/Hth ≥ Θ. We also require Hth > Hmin.

Theorem 1.3.2 (Existence of a smooth flow with surgery). Let Mn ⊂ Rn+1 be

a smoothly embedded hypersurface, and M be a unit-regular, cyclic mod 2 inte-

gral Brakke flow, emerging from M with only spherical and neck-pinch singulari-

ties. Then, the parameters Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depend-

ing only on the initial hypersurface) such that every weak (α, δ,H)-flow, MH, with

Hth > Hmin, H > Θ satisfies:

• |H| ≤ Htrig <∞ everywhere,

• MH vanishes in finite time.

i.e. MH is a smooth mean curvature flow with surgery.

For the precise definition of a weak (α, δ,H)-flow, see Definition 3.2.17. Our

proof relies on two key ideas. The first is the construction of barriers to flow with

surgery, Theorem 3.3.6, to establish Hausdorff convergence of surgical flows to the

level-set flow. Such an idea was first explored by Lauer [Lau13] for 2-convex flows.

Their idea is not directly applicable, as they take advantage of the set monotonicity

of such flows. Instead, we consider flows from nearby initial conditions and show

they act as barriers to surgery flows.

Before detailing the second tool, we make the following observations. Let {N i}i∈N
be a sequence of integral unit-regular Brakke flows, and presume each flow has a

singular set of small Hausdorff dimension. Suppose the sequence converges in the

Hausdorff sense to a Brakke flow M. By further assuming N i converge smoothly

to M at the initial time, the result of [CCMS20] allows for Hausdorff convergence

to be improved to Brakke convergence. Turning our attention back to weak flows

with surgery, we observe in regions where no surgical modifications take place, a

surgical flow is a smooth mean curvature flow. It is hence desirable to understand

where surgical modifications take place. This is the purpose of our second tool,

Proposition 3.3.15, which shows surgeries accumulate in the singular set. Moreover,

we actually show the smooth convergence of the flows with surgery by probing their

behaviour in neighbourhoods of regular points of M with a careful combination of

pseudolocality for mean curvature flow [INS19], graphical estimates [EH91] and the

curvature estimates of Haslhofer–Kleiner, [HK17b]. This second tool requires us to

only permit surgery in a set with somewhat technical restrictions on the behaviour

of the flow along the boundary. These requirements ensure that the hypotheses of

the curvature estimates are satisfied.

We consider Ω(α,β) - an open neighbourhood of the singular set with finitely

many connected components, along the boundary of which the flow M behaves in a
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fashion suitable for surgery in the interior. We examine the class of weak flows with

surgery, derived from M . Surgeries are performed only in the set Ω(α,β).

As previously noted, a priori little can be said about the long time behaviour of

modified flows due to the parabolic nature of mean curvature flow. Using the above

tools we demonstrate the parameters can be chosen suitably such that flows modified

by surgery can be written as a small graph over M along the boundary of Ω(α,β).

The existence of suitable parameters is shown by a convergence result, Proposition

3.3.17. It then follows that the weak surgery flows are smooth flows with surgery

in the sense of Haslhofer–Kleiner inside Ω(α,β), the canonical neighbourhoods of the

flow M, via the maximum principle, and hence the arguments of Haslhofer–Kleiner

can be applied to show the existence of a smooth flow with surgery.

In addition, we show that such mean curvature flows with surgery approximate

the weak flow, compare [Lau13, Hea13] in the 2-convex case.

Theorem 1.3.3. Taking the limit as Hth → ∞, the weak (α, δ,H) surgical flows

converge in the Hausdorff sense to M. In particular, away from the singular set of

M, the convergence is smooth.

Finally, we combine our proof of the existence of a mean curvature flow with

surgery with the existence of generic low entropy flows established by Chodosh–

Choi–Mantoulidis–Schulze to get a new bound on entropy for the low-entropy Schoen-

flies conjecture, as conjectured in [CCMS21, Conjecture 1.9].

Theorem 1.3.4 (Low-entropy Schoenflies for R4). Let Σ3 ⊂ R4 be a hypersurface

homeomorphic to S3 with entropy λ(Σ) ≤ λ(S1 ×R2). Then M is smoothly isotopic

to the round S3.

Surgery is used to decompose the surface into spheres and tori, at which point

the topological properties of the flow are exploited to rule out tori. The previous best

bound was established independently by Bernstein–Wang [BW22a] and Chodosh–

Choi–Mantoulidis–Schulze [CCMS20].

1.3.2 Results for flow through Conical Singularities

Joint work with F.Schulze and O.Chodosh. We study unit-regular, cyclic mod 2

Brakke flows emerging from conical singularities that form in the flow from a smooth

compact hypersurface M . If a smooth, conical self-shrinker appears as the backward

(multiplicity one) tangent flow of a singular point X, the work of Chodosh–Schulze,

[CS21], demonstrates said shrinker is the unique backwards tangent flow at X, more-

over, the limiting (generalised) hypersurface at the singular time has an isolated

conical singularity. It is therefore sufficient to consider flow from smooth, compact

hypersurfaces with isolated conical singularities. To simplify the discussion further,

we assume there is a single, isolated, conical singularity, as the methods described
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may be generalised to finitely many such singularities without much complication.

We recall the definition of a hypersurface with isolated conical singularity:

Definition 1.3.5. We say a closed set M ⊂ Rn+1 is a smooth hypersurface with a

conical singularity at 0 modelled on the smooth cone C if:

1. M\{0} is a smooth hypersurface,

2. limρ→∞ ρM = C,

where the convergence is taken in C∞
loc(Rn+1\{0}).

From this definition, it is immediate any forward tangent flow centred at the

origin of any unit-regular, cyclic mod 2 Brakke flow from M can be extended to

include the cone, C, at time 0. It follows any forward tangent flow must be some

flow from the cone, hence demonstrating the link between flows from M and flows

from C. Since there are known examples of cones with fattening and non-fattening

level-set flows, it is natural to ask ‘How does the evolution from the model cone

govern the uniqueness (or lack thereof) of flows from hypersurfaces with conical

singularities?’. In its strongest form, this question may be restated as the following

‘folklore’ conjecture.

Conjecture 1.3.1 (Fattening Dichotomy). The level-set flow from a smooth, com-

pact hypersurface with a conical singularity fattens instantaneously if and only if the

level-set flow from the model cone fattens.

We confirm this conjecture, provided the outermost flows from the cone are

smooth expanders. In particular, the conjecture is true in dimensions 2 ≤ n ≤ 6,

by a result of Chodosh–Choi–Mantoulidis–Schulze. Our resolution demonstrates

that, near the cone point, the outermost flows from compact hypersurfaces with

conical singularities are modelled on the outermost expanders of the model cone.

We additionally establish a uniqueness theorem for smooth flows satisfying a Type-I

curvature bound and a blow-up assumption near the cone point, a condition we

demonstrate is satisfied by the outermost flows. Recall, the outermost expanders

necessarily have zero genus, by work of Ilmanen and White [Ilm95b]. Consequently,

our work demonstrates genus drop through conical singularities for compact flows.

This answers a conjecture of Ilmanen, [Ilm03, #13], for conical singularities occurring

in the outermost flows. In aggregate, the tangent flow classification and uniqueness

results may be considered a canonical neighbourhood theorem for the outermost

flows around conical singularities.

Answering Conjecture 1.3.1 provides a crucial stepping stone towards fully under-

standing the flow from smooth, compact hypersurfaces. We hope that this work may

be combined with that of Hershkovits–White, [HW20], to show non-fattening when

the cones that appear as singularity models have unique evolution and other singu-

larities are of mean-convex type. If we believe the multiplicity-one and no-cylinder
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conjectures hold, combining this work with [HW20], and the resolution of the mean

convex neighbourhood conjecture, [CHH22], would complete the understanding of

mean curvature flow from smooth, compact surfaces through singularities in R3.

We now provide an overview of our proof of Conjecture 1.3.1. Let Cn ⊂ Rn+1

be a smooth cone. We consider a stable, smooth expander Σ, asymptotic to C, and

suppose that there is a positive Jacobi field on Σ with linear growth at infinity.

These assumptions are satisfied by the outermost expanders from the cone C (in low

dimensions): If the outermost flows from a cone C are modelled on smooth expanders

Σ±, the work Chodosh–Choi–Mantoulidis–Schulze,[CCMS20], shows the expanders

Σ± are outwards minimising, furthermore, a small modification to the construction

of Deruelle–Schulze, [DS20] shows the outermost expanders admit a Jacobi field with

linear growth. It is important to note the construction of Deruelle–Schulze should

also show stable expanders between the outermost should also possess such a linearly

growing Jacobi field, and so our work applies to a more general class of expanders.

Let Mn
0 ⊂ Rn+1 be a smooth, compact hypersurface with conical singularity

modelled on C and let M be a unit-regular, cyclic mod 2 Brakke flow from M0.

We make the assumption that every forward tangent flow of M at the origin is

modelled on MΣ := {
√
tΣ}t∈(0,∞), Assumption 4.2.2, the flow from C generated

by the expander Σ. This assumption is obviously satisfied when there is a unique

smooth expander regularising the cone, but we must prove it for the outermost flows

from M0 when there is non-unique evolution from the cone. We show, provided the

orientations of M0 and C have been chosen in agreement, the following.

Theorem 1.3.6. Let Cn ⊂ Rn+1 be a smooth cone, with fattening level-set flow.

Suppose the outermost flows from C are modelled on smooth expanders. Let M0 be a

smooth hypersurface with a conical singularity modelled on C. Then, every tangent

flow of any unit-regular, cyclic mod 2 Brakke flow supported on the inner (resp.

outer) flow from M0 is modelled on the inner (resp. outer) expander.

This theorem immediately demonstrates the level-set flow from M0 fattens if the

flow from C fattens, as not only do the outermost flows from M0 disagree, but the

level-set flow must have an interior.

Corollary 1.3.7. Let C be a smooth cone with fattening level-set flow, and suppose

the outermost flows from C are modelled on smooth expanders. Then, if M0 has

an isolated conical singularity modelled on C, the level-set flow from M0 fattens

instantaneously.

Under the above blow-up assumption, we demonstrate that a unit-regular, cyclic

mod 2 Brakke flow M satisfies a forward Type-I estimate on the curvature, and is

hence smooth on some time interval (0, T ), Lemma 4.3.13. Indeed, this shows that

assumption M is a unit-regular, cyclic mod 2 Brakke flow could instead be replaced

with the assumption that the flow M is smooth and satisfies a forward Type-I

curvature estimate, i.e. Assumption 4.2.2 B.
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Using a barrier argument, we show M is the unique flow that satisfies this

assumption on the tangent flows.

Theorem 1.3.8. Let M1 and M2 be two mean curvature flows from M0, smooth

on some time interval (0, T ), and suppose every tangent flow at the origin is given

by MΣ, where Σ is a stable, smooth expander possessing a linearly growing Jacobi

field. Then, for as long as the flows are smooth,

M1 ≡ M2.

As an immediate consequence, we deduce non-fattening flow from the cone im-

plies the level-set flow from M0 does not fatten.

Theorem 1.3.9. Let C be a smooth cone. Suppose the level-set flow from C is

non-fattening and is given by MΣ, where Σ is smooth expander asymptotic to C. If

M0 is a compact hypersurface with a conical singularity modelled on C, the level-set

flow from M0 does not fatten instantaneously. Moreover, there is a unique mean

curvature flow from M0, smooth until the next singular time.

For dimensions 2 ≤ n ≤ 6, we immediate deduce the following,

Corollary 1.3.10. For n ∈ [2, 6], let Cn ⊂ Rn+1 be a smooth cone. Suppose Mn
0 ⊂

Rn+1 satisfies Assumption 4.2.1. If the level-set flow from C does not fatten, then the

level-set flow from M0 does not fatten instantaneously. Moreover, there is a unique

mean curvature flow from M0, smooth until the next singular time.

Finally, in the case when the level-set flow from C fattens, we may combine

Theorem 1.3.6 with Theorem 1.3.8 to further show,

Corollary 1.3.11. The unit-regular, cyclic mod 2 Brakke flows supported on the

outermost flows from M0 are smooth until the next singular time and are the unique

flows from M0 with tangent flows modelled on the outermost expanders from C.

Both the tangent flow claim for outermost flows, Theorem 1.3.6, and uniqueness,

Theorem 1.3.8, are proven using closely related barrier arguments. Said barriers are

constructed by using the first eigen-function for some compact region and the Jacobi

field in conjunction with the behaviour of the linearised dynamics along the ends of

the expander.

It is well known that the geometric quantities of a hypersurface written as a

graph over another can be calculated using the linearised operator with a quadratic

error, provided the height of the graph is sufficiently small, i.e. the graph function u,

satisfies |A||u| << 1. These methods are typically employed when the C1 norm of

u is small enough that a Taylor series expansion can be used to calculate the error.

One may think of this as the ‘low-energy regime’. Indeed, in a compact region,

constructing the barriers via linearised dynamics is a standard exercise. In order
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to construct barriers along the end, we note the curvature term of the linearisation

decays quadratically, and so constant functions can be viewed as ‘asymptotic eigen-

functions’ with ‘eigen-value’ 1
2 . Furthermore, by studying the dependence of the

error on the curvature, we see the error term (for a constant function) also decays at

least quadratically in the radial parameter along the end. We conclude the rescaled

mean curvature vector of graphs of constants points towards the expander. This

permits us to view the construction of barriers as a compact problem, comparable

to the use of the (negative) Gaussian weight in the study of shrinkers.

Conjoining these two barrier regimes exploits the asymptotic linear growth of the

Jacobi field. By choosing parameters carefully, we can ensure that the barrier over

the compact region ‘eventually’ lies above a given constant, ensuring the two barriers

intersect appropriately. A related idea has been explored by Chodosh–Choi–Schulze,

[CCS23], in the setting of mixed end shrinkers. They baptised the conjoining process

‘welding’, terminology we will adopt.

Our explicit construction is as follows. Recall, the expander Σ is assumed to be

stable, and thus on every compact subset the first Dirichlet eigen-value is positive,

as is the first eigen-function. We pick R such that the normal graph of a constant

defines a barrier over the end ER := Σ\B(0, R). For R ≥ ClenR, let ϕR1 , µ
R
1 be the

first Dirichlet eigen-function and eigen-value (respectively) for the stability operator

on ΣR = Σ ∩ B(0,R). Let ϕ0 denote the (positive) Jacobi field with linear growth

at infinity. For α > 0, we define the family of functions

fRα :ΣR → R

fRα : = ϕ0 + αϕR1 .

The parameter α is tuned such that fRα has linear growth in the region ΣClenR ∩
ER. We set h = maxx, |x|=ClenR f

R
α (x) and consider, for s ∈ [0, 1], the following

‘welded function’:

us =


sfRα x ∈ ΣR

smin{fRα , h} x ∈ ER\ΣClenR

sh x ∈ EClenR.

We demonstrate there exists an s0 such that for s ∈ [0, s0], the normal graph of

us over Σ yields a global barrier lying strictly to one side of Σ. Similarly, −us is

a barrier to the other side. In Section 4.7, we use these barriers with an interior

approximation argument to demonstrate the tangent flows of the outermost flows

at the cone point are modelled on the outermost expanders. This argument is

motivated by the construction of unit-regular, cyclic mod 2 Brakke flows supported

on the outermost flows by Hershkovits–White. Whilst this technique appears to be
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restricted to co-dimension 1, we believe these globally defined barriers could instead

be used in conjunction with a gluing procedure. Such a gluing procedure could be

used to show the existence of smooth flows from M0 with tangent flows modelled on

stable expanders in between the outermost flows from C. This construction should

generalise to high co-dimension mean curvature flow and Ricci flow.

Tackling uniqueness requires a more sophisticated barrier. Moreover, we no

longer wish to ‘weld’ the barrier over an end of the expander, rather, we need a

barrier over the complement of the expander region of radius R. An expander

region is the subset of space-time where the flow looks like a graph of the expander,

see Definition 4.3.11.

We desire to show equality of two smooth flows, M1,M2, starting from M0, both

satisfying the assumption that every forward tangent flow at the space-time origin

is MΣ. We thus require barriers that govern the separation of these two solutions,

rather than the closeness to the flow MΣ. In the expander region of radius ClenR,

our barrier is defined using the function

u±s,α,R,R : ΣClenR × (−∞, τ0] → R,

u±s,α,R,R(x, τ) := u1(x, τ) ± sfRα (x),

where u1 is the function parameterising RM1 as a normal graph over ΣR. By view-

ing the error as a homogenous degree 2 polynomial, we use a binomial decomposition

to deduce one may choose s > 0 sufficiently small to yield barriers relative to the

flow RM1, rather than Σ, on ΣClenR. Of course, this requires the function u1 is not

too large, which is achieved by noting u1 converges smoothly to 0 as τ → −∞.

Outside the expander region of radius R, our barrier takes the form of a separa-

tion estimate for mean curvature flows that initially agree on a large, smooth region,

Theorem 4.5.1. Our separation estimate states if two (non-rescaled) mean curvature

flows separate at rate h
√
t (h > 0) along the boundary of a ball of radius R

√
t, then

the rate of separation of the flow contained in the complement of the ball is at most

h
√
t.

Uniqueness follows by demonstrating we can weld these two barrier regimes to-

gether to construct a global barrier to other flows starting from M0 satisfying the

blow-up assumption. To understand the welding step, we turn our attention to

Figure 1.3.2. We note that graphM1
t
h
√
t corresponds to graphRM1

τ
h after transfor-

mation to the rescaled flow and radius r = R
√
t corresponds to radius r = R after

transformation to the rescaled flow. We sketch the welding process. Considering

the hypersurfaces, Γ±
s (τ), defined over the expander region, r ≤ ClenR, we deduce

a constant bound h > 0 on the separation between two rescaled solutions at radius

r = R. Explicitly, the constant h will depend on s and the maximum value of fRα

at radius R. This separation is then propagated over the rescaled flow outside of

radius R via our separation estimate, Theorem 4.5.1. Considering now the flow at
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τ
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RM1
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Figure 1.1: Sketch of the barriers at rescaled time τ .

radius r = ClenR, we see that the separation estimate yields an improvement on the

previously known separation at this greater radius, as the barriers Γ±
s have linear

growth between the two radii. It is thus clear that another flow from M0 satisfying

the tangent flow assumption can never touch the ‘boundary’ of the hypersurfaces

Γ±
s (τ), and so our welding is well defined. In particular, the Γ±

s (τ) are barriers on

the time interval they are defined.

1.4 Outline

The thesis is structured in three parts with four chapters. Chapters 1 and 2 cover

the history and background of mean curvature flow in codimension 1. Chapter

3 discusses surgery for flows with only spherical and neck-pinch singularities, and

Chapter 4 discusses mean curvature flow through conical singularities.

Chapter 3 comprises of the following sections. In Section 3.1, we recap the

structure of Haslhofer–Kleiner surgery. In Section 3.2, we discuss the necessary

adaptations to the definitions of [HK17b] for our more general setting. In Section

3.3, we construct barriers and detail the structure and stability of weak surgery

flows. In Section 3.4, we prove the existence of a smooth mean curvature flow with

surgery approximating the unit-regular Brakke flow. Finally, in Section 3.5 we apply

the results to the low-entropy Schoenflies conjecture.

Chapter 4 comprises of the following sections. Section 4.1 covers the some back-

ground results not previously covered. In Section 4.2, the assumptions are stated

and justified. Section 4.3 establishes regularity and graphicality results for flows

from compact hypersurfaces with conical singularities. In Section 4.4, the barri-

ers are constructed using the linearised dynamics. In Section 3.1.7, we establish a
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separation estimate. In Section 4.6 the ideas are brought together to demonstrate

uniqueness of flows satisfying our assumptions. Finally, in Section 4.7, we demon-

strate the relation between the outermost flows from our compact initial condition

and the cone, and conclude our fattening dichotomy.
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Chapter 2

Preliminaries

We recap standard definitions, notation, and results from the field that will be used

throughout this work.

Definition 2.0.1. The parabolic cylinder of radius r > 0 centred at the space-time

point X = (x, t) ∈ Rn+1 × R is defined as

P (X, r) = B(x, r) × (t− r2, t+ r2)

We use the terminology ‘backwards (resp. forwards) parabolic cylinder’ for a parabolic

cylinder with a time interval of the form (t− r2, t], (resp. [t, t+ r2)).

Definition 2.0.2 (Mean Curvature Flow). Let Mn ⊂ Rn+1 be a smoothly embed-

ded hypersurface. A mean curvature flow M = {Mt ⊂ U}t∈[0,t0) in an open subset

U ⊂ Rn+1 is a smooth family of hypersurfaces such that

M0 = M,(
∂

∂t
x

)⊥
= HMt(x) ,

where HMt(x) is the mean curvature vector.

Definition 2.0.3. Given a choice of unit normal, ν, we fix an orientation, and thus

can write

H = −Hν

We refer to H = H(x) as the (scalar) mean curvature.
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2.1 Gaussian Area and The Monotonicity formula

Definition 2.1.1 (Gaussian density ratio). For X0 := (x0, t0) ∈ Rn+1×R, consider

the backward heat kernel based at (x0, t0):

ρX0(x, t) = (4π(t0 − t))−n/2 exp

(
−|x− x0|2

4(t0 − t)

)
,

for x ∈ Rn+1, t < t0. For a Mean curvature flow (or Brakke flow) M and r > 0 we

define

ΘM(X0, r) :=

∫
Rn+1

ρX0(x, t0 − r2) dµt0−r2 .

ΘM(X0, r) is known as the Gaussian density ratio, of M at X0 at scale r > 0.

Definition 2.1.2 (Area ratios). We say a hypersurface (or varifold) Mn ⊂ Rn+1

has bounded area ratios if

sup
x∈Rn+1

sup
R>0

Hn(M ∩BR(x))

ωkRk
≤ D, (2.1)

for some D <∞, where ωk is the volume of the unit ball in Rk.

The Gaussian density ratios were shown by Huisken, [Hui90], to be monotonic

under the flow.

Theorem 2.1.3 (Huisken’s monotonicity formula [Hui90], [Ilm95b]). Suppose M :=

{Mt}t∈[0,T ) is a smooth mean curvature flow (resp. Brakke flow) with bounded area

ratios. Then,

d

dt

∫
Mt

ρX0(x, t) dµt = (resp. ≤) −
∫
Mt

∣∣∣∣H− (x− x0)
⊥

2(t− t0)

∣∣∣∣2 ρX0(x, t) dµt .

Definition 2.1.4 (Gaussian Density). The Gaussian density of M at X0 is defined

by

ΘM(X0) := lim
r↘0

ΘM(X0, r) .

This limit is well defined by the monotonicity formula.

The monotonicity formula has been suitably localised by work of Ecker [Eck04]

and White [Whi97]. Such localisations allow for us to drop the hypothesis of bounded

area ratios on the entire flow, requiring it only on the initial condition. One com-

monly used localisation is the spherically shrinking localisation: one uses the cut-off

function

φR
X0

(x, t) :=

(
1 − |x− x0|2 + 2n(t− t0)

R2

)3

+

,
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where + denotes the positive portion of the function, and 0 elsewhere.

We hence define

ΘR(M, X0, r) :=

∫
Rn+1

ρX0(x, t0 − r2)φR
X0

(x, t) dµt0−r2 .

Definition 2.1.5 (Parabolic Dilation). Let M = {Mt}t∈[0,T ) be a mean curvature

flow, or M = {µt}t∈[0,T ) be a Brakke flow. For any λ > 0, we denote the parabolic

rescaling of space-time by λ as Dλ : (x, t) 7→ (λx, λ2t). We denote by Dλ(M−X0)

the mean curvature flow, resp. Brakke flow, obtained from M by parabolic dilation

around X0 by λ. That is,

Dλ(M−X0) ={Mλ
t }t′∈[−λ2t0,λ2(T−t0)),

resp. ={µλt }t′∈[−λ2t0,λ2(T−t0)).

Where Mλ
t = λMt0+λ−2t and µλt (A) = λnµt0+λ−2t(λ

−1A+ x0), for A ⊂ Rn+1.

In the following theorem, P denotes the backwards parabolic cylinder

P (X0, r) := B(x0, r) × (t0 − r2, t0].

Theorem 2.1.6 (White Regularity [Whi05]). There exists constants ε > 0, C <∞
depending only on the dimension n such that, if M is a smooth mean curvature flow

in P (X0, 4nR) with

sup
X∈P (X0,r)

ΘR(M, X, r) < 1 + ε

for some r ∈ (0, R), then

sup
X∈P (X0,r/2)

|A| ≤ Cr−1

Definition 2.1.7 (Entropy [CM15]). The Entropy of a hypersurface Σ is

λ(Σ) = sup
x0,t0

(
1

4πt0

)n
2
∫
Σ

exp

(
−|x− x0|2

4t0

)
dµ,

i.e. the supremum of the Gaussian densities over all scales and base-points. It can

be considered a measure of the complexity of an embedding.

2.2 Weak formulations of Mean Curvature Flow

The flow is quasi-linear and develops singularities. A rich theory has been developed

to continue the flow past such singularities. We recap the fundamentals of Brakke

and Level-set flow.
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2.2.1 Brakke flow

Definition 2.2.1 (Integral Brakke Flow [Bra78, Ilm94]). We follow the formalism

of [Whi21]. An (n-dimensional) integral Brakke flow in Rn+1 is a 1-parameter family

of Radon measures {µt}t∈I over an interval I ⊂ R such that:

(i) For almost every t there exists and integral n-dimensional varifold V (t) with

µt = µV (t) so that V (t) has locally bounded first variation and has mean

curvature H orthogonal to Tan(V (t), ·) almost everywhere.

(ii) For a bounded interval [t1, t2] ⊂ I and any compact set K∫ t2

t1

∫
K

(1 + |H|2) dµt dt <∞ .

(iii) If [t1, t2] ⊂ I and f ∈ C1
c (Rn+1 × [t1, t2]) has f ≥ 0 then∫

f(·, t2) dµt2 −
∫
f(·, t1) dµt1

≤
∫ t2

t1

∫
K

(
− |H|2f + H · ∇f +

∂

∂t
f
)
dµt dt (2.2)

We write M for a Brakke flow {µt}t∈I to refer to the family of measures I ∋ t 7→ µt

satisfying Brakke’s inequality (2.2).

Remark 2.2.2. The left hand side of Brakke’s inequality, 2.2, depends only on the

masses of the (generalised) hypersurfaces at times t1 and t2. This permits gratuitous

vanishing, e.g. a smooth hypersurface at time t = 0, followed by the ‘empty flow’

would satisfy the above definition. To get a more ‘canonical’ notion of a weak flow,

we work with unit-regular and cyclic mod 2 flows, introduced by White in [Whi09].

These properties are defined below.

Definition 2.2.3 (Unit-regular and cyclic Brakke Flows [Whi09]). An integral

Brakke flow M = {µt}t∈I is said to be

• unit-regular if M is smooth in some space-time neighbourhood of any space-

time point X with ΘM(X) = 1;

• cyclic (mod 2) if, for a.e. t ∈ I, µt = µV (t) for an integral varifold V (t) whose

unique associated rectifiable mod-2 flat chain [V (t)] has ∂[V (t)] = 0.

Theorem 2.2.4 (Compactness for Integral Brakke Motions [Ilm94, Bra78]). Let M

be complete. Let {µit}t≥0, i ∈ N, be a sequence of integral Brakke motions in M .

Suppose

sup
i,t
µit(U) ≤ C1(U) <∞

for each U ⊂⊂M. Then,

23



(i) There is a subsequence {µijt }t≥0, j ∈ N and an integral Brakke motion {µ∞t }t≥0

such that

µ
ij
t → µ∞t as Radon measures for each t ≥ 0.

(ii) For almost every t ≥ 0, there is a subsequence {i′j}j≥1 of {ij}j≥1 (depending

on t) such that

lim
j→∞

V (µ
i′j
t ) = V (µ∞t ) as varifolds.

Finally, we state the following theorem from [CCMS20]. The ideas will be used in

Section 3.3 to show convergence properties of the ε-barriers and flows with surgery.

Definition 2.2.5. For a Brakke flow M, we define r̂egM to be the set of points

X = (x, t) such that there is an ε > 0 with

M⌊(Bε(x) × (t− ε2, t] = kHn⌊M(t),

where k is a positive integer and M(t) is a smooth mean curvature flow. We write

regM as the above set with k = 1; thus, regM ⊂ r̂egM.

Theorem 2.2.6 ([CCMS20, Corollary F.4]). Suppose that M is a unit-regular in-

tegral n-dimensional Brakke flow in Rn+k with µ(t) = Hn⌊M(t) for t ∈ [0, δ), where

M(t) is a mean curvature flow of connected, properly embedded submanifolds of Rn+k

and δ > 0. If

Hn
P (supp(M)\r̂egM) = 0

Then r̂egM = regM is connected.

Here Hn
P denotes n-dimensional parabolic Hausdorff measure. This theorem

provides vital information on the behaviour of unit-regular Brakke flows with small

singular set.

2.2.2 Level set flow

We recall the definition of level-set flow outlined by Ilmanen. The interested reader

is directed to Evans–Spruck, [ES91], and Chen–Giga–Goto, [CGG91], for the origin

definition in terms of viscosity solutions.

Definition 2.2.7 (Weak and Level set flow, [Ilm94]). Let K ⊂ Rn+1 be closed. A

one-parameter family of closed sets, {Kt}t≥0, with initial condition K0 = K is said

to be a weak set flow for K if for every smooth mean curvature flow Mt of compact
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hypersurfaces defined on [t0, t1], we have

Kt0 ∩Mt0 = ∅ =⇒ Kt ∩Mt = ∅

for all t ∈ [t0, t1].

The level set flow is defined as the maximal weak set flow, i.e. the union of all

weak set flows from K. We also write Ft(K) = Kt to denote the t time-slice of the

level set flow of the set K.

2.2.3 Inner and Outer Flows

We recall the definitions of Hershkovits–White, [HW20], relevant to the fattening

phenomenon.

Definition 2.2.8. Let M be a compact, smoothly embedded hypersurface. The

fattening time of the level set flow of M is defined as

Tfat := inf{t > 0 : Ft(M) has non-empty interior}.

Definition 2.2.9. Let Mn
0 ⊂ Rn+1 be a smooth, compact hypersurface, and let

U be the compact region bounded by M0. Let U ′ = U c. Using the set theoretic

formulation of the level set flow, we define space-time tracks of the evolution of U,U ′

under level-set flow by

U := {(x, t) ⊂ Rn+1,1| x ∈ Ft(U)},

U ′ := {(x, t) ⊂ Rn+1,1| x ∈ Ft(U
′)}.

We hence define

M(t) := {x ∈ Rn+1| (x, t) ∈ ∂U},

M ′(t) := {x ∈ Rn+1| (x, t) ∈ ∂U ′}.

We call t 7→ M(t) the outer flow from M0 and t 7→ M ′(t) the inner flow from M0.

One can see M(t),M ′(t) ⊂ Ft(M).

Definition 2.2.10. The discrepancy time is defined as

Tdisc = inf{t > 0 : M(t),M ′(t), and Ft(M) are not all equal}.

Theorem 2.2.11 ([HW20]). There exists a unit-regular Brakke flow M on the time

interval [0,∞) starting from M0, such that the space-time support of M is given by

the outer flow, t 7→M(t). The same holds true for the inner flow.
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2.3 Tangent flows and Self-Similar solutions

Definition 2.3.1 (Tangent flow). Let {λi} be a sequence s.t. λi → ∞. We define

a tangent flow at the space-time point X0 ∈ M as a subsequential limiting Brakke

flow of the sequence parabolic rescalings of M around X0 by λi.

The backwards tangent flow is defined by restricting the tangent flow to the time

interval (−∞, 0). The forwards tangent flow is defined by restricting to the time

interval (0,∞).

The monotonicity formula implies that all (backward) tangent flows are self-

similar, i.e. their time −1 slice is given by a (weak) self-shrinker.

Definition 2.3.2 (Self-shrinker). A hypersurface Σ ⊂ Rn+1 is called a self-shrinking

soliton if any of the following, equivalent, definitions hold.

• Σ satisfies HΣ(x) + x⊥

2 = 0.

• The family
{√

tΣ
}
t∈(−∞,0)

is a mean curvature flow.

• Σ is a critical point of the (negative) Gaussian area functional,

F (Σ) :=
1

4π

∫
Σ

exp

(
−|x|2

4

)
dµ.

Definition 2.3.3 (Translator). A hypersurface Σ ⊂ Rn+1 is called a translating

soliton if there exists V ∈ Rn+1 such that any of the following, equivalent, definitions

hold.

• Σ satisfies HΣ(x) = ⟨V, ν⟩ ν.

• The family {Σ + tV }t∈(−∞,∞) is a mean curvature flow.

• Σ is a critical point of the area functional

F (Σ) := |V |
∫
Σ

exp (x · V ) dµ.

Definition 2.3.4 (Self-expander). A hypersurface Σ ⊂ Rn+1 is called a self-expanding

soliton if any of the following, equivalent, definitions hold.

• Σ satisfies HΣ(x) − x⊥

2 = 0.

• The family
{√

tΣ
}
t∈(0,∞)

is a mean curvature flow.

• Σ is a critical point of the (positive) Gaussian area functional

F (Σ) :=
1

4π

∫
Σ

exp

(
|x|2

4

)
dµ.
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The quantity HM(t)(x) + x⊥

2 , is known as the backward rescaled mean curvature

vector, or shrinker mean curvature vector of Σ. Similarly, HM(t)(x) − x⊥

2 is known

as the forward rescaled mean curvature vector, or expander mean curvature vector,

of Σ. These quantities are the mean curvatures of a hypersurface in Rn+1 considered

with the Gaussian metric of the related sign.

A closely related concept to tangent flows is that of the rescaled mean curvature

flow. We recall the definition of the forward rescaled flow.

Definition 2.3.5 (Forward Rescaled Mean Curvature Flow). A smooth family of

hypersurfaces RM = {M(t)}t∈I , I ⊂ R is said to evolve by the forward rescaled

mean curvature flow if (
∂x

∂t

)⊥
= HM(t)(x) − x⊥

2
.

Remark 2.3.6. One may obtain the equation for the backward rescaled flow by

replacing the expander mean curvature with the shrinker mean curvature. That is,

changing the sign in front of x⊥

2 .

Note, shrinkers and expanders define static eternal solutions to the respective

rescaled flow, i.e. solutions defined on the time interval (−∞,∞).

Ancient solutions of the forward rescaled flow are of interest, as they can be con-

structed from smooth mean curvature flows starting from a singular initial condition

via the following transformation.

τ = log(t), x̃(τ) =
x(exp(τ))√

exp(τ)
.

Stated precisely,

Lemma 2.3.7 (Transformation to Rescaled Mean Curvature Flow). Suppose

M = {M(t)}t∈(0,t0)

is a mean curvature flow. Then,

RM :=
{
e−

τ
2M(eτ )

}
τ∈(−∞,log(t0))

defines a forward rescaled mean curvature flow.

Definition 2.3.8. If M is a mean curvature flow, we write RM to denote the

related rescaled flow.
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2.4 Pseudolocality and Interior Estimates

Finally, we record the well known pseudolocality result for mean curvature flow, and

the graphical estimates of Ecker–Huisken. Throughout the following chapters, we

combine these results to demonstrate interior regularity.

Definition 2.4.1. Let x ∈ Rn+1 and let Πx ⊂ Rn+1 be an n-plane passing through

x. Denote by ν the normal to Πx. We define the n-ball

Bn(x, r) := B(x, r) ∩ Πx

and n-cylinder

C(x, r) := {x ∈ Rn+1 s.t. x = y + αν, y ∈ Bn(x, r), |α| < r}.

We state the pseudolocality result of Ilmanen–Neves–Schulze, in the co-dimension

1 case for smooth mean curvature flows. See also the pseudolocality result stated in

[CY07]. In the formulation of their result presented below, no bounds are assumed

on the area ratios of the flow. As noted in their remark, [INS19, Remark 1.6], this

is a made possible by the local version of the monotonicity formula.

Theorem 2.4.2 (Pseudolocality, [INS19]). Let {Mt}t∈[0,T ) be a smooth mean cur-

vature flow of embedded hypersurfaces in Rn+1. Then, for any η > 0 there exists

ε, ϑ > 0 depending only on n, η such that if x0 ∈ M0 and M0 ∩ C(x0, 1) can be

written as graph(u), where u : Bn(x0, 1) → R with Lipschitz constant less than ε,

then

Mt ∩ C(x0, ϑ), t ∈ [0, ϑ2) ∩ [0, T )

is a graph over Bn(x0, ϑ) with Lipschitz constant less than η and height bounded by

ηϑ.

Remark 2.4.3. As commented in [INS19, Remarks 1.6 iii)], the above result holds

for Integral Brakke flows if we presume there is no sudden mass loss in C(x0, 1).

To satisfy this hypothesis, we will always work with Brakke flow that are unit-

regular. The proof is identical, except one must use Brakke’s local regularity theo-

rem, [Bra78], in place of White’s local regularity, [Whi05].

Theorem 2.4.4 (Interior estimates for Graphs [EH91]). Let Mn ⊂ Rn+1 be a

smooth hypersurface. Let R > 0 be such that Mt can be written as a graph of

some function u over Bn(y0, R), an n-ball of radius R centred at a point y0 ∈ Rn+1

in some hyperplane, for t ∈ [0, T ]. Suppose further that the gradient is bounded,

i.e. for each t ∈ [0, T ] we have √
1 + |Dut|2 ≤ 1 + η,
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where η > 0 depends only on the dimension. Then, for any t ∈ [0, T ] and θ ∈ (0, 1),

we have

sup
Bn(y0,θR)×[0,T ]

|A|2 ≤ C(n, θ,R) sup
Bn(y0,R)×{0}

|A|2

This is immediate from the Theorem 3.1 of [EH91] under the assumption of

bounded initial curvature. The interested reader is directed to [BM17, Chapter 8],

where the estimates are established for high co-dimension.
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Chapter 3

Mean Curvature flow with

Surgery

3.1 Overview of 2-Convex Surgery

We begin by recapping the results of [HK17b] that we will use.

Definition 3.1.1 (α-noncollapsed, [And12], [HK17a]). Let α > 0. A mean convex

hypersurface Mn bounding an open region Ω in Rn+1 is α–noncollapsed (on the

scale of the mean curvature) if for every x ∈ M there are closed balls Bint ⊂ Ω

and Bext ⊂ Rn+1\Ω of radius at least α/H(x) tangential to M at x, from the

interior and exterior of M respectively. A smooth mean curvature flow is said to be

α-noncollapsed if every time slice is α-noncollapsed.

This definition may be suitably localised. See Definition 3.2.3.

Definition 3.1.2 (β-uniformly 2-convex). A mean convex hypersurface M is said

to be β-uniformly 2-convex, for β > 0, if

λ1 + λ2 > βH.

Where λi are the ordered principal curvatures with λ1 ≤ . . . ≤ λn, and H is the

mean curvature.

Recall, ‘α-noncollapsed’-ness is preserved under the mean curvature flow by the

maximum principle, [And12]. β-uniform 2-convexity is preserved by the Hamilton

tensor maximum principle.

Definition 3.1.3 (Strong δ-neck, [HK17b, Definition 2.3]). Let δ > 0. We say a

mean curvature flow M = {Mt ⊂ U}t∈I has a strong δ-neck with centre p and

radius s at time t0 ∈ I if M(p,t0),s−1 = Ds−1(M − (p, t0)) is δ-close in C⌊1/δ⌋ in

(BU
1/δ × (−1, 0]) to the evolution of a solid round cylinder of radius 1 at t = 0. Here

BU
1/δ = s−1((B(p, s/δ) ∩ U) − p) ⊆ B(0, 1/δ) ⊂ Rn+1 and Dλ denotes the parabolic

dilation by λ.
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Definition 3.1.4 (Standard cap, [HK17b, Definition 2.2]). A standard cap is a

smooth convex domain Kst ⊂ Rn+1 that coincides with a solid round half-cylinder

of radius 1 outside a ball of radius 10.

The evolution from such a cap is unique, β-uniformly 2-convex and α-noncollapsed

for some α, β > 0, [HK17b, Proposition 3.8]. This is a key component of the canon-

ical neighbourhood theorem for mean curvature flows with surgery.

A surgery algorithm seeks to replace δ-necks with standard caps, the following

is the gluing algorithm used.

Definition 3.1.5 (δ-neck replacement, [HK17b, Definition 2.4]). We say that the

final time slice of a strong δ-neck with centre p and radius s is replaced by a pair

of standard caps if the pre-surgery domain K− ⊂ U is replaced by a post-surgery

domain K# ⊂ K− such that the following statements hold.

1. The modification takes place inside a ball B = B(p, 5Γs)

2. There are bounds for the second fundamental form and its derivatives

sup
∂K#∩B

|∇ℓA| ≤ Cℓs
−1−ℓ

3. If B from point (1) satisfies B ⊂ U then for every point p# ∈ ∂K# ∩ B with

λ1(p#) < 0 there is a point p− ∈ ∂K− ∩B with λ1
H (p−) ≤ λ1

H (p#)

4. If B(p, 10Γs) ⊂ U then s−1(K#−p)) is δ-close in B(0, 10Γ) to a pair of disjoint

standard caps which are at distance Γ from the origin.

Here, Γ > 0 denotes a cap separation parameter that is fixed later.

Haslhofer–Kleiner begin by defining a broader class of flows, of which mean

curvature flow with surgery belongs. It is a class of piece-wise smooth, mean convex,

α-noncollapsed, mean curvature flows with δ-necks replaced by caps. They fix a

µ ∈ [1,∞), used below.

Definition 3.1.6 ((α, δ)-flow, [HK17b, Definition 1.3]). An (α, δ)-flow K is a col-

lection of finitely many smooth α-noncollapsed flows {Ki
t ⊂ U}t∈[ti−1,ti], (i =

1, . . . , k; t0 < · · · , tk) in an open set U ⊂ Rn+1 such that the following statements

hold.

1. For each i = 1, . . . , k − 1, the final time slices of some collection of disjoint

strong δ-necks are replaced by pairs of standard caps as described in definition

3.1.5, giving a domain K#
ti

⊆ Ki
ti =: K−

ti

2. The initial time slice of the next flow Ki+1
ti

=: K+
ti

, is obtained from K#
ti

by

discarding some connected components.
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3. There exists s# = s#(K) > 0, which depends on K, such that all necks in item

(1) have radius s ∈ [µ−1/2s#, µ
1/2s#].

Proposition 3.1.7 (One-sided minimization, [HK17b, Proposition 2.9]). There ex-

ists a δ > 0 and Γ0 < ∞ with the following property. If K is an (α, δ)-flow (δ < δ)

in an open set U , with cap separation parameter Γ ≥ Γ0 and surgeries at scales

between µ−1s and s, and if B ⊂ U is a closed ball with d(B,Rn+1\U) ≥ 20Γs, then

|∂Kt1 ∩B| ≤ |∂K ′ ∩B|

for every smooth comparison domain K ′ that agrees with K1 outside B and satisfies

Kt1 ⊂ K ′ ⊂ Kt0 for some t0 < t1.

Theorem 3.1.8 (Global Curvature Estimate, [HK17b, Theorem 1.10]). For all Λ <

∞, there exists δ(α) > 0, ξ = ξ(α,Λ) < ∞ and C0 = C0(α,Λ) < ∞ with the

following property. If K is an (α, δ)-flow (δ < δ) in a parabolic ball P (p, t, ξr)

centred at p ∈ ∂Kt with H(p, t) ≤ r−1, then

sup
P (p,t,Λr)∩∂K′

|A| ≤ C0r
−1

where K′ denotes the connected component of the flow containing p.

Remark 3.1.9. Of course, this extends to higher derivatives, |∇lA|, as is standard

for parabolic equations.

Definition 3.1.10 (α-controlled initial condition, [HK17b, Definition 1.15]). Let

α = (α, β, γ) ∈ (0, n − 1) × (0, 1
n−1) × (0,∞). A hypersurface Mn ⊂ Rn+1 is said

to be α-controlled if it is α-noncollapsed, β-uniformly 2-convex: λ1 + λ2 ≥ βH and

maxx∈M{H(x)} ≤ γ.

Definition 3.1.11. The surgery parameter H is defined as the triple

H = {Hth, Hneck, Htrig} ∈ R3,

0 < Hth < Hneck < Htrig <∞.

Htrig is the trigger curvature, once achieved the flow is stopped. Hneck is the mean

curvature of neck points. Hth is the curvature that is used to determine high curva-

ture regions of the flow. For Θ <∞ we say H > Θ if the ratios satisfy

Hneck

Hth
,
Htrig

Hneck
> Θ

We say the ratios degenerate along a sequence if these ratios tend to infinity.

The definition of a mean curvature flow with surgery is made formal in the

following definition.
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Definition 3.1.12 ((α, δ,H)-flow, [HK17b, Definition 1.17]). Let Mn ⊂ Rn+1 be

an α = (α, β, γ) controlled initial condition. An (α, δ,H)-flow is an (α, δ) flow such

that:

1. H ≤ Htrig everywhere. Surgery and/or discarding occurs precisely at times t

when H = Htrig somewhere.

2. The collection of necks in Definition 3.1.6 (1) is a minimal collection of necks

with curvature H = Hneck which separate the set {H = Htrig} from {H ≤ Hth}
in the domain K−

t .

3. K+ is obtained from K#
t by discarding precisely those connected components

with H > Hth everywhere. In particular, of each pair of facing surgery caps,

precisely one is discarded.

4. If a strong δ-neck from item (2) is also a strong δ̂-neck for δ̂ < δ then definition

3.1.6 (4) also holds with δ̂ instead of δ.

The above theory is then used to prove existence of the flow, provided one is

replacing strong enough necks (controlled by δ) that are sufficiently long (controlled

by Θ and the curvature estimates).

Theorem 3.1.13 (Existence of surgery flow, [HK17b, Theorem 1.21]). There are

constants δ = δ(α) > 0 and Θ(δ) = Θ(α, δ) < ∞ (δ ≤ δ̄) with the follow-

ing significance. If δ ≤ δ̄ and H = (Htrig, Hneck, Hth) are positive numbers with

Htrig/Hneck, Hneck/Hth ≥ Θ(δ), then there exists an (α, δ,H)-flow {Kt}t∈[0,∞) for

every α-controlled initial condition K0.

Additionally, a canonical neighbourhood theorem is proved.

Theorem 3.1.14 (Canonical Neighbourhoods, [HK17b, Theorem 1.22]). For all

ε > 0, there exist δ = δ(α) > 0, Hcan(ε) = Hcan(α, ε) < ∞ and Θε(δ) = Θε(α, δ) <

∞ (δ ≤ δ̄) with the following significance. If δ ≤ δ and K is an (α, δ,H)-flow with

Htrig/Hneck, Hneck/Hth ≥ Θε(δ), then any (p, t) ∈ ∂K with H(p, t) ≥ Hcan(ε) is ε-

close to either (a) a β-uniformly 2-convex ancient α-noncollapsed flow, or (b) the

evolution of a standard cap preceded by the evolution of a round cylinder.

A consequence of the canonical neighbourhood theorem is the classification of

discarded components. This result allows one to use surgery to decompose the

topology of the original hypersurface.

Theorem 3.1.15 (Discarded components, [HK17b, Corollary 1.25]). For ε > 0

small enough, for any (α, δ,H)-flow with Hneck/Hth, Htrig/Hneck > Θε(δ), and Hth >

Hcan(ε), all discarded components are diffeomorphic to D
n+1

or D
n × S1.
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3.2 Definitions for Local Surgery

Let M be an n-dimensional unit-regular, cyclic (mod 2) integral Brakke flow that

encounters only multiplicity one spherical or neck-pinch singularities, evolving from

the smoothly embedded, closed hypersurface Mn ⊂ Rn+1. We will always presume

these singularities are multiplicity one. We fix a neck separation parameter Γ0

that satisfies the conclusions of Proposition 3.1.7, and a δ̄ > 0 that satisfies the

conclusions of Theorem 3.1.13 and Theorem 3.1.14.

All of the above definitions for surgery make use of the ‘fattened’ flow, where

at each time Kt is defined to be the set such that the boundary ∂Kt = Mt is the

motion by mean curvature from the initial hypersurface M . Since the flow is mean

convex, the direction of flow is always into such a K.

With no assumption on the initial mean curvature, M can have ‘outward’ necks,

where the mean curvature vector (direction of flow) is pointing exterior to the com-

pact set the hypersurface bounds. Observe, however, that the mean convex neigh-

bourhood conjecture gives a neighbourhood of the singularity in which the mean

curvature vector always points in the same direction. Recall, we are considering

Brakke flows that are cyclic (mod 2), so the ambient Rn+1 is separated (at almost

every time) into two components by the support of the Brakke flow. Let Ω be a set

such that M∩Ω is 2-convex. Observe, this gives a ‘local orientation’ in the following

sense. We say the set Kt, with ∂Kt\∂Ω = Mt ∩ Ω is the local interior if H points

into Kt.

We use the same definition for the local interior of a surgery flow. Such a

definition will be shown to be well defined in the definition of our flow with surgery.

Definition 3.2.1 (Neck replacement). We localize definition 3.1.5 by using the

above ‘local interior’ Kt as opposed to the interior of the entire flow.

Remark 3.2.2. In this local sense, we still have the chain of inclusions

K+
ti
⊆ K#

ti
⊆ K−

ti

This is important for lemma 3.3.6 in order to replicate the argument of [Lau13].

Note, we will not have this sequence of inclusions for the interior of the surgery

flow. Such a statement would not be true for outward necks: the caps are glued

inside the solid neck, which equates to being exterior of the pre-surgery hypersurface.

Definition 3.2.3 (Locally α-noncollapsed). Let Mn ⊂ Rn+1 be a smooth, closed

hypersurface bounding the region Ω. Suppose M is mean convex in the open balls

B(y, 2r). We say M is locally α-noncollapsed in B(y, r) if

(a) H(x) > 1/r for x ∈M ∩B(y, r), and

(b) There is an α > 0 such that the balls Bint ⊂ Ω and Bext ⊂ Rn+1\Ω of radius
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α/H(x) situated either side of the hypersurface, with x ∈ ∂Bint, ∂Bext, are

contained in B(y, 2r) and each ball has no intersection with M ∩B(y, 2r).

Examining the structure of the singular set of the flow M, we can start to build

the definitions for a more general surgery.

Definition 3.2.4. We denote the singular set of M as S.

We recall the canonical neighbourhood theorem of [CHH22, CHHW22].

Theorem 3.2.5 (Canonical Neighbourhoods [CHHW22, Corollary 1.18]). Assume

X ∈ S is a neck singularity of the flow. Then for every δ > 0 there exists a

R(X, δ) > 0 with the following significance. For any regular point X ′ ∈ P (X,R) the

flow M′ = Dλ(M−X ′), obtained by parabolically rescaling the original flow around

X ′ by λ = |H(X ′)|, is δ-close in C⌊1/δ⌋ in B1/δ(0)× (−1/δ2, 0] to a round shrinking

sphere, round shrinking cylinder, a translating bowl soliton or ancient oval.

Motivated by this theorem, we define the following open neighbourhood of the

singular set of the flow M.

Definition 3.2.6 ((α, β)-neighbourhood). We fix

(i) α > 0,with α < min{αsphere, αcylinder, αbowl, αoval},

(ii) β > 0,with 0 < β < min{βsphere, βcylinder, βbowl, βoval},

(iii) γ > 0.

Here αsphere, αcylinder, αbowl, αoval and βsphere, βcylinder, βbowl, βoval are the respec-

tive optimal α > 0 and β > 0 for the shrinking sphere, cylinder, translating bowl

and ancient oval.

Let α = (α, β, γ). Let Mn ⊂ Rn+1 be a hypersurface with |A| < γ and suppose

M is a unit-regular, cyclic (mod 2) integral Brakke flow starting from M then

encounters only (multiplicity-one) spherical and neck-pinch singularities. We fix

an additional constant Hbdd = Hbdd(α). An (α, β)-neighbourhood, Ω(α,β), is an

open space-time neighbourhood of the singular set S, composed of finitely many

connected components, with the following properties.

(i) For every regular point X ∈ M∩ Ω(α,β), |H(X)| > Hbdd.

(ii) If X ∈ M ∩ ∂Ωi, where Ωi is a connected component of Ω(α,β), we require

|H(X)| = Hbdd.

(iii) Furthermore, if X ∈ M ∩ ∂Ωi, then the flow is β-uniformly 2-convex in

P (X, 2ξ(|H(X)|)−1) and locally α-noncollapsed in P (X, ξ(|H(X)|)−1).

(iv) M is locally α-noncollapsed in Ω(α,β) at regular points.

(v) M is β-uniformly 2-convex in Ω(α,β) at regular points.

35



The value of ξ = ξ(α,Λ) is that given by the curvature estimates of Haslhofer–

Kleiner, and depends on some Λ, which will be derived later.

Remark 3.2.7. Observe, the mean curvature is uniform across the boundary.

Remark 3.2.8. The choice to have constant mean curvature along the boundary

serves a practical purpose. Later, we will specify surgeries in a flow approximating

M only occur as long as said flow is a small graph over M in some neighbourhood

of the boundary. We will show knowledge of the boundary data of M in the above

fashion guarantees in the flows with surgery, via the maximum principle, that the

hypotheses of the curvature estimates (Theorem 3.1.8) are satisfied in the interior.

To be explicit, at interior points X, the flow in P (X, ξ(|H(X)|)−1) will be an (α, δ)-

flow in the sense of [HK17b].

Lemma 3.2.9. Let M be a Brakke flow with only spherical and neck-pinch singu-

larities. For every α as in Definition 3.2.6, there is a H0(α,M) < ∞ such that for

all Hbdd > H0 an (α, β)-neighbourhood exists.

Proof. Fixα satisfying the assumptions of Definition 3.2.6, and take ε < (2ξ)−1. Ad-

ditionally, we take ε small enough that if a flow is ε-close an ancient, asymptotically

cylindrical flow, then it is β-uniformly 2-convex.

By the canonical neighbourhood theorem, Theorem 3.2.5, and the compactness

of the singular set, there is an r > 0 such that any regular point in the parabolic

cylinder P (Y, r), centred at Y ∈ S is ε-close to one of the ancient, asymptotically

cylindrical flows (at scale of the mean curvature).

This radius can be taken such that at any interior regular point the flow is locally

α-noncollapsed.

The union of the above cylinders, ∪Y ∈SP (Y, r), defines a cover of the singular

set. Observe, in each connected component the mean curvature has a single sign (a

local orientation). Let {Xi}i∈N be a sequence of regular points contained in a single

connected component that accumulate in S. It is immediate from the canonical

neighbourhood theorem that H(Xi) → ∞.

Hence, we can fix a Hbdd sufficiently large that

Ω := {X ∈ reg(M) s.t. |H(X)| > Hbdd} ⋐ ∪Y ∈SP (Y, r).

Observe, reg(M) is relatively open in supp(M), so Ω is a relatively open set

in supp(M). Moreover, the mean convex neighbourhood theorem shows that we

can include singular points, provided they are spherical or neck-pinch singularities,

i.e. Ω′ = {X ∈ reg(M) | |H(X)| > Hbdd}∪S is open in supp(M). The topology of

supp(M) is inherited from the standard parabolic topology of space-time, Rn+1,1.

Thus, there is an open set U in Rn+1,1 such that U ∩ supp(M) = Ω′. Ω(α,β) can

be taken as any collection of such open sets in space-time. Hence, Ω(α,β) is an open
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space-time neighbourhood of the singular set. We can assume this neighbourhood

has finitely many connected components since the singular set is compact.

Finally, the β-uniform 2-convexity and α-noncollapsedness for X ∈ M∩ ∂Ωi is

immediate from the choice of ε in the canonical neighbourhood theorem. QED

Definition 3.2.10 (Neighbourhood of the boundary). For a connected component

Ωi, we define

Ni =
⋃

X∈∂Ωi

P (X, 2ξH−1
bdd).

Where P (X, 2ξH−1
bdd) is the backwards parabolic cylinder centered at X. Observe,

as specified in Definition 3.2.6, M∩ P (X, 2ξH−1
bdd) will be smooth and β-uniformly

2-convex.

We now define a flow similar to the mean convex (α, δ)-flows of [HK17b]. It is a

unit-regular cyclic mod 2 Brakke flow with the replacement of (smooth) δ-necks by

caps.

Definition 3.2.11 ((α, δ)-Brakke flow). Compare definition 3.1.6.

Let Mn ⊂ Rn+1 be a compact, smoothly embedded hypersurface. Let M a

unit-regular, cyclic (mod 2) Brakke flow emerging from M that encounters only

(multiplicity one) spherical and neck-pinch singularities.

An (α, δ)-Brakke flow is defined as the collection of unit-regular cyclic (mod 2)

Brakke flows

{Mi} = {µit}t∈[ti−1,ti], (i = 1, . . . , k + 1; 0 = t0 < · · · < tk < tk+1 = tExt),

with the following properties. We adopt the standard notation of ‘calligraphic’

M to denote flows, and ‘roman’ Mt the t-time slice of M. Superscripts will remain

consistent between flows and timeslices in flows with surgery.

(i) Mi is a smooth flow for 1 ≤ i ≤ k. That is, surgery is only performed if the

flow is smooth.

(ii) For each i = 1, . . . k, we identify in M i
ti =: M−

ti
, the final time slice of the

smooth mean curvature flow Mi, a collection of disjoint strong δ-necks con-

tained in Ω(α,β). Each neck is replaced, provided the next point is satisfied, by

pairs of standard caps as in Definition 3.1.5, creating the possibly disconnected

hypersurface M#
ti

.

(iii) Necks at time ti ∈ {t1, . . . , tk} contained in Ωj , a connected component of

Ω(α,β), are only replaced by caps if the flow Mi can be written as a δ-graph

over M in the boundary neighbourhoods Nj at time ti. This is to ensure that

the curvature estimate of [HK17b] carries over to the surgery flow. See Remarks
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3.2.13 and 3.2.14. If this condition fails, we treat the last time surgeries were

successfully performed as tk and we continue as in item (vi). Note, we allow

the case where being a graph over the boundary at time ti is ‘vacuously true’

i.e. Mi∩∂Ωj = ∅,Mi∩Ωj ̸= ∅. Indeed, if a component of the flow is contained

entirely in Ω(α,β), then it satisfies the assumptions of α non-collapsedness and

β-uniform 2-convexity by the maximum principle.

(iv) The initial timeslice of Mi+1, M i+1
ti

:= M+
ti

is obtained from the post-surgery

hypersurface M#
ti

by dropping some connected components contained in Ω(α,β).

(v) There exists s# > 0 which depends only on the Brakke flow M such that all

necks in item (i) have radius s ∈ [µ−1/2s#, µ
1/2s#]∗.

(vi) We allow the flow Mk+1 to develop as a unit-regular Brakke flow until its ex-

tinction at time tk+1 = tExt. Specifically, we choose the integral, unit-regular,

cyclic (mod 2) Brakke flow whose support is the outer flow from the initial

condition of Mk. See Hershkovits–White, [HW20], where such a flow is con-

structed.

Remark 3.2.12. In item (i), we require that M i
ti is a smooth hypersurface for neck

replacement to occur. Thus, after neck replacement the flow can be continued as

an integral, unit-regular, cyclic (mod 2) Brakke flow by elliptic regularisation. It

should be possible to weaken this requirement to being an integral current, however,

this is not needed for the purposes of the current work. The choice of outer flow is

important later, for understanding barriers to flows with surgical modification.

Remark 3.2.13. Item (iii) requires the (α, δ)-Brakke flow can be written as a δ-

graph over M in Ni. By this we mean, the surgery flow is δ-close to M in C⌊ 1
δ
⌋(Ni).

Whilst imposing such a condition may seem unmotivated, it occurs naturally when

considering sequences of smooth flows that converge to a smooth limit. We discuss

how our flows with surgery converge in Section 3.3.

Remark 3.2.14. We use the δ-graphical condition to ensure that along the bound-

ary of Ω(α,β), the surgery flow satisfies the β-uniformly 2-convex and α-noncollapsed

conditions, provided δ > 0 is taken sufficiently small. The size of the required δ will

depend on Hbdd and, of course, our choice of α and β. We can then promote this to

interior control by the maximum principle. Demanding control in a neighbourhood of

the boundary (as opposed to just on the boundary) addresses two problems. Firstly,

we need to use a two point maximum principle to show interior α-noncollapsedness

as in[And12]. We discuss why this graphical condition in the boundary provides

sufficient control of the geometry of the flows with surgery to apply a two point

maximum principle in Remark 3.4.4. Secondly, by enforcing a boundary graphical

∗µ ∈ [1,∞) is a constant that quantifies the notation of surgeries at comparable scales. See
[HK17b, Convention 1.2]
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condition in the definition of the (α, δ)-Brakke flows, we ensure the hypotheses of

the Haslhofer–Kleiner curvature estimate are satisfied at all interior points, before

the final time of surgery. This follows essentially from the triangle inequality and

the maximum principle. For details, see Theorem 3.A.1.

Remark 3.2.15. It is important to stress that the uniform backward control of 2-

convexity and noncollapsedness along the boundary is fundamental in being able to

apply the curvature estimate for our choice of Λ. Note, this control is not needed if

the mean curvature tends to infinity, only when one expects the curvature to remain

bounded. For example, this argument is not needed when applying the curvature

estimates in the Canonical Neighbourhood Theorem of Haslhofer–Kleiner, but is

needed for showing surgery accumulates in the singular set.

Remark 3.2.16. In the formalism of Haslhofer–Kleiner surgery, α and β are con-

trolled by the initial condition. In this flow, these parameters are controlled locally

from the values on the boundary by the maximum principle.

We now define the weak surgical flows. The key deviations are that (a) the

flow can become singular, and (b) the requirement that surgery only takes place in a

predetermined neighbourhood of the singular set of the flow M. Whilst this initially

may feel restrictive, it is entirely natural. See Section 3.3.

Definition 3.2.17 (Weak (α, δ,H)-flow). Let Mn ⊂ Rn+1 be a compact, smoothly

embedded hypersurface be a γ-controlled initial condition. Let M be a unit-regular,

cyclic (mod 2) Brakke flow emerging from M that encounters only (multiplicity one)

spherical and neck-pinch singularities. For a fixed α (as above), δ > 0 and surgery

parameters H we define MH as the weak (α, δ,H)-flow or weak surgery flow derived

from M as the (α, δ)-Brakke flow that satisfies the following conditions:

(i) All surgeries take place inside the (α, β)-neighbourhood of the singular set

of M, the region where the original flow is α-noncollapsed and β-uniformly

2-convex.

(ii) Surgeries and/or discarding takes place at times t when |H| = Htrig somewhere

in Ω(α,β). Note, we actually allow |H| to exceed Htrig in the flow outside the

region where we perform surgery.

(iii) The collection of necks is minimal, and the necks are of curvature |Hneck|. The

necks separate the set {|H| = Htrig} from {|H| ≤ Hth}.

(iv) The smooth hypersurface M+
t is obtained from M−

t by dropping some smooth

components of mean curvature |H| > Hth contained in Ω(α,β). In particular,

for each pair of facing surgery caps, precisely one is discarded.

(v) If a strong δ-neck is also a strong δ̂ neck for δ̂ < δ then item (iv) of definition

3.2.11 holds with δ̂ instead of δ.
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Remark 3.2.18. Item (v) is the stipulation that if a δ-neck sits inside a stronger

δ̂-neck, then the surgery is performed in a ‘better’ way, that is closer to the ideal

cylinder and cap. This is an essential component of self-improvement.

Remark 3.2.19. We allow the flow to continue as a unit-regular Brakke flow if a

(possibly non-generic) singularity forms after the last surgery. Note that we cannot

be certain such a continuation is unique. We gain control of the singular behaviour

via the barriers constructed in Section 4, in particular showing that any singulari-

ties will be spherical or neck-pinch singularities (and thus the continuation is well

defined). In Section 5, we will show that giving control back to Htrig gives a smooth

surgery in the same sense as [HK17b].

Consider the following examples of weak surgery flows.

Example 3.2.20. The shrinking sphere is a weak (α, δ,H)-surgery flow for all values

of H, if one chooses not to drop components of high curvature.

Example 3.2.21. Fix H. The shrinking sphere that vanishes once the mean cur-

vature reaches Hth is a weak (α, δ,H)-surgery flow.

Example 3.2.22. Fix α and δ > 0. Let M be an α-controlled initial condition.

Then, there is a H given by [HK17b] such that the (α, δ,H) mean curvature flow

with surgery of [HK17b] exists. It is a weak (α, δ,H)-surgery flow.

3.3 Barriers and Stability

We now develop the tools for controlling the weak surgery flows. In the first half of

this section, we show that the unit-regular Brakke flow from hypersurfaces equidis-

tant to the initial hypersurface act as barriers to our weak surgery flows, provided

the surgery scale is large enough. The existence of these barriers requires the re-

cent technical result of [CCMS20], concerning the connectedness of the singular set

for flows with singular set of small Hausdorff dimension. Indeed, such a result is

critical as one needs a way to show higher multiplicities cannot develop. We then

tackle the problem of stability of the surgery flows. The parabolic nature of mean

curvature flow means that changing the flow in one location can affect other regions

at infinite speed. Whilst this problem cannot be completely avoided, showing the

surgery parameters can be chosen such that surgeries change the flow in a manner

that is ‘stable’ with respect to the unmodified flow is sufficient. Recalling the defi-

nition of the (α, β)-neighbourhood, one can see that if we can show suitable control

in Ni, a neighbourhood of the boundary of a connected component of the (α, β)-

neighbourhood, then in the interior our flow with surgery will locally look like a

(α, δ,H)-flow of Haslhofer—Kleiner. In Section 5, this is precisely how we will show

that their theory can be applied directly to deduce existence of a smooth flow with
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surgery. Said boundary control is achieved by a local convergence result. In show-

ing this, we additionally prove the stronger result that the weak flows with surgery

converge to the unmodified flow as Brakke flows away from the singular set.

For the following, we will suppose that Mn ⊂ Rn+1 is a closed, smoothly em-

bedded hypersurface and that there is a unit-regular, cyclic (mod 2) Brakke flow

M emerging from M that encounters only multiplicity one spherical and neck-pinch

singularities. A priori, such a flow is not unique, however, combining recent results

we get the following uniqueness result.

Theorem 3.3.1. Let Mn ⊂ Rn+1 be a closed, smoothly embedded hypersurface. If

there is a unit-regular cyclic (mod 2) Brakke flow M emerging from M that encoun-

ters only multiplicity one spherical and neck-pinch singularities, then the level-set

flow does not fatten. In particular, M is unique.

Proof. Recall that the support of M defines a weak set flow, and thus is contained

in the level-set flow of M . Let N be the unit-regular Brakke flow whose support

is the outer flow {Mt}. The existence of such a flow is proven in [HW20]. The

uniqueness of smooth mean curvature flow implies that M and N agree up to the

first singular time. Thus, their supports agree at the first singular time. Since M
has only spherical and neck-pinch singularities, the flow N cannot fatten at the first

singular time, t0, [HW20]. Moreover, stratification, [Whi97], yields that the singular

set of M has parabolic Hausdorff dimension at most one. Hence, by Theorem 2.2.6,

([CCMS20, Theorem F.4]), the regular sets of M and N are connected, and thus

we have unit density at smooth points. Thus, the flows agree as Brakke flows up

to the first singular time. This argument can be iterated since the flow is compact.

i.e. For the two flows to differ, the outer flow must encounter a non-spherical or

non-neck-pinch singularity, which cannot happen as the flows agree back in time.

Thus, M = N . In particular, the outer flow has only spherical and neck-pinch

singularities and hence does not fatten, [CHHW22, Theorem 1.19].

Since the support of any Brakke flow defines a weak set flow, the non-fattening

and connectedness of the regular set show that M is the unique unit-regular flow.

QED

Thus, it is sufficient to suppose M has only spherical and neck-pinch singularities.

We also pick a ε0 = ε0(M) > 0 sufficiently small, such that for −ε0 ≤ ε ≤ ε0

the hypersurfaces Mε = {dist(·,M) = ε}, where dist(·,M) is the signed distance

function to M , are smooth.

Lemma 3.3.2. Let ε < ε0, and let M±ε be unit-regular cyclic (mod 2) Brakke flows

emerging from the hypersurfaces M±ε. Then,

lim
ε→0

M±ε = M

as Brakke flows.
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Proof. We prove the statement for the +ε flows, as the proof for the −ε flows will

be identical.

Smooth convergence of Mε → M holds up to the first singular time of M. For

later times we consider the following.

Let {εi}i∈N be a positive null sequence, and consider the flows Mεi . By the

convergence result of Ilmanen [Ilm94], there is a unit-regular flow M̃ such that

Mεi ⇀ M̃. In particular, since the level-set flow from M does not fatten, we have

supp(M̃) ⊆ supp(M).

We now proceed via the logic of Theorem 2.2.6 [CCMS20, Appendix F].

Since M has only spherical and neck-pinch singularities, stratification, [Whi97],

yields that the singular set has parabolic Hausdorff dimension at most one, so by

Theorem 2.2.6 M has connected regular set. Indeed, by considering paths that

connect to the initial time avoiding the singular set and noting that M̃ is unit

regular, we see that the density of M̃ is equal to that of M at all regular points.

Since the singular set of M has small measure, we have M̃ = M.

This is true for all null sequences {εi}, hence the above argument shows M+ε

converges to M. QED

Remark 3.3.3. Note, for small ε > 0 the barrier flows have only spherical and

neck–pinch singularities. This follows from the resolution of the mean convex neigh-

bourhood conjecture, [CHH22, CHHW22] and the extension to near-by flows by

Schulze–Sesum [SS20].

Lemma 3.3.4. Let M,M±ε be as above. Then, for every t where both flows are

defined, |d(Mt,M±ε,t)| ≥ ε.

Proof. Follows from the standard avoidance principle for Brakke flows, see [Ilm94].

QED

Definition 3.3.5. We will call the unit-regular Brakke flows M±ε the ε-barriers.

We take the convention that M+ε is the hypersurface in the interior of M . M−ε

is thus in the exterior.

Lemma 3.3.6. (M±ε as Surgical Barriers) Let M be as above. Fix ε, with 0 <

ε < µ(M). Then, there exists a H(ε) <∞ such that any weak (α, δ,H) surgical flow

with Hth > H(ε) avoids M±ε. In particular, the distance between the barriers and

surgery flow is non-decreasing.

Proof. It is well known that the distance between two non-intersecting Brakke flows

is non-decreasing, (avoidance principle [Ilm94]). Provided the distance is not de-

creased across surgery, the claim follows.

We hence check the behaviour at time of surgery. Without loss of generality, we

consider only one of the barriers at inward and outward necks. The proof for the

other barrier will follow identically.
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Let M+ε be the evolution of the hypersurface in the interior of M . We follow

the argument as outlined in [HK17b].

Claim 3.3.1. Let t be a surgery time at an inward neck for the surgical flow MH.

For every r > 0, there is a Hmin(r) < ∞ such that if Hth > Hmin and B(p, r) ⊂
int(MH,t−), then B(p, r) ⊂ int(MH,t+).

Proof. Fix r > 0. There are two regions one needs to check:

1. The collection of necks. For each neck we consider its interior K (See Definition

3.2.1). Following the argument of [HK17b, Theorem 1.25], for sufficiently large

Hth, a ball of radius r cannot be contained in K, as it will be a long and thin

neck.

2. The dropped components. If the ball were contained in the interior of a dis-

carded component, then the discarded component would have a point with

|H| ≤ nr−1. Discarded components have |H| ≥ Hth, thus picking Hth > nr−1

is sufficient to prove the claim.

QED

Claim 3.3.2. Let t be a surgery time at an outward neck for the surgical flow

MH. For every r > 0, there is a Hmin(r) < ∞ such that if Hth > Hmin and

B(p, r) ⊂ int(MH,t−), then B(p, r) ⊂ int(MH,t+).

Proof. Recall, at outward necks, the ‘interior’ of the neck is exterior to the flow.

The caps are glued inside the cylinder. Thus, if B(p, r) ⊂ int(MH,t−), then we have

B(p, r) ⊂ int(MH,t+) for all values of Hth. QED

For the other barrier, we consider B(p, r) ⊂ ext(MH,t−). The proofs are identical,

but for the oppositely oriented necks.

To illustrate how the above claims prove the distance is non-decreasing, con-

sider the following. Fix ε > 0 and choose the surgery parameter H such that

Hth > Hmin(ε). Let t be the first time of surgery. We now consider the balls

B(x, d(x,MH,t−)), where d(·,MH,t−) is the distance of a point to the hypersurface

MH,t− , for each point x in the t timeslice of M±ε. Clearly any such ball will lie

entirely on one side of MH,t− . Since flows with surgery are simply smooth flows up

to time t, the avoidance principle shows that the radius, r = r(x), of each ball must

have r ≥ ε. We deduce from the above claims that each of the discussed balls in

the interior (resp. exterior) of MH,t− will be interior (resp. exterior) to MH,t+ after

surgery, as Hth > Hmin. Thus, the distance of MH,t+ to either barrier at time t

cannot be less than that of MH,t− . Since a surgical flow is a Brakke flow between

surgery times, the avoidance principle allows for the argument to be repeated at all

later surgery times. We conclude the distance between the barriers and the surgical

flow is non-decreasing along the entire flow.
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QED

Remark 3.3.7. Interior and exterior are well defined because we are considering

smooth hypersurfaces at times of surgery. Note, the property of ‘separating’ the

inner and outer barriers is preserved through surgery, in the sense that at any time,

any path connecting the inner and outer barriers must pass through the flow with

surgery. In addition, such a separation property is valid for all times after the last

surgery by our choice to continue the surgery flow as the unit-regular cyclic (mod

2) Brakke flow whose support is the outer flow.

Corollary 3.3.8 (Hausdorff Convergence). Taking the limit as Hth → ∞, the weak

flows with surgery from M converge to the level-set flow from M in the Hausdorff

sense.

Proof. Recall, we use the convention that M+ε is interior to M . Let U be the

compact set bounded by M , and U ′ = U c. Similarly, denote U±ε as the compact

sets with ∂U±ε = M±ε, and U ′
±ε = U c

±ε. It is clear that for all ε1 > ε2 > 0 we have

U−ε1 ⊃ U−ε2 ⊃ U ⊃ U+ε2 ⊃ U+ε1

U ′
+ε1 ⊃ U ′

+ε2 ⊃ U ′ ⊃ U ′
−ε2 ⊃ U ′

−ε2

Using the notation of [HW20], we denote the space-time track of the level-set flow

from U,U ′ as U ,U ′. We have

U−ε1 ⊃ U−ε2 ⊃ U ⊃ U+ε2 ⊃ U+ε1

U ′
+ε1 ⊃ U ′

+ε2 ⊃ U ′ ⊃ U ′
−ε2 ⊃ U ′

−ε

By Lemma 3.3.2, we can take ε > 0 small enough such that M±ε has only spherical

and neck-pinch singularities. Thus, the level-set flow from M±ε does not fatten, and

hence ∂U+ε = ∂U ′
+ε = supp(M+ε).

We define the closed sets Kε := U ′
+ε ∩ U−ε and K(t) := {x ∈ Rn+1 | (x, t) ∈ K}.

Note, the space-time boundary of Kε is ∂Kε = supp(M+ε) ⊔ supp(M−ε). Recall,

these flows are disjoint by the avoidance principle.

By Lemma 3.3.6, for every ε > 0, we can find a H(ε) < ∞ such that any weak

surgery flow MH with Hth > H avoids M±ε. Indeed, we see that MH ⊂ Kε and

at every time t ≥ 0 where both M±ε are non-empty, MH ‘separates’, in the sense

that any (space-like) curve joining M+ε(t) to M−ε(t) must pass through MH,t. The

corollary will follow immediately from the following claim.

Claim 3.3.3. Kε converges to supp(M) = {(x, t) ∈ Rn+1 × R s.t. x ∈ Ft(M)} in

the Hausdorff sense as ε→ 0.

Proof. By construction, supp(M) ⊂ Kε for all ε > 0, i.e. for all ξ > 0, supp(M) is

always in the ξ neighbourhood of Kε.
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Observe, for ε1 > ε2 > 0, we have Kε2 ⊂ Kε1 . Thus, it is sufficient to show

supp(M) ⊇ ∩ε→0Kε. (Clearly the reverse inclusion is true). We do this by showing

K := ∩ε→0Kε defines a weak set flow from M .

Observe, at t = 0, we have ∩ε→0Kε(0) = M , as M is closed and

Kε(0) = {x ∈ Rn+1 | d(x,M) ≤ ε}.

Given any smooth compact hypersurface N that is disjoint from M , we can find

an ε > 0 such that Kε(0) ∩N = ∅, simply by taking ε ≤ d(M,N). It is immediate

from the definition of Kε that it will be disjoint from the space-time track of the

mean curvature flow from N . Indeed, K must avoid every smooth mean curvature

flow that is initially disjoint with M . Thus, K defines a weak set flow from M .

Since supp(M) is the space-time track of the level-set flow, it must contain K. This

follows from the definition of the level-set flow as the maximal weak set flow, see

[Ilm94].

QED

Indeed, we have shown that the ‘gap’ between M±ε, Kε, Hausdorff converges

to supp(M) as ε → 0. Since M±ε, the space-time boundary components of Kε,

converge in the Brakke sense to M, and any surgery flow with Hth > H(ε) will

separate M±ε, we deduce limHth→∞MH = supp(M).

QED

Having shown Hausdorff convergence, our goal now is to establish graphical con-

trol of the weak surgery flows in the boundary neighbourhood of the (α, β) neigh-

bourhood. This is achieved by establishing Brakke convergence in this region. We

will actually show Brakke convergence on the full regular set. Consider for a moment

a sequence of Brakke flows that converge in a Hausdorff sense to another Brakke

flow. Improving the convergence to Brakke convergence is straight forward provided

one can find a way to control multiplicity. See the proof of Proposition 3.3.17, claim

3.3.7 onwards. Recalling the definition of an (α, δ) Brakke-flow, Definition 3.2.11,

inside any open space-time set that does not contain a surgery, an (α, δ)-Brakke flow

is a unit-regular, cyclic (mod 2) Brakke flow. Thus, Brakke convergence will follow

from understanding where, in a limiting sense, surgeries occur in our weak surgery

flows. Indeed, we will show that the surgeries accumulate in the singular set of M.

Using what has been shown so far we can develop some intuition as to why this is

expected behaviour.

Let Mn ⊂ Rn+1 and M be as stated at the start of the current section. For the

sake of simplicity, suppose further M encounters an isolated, non-degenerate neck-

pinch singularity at the first singular time. Let MHi be a sequence of weak flows

with surgery starting from M , with H i
th → ∞. At the first time of surgery in the flow

MHi , we can identify a δ-neck with centre Pi and mean curvature HMHi
(Pi) = H i

neck
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that is about to under-go surgery. The sequence {Pi}∞i=1 can be treated as a sequence

of points in M since, by definition, the weak flows with surgery must agree with

M up to their respective first surgery time. Since H i
neck → ∞, it is clear that the

points Pi must accumulate in the singular set at the first singular time. Whilst

this argument works at the first time of surgery, it unfortunately cannot be applied

at later surgery times, however, we can use the barriers begin to understand what

is happening. In the following we develop a general intuition, though it may be

informative for the reader to keep in mind the specific example of the classic 2-convex

dumbbell as the initial condition M and M the outer flow from M . First, we note

ε > 0 can be chosen small enough such that the barrier flows M±ε also satisfy the

canonical neighbourhood condition in our (α, β) neighbourhood. We may assume

the barriers are moving monotonically towards their (global) interior inside Ω(α,β); in

connected components of Ω(α,β) where flows are moving monotonically towards their

exterior, simply exchange the roles of the inner and outer barriers. Secondly, we note

that any weak flow with surgery (with sufficiently large Hth) separates M±ε. Indeed,

we have the set of inclusions outlined in Corollary 3.3.8. Thus, by our avoidance

principle, Lemma 3.3.6, surgeries can only occur in regions where the inner barrier

is not present. Conversely, we see the outer barrier M−ε can only pinch off into a

cylindrical singularity or vanish in a spherical singularity in regions where the weak

surgery flow is not present. From our canonical neighbourhood assumption, one

expects the inner barrier to vacate the (ambient) interior of a δ-neck in the weak

surgery flow by translating like a bowl or passing through a singularity. Similarly,

we expect the weak surgery flow would vacate the interior of a neck-like region in

the outer barrier developing into a singularity by surgery †. Indeed, this seems

to indicate a correspondence of surgeries and singularities and thus one expects,

along the sequence of weak surgery flows from M , for surgeries to accumulate in the

singular set of M.

Unfortunately, it is not clear that this picture is entirely correct. One possible

issue is that there is no way to rule out a surgery neck developing in a weak surgery

flow in such a way that is completely unrelated to the geometry of the barriers

flows. This is possible as we have only shown the weak surgery flows (with large

Hth) remain Hausdorff-close to the original weak flow after the first surgery time.

For the above heuristic to have rigorous meaning we need to be able to relate the

geometry of the weak surgery flows back to that of the original flow. Indeed, this

would rule out ‘gratuitous’ surgery necks forming in regions where we would expect

low curvature. One might hope to use pseudolocality to control the flow with surgery.

Unfortunately, direct application of pseudolocality is obstructed by the surgeries, as

the caps cannot be written as graphs over the necks they replace. We will show in

Proposition 3.3.12 that the pseudolocality result as stated in [INS19] can be applied

at a space-time point X0 in a weak flow with surgery, with the caveat that surgeries

†that is, of course, presuming that surgery is permitted according to the Definition 3.2.11.
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must be performed at a scale much larger than the curvature at the point X0. In

order to repeatedly apply pseudolocality one must introduce further ingredients (see

Remark 3.3.16).

The purpose of the following lemma, Lemma 3.3.10, is to define a scaling fac-

tor λ := |A|(x0)

C̃2
, such that when the flow is dilated by λ, the hypotheses of the

pseudolocality, Theorem 2.4.2, are satisfied, see Remark 3.3.11.

Remark 3.3.9. In Remark 3.2.14, we discussed how the canonical neighbourhoods

had to be chosen careful such that we always satisfy the hypotheses of the Haslhofer–

Kleiner curvature estimates, Theorem 3.1.8, in the interior for a particular choice of

Λ. We now pause to start fixing the value of our constants so we can use them in

the following arguments. In particular, we fix a value for the required Λ.

We fix η > 0 that satisfies the required gradient bound of the Ecker–Huisken

graphical curvature estimate, Theorem 2.4.4. Taking this value of η into Pseudolo-

cality, Theorem 2.4.2, fixes an initial Lipschitz bound ε = ε(n, η) > 0 and radius

ϑ = ϑ(n, η) > 0. We hence take ϑ as the radius of the n-ball in the Ecker–Huisken

estimate, Theorem 2.4.4, giving the constant C̃3 = C̃3(n, θ, ϑ). We will only ever

apply this graphical curvature bound to a point over the origin of the ball, so the

value of θ does not matter, so for the sake of simplicity take θ = 1/2. We can now fix

Λ = 10nmax{C̃3, 1} for application of the Haslhofer–Kleiner curvature estimate. As

was discussed in Remark 3.2.14, the value of Λ needs to be fixed so it is certain we

can apply the estimate at interior points of Ω(α,β). The reasoning for this choice of

value for Λ will become clear in the following theorems. Of course, fixing the value

of Λ fixes the value of C̃0 = C̃0(α,Λ) <∞, the constant from the Haslhofer–Kleiner

curvature estimate. Finally, taking ε given to us from pseudolocality and this value

of C̃0, we fix the value of C̃2 = ε/C̃0, as per Lemma 3.3.10.

In the following, constants will be denoted C̃k for some integer k and cylinders‡

will be denoted C(x, r) for some point x ∈ Rn+1 radius r > 0. Note also, balls in

the (n + 1)-dimensional ambient space are denoted B, whilst balls of dimension n

in an affine subspace (i.e. a tangent space) will be denoted Bn.

Lemma 3.3.10. Let MH be a weak flow with surgery and suppose X0 = (x0, t0) ∈
MH ∩ Ω(α,β). Suppose further t0 ≤ tF , where tF is the last surgery time.

For every ε > 0, let C̃2(α,Λ, ε) = ε
C̃0(α,Λ)

, where C̃0 is the constant from the

Haslhofer–Kleiner curvature estimate. Then the hypersurface λ(Mt0 − x0), with

λ = |H|(x0)

C̃2
, has

sup
λMt0∩B(0,1)

|A| ≤ ε (3.1)

sup
λMt0∩B(0,1)

√
1 + |Du|2 < 1 + ε (3.2)

‡The cylinder has been defined in Definition 2.4.1.
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Where u(x) is a function on the tangent space at 0 such that λ(Mt0 −x0)∩C(0, 1) =

graph(u) and Mt0 is the t = t0 time-slice of MH. In particular, we note that the

above show that the Lipschitz constant of u is bounded by ε.

Proof. Since t0 ≤ tF , the surgery flow is certainly smooth, and thus we can apply

the global curvature estimate, Theorem 3.1.8, with our choice of Λ ≥ 1. The claim

follows immediately. QED

Remark 3.3.11. The existence of such a C̃2 is noteworthy, as it is uniform across

any (α, δ)-flow that satisfies the assumptions of Theorem 3.1.8. Indeed, this shows

that the ϑ > 0 given to us in the following pseudolocality theorem (Theorem 3.3.12)

is uniform, when working at the scale of mean curvature, across all weak surgery

flows MH that satisfy the hypotheses of Theorem 3.3.12. This is required so limits

may be taken.

As mentioned previously, the surgeries obstruct the use of pseudolocality as

stated in [INS19]. Following their argument, the result is only valid until the next

surgery is performed. In addition to their proof, we need to show that if any surg-

eries are performed in the forward time interval, then they are not performed in or

near a large neighbourhood of the cylinder where we wish to apply pseudolocality.

Indeed, this is true provided surgeries are done at a sufficiently large scale compared

to the mean curvature of the point we wish to apply pseudolocality. The central

idea is a combination of the Ecker–Huisken graphical curvature estimates and the

Haslhofer—-Kleiner curvature estimate to bound the mean curvature in the cylinder

below the surgery scale.

Proposition 3.3.12. Let X0 ∈ MH ∩ Ω(α,β), |A|(X0) < ∞. Pseudolocality can

be applied to the flow MH around X0, provided the surgery is done with parameter

Hneck >
C̃0C̃3

C̃2
n2|H|(X0). That is,

Dλ(MH −X0) ∩ C(0, ϑ), t ∈ [0, ϑ2) ∩ [0, tF ] (3.3)

is a smooth mean curvature flow, and can be written as a graph over ϑ with Lipschitz

constant less than η and height bounded by ηϑ. λ = λ(α,Λ, ε,X0) is as in the above

claim. tF denotes the final time of surgery in the dilated flow. Moreover, since MH

is continued as a Brakke flow after the final time of surgery, we also deduce

Dλ(MH −X0) ∩ C(0, ϑ), t ∈ [0, ϑ2) ∩ [0, tExt] (3.4)

is a unit-regular, cyclic (mod 2), integral Brakke flow, and can be written as a graph

over Bn
ϑ with Lipschitz constant less than η and height bounded by ηϑ.

Remark 3.3.13. C̃0, C̃3 are expected to be large, C̃2 is expected to be small. Thus,
C̃0C̃3

C̃2
is very large. This may give the impression that the theorem is weak. Its
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strength will come once applied to points with bounded curvature in a sequence of

flows with degenerating surgery parameters.

Proof. Suppose X0 ∈ MH ∩ Ω(α,β), |A|(X0) < ∞. We fix η > 0, and let ϑ(η), ε(η)

be those given by the pseudolocality Theorem 2.4.2. Let λ be as in lemma 3.3.10

with ε = ε(η).

If the surgery flow is a smooth mean curvature flow in the forward time interval

given by Theorem 2.4.2, then there is nothing to check. Thus, let M̂H = Dλ(MH −
X0), and suppose there are surgeries occurring in the time interval [0, ϑ2). Note,

there are only finitely many times to check in this interval, so we may enumerate

them chronologically.

Let t1 be the time of the first surgery in M̂H after time t = 0. It is sufficient to

show that all surgeries are performed far from the cylinder C(0, 1) at time t1, as this

demonstrates the flow is simply a smooth mean curvature flow in C(0, 1) × [0, t2)

and thus the flow remains a graph in the cylinder C(0, ϑ) × [0, t2), where t2 is the

next surgery time.

Remark 3.3.14. These times correspond to surgeries in the dilated flow, not the

original time scale.

Since the flow is a mean curvature flow on [0, t1], we know from the classical

pseudolocality result that M̂H∩C(0, ϑ) can be written as the graph of ut : Bn
ϑ(0) →

R, for t ∈ [0, ϑ2) ∩ [0, t1].

Applying the Ecker–Huisken interior estimate for graphs, Theorem 2.4.4, to the

function ut we establish the following bounds on curvature

sup
Bn

θϑ(0)×[0,t1]
|A| ≤ C̃3(n, θ, ϑ) sup

Bn
ϑ (0)×{0}

|A| = C̃3ε (3.5)

for some constant C̃3 depending only on n, θ, ϑ.

LetX = (0, ut1(0), t1) = (x, t1), i.e. the point in the flow above the origin at time

t1. Equation 3.5 shows |A|(X) ≤ C̃3ε. Applying the Haslhofer–Kleiner curvature

estimate, Theorem 3.1.8, at the point X, we deduce that in the backward parabolic

cylinder P (X,Λr) the curvature is bounded by C̃0r
−1, where r−1 = H(X) ≤ C̃3εn

(and thus, r ≥ (C̃3εn)−1). Note we have used the standard inequality |H| ≤ n|A|.
As a simple consequence of the estimate in P (X,Λr), we have

sup
BΛr(x)∩M̂t1

|A| ≤ C̃0C̃3εn,

where M̂t1 denotes the t = t1 time slice of M̂H. Moreover, using |H| ≤ n|A| once

again, we see

sup
BΛr(x)∩M̂t1

|H| ≤ C̃0C̃3εn
2.
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We highlight that, since Λ ≥ 10nC̃3, the curvature bound holds in B(x, 10ε−1),

moreover B(x, 10ε−1) ⊃ C(0, 1). That is to say, the curvature bound holds for the

weak flow with surgery contained in the cylinder C(0, 1) at time t1.

By definition, surgery in MH was done at scale Hneck. Scaling our parame-

ters accordingly, we deduce surgery in M̂H is done at scale Ĥneck = λ−1Hneck =

(C̃2/|H|(x0))Hneck > C̃0C̃3n
2 > C̃0C̃3εn

2. Here, we have used our assumption that

Hneck >
C̃0C̃3

C̃2
n2|H|(X0) and that ε < 1. Observe, from the bound on mean curva-

ture in BΛr(x), the mean curvature at every point Y ∈ M̂H ∩ (B10ε−1(x) × {t1}) is

below the threshold for surgery to be performed. In particular, any changes made

at time t1 do not affect the portion of the hypersurface M̂t1 contained in C(0, 1).

Hence, the flow M̂H ∩ (C(0, 1) × [0, t2]) is a smooth mean curvature flow, and the

flow is graphical over Bn
ϑ(0) in C(0, ϑ) × [0, t2].

This argument is then repeated at all future surgery times in [0, ϑ2) ∩ [0, tF ].

The second claim follows immediately from the Brakke form of Theorem 2.4.2, as

MH is continued as a unit-regular integral Brakke flow after the final surgery time

tF . QED

We now have the tools necessary to show surgeries accumulate in the singular

set.

Proposition 3.3.15. Let Mn ⊂ Rn+1 and M be as above. Then, for every open

neighbourhood N of the singular set, there is a Hmin(N) < ∞ such that if H has

Hth > Hmin, then all surgeries in MH occur inside this neighbourhood.

Proof. The above statement is equivalent to the statement that, across a sequence

of surgery flows with H i
th → ∞, any sequence of centres of surgery necks, Xi ∈ MHi ,

accumulates in the singular set S of M.

Suppose for contradiction that this is not the case. Let MHi be a sequence

of (α, δ,Hi)-flows evolving from M with H i
th → ∞. By the assumption we wish

to contradict, we can find a sequence of points Xi = (pi, ti) ∈ MHi in δ-necks

where surgery is performed, with H(Xi) = H i
neck, that accumulate to some point

X∞ = (x∞, t∞) ∈ Sc. It is clear that the sequence must accumulate to some point

in supp(M) from Hausdorff convergence. Note that t∞ ̸= tExt, as the regular set is

empty at time of extinction.

Claim 3.3.4. X∞ /∈ ∂Ω(α,β)

Proof. Suppose X∞ were in the boundary of the chosen (α, β)-neighbourhood. Item

(iii) of Definition 3.2.11 required a backward parabolic cylinder centred at each point

in the boundary in which the surgery flow is a graph over the original flow. This

immediately rules out surgeries being performed in this neighbourhood, and thus

preventing accumulation forward in time (i.e. ti < t∞, for infinitely many i) or

‘spatially’ (ti = t∞, for infinitely many i) within a given time-slice to a point the
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boundary. Thus, it remains to check that surgeries cannot accumulate backward in

time (ti > t∞, for infinitely many i) to a point in the boundary.

We first prove a smooth convergence result. Again we recall Item (iii) of Defini-

tion 3.2.11. There is a backwards parabolic cylinder P = P (X∞, 2ξHbdd) centred at

X∞ in which we can write MHi as a graph over M. This is true for all i. As men-

tioned above, being a small graph over the original flow rules out surgeries occurring

in this parabolic cylinder. Clearly MHi ∩ P is a sequence of smooth unit-regular

Brakke flows, and thus converge to some limiting Brakke flow N in P . Hausdorff

convergence shows that the support of N is supp(M ∩ P ). Finally, we note that

being a small graph controls the multiplicity of the flows with surgery and thus the

sequence converges locally smoothly in P to M∩ P by White regularity.

The smooth convergence is now used to show pseudolocality can be applied

in such a way that is comparable across all the flows with surgery for sufficiently

large i. Dilating by λ = |H|(X∞)/C̃2 around the point X∞, and following the

proof of Lemma 3.3.10, we deduce M̃0, the t = 0 time slice of the dilated flow

M̃ = Dλ(M − X∞), can be written as the graph of some smooth function u over

B = Bn
1 (0), the ball of radius 1 in the tangent space at 0, with |A| < ε. Similarly, we

set M̃i = Dλi
(MHi−X∞), λi = |Hi|(Xi)/C̃2. Since the (un-dilated) flows converged

smoothly around X∞, we deduce λi → λ. Moreover, the dilated flows M̃i converge

smoothly to M̃ in P , thus there is an I < ∞ such that for i ≥ I, the time t = 0

time-slice, M̃i,0, can be written as a graph of the function ui : B → R, where B is

the same ball in the tangent space to M̃0 at 0, and ui → u smoothly in B. Thus,

by the Brakke form of the pseudolocality result for flows with surgery, Proposition

3.3.12, no surgeries of the flow MHi occur in M̃Hi ∩ C(0, ϑi) × ([0, ϑ2i ) ∩ [0, tExt)).

Recall, ϑi essentially depended on the curvature at ui(0) and the dimension. Since

the hypersurfaces at time t = 0 converge smoothly in some neighbourhood of the

origin, there is a uniform ϑ > 0 such that for every flow, M̃i ∩ C(0, ϑ) × ([0, ϑ2) ∩
[0, tExt)) is a unit-regular, cyclic (mod 2) Brakke flow. In particular, no surgeries

occur. This contradicts our assumption that surgeries were accumulating from future

times. QED

It remains to check regular points in the interior of Ω(α,β). In order to employ the

above argument, we require knowledge that the weak surgery flows are graphical over

M in some backwards parabolic cylinder. A priori, we have no control of the flow

at points in the interior, other than information given by the maximum principle

and Hausdorff convergence. To find such a neighbourhood, we will start at the

boundary of Ω(α,β) and then repeatedly apply the pseudolocality theorem followed

by the Haslhofer–Kleiner curvature estimate to work our way into the interior.

Claim 3.3.5. There is an open space-time neighbourhood of X∞ such that the flows

MHi converge smoothly to M.
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Remark 3.3.16. If one were to just iterate pseudolocality, the forward time interval

could shrink in a geometric progression. The essence of the argument presented

below is, given a point of low curvature, we find our forward neighbourhood from

pseudolocality. We deduce convergence of the sequence of surgery flows to M in

this forward neighbourhood. Applying the Haslhofer–Kleiner curvature estimate we

show, for large i, no surgeries will be performed in a larger backward neighbourhood

(centred at some future time, compared to the point we applied pseudolocality), and

we can deduce convergence on this larger set. One is then in a position to apply

pseudolocality at the same scale.

Proof. Consider a path γ in reg(M)∩Ω(α,β) connecting X∞ to a point X0 ∈ ∂Ω(α,β).

Say γ : [0, T ] → reg(M), γ(0) = X0, γ(T ) = X∞. Since the flow is locally 2-convex,

we can pick the point X0 and translate in time such that X0 = (x0, 0), γ(τ) ∈ Mτ .

We will write γ(τ) = (xτ , τ). The argument proceeds as follows:

• Since the path γ is compact, there exists some A <∞ such that

max
τ∈[0,T ]

|HM|(γ(τ)) ≤ A.

• Fix a small constant ζ > 0. Lemma 3.3.10 implies M̃τ = Dλ(Mτ − γ(τ)) can

be written in C(0, 1) as a graph over the ball Bn
1 (0) in the tangent space to

M̃τ at 0, where λ = A+ζ

C̃2
. In particular, the hypotheses of Theorem 2.4.2 are

satisfied and hence we can apply the Brakke formulation of pseudolocality to

M̃τ at 0.

• We remark that the small constant ζ > 0 is present so we can rescale each

MHi by the same factor. The plan is to use the same argument as in Claim

3.3.4, with the only complication coming from wanting to have the forward

neighbourhood be comparable at every point along γ. Consider a sequence of

points Yi ∈ MHi accumulating to Y∞ ∈ γ, such that |HMHi
(Yi)| → |HM(Y∞)|.

Then, there exists an I = I(ζ), such that i ≥ I implies |HMHi
(Yi)| < A + ζ.

The significance being one can choose a cylinder centred at Y∞ in which the

conclusion of pseudolocality (Theorem 2.4.2 and Proposition 3.3.12) is valid for

M and all MHi with i ≥ I(ζ) after dilating by the common constant λ = A+ζ

C̃2
.

• Returning to our main argument, we transform back to the un-dilated flow

and deduce there is a uniform ϑ such that at each point γ(τ) ∈ reg(M), the

flow M∩C(τ) is graphical over the ball Bn
λ−1ϑ(xτ ) in the tangent space to Mτ

at γ(τ). Where C(τ) = C(xτ , λ
−1ϑ) × ([τ, τ + (λ−1ϑ)2] ∩ [0, TExt)).

• The path γ is continuous and compact. Hence, we can find finitely many

times 0 = τ0 < τ1 < · · · < τN < T such that γ([0, T ]) ⊂ ∪N
j=0C(τj). Note that

τN < T . This will be important for applying the curvature estimates to the
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flows with surgery MHi . Note further there must be ‘overlap’ of the cylinders,

in the sense γ(τi) ∈ C(τi−1), i ≥ 1.

• By our assumption, γ(0) ∈ ∂Ω(α,β). Examining the proof of Claim 3.3.4, we

can immediately deduce Brakke convergence of MHi → M in C(0). Indeed,

for sufficiently large i, MHi ∩ C(0) is a Brakke flow (no surgeries occur in

C(0)). Multiplicity is controlled by our assumption the flows with surgery are

graphical over the boundary.

• We can improve the regularity of the convergence. Recall, γ(τ1) ∈ C(0), thus

MHi → M in a Brakke sense in some small backwards parabolic cylinder P

centred at γ(τ1). We may suitably shrink P such that P ∩ M ⊂ reg(M).

Since M is smooth in P , we deduce smooth convergence of MHi → M in P

by White regularity.

• We now prove an inductive step, allowing us to ‘move along’ the path γ.

Smooth convergence in P centred at γ(τ1) implies there is a sequence of points

Yi = (yi, τ1) ∈ MHi , Yi → γ(τ1), HMHi
(Yi) → HM(γ(τ1)). We can hence

apply the Haslhofer–Kleiner curvature estimate to MHi at Yi as in Proposi-

tion 3.3.12 to deduce no surgeries occur in the backwards parabolic cylinder

P (Yi,Λ(HMHi
(Yi))

−1). Applying the curvature estimate is permissible when i

is taken sufficiently large: the surgery necks accumulate at some time T with

τ1 < T , thus for large i we must have τ1 < tFi , where tFi is the final time of

surgery in MHi .

• In particular, we deduce smooth convergence in P (γ(τ1, (HM(γ(τ1)))
−1) since

Λ > 1. One is now in the position to apply the argument from Claim 3.3.4.

• This argument can be repeated at each τj , since τj ∈ C(τj−1). In particular,

we note that γ(T ) ∈ C(τN ). Thus, again, taking i sufficiently large, we deduce

no surgeries of the flow MHi are performed near γ(T ), contradicting the claim

that surgeries accumulated at γ(T ) = X∞.

QED

This concludes the proof, as we have shown surgeries cannot accumulate to

regular points.

QED

We now state and prove our crucial convergence result. Note, in the above proof

we have already established convergence inside Ω(α,β).

Proposition 3.3.17 (Convergence away from singular set). Let MHi be a sequence

of (α, δ,Hi) surgical flows derived from M , and suppose Hi is a sequence of surgery

parameters with H i
th → ∞. Then, MHi converges to M as Brakke flows on the

complement of the singular set of M.
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Proof. Recall that the singular set S is closed in space-time, thus its complement,

Sc, is open. Recall further, the definition of convergence of Brakke flows [Bra78],

[Ilm94], is with respect to compactly supported functions. If f ∈ C1
c (Sc), then

by definition we have supp(f) ⋐ Sc. In particular, it is sufficient to verify the

proposition on any connected open set Ω ⋐ Sc that has non-trivial intersection with

the initial timeslice. These properties are required to control the multiplicity of the

Brakke flow as in Lemma 3.3.2.

Claim 3.3.6. For any open set Ω ⋐ Sc, there is an I < ∞ such that for i > I, no

surgeries of the flow MHi occur in Ω.

Proof. This follows from Proposition 3.3.15.

If Ω∩Ω(α,β) = ∅, we immediately know surgeries are not present in a neighbour-

hood for all i > 0. It remains to check the case when Ω∩Ω(α,β) ̸= ∅. Without loss of

generality, we consider Ω ⊂ Ω(α,β). Since Ω ⋐ Sc, there is an open neighbourhood

N of S, with Ω ∩N = ∅.

Thus, by Proposition 3.3.15 we deduce all surgeries occur in N for sufficiently

large i, and hence none occur in Ω. QED

Applying Ilmanen’s compactness result for Brakke flows, [Ilm94], there is a lim-

iting unit-regular Brakke flow N such that,

lim
i→∞

MHi⌊Ω = N .

Claim 3.3.7. supp(N ) = reg(M) ∩ Ω

Proof. The claim follows immediately from Corollary 3.3.8. In particular, supp(N )

is connected by the result of [CCMS20]. QED

Claim 3.3.8. N = M⌊Ω as unit-regular Brakke flows.

Proof. All that remains is to check N does not develop higher multiplicity. By

the above, supp(N ) is connected and has non-trivial intersection with the initial

time-slice, thus N has unit density everywhere. QED

Thus, limi→∞MHi⌊Sc = M as Brakke flows.

QED

As a corollary, one deduces the following results that control the behaviour of

any potential singular points that form in weak surgery flows.

Corollary 3.3.18. Let MHi be a sequence of (α, δ,Hi) surgical flows derived from

the flow M, and suppose Hi is a sequence of surgery parameters with H i
th → ∞.

If Xi ∈ MHi is a sequence of singular points (i.e. points with Gaussian density

ΘMHi
(Xi) ≥ 1 + εWhite). Then Xi accumulate in S, the singular set of M.
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Remark 3.3.19. Here εWhite is the (dimension dependent) quantity of White reg-

ularity [Whi05].

Proof. Suppose for contradiction a sequence of points {Xi}∞i , satisfying the above

hypothesis, accumulates at X∞ ∈ reg(M). Then, by Proposition 3.3.17, the weak

surgery flows converge to M in a neighbourhood of X∞. In particular, ΘM(X∞) =

1. This is in contradiction to the upper semi-continuity of the density; taking the

limit of densities we should have ΘM(X∞) ≥ 1 + εWhite.

QED

Corollary 3.3.20. The above corollary holds also for regular points Xi ∈ MHi

where

lim
i→∞

|A(Xi)| = ∞

Proof. Following the above proof, we note that smooth convergence implies con-

vergence of the second fundamental form. X∞ is a smooth point, thus |A| < ∞,

contradicting limi→∞ |A(Xi)| → ∞. QED

3.4 Existence and Convergence of Smooth Flows with

Surgery

Let Mn ⊂ Rn+1 be a closed, smoothly embedded submanifold. Since M is compact

and smooth, we can find a γ > 0 such that |A| < γ. We suppose there is a unique

unit-regular Brakke flow M emerging from M that encounters only spherical and

neck-pinch singularities. We fix

• 0 < α < min{αcyl, αsphere, αoval, αbowl}.

• 0 < β < min{βsphere, βcylinder, βbowl, βoval}.

Let α = (α, β, γ). Additionally, we take δ > 0 small enough that all the arguments

of Haslhofer–Kleiner [HK17b] hold and to satisfy item (iii) of Definition 3.2.11 and

Remark 3.2.14. For the sake of completeness, we also fix a suitable standard surgical

cap, suitable cap separation parameter and the value of Λ as in Section 4.

Theorem 3.4.1 (Surgery at the first singular time). Let M be as above. Let Ω1 be

the union of the connected components of Ω(α,β) containing the first singular time.

Let T1 > 0 be the first singular time of the flow outside Ω1. Then for every ε > 0,

the parameters Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depending only on

the initial hypersurface) such that the (α, δ,H) weak surgery flow MH is a smooth

mean curvature flow with surgery on [0, T1 − ε).

Compare the result of Mramor, [Mra21], where similar ideas are discussed for

surgery in mean convex ‘patches’ of non-compact flows.
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Proof. Fix an ε > 0 and stipulate that surgeries may only be performed in Ω1. By

Corollary 3.3.20, we know the singularities of surgery flows converge to the singular

set of M as Hth → ∞. Thus, we can choose Hmin < ∞ sufficiently large that

all singularities of a weak surgery flow with Hth > Hmin occur within ε in time of

the singularities of M. Moreover, such singularities are contained in Ω(α,β) and are

spherical or neck-pinch singularities.

We initially fix the surgery ratio Θ <∞, this will be changed in due course.

Claim 3.4.1. For sufficiently large Hmin, any (α, δ,H)-flow with Hth > Hmin is a

δ-graph over M in N1 along the boundary of Ω1.

Proof. This is a consequence of Proposition 3.3.17 and its corollaries. Recall, N1

is the open neighbourhood of the boundary of Ω1 in which the flow M is smooth,

locally α-noncollapsed and β-uniformly 2-convex, as defined in Definition 3.2.10.

Since the boundary of N1 is bounded away from the singular set, it is immediate

from Proposition 3.3.17 and White regularity that, for sufficiently large Hth, the

claim holds. QED

Remark 3.4.2. It is important to compare this claim with the definition of surgery.

We only permit the surgery procedure to be applied when the flow is graphically

over M along the boundary. Thus, we see the obstruction to the flow continuing as a

smooth surgery flow is not from our definitions, but from a point with H(X) = Hneck

that does not separate regions of curvature Hth and Htrig or is not a δ-neck. This is

the same obstruction as is dealt with in the case for 2-convex flows in [HK17b].

Claim 3.4.2. Fix Hmin < ∞ to satisfy claim 5.1. Then if Hth > Hmin, we can

directly apply the arguments of Haslhofer–Kleiner [HK17b] to establish a Θ < ∞
such that H > Θ implies the weak (α, δ,H) surgery flow is a smooth mean curvature

flow up to time t = T1 − ε.

Proof. Recall, the definition of an (α, δ)-Brakke flow only allowed surgery as long

as the flow was smooth. Thus, since the singularities of the surgical flows can occur

within ε of any singular time, T1−ε is the best one can do without more information

on the singular set.

By the first claim, MH∩∂Ω1 is 2-convex and α-noncollapsed for all H with Hth >

Hmin. After doing one surgical neck replacement, the maximum principle gives that

the flow remains 2-convex and α-noncollapsed inside Ω1. The same argument holds

across any number of neck replacements, so every surgical flow with Hth > Hmin is

2-convex and α-noncollapsed inside Ω1.

We now stipulate that the flow is stopped once |H| = Htrig is achieved inside

Ω1. [HK17b, Theorem 1.21] and [HK17b, Theorem 1.22] can now be applied directly

find the desired Θ <∞ which establishes the existence of a weak flow with surgery

that is smooth inside Ω1 up to time T1 − ε. We note that Corollary 3.3.20 prevents
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points of high curvature accumulating on the boundary of Ω1 along sequences of

surgical flows. This is important for the proof of [HK17b, Theorem 1.22]. QED

This completes the proof of the theorem. QED

Remark 3.4.3. We stop only if Htrig is achieved in Ω1.

Remark 3.4.4. One should note that Andrews’ maximum principle proof of α-

noncollapsing for mean convex mean curvature flow, [And12], makes use of a 2-

point maximum principle for a function Z(x, y, t). The positivity of Z(x, y, t) is

equivalent to being α-noncollapsed. This argument can be suitably localised to the

above situation by observing that along the boundary of Ω1, the flows will be close

to one of the canonical flows (sphere, cylinder, bowl, and oval). Indeed, we know

for points in the boundary the ‘touching points’ of tangential spheres will be in our

neighbourhood of the boundary, N1. Since the interior mean curvature is larger

than the boundary mean curvature, and surgery flows are Hausdorff close to the

original flow, we see touching points of tangential spheres to interior points will be

in Ω1 ∪ N1. That is, one only needs to consider the function Z(x, y, t) for points

((x, t), (y, t)) ∈ Ω1×{Ω1∪N1}. This is similar to the argument presented in Theorem

3.A.1.

Theorem 3.4.5 (Existence of a smooth flow with surgery). Let M be as above.

Then, the parameters Hmin(M) < ∞ and Θ(M) < ∞ can be chosen (depending

only on the initial hypersurface) such that every weak (α, δ,H)-flow, MH, with Hth >

Hmin, H > Θ satisfies:

• |H| ≤ Htrig <∞ everywhere,

• MH vanishes in finite time.

i.e. MH is a smooth mean curvature flow with surgery.

Remark 3.4.6. The weak surgery flows were unit-regular away from surgery, so

sudden vanishing is not permitted. The second item is thus non-trivial.

Proof. Ω(α,β) has finitely many components, thus it is sufficient to argue inductively.

We show that given Theorem 3.4.1, we have the respective statement for Ω2, the

union of connected components of Ω(α,β) containing time T1. Recall time T1 was the

first singular time that occurs outside Ω1. We will establish that for every ε > 0 the

parameters can be chosen such that there is a smooth flow with surgery up to time

T2 − ε. Here, T2 the first singular time outside of Ω1 ∪ Ω2

Remark 3.4.7. The time interval over which Ω2 exists may overlap with that of

Ω1. Surgeries in Ω2 can affect the surgeries that occur in Ω1, since mean curvature

flow is parabolic. This is not an issue as the convergence results still hold. We may

require a larger Hmin and/or Θ for the same conclusion to hold.
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Pick Hmin, Θ < ∞ such that the conclusion of Theorem 3.4.1 holds, and con-

sider the boundary of Ω2. Once again, the logic of Proposition 3.3.17 controls the

behaviour in a neighbourhood of the parabolic boundary, N2. We may take Hmin

large enough that the flow is β-uniformly 2-convex and α-noncollapsed in N2. Pro-

ceeding exactly as in claim 3.4.2, we conclude the same result for Ω1 ∪ Ω2.

This argument can be repeated for each connected component of Ω(α,β). Since

there are only finitely many components, Hmin and Θ stay bounded as they can only

be changed a finite number of times.

Observe, the flow M will be entirely contained within the final connected com-

ponent of Ω(α,β). Thus, there will be no singular times outside the final connected

component, as there is no flow. The flow inside this final component will be a

2-convex surgery of [HK17b]. QED

We restate the canonical neighbourhood theorem of Haslhofer–Kleiner.

Theorem 3.4.8 (Canonical Neighbourhoods, Theorem 1.22 [HK17b]). For all ε >

0, there exist δ = δ(α) > 0, Hcan(ε) = Hcan(α, ε) < ∞ and Θε(δ) = Θε(α, δ) < ∞
(δ ≤ δ̄) with the following significance. If δ ≤ δ and MH is an (α, δ,H)-flow with

H ≥ Θε(δ), then any (p, t) ∈ MH with |H(p, t)| ≥ Hcan(ε) is ε-close to either (a) a

β-uniformly 2-convex ancient α-noncollapsed flow, or (b) the evolution of a standard

cap preceded by the evolution of a round cylinder.

Proof. The proof is identical to that of Haslhofer–Kleiner [HK17b], for we only do

surgery in 2-convex connected components. QED

The canonical neighbourhood theorem gives the following topological result con-

cerning the dropped components.

Theorem 3.4.9 (Discarded components, [HK17b, Corollary 1.25]). For all ε > 0

small enough, there are parameters Θε(δ) <∞, Hcan(ε) such that any weak (α, δ,H)

surgical flow with H > Θε(δ), and Hth > Hcan(ε), has all discarded components are

diffeomorphic to Sn or Sn−1 × S1.

Remark 3.4.10. The parameters are derived from the canonical neighbourhood

theorem.

Proof. This follows from the canonical neighbourhood theorem [HK17b, Theorem

1.22]. The argument is identical to that in [HK17b], for components are only dropped

if they are contained in Ω(α,β). QED

We conclude with a result similar to that of Lauer and Head, [Lau13, Hea13].

Note we also establish the stronger result that the convergence away from the sin-

gular set is smooth.
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Theorem 3.4.11. Taking the limit as Hth → ∞, the weak (α, δ,H) surgical flows

converge in the Hausdorff sense to the level-set flow. Furthermore, away from the

singular set of M the convergence is smooth.

Proof. This is an immediate consequence of Proposition 3.3.17 and White regularity

[Whi05]. QED

3.5 Applications of the Surgery

We now apply the above surgery formalism to prove a Schoenflies type theorem for

hypersurfaces of entropy less than λ(S1×R2), without having to manually construct

the isotopies. Such a proof was conjectured in [CCMS21, Conjecture 1.9]. The

previous best bound on the entropy was λ(S2×R1) and was achieved independently

by Bernstein–Wang [BW22a] and Chodosh–Choi–Mantoulidis–Schulze [CCMS20].

Recall the definition of entropy for a hypersurface from [CM15].

Definition 3.5.1. The Entropy of a hypersurface Σ is

λ(Σ) = sup
x0,t0

(
1

4πt0

)n
2
∫
Σ

exp

(
−|x− x0|2

4t0

)
dµ,

i.e. the supremum of the Gaussian densities over all scales and base-points. It can

be considered a measure of the complexity of an embedding.

We first discuss the topological consequences of surgery. Recall, from Theorem

3.1.15 we know discarded components will be diffeomorphic to Sn or Sn−1 × S1.
Moreover, we have the following

Lemma 3.5.2. Let MH be a smooth mean curvature flow with surgery from the

smooth initial condition M . Then,

(i) The flow MH is a smooth isotopy between times of surgery.

(ii) Let M̃ be a connected component of the timeslice Mt, for any t, 0 < t < TExt.

The size of the fundamental group of M̃ satisfies |π1(M̃)| ≤ |π1(M)|.

Proof. (i) It is immediate from the definition that smooth mean curvature flow is

an isotopy. The flow MH is a smooth flow with surgery, and thus a mean curvature

flow between times of surgery. This proves the first statement.

(ii) From part (i), we know that any topological changes that occur must happen

at surgeries. It is sufficient to show the claim at the first surgery time, as at future

surgery times we can treat each connected component present before surgery as a

separate flow.

Let t be the first time of surgery. We denote the pre-surgery hypersurface by

M−
t and post neck-replacement, but pre-component dropping, by M#

t . Note that it
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is possible for M#
t to be disconnected. By item (i), we have π1(M

−
t ) = π1(M). We

need only to consider connected components ofM#
t as clearly any component present

at time between the first and second times of surgery must have evolved from some

connected component of M#
t . Thus, it is sufficient to show |π1(M−

t )| ≥ |π1(M̃)|,
where M̃ is a connected component of M#

t . This follows immediately by [HS09,

Proposition 3.23], which shows M−
t is diffeomorphic to the connected sum (reversing

the neck-replacement) of the connected components of M#
t . For completeness we

prove our claim directly, by showing every non-trivial element of π1(M̃) corresponds

to a non-trivial element of π1(M
−
t ).

Let Pi = (pi, t), i ∈ {1, 2, . . . , N}, N < ∞ be the centre of each δ-neck that is

about to be replaced by caps at time t. We know all modifications are made in

B = ∪N
i B(pi, 5ΓH−1

neck) (see Definition 3.1.5 with s = H−1
neck).

Let γ ∈ π1(M̃) be a non-trivial element. We can take this element to be repre-

sented by a curve γ̃ lying entirely in M̃\{M̃ ∩ B}. This follows as each connected

component of M̃ ∩B is diffeomorphic to our standard cap. Since the cap is simply

connected, any portion of the curve that enters a cap is homotopic to a curve on the

boundary. Morally, we can consider this curve as detecting some topology unaffected

by our surgery at time t.

Since γ̃ ∩B = ∅, we can consider it as a curve in M−
t , since M̃\{M̃ ∩B} ⊂M−

t .

Clearly this curve cannot represent the trivial homotopy class as the connected sum

operation cannot ‘remove topology’. Consequently, |π1(M̃)| ≤ |π1(M)|).
QED

Remark 3.5.3. It is of note that the surgery procedure detailed above can break

handles in two ways. This is best illustrated by the following examples.

1. Consider the 2-convex embedding of the torus known as the ‘wedding band’.

Deform it in a 2-convex manner such that one region is a much tighter neck

than other regions. This flow will develop an inward neck pinch under mean

curvature flow. If surgery is performed once, we are left with a ‘sausage’,

smoothly isotopic to a sphere.

2. Consider a sphere with small holes drilled in around the poles, that has had the

ends of a cylinder attached smoothly to each hole. This is a smooth embedding

of the torus. This cylinder is a long thin neck which, heuristically, one expects

would form an outward neck pinch under mean curvature flow. If one were

to replace this neck by surgery, the resulting hypersurface is a sphere with

the poles (smoothly) pushed in. This hypersurface is smoothly isotopic to a

sphere.

Theorem 3.5.4 (Low-entropy Schoenflies for R4). Let Σ3 ⊂ R4 be a hypersurface

homeomorphic to S3 with entropy λ(Σ) ≤ λ(S1 ×R2). Then M is smoothly isotopic

to the round S3.
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Proof. Σ3 ⊂ R4 be a hypersurface homeomorphic to S3 with entropy λ(Σ) ≤ λ(S1×
R2). By [CCMS21], there is a small (isotopic) perturbation of Σ, Σ̂, such that

the unit-regular Brakke flow, M, emerging from Σ̂ is unique and encounters only

spherical and neck-pinch singularities. We find γ > 0 such that maxx∈Σ̂{|A(x)|} < γ

and fix α, β and δ > 0 as discussed in section 5. By Theorem 3.4.5, the parameters

Htrig and Θ can be chosen such that there is smooth (α, δ,H)-flow with surgery MH

that approximates the flow M. In addition, we suppose Hth and Θ are large enough

that the conclusion of Theorem 3.4.9 holds.

It remains to show that all the dropped components of MH are not tori and no

handles are broken.

Claim 3.5.1. The topological constraint that Σ is homeomorphic to S3 rules out

(a) Dropped components being diffeomorphic to tori, S2 × S1.

(b) The breaking of a handle during surgery.

Proof. We prove (a), (b) follows identically. Suppose for contradiction that there is

at least one dropped component that is a torus. Let t be the first time a torus is

dropped in surgery. It is clear that some component of the pre-surgery hypersurface

Mt− would have a non-trivial fundamental group (i.e. size greater than 1). By

Lemma 3.5.2, the initial condition Σ̂ must also have had non-trivial fundamental

group. This is a contradiction to Σ being homeomorphic to S3. QED

Thus, all dropped components are isotopic to spheres and no handles are broken.

We now use backward induction to deduce Σ̂ is smoothly isotopic to the round

S3. There are finitely many surgeries, thus, there is a finite set of times t1 < . . . < tn

when the flow is stopped.

Observe, at t−n , the final non-empty time slice of MH, we have a collection

of 2-convex components diffeomorphic to spheres. Each connected component is

smoothly isotopic to a sphere. (Such an isotopy can be found in [BHH21].) Following

the flow back to the (n−1)th surgery, item (i) of Lemma 3.5.2 shows each connected

component of the t+n−1 time slice is smoothly isotopic to spheres. Reversing the

surgery, the t−n−1 time-slice is obtained by connecting the components present in

t#n−1) with smooth necks. Explicitly, we have the connected components present in

t+n−1 and a collection of dropped components.

Claim 6.1 shows that these dropped components are diffeomorphic to spheres.

No handles will be introduced when we reverse the surgery. Thus, the reversing of

the surgery is a connected sum of spheres. In particular, t−n−1 is smoothly isotopic to

some sub-collection of the connected components, and thus isotopic to a collection

of round S3.
By reverse induction, this is true for the initial time-slice. Since there is only

one connected component, the hypersurface Σ̂ is smoothly isotopic to the round

S3. QED
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Appendix

3.A Boundary Technicalities

Theorem 3.A.1. Let M′ be a (α, δ)-Brakke flow. Suppose X = (x, tx) ∈ M′ ∩
Ω(α,δ) with tx ≤ tF , where tF is the final time surgeries are performed. Then,

M′ ∩ P (X, ξ|H(X)|−1) is a smooth (α, δ)-flow in the sense of Haslhofer–Kleiner.

Proof. Note, we do not need to check Y ∈ P (X, ξ|H(X)|−1) ∩ Ω(α,β), by our strict

definitions of how and when surgery is performed. Since no surgeries occur outside

of Ω(α,δ) it is sufficient to check the flow is β-uniformly 2-convex and α-noncollapsed.

Suppose X ∈ M′∩Ω(α,β) and Y = (y, ty) ∈ P (X, ξ|H(X)|−1)∩Ωc
(α,β) ̸= ∅. From

the definition of a backwards parabolic cylinder, we have that y ∈ B(x, ξ|H(X)|−1).

We may presume (x, ty) ∈ Ω(α,β), as if we ever have (x, t) ∈ ∂Ωα,β for some t ∈
(tx, tx − (ξ|H(X)|−1)2), we can use Z = (x, t) in the following argument.

Let L be the line segment joining x to y in the time-slice Rn+1 × {ty}. This

line segment must pass through ∂Ω(α,β). Let Z = (z, ty) denote the point on L

intersecting ∂Ω(α,β). Clearly we have |z − y| < |x − y| ≤ ξ|H(X)|−1. By the

maximum principle, we have |Hbdd| ≤ |H(X)|, and so Y ∈ P (Z, ξ|Hbdd|−1). By the

assumption tx ≤ tf , we know that at t = ty, the flow M′ remains δ-graphical over

M in the neighbourhood of the boundary N . By the definition of N , Definition

3.2.10, we have P (Z, ξ|Hbdd|−1) ⊂ N . In particular, by our choice of δ, at the point

Y ∈ M′, the flow is β-uniformly 2-convex and α-noncollapsed. QED
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Chapter 4

Mean Curvature Flow through

Conical Singularities

4.1 Preliminaries

Definition 4.1.1. We say a hypersurface Σn ⊂ Rn+1 is Ck asymptotically conical

if there exists a Ck cone C such that

lim
ρ→0+

ρΣ = C

in Ck
loc(Rn+1\{0}). We write C(Σ) = C.

Definition 4.1.2. Let Cn ⊂ Rn+1 be a smooth cone with fattening level-set flow.

Suppose the outermost flows from C are smooth expanders. Given an orientation on

C, we label these expanders Σ− and Σ+ such that.

Σ+ ⊂ Ext(Σ−)

Σ− ⊂ Int(Σ+).

We refer to Σ−, Σ+ as the inner and outer expanders respectively.

Definition 4.1.3. Let Σ be an asymptotically conical expander. We split Σ into

two regions:

ΣR := Σ ∩B(0, R)

ER := Σ\B(0, R).

Clearly, Σ = ΣR ∪ ER.

As we deal only with smooth expanders, we may define a simplified trace at

infinity of Berstein–Wang, [BW21].
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Definition 4.1.4 (d-trace at infinity). Let Σ be a smooth expander, asymptotic to

the cone C. Suppose Er can be parameterised as a graph over the cone C\B(0, R).

Let f ∈ C∞
loc(Σ) and let g := f◦(πC)−1 ∈ C∞

loc(C\B(0, R)). We say f is asymptotically

homogeneous of degree d if

h(p) := lim
ρ→0

ρdg(ρ−1p) ∈ C∞
loc(C)

is homogeneous of degree d.

We define the d-trace at infinity of f to be

trd∞[f ] := h|L∈ C∞(L(Σ)),

where L denotes the link of the cone C.

Expanders have (forward) rescaled mean curvature equal to 0, and are thus

fixed points of the forward rescaled flow; equivalently, they are minimal surfaces in

(Rn+1, gGauss). Thus, we may discuss the stability of an expander.

Definition 4.1.5 (Second Variation and Stability Operator). Let Σn ⊂ Rn+1, and

let ϕ be a compactly supported normal variation, then

d2

ds2

∣∣∣∣
s=0

VolGauss(ϕ(Σ, s)) = −
〈
ϕ′, LΣϕ

′〉 ,
where VolGauss is the Gaussian volume of Σ, ⟨·, ·⟩ denotes the L2 inner product on

Σ with Gaussian weight, ϕ′ is the velocity of the variation at time s and LΣ is the

operator

LΣ = ∆Σ +
x

2
· ∇Σ − 1

2
+ |AΣ|2.

LΣ is called the Stability or Jacobi operator for Σ.

Definition 4.1.6. We say that Σ is stable if, for all compactly supported variations

ϕ, we have

d2

ds2

∣∣∣∣
s=0

VolGauss(ϕ(Σ, s)) = −
〈
ϕ′, LΣϕ

′〉 ≥ 0.

4.2 Motivation and Setup

We state our core assumptions for demonstrating uniqueness. Before doing so, we

provide motivation from the existing literature as to why these are natural assump-

tions to make.

In [CCMS20], Chodosh–Choi–Mantoulidis–Schulze showed the outermost flows

from a cone (in low dimensions) are modelled on smooth, outwardly minimising

expanders. We will refer to these as the outermost expanders.
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Theorem 4.2.1 ([CCMS20]). For 2 ≤ n ≤ 6, suppose Cn ⊂ Rn+1 is a smooth

cone. Then, there exists smooth expanders Σ±, smoothly asymptotic to C, such that

the outermost flows of C are given by {
√
tΣ±}t∈(0,∞). Moreover, the expanders Σ±

minimise the expander energy from the outside relative to compact perturbations.

Remark 4.2.2. In dimensions n ≥ 7 smoothness is not immediate, as the singular

set can have co-dimension 7. Co-dimension is taken relative to the dimension of

the hypersurface. The proof of Theorem 4.2.1 in [CCMS20] demonstrates the above

result holds in dimensions n ≥ 7, if the expanders happen to be smooth.

4.2.1 Jacobi Fields

In [DS20], Deruelle–Schulze show the existence of a positive Jacobi field over an

expander Σ with linear growth at infinity, provided Σ can be embedded in a 1-

parameter family of expanders with varying asymptotic cone. We recall their con-

struction:

“Let Ln−1
0 ⊂ Sn be a smooth hypersurface in Sn and suppose Σ0 is an expander

asymptotic to the cone C(L0). Let (Ls)−ϵ<s<ϵ be a continuously differentiable family

of C5 hypersurfaces of Sn and assume (Σs)−ϵ<s<ϵ is a continuously differentiable

family of expanders such that C(Σs) = C(Ls). Let ψ : L0 → R denote the normal

variation speed at s = 0 of the family Ls. Further, let πL0 : Rn+1 → L0 denote the

composition of the closest point projection πC(L0) : Rn+1 → C(L0) composed with

the projection π : C(L0) → L0 on to the link.”

Lemma 4.2.3 ([DS20]). Let v be the Jacobi field induced on Σ0 by the above vari-

ation. Then,

v = r · ψ ◦ πL0 + w

where r is the ambient radius function and w satisfies

|∇lw| ≤ c

r1+l
for l = 0, 1.

Remark 4.2.4. Suppose the outermost expanders Σ± are smooth. By varying the

link of the cone to one side, we can construct 1-parameter families

(Σ+
s )0≤s<ε, (Σ−

s )−ε<s≤0,

with Σ±
0 = Σ±. Whilst it is not clear that either of these families are continuously

differentiable in s, we can consider sequences {si}, si → 0, si > 0. The outwardly

minimising property of Σ± shows Σ±
±si

converges to Σ± locally smoothly. This is

sufficient to construct a signed Jacobi field v± on Σ± with the same asymptotics as

Deruelle–Schulze.
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4.2.2 Eigen-functions of the Linearised Operator

Suppose the expander Σ is outwardly minimising with respect to compact perturba-

tions. This can be restated as a property of the spectrum of the stability operator.

Proposition 4.2.5 (Positivity of the first eigen-function and eigen-value). Let Σ be

a smooth, asymptotically conical expander and suppose Σ is outwardly minimising

with respect to compact perturbations. Then, for every R ∈ (0,∞), there exists a

function ϕR1 ∈ C∞(ΣR), solving the Dirichlet eigen-value problemLΣϕ
R
1 = −µR1 ϕR1 in ΣR

ϕR1 = 0 on Σ ∩ ∂B(0,R),

where µR1 > 0 is the first eigen-value for ΣR and
∥∥ϕR1 ∥∥W 1,2

LΣ
(ΣR)

= 1.

4.2.3 Assumptions

We now distil the above discussion regarding the properties of the outermost ex-

panders into our assumptions. The properties of the expander are used to construct

the barriers in Section 4.4.

Let Cn ⊂ Rn+1 be a smooth cone. We recall the definition of a smooth hyper-

surface with a conical singularity.

Definition 4.2.6. We say a closed set M ⊂ Rn+1 is a smooth hypersurface with a

conical singularity at 0 modelled on the cone C if:

1. M\{0} is a smooth hypersurface,

2. limρ→∞ ρM = C,

where the convergence is taken in C∞
loc(Rn+1\{0}).

The work of Chodosh–Schulze, [CS21], demonstrates such hypersurfaces can oc-

cur at the singular time of a mean curvature flow with conical singularities. These

hypersurfaces will be our main object of study. We state,

Assumption 4.2.1. M0 ⊂ Rn+1 is compact hypersurface with an isolated conical

singularity at 0 modelled on C in the sense of Definition 4.2.6.

We next make an assumption on the Type-I behaviour of the flow from a compact

initial condition, M0, satisfying Assumption 4.2.1. Note, we do not assume that

every flow from M0 satisfies 4.2.2, however, we will only consider flows that do.

Assumption 4.2.2. Fix a smooth expander, Σ, asymptotic to C. Let M be a unit-

regular, cyclic mod 2 Brakke flow from M0. We suppose the tangent flow at (0, 0)
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of M is modelled on Σ (with multiplicity 1). That is, if {λi}i∈N is a sequence with

λi → ∞, then for every subsequence {ik}

lim
k→∞

Dλik
(M) = MΣ.

This is a natural assumption to make if the only possible flow from the cone is

generated by a smooth expander. For fattening cones, we demonstrate this property

is satisfied by the outermost flows from M0. In Section 4.3.2, we show flows satisfying

Assumption 4.2.2 are in fact smooth and satisfy a Type-I curvature bound, Lemma

4.3.13. Readers interested only in the smooth case are invited to instead use the

following assumption.

Assumption 4.2.2 B. Fix a smooth expander, Σ, asymptotic to C. Let M be a

mean curvature flow from M0, smooth on (0, T̂ ), T̂ > 0. We suppose M satisfies a

Type-I curvature bound on (0, T̂ ), and assume every tangent flow at (0, 0) of M is

modelled on Σ.

Remark 4.2.7. A tangent flow is a subsequential limit in the sense of Brakke.

It is clear that if every subsequence converges to the same limit, then the whole

sequence converges and we can talk about the tangent flow. When the limiting flow

is known to be smooth, as in our case, the regularity theorems of Brakke and White,

[Bra78, Whi05], show that the convergence can be considered locally smooth away

from t = 0.

Remark 4.2.8. The assumption of multiplicity one is vacuous. Blow-up sequences

centred at the space-time origin will ‘see’ the initial condition. As an immediate

consequence of Assumption 4.2.1, the initial time-slice of the limit will be the cone

C with multiplicity one. The monotonicity formula yields that the subsequent flow

must be multiplicity one.

Our final two assumptions are on the linearised dynamics of the expander Σ.

Assumption 4.2.3. The expander Σ is minimising with respect to compact per-

turbations to one side.

Assumption 4.2.4. There exists a positive, smooth function ϕ0 : Σ → R such that

ϕ0νΣ defines a Jacobi field over Σ and ϕ0 has linear growth at infinity.

Remark 4.2.9. Let ψ := tr1∞(ϕ0). We take the convention minx∈L ψ(x) = 1. We

see there exists a function w : Σ → R such that

ϕ0 = r · ψ ◦ πL + w

where r is the ambient radius function and w satisfies

|∇lw| ≤ c

r1+l
for l ∈ N.
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When the Jacobi field is generated by the variational construction of Deruelle–

Schulze, the 1-trace at infinity is equal to the speed of the variation of the link at

s = 0.

The discussion at the start of the current section shows the outermost flows from

C satisfy Assumptions 4.2.3 and 4.2.4, provided they are smooth.

4.3 Regularity and Graphicality

The reader interested in smooth solutions from a compact hypersurface with conical

singularity satisfying Assumption 4.2.2 B is invited to skip to Subsection 4.3.3.

Any theorems, proofs, and definitions required from earlier subsections are trivially

adapted to smooth flows. Subsections 4.3.1, 4.3.2 deal with the case of unit-regular,

cyclic mod 2 Brakke flows from our initial condition. Working only with smooth

flows is permissible, as we demonstrate unit-regular, cyclic mod 2 Brakke flows

satisfying Assumption 4.2.2 are in fact smooth on some short time interval, and

satisfy a Type-I curvature bound.

In this section, we fix a smooth cone Cn ⊂ Rn+1. We assume M0 ⊂ Rn+1, n ≥ 2

is a compact hypersurface with conical singularity modelled on C and M is a unit-

regular, cyclic mod 2 Brakke flow from M0. This is the only assumption required

in Section 4.3.1. In Section 4.3.2, we make the additional assumption that every

tangent flow at (0, 0) of M is equal to MΣ, where Σ is only assumed to be a smooth

expander asymptotic to C.

4.3.1 Behaviour away from the singular point

Since we make no assumptions on the behaviour of the flow near the singularity, the

results in this subsection hold for any hypersurface with a conical singularity.

We recall the following standard estimate for the curvature on a hypersurface

with conical singularity.

Lemma 4.3.1. For every ε ∈ (0, 12), there exists an R0 = R0(M0, ε) such that for

R < R0, the hypersurface DR−1(M0) is ε-close in C⌊ 1
ε
⌋ to the cone C in the annular

region
{
B(0, 2)\B(0, 12)

}
.

Moreover, we can presume R0 has been chosen sufficiently small that the second

fundamental form of M0 satisfies

sup
x∈M\B(0,R)

|A|(x) ≤ AL(1 + ε)

R
,

Where AL = maxx∈L |A|(x) is the maximum of the curvature of L, the link of the

cone C.

Proof. Follows immediately from the smooth convergence of dilations of M to the

cone C specified Definition 4.2.6. QED
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The initial condition M0 is smooth away from the conical singularity, and thus

we can apply pseudolocality at every point x ∈ M0\{0}. As a consequence of the

nearly-conical geometry, the (parabolic) scale at which pseudolocality can be applied

will be proportional to |x|, the distance from the origin. We demonstrate that these

‘neighbourhoods’, which we will call pseudolocal cylinders, can be ‘patched together’

into a region with moving boundary. We recall the definitions of an n-ball and an

n-cylinder.

Definition 4.3.2. Let x ∈ Rn+1 and let Πx ⊂ Rn+1 be an n-plane passing through

x. Denote by ν the normal to Πx. We define the n-ball

Bn(x, r) := B(x, r) ∩ Πx

and n-cylinder

C(x, r) := {y ∈ Rn+1 s.t. y = z + αν, z ∈ Bn(x, r), |α| < r}.

Definition 4.3.3. To avoid confusion, we distinguish between the function wx0 ,

and the parabolically scaled version, w̃x0 , as follows.

wx0 : Bn(x0, δ) → R

is the function constructed by applying pseudolocality at scale Cscale|x0|. Undoing

the dilation to return to the original scale yields the function

ŵx0 : Bn(x0, Cscale|x0|δ) → R.

Proposition 4.3.4 (Existence of Pseudolocal regions). Let M0 be a compact hy-

persurface with isolated conical singularity at 0, modelled on the smooth cone C.
Let M be any unit-regular, cyclic mod 2 Brakke flow from M0 and let Mt denote a

time-slice, for t ∈ (0, T ).

There exists a Rmin = Rmin(M0) ∈ (0,∞) such that, for each R > 2Rmin and

η > 0, one can find a time, T = T (M0, R, η) ∈ (0,∞), for which the following holds.

For every x ∈ Mt\B(0, R
√
t), t ∈ (0, T ), there exists x0 ∈ M0\B(0, R2

√
t), a

radius r = r(x0, η) and a Lipschitz function

ŵx0(·, t) : Bn(x0, r(x0)) ⊂ Tx0M0 → R

with Lipschitz constant bounded by η, such that

Mt ∩ C(x0,r(x0)) = graphBn(x0,r)ŵx0(·, t),

x =x0 + ŵx0(x0, t)νM0(x0).
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That is to say,

Mt\B(0, R
√
t) ⊂

⋃
x0∈M0\B(0,R

2

√
t)

Mt ∩ C(x0, r(x0)).

Definition 4.3.5 (Pseudolocal Region). For R, T > 0, we define the subset of

space-time

Gt(R) := Rn+1\B(0, R
√
t),

G(R, T ) := ∪t∈(0,T ) Gt × {t}.

When we select R ≥ 2Rmin and T (R) as in Lemma 4.3.4, we call G(R, T ) a Pseu-

dolocal region.

Proof of Lemma 4.3.4. This is a natural consequence of pseudolocality applied to

smooth cones, with minor modifications for compact hypersurfaces with isolated

conical singularities.

Let M0 be a compact hypersurface with conical singularity at 0 modelled on C
and let M be a unit-regular, cyclic mod 2 Brakke flow from M0. We fix ε ∈ (0, 15)

to control the closeness to the cone to at least second order. Let R0 = R0(ε) be the

constant from Lemma 4.3.1, that is, R0 is such that DR1M0 is ε-close to the cone in

B(0, 2)\B(0, 12) for scales R1 ≤ R0.

Claim 4.3.1. Nearest point projection to M0\{0} is well defined and smooth in a

‘tapered tubular neighbourhood’, T ′, defined below.

Proof. The cone C is smooth, and so satisfies an interior ball condition at y0 ∈ C,

with |y0| = 1, for some radius µC . We can suppose ε > 0 has been chosen such that,

for x0 ∈ M0 ∩ B(0, R0), M0 satisfies an interior ball condition at x0 with radius
µC |x0|

2 . This follows from scaling and closeness to C at scales R1 < R0.

Outside B(0, R0), we note M0\B(0, R0) is smooth, and compact (with bound-

ary). It is clear that there exists some µR0 > 0 such that the interior ball condition

is satisfied at x0 ∈ M0\B(0, R0) with radius µR0 . We write µR0 = µ̃R0 for some

constant µ̃ > 0. Let

µ := min{µC
2
, µ̃,

1

2
}.

Nearest point projection to M0 is hence well defined in the ‘tapered tubular neigh-

bourhood’

T ′(M0) :=
{
x ∈ Rn+1 | x = x0 + αµR0νM0(x0),x0 ∈M0\B(0, R0), |α| < 1

}
∪
{
x ∈ Rn+1 | x = x0 + αµ|x0|νM0(x0),x0 ∈M0 ∩B(0, R0)\{0}, |α| < 1

}
.

Regularity follows from the regularity of the hypersurface, M0. QED
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Claim 4.3.2. Suppose R1 ≤ R0 and x ∈ T ′(M0)\B(0, 2R1), then πM0(x) ∈
M0\B(0, R1).

Proof. This follows from an elementary contradiction argument. Suppose one had

a point x ∈ T ′(M0)\B(0, 2R1) with |πM0(x)| < R1. Since µ ≤ 1
2 , we immediately

deduce a contradiction. QED

We now prove the proposition. To find the function wx0(·, t), we proceed by

a pseudolocality argument. Fix R1 ≤ R0 and take η ∈ (0, η1), where η1 is as in

Proposition 4.B.2. Let ϵ, δ > 0 be, respectively, the initial Lipschitz constant and

radial parameters of pseudolocality from [INS19] for our choice of η. We note, by

Items ii), iii) of Remark 1.6 in [INS19], if the flow M is presumed to be unit-regular,

ϵ, δ will only depend only on n, η and we do not need to consider a bound on the

area ratios.

We now find cylinders on which to apply pseudolocality. Since the cone C is

smooth, we deduce there exists some, presumably small, constant Cscale =

Cscale(L,M0, ε, ϵ, η, n) such that for each x0 ∈M0\B(0, R1),

D(Cscale|x0|)−1(M0 − x0) ∩ C(0, 1)

can be parameterised as a graph of the function w0,x0 : Bn(x0, 1) → R, over

Bn(x0, 1), the n-ball of radius 1 in the tangent plane Tx0M0. We may assume

Cscale has been chosen such that

C(x0, Cscale|x0|) ⊂ T ′(M0). (4.1)

We additionally presume Cscale has been chose small enough that the graph

function w0,x0 satisfies ∥w0,x0∥C2 < ϵ. This guarantees the bound on the Lipschitz

constant of w0,x0 is bounded by ϵ, and hence we may apply pseudolocality.

We conclude,

D(Cscale|x0|)−1(M− x0) ∩ C(x0, δ) × [0, δ2), (4.2)

can be parameterised as the graph of the function

wx0 : Bn(x0, δ) × (0, δ2) → R,

with

wx0(·, 0) = w0,x0(·),

Lip(wx0) ≤ η.

Applying the parabolic dilation DCscale|x0| to each ‘pseudolocal cylinder’, we find our
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function ŵx0 and deduce, for t ∈ (0, (Cscale|x0|δ)2)

Mt\B(0, 2R1) ⊂
⋃

x0∈M0\B(0,R1)

Mt ∩ C(x0, Cscale|x0|δ). (4.3)

This follows from equation 4.1 and claim 4.3.2.

To complete the proof, we demonstrate how to switch to the moving boundary

perspective. We choose Rmin = (Cscaleδ)
−1. Fix R ≥ 2Rmin. To see R satisfies the

claim in the Proposition, let t1 be such that R
√
t1 = 2R1 and observe

t1 =

(
2R1

R

)2

≤ (CscaleR1δ)
2 < (Cscale|x0|δ)2.

Thus, for each t ∈ (0, t1], we may rewrite equation 4.3 as

Mt\B(0, R
√
t1) ⊂

⋃
x0∈M0\B(0,R

2

√
t1)

Mt ∩ C(x0, Cscale|x0|δ).

Recall, R1 ≤ R0 was chosen arbitrarily and Rmin was independent of R1. We

conclude,

Mt\B(0, R
√
t) ⊂

⋃
x0∈M0\B(0,R

2

√
t)

Mt ∩ C(x0, Cscale|x0|δ),

for t ∈ (0, T ], where T =
(
2R0
R

)2
.

QED

Following Item i) of [INS19, Remark 1.6], a curvature bound on the initial con-

dition may be propagated forward in time by applying the Ecker–Huisken interior

estimates for graphs. In the language of Proposition 4.3.4:

Corollary 4.3.6. Let M satisfy the assumptions of Proposition 4.3.4. For every

ε > 0, there exists RAC ∈ (0,∞), a constant CAC <∞ and a time T > 0 such that,

for R > RAC, t ∈ (0, T ], we have

max
x∈Mt\B(0,R

√
t)
|A|(x) ≤ CAC

R
√
t
.

Explicitly, CAC = 2CEHAL(1 + ε), where CEH is the constant from Ecker–Huisken

[EH91, Theorem 3.1] with θ = 1
2 .

Proof. The curvature bound in each pseudolocal neighbourhood follows from the

interior estimates of Ecker–Huisken [EH91] by showing we have a curvature bound

on the initial condition that scales accordingly. Fix ε > 0 and let R0 = R0(ε) be the

radius from Lemma 4.3.1. As in the proof of Proposition 4.3.4, consider R1 ≤ R0.
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Using Lemma 4.3.1, we observe, for x ∈M0\B(0, R),

max
x′∈B(x,

R1
2
)∩M0

|A|(x′) ≤ 2AL(1 + ε)

R1
.

The statement of the corollary follows by the discussion at the end of the proof of

Proposition 4.3.4 with RAC = 2Rmin(ε). QED

Remark 4.3.7. By standard parabolic methods, and the above estimate, one can

presume the domain of each of the functions wx0 has been chosen such that the

functions are smooth.

4.3.2 Results for flows satisfying the tangent flow assumption

We fix a smooth expander Σ, asymptotic to C, and now assume that the flow M
satisfies Assumption 4.2.2 with respect to Σ. We begin by showing M is smooth on

some time interval.

Proposition 4.3.8. Let Σ be a smooth expander with C(Σ) = C. Suppose M is a

unit-regular, cyclic mod 2 Brakke flow from M0 satisfying Assumption 4.2.2. Then,

there exists some time interval (0, T ), T = T (M), on which M is smooth.

Proof. Let M be a unit-regular, cyclic mod 2 Brakke flow from M0 satisfying As-

sumption 4.2.2 and suppose for contradiction that the flow is not smooth on (0, T )

for any T > 0. Let {Ti}∞i=1 be a sequence monotonically converging to 0. By our

assumption, for each Ti there is a non-smooth point Xi = (xi, ti) ∈ M, 0 < ti ≤ Ti.

As a consequence of Proposition 4.3.6 (for some choice of ε > 0), each xi must be

contained in the ball B(0, RAC
√
ti), as at time ti the flow is smooth outside this ball.

We hence consider the sequence of Brakke flows Mi = Dλi
(M), defined by dilating

M around (0, 0) by λi := t
− 1

2
i . Under dilation, Xi 7→ X̂i := (x̂i, 1), |x̂i| ≤ RAC, and

as a consequence there must be an accumulation point X̂ ∈ B(0, RAC) × {1}.

Mi is, up to a bounded space-time translation, a tangent flow sequence. Thus,

Mi → MΣ as Brakke flows, by Assumption 4.2.2. Moreover, the limiting flow, MΣ,

is smooth away from (0, 0) and hence, by the regularity theorems of Brakke [Bra78]

and White [Whi05], the convergence is locally smooth away from the space-time

origin. In particular, there exists an I < ∞ such that for i ≥ I, Mi is smooth in

B(0, 2RAC) × [12 ,
3
2 ], a contradiction. We conclude no such sequence of non-smooth

points Xi exists. QED

Definition 4.3.9 (Expander Region). Let M be a unit-regular, cyclic mod 2 Brakke

flow from M0. For R ∈ (0,∞), T <∞, we define the subsets of space-time

Ω(R, T ) := ∪t∈(0,T )B(0,
√
tR) × {t},

Ω̃(R, T ) := R(Ω) = B(0, R) × (−∞, log(T )).
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Note, Ω̃ is the image of Ω under the transformation R : Rn+1 × [0, T ) → Rn+1 ×
(−∞, log(T )), transforming mean curvature flow to rescaled mean curvature flow.

For ε > 0, we say Ω(R, T ) is a (Σ, ε, R)-Expander Region for M if there exists a

function u ∈ C⌊ 1
ε
⌋(Σ2R × (−∞, log(T )) such that, for τ ∈ (−∞, log(T )), we have

RMτ ∩B(0, R) = graphΣ2R
u(·, τ) ∩B(0, R),

with ∥u∥
C⌊ 1

ε ⌋ < ε. i.e. each time-slice of the rescaled flow RM⌊Ω̃ can be parame-

terised as an ε-graph over some portion Σ.

Remark 4.3.10. We may quantify ‘portion of Σ’ as follows. Let ε ∈ (0, 1) and

assume Ω(R, T ) is a (Σ, ε, R)-expander region. For τ ∈ (−∞, log(T )), we have

ΣR−ε ⊂ πΣ(RMτ ∩B(0, R)) ⊂ ΣR+ε,

where πΣ is the nearest point projection to Σ. This is an immediate consequence

of ∥u∥C0 < ε. Our graph function u is defined on Σ2R, meaning the radius R is

far from the boundary, thus avoiding the discussion of any unnecessary technical

difficulties.

Lemma 4.3.11 (Existence of Expander Regions). Suppose M is a unit-regular,

cyclic mod 2 Brakke flow from M0 satisfying Assumption 4.2.2. Then, for every

ε > 0 and R ∈ (0,∞), there exists a T = T (ε,R,M0) < ∞ such that Ω(R, T ) is a

(Σ, ε, R)-expander region for M.

Proof. Proposition 4.3.8 demonstrates the rescaled flow RM is well defined and

smooth on (−∞, log(T )), where T is the time from Proposition 4.3.8. The statement

of the lemma is equivalent to the local smooth convergence of the rescaled flow RM
to the expander. This is an immediate consequence of Assumption 4.2.2, as the

blow-up limit is assumed to be MΣ, irrespective of the sequence chosen. QED

Definition 4.3.12 (Collar Region). For 0 < r < R, T > 0, we define the ‘Collar

Region’ as the following subset of space-time

Col(r,R, T ) := ∪t∈(0,T )

(
B(0, R

√
t)\B(0, r

√
t) × {t}

)
.

By choosing the radii appropriately, and T sufficiently small, the pseudolocal

region can be made to overlap with an expander region on the time interval (0, T ).

This region of overlap is a Collar. When a collar region arises in this fashion,

M⌊Col(r,R, T ) can be considered either as pseudolocal graphs over M0 or as a

graph over the expander. We will perform the welding process in a collar region of

a carefully chosen length.

As an immediate corollary of Lemmas 4.3.6, 4.3.8 and 4.3.11, we get the following

Type-I curvature estimate for M on some finite time interval.
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Lemma 4.3.13. Let M be a unit-regular, cyclic mod 2 Brakke flow from M0 sat-

isfying Assumption 4.2.2. Suppose CΣ < ∞ satisifies maxx∈Σ |A|(x) ≤ CΣ. Then,

for every ε > 0 there exists a T = T (ε,M0) > 0 such that, for t ∈ (0, T ),

max
x∈Mt

|A|(x) ≤ CΣ(1 + ε)√
t

.

Proof. Fix ε > 0 and take

R ≥ (CΣ(1 + ε))−1 max{RAC(ε), CAC(ε)},

where RAC, CAC are as in Corollary 4.3.6. Applying said result yields T1 > 0 such

that the claimed curvature bound holds in G(R, T1).

Applying Lemma 4.3.11, we find T2 > 0 such that Ω(4R, T2) is a (Σ, ε, 4R)-

expander region. By taking T2 > 0 sufficiently small, the claimed curvature bound

can be assumed to hold in this region, as RMτ converges locally smoothly to Σ as

τ → −∞. Set T0 = min{T1, T2}, and observe the discussed regions overlap in the

collar region Col(R, 4R, T0). We conclude the claimed curvature bound holds on

(0, T0).

QED

Remark 4.3.14. Again, by standard parabolic methods, we also have bounds on

the derivatives |∇kA|.

4.3.3 Separation and graphicality of smooth flows

Having demonstrated Assumption 4.2.2 implies Assumption 4.2.2 B, we consider

smooth flows from our initial hypersurface with an isolated conical singularity, M0,

with tangent flows modelled on the flow MΣ. We demonstrate two such flows

separate at rate o(
√
t), and that we may write these flows as a graph over each other

for some short time. In the following, M will denote the smooth space-track of our

flow, defined on some time interval (0, T̂ ), i.e.

M := {Mt}t∈(0,T̂ )

lim
t→0

Mt = M0.

Demonstrating the o(
√
t) rate is critical to our main argument. We will construct

super/sub-solutions from M0 relative to some flow, M1, satisfying Assumption 4.2.2

B. By definition, these flows will separate from M1 at rate O(
√
t). Given another

flow, M2, from M0 that also satisfies Assumption 4.2.2 B with respect to the same

expander, the o(
√
t) separation yields a short time for which these super/sub-solution

flows must be disjoint from from M2 and are thus barriers on their (longer) time

interval of definition.
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If M2 did not satisfy Assumption 4.2.2 B with respect to Σ, then we expect

these flows to separate at a rate O(
√
t). It is helpful to consider the case when the

flows have tangent flows modelled on different expanders.

Proposition 4.3.15 (Separation at rate o(
√
t)). Let Mj , j ∈ {1, 2}, be two mean

curvature flows from M0, smooth on (0, T̂ ), T̂ > 0, satisfying Assumption 4.2.2 B

with respect to Σ. For every h > 0, there exists a T ∈ (0, T̂ ] such that for t ∈ (0, T )

dH(M1
t ,M

2
t ) ≤ h

√
t.

Equivalently, as t → 0, the Hausdorff distance between M1
t and M2

t decays at rate

o(
√
t).

Proof. Fix h > 0 and set ε < min{1,h}
2 . Set R ≥ max{RAC,

4n(1+η1)CAC

h }, where η1 is

the constant from Lemma 4.B.2.

We find T > 0 such that Ω(4R, T ) is a (Σ, ε, 4R)-expander region for both Mj

and G(R, T ) is a pseudolocal region on which the curvature estimate Corollary 4.3.6

holds for Mj⌊G(R, T ).

Fix t0 ∈ (0, T ) and consider the portion of the flow contained inside the expander

region. Our choice of expander region yields C0 estimates for the rescaled flows as

graphs over the expander Σ. For x ∈ Ni(t0) := RM i
log(t0)

∩ B(0, 4R) let y ∈ Σ be

such that πΣ(x) = y. Then, the (unsigned) distance satisfies

d(x,y + νΣ(y)uj(y, t0)) ≤ h.

That is, we have explicitly found a point in RM j
log(t0)

, j ̸= i at most distance h

away. Translating this back to a statement about the non-rescaled flows, we have,

for x ∈M i
t0 ∩B(0, 4R

√
t0) and j ̸= i

d(x,M j
t0

) ≤ h
√
t0.

We now turn our attention to the pseudolocal region G(R, T ). Let X = (x, t0) ∈
Mi⌊G(R, T ). Denote by x0 the point πM0(x). Recall the function wx0 : Bn(x0, δ)×
(0, δ2) → R given by pseudolocality in the proof of Proposition 4.3.4, parameterising

the flow as a graph in the pseudolocal cylinder centred at x0 ∈M0. We have,

|wx0(x0, (Cscale|x0|)−2t0)| = (Cscale|x0|)−1d(x,x0)

where Cscale is the constant from the proof of Lemma 4.3.4 used for rescaling.

Observe, wx0 evolves under the evolution equation for graphs moving by mean

curvature flow, derived by Ecker–Huisken in [EH91]. Our choice of R yields the

curvature bound |A| ≤ h
4n(1+η)

√
t

in G. We note such a curvature bound is invariant

under parabolic dilation.
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We deduce∣∣∣∣dwx0

ds

∣∣∣∣ (x0, t) ≤
√

1 + |Dwx0 |2(x0, s)|H|(x0, s) ≤
h

4
√
s
,

where, we have used that the Lipschitz constant for wx0 is bounded by η < η1, and

hence
√

1 + |Dwx0 |2(x0, s) < 1 + η. Integrating in the time parameter s from 0 to

(Cscale|x0|)−2t0 and applying the fundamental theorem of calculus, we deduce, for

x ∈M i
t0\B(0, R

√
t0)

d(x, πM0(x)) ≤ h
√
t0

2
.

The choice x was arbitrary, hence this holds for all x ∈M i
t0\B(0, R

√
t0).

Thus, for x ∈M i
t0\B(0, R

√
t0) and j ̸= i

d(x,M j
t0

) ≤ h
√
t0.

Since t0 ∈ (0, T ) was chosen arbitrarily, and the regions Ω(4R, T ), G(R, T ) over-

lap in the collar region C(R, 4R, T ) we conclude

dH(M1
t ,M

2
t ) ≤ h

√
t, t ∈ (0, T ).

QED

Proposition 4.3.16. Let Mj , j ∈ {1, 2} be mean curvature flows from M0 smooth

on (0, T̂ ), T̂ > 0, satisfying Assumption 4.2.2 B with respect to Σ. There exists a

time T ∈ (0, T̂ ] and a smooth function

u : M1⌊(0, T ) → R

such that, for t ∈ (0, T ), M2
t can be parameterised as a normal graph of the function

u(·, t) over M1
t .

Proof. Using the results from Section 4.B.1 (to which the reader is directed for the

definition of common graphical atlas), we will find a time T ∈ (0, T̂ ] such that, for

each t ∈ (0, T ), M2
t can be parameterised as the graph of the function ut(·) : M1

t →
R, given explicitly by the distance function∗ in the direction of the normal field of

M1
t . I.e. for x ∈M1

t we have

ut(x) = d(x, νM1
t
(x),M2

t ).

The function u defined on the space-time track of the flow M1 up to time T ,

∗the notion of distance in a given direction used here is detailed in Section 4.B.1
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specified in the statement of the theorem, is hence given by

u : M1⌊(0, T ) → R

u(x, t) := ut(x).

Using the definition of the function on each time-slice, we deduce

u((x, t)) = ut(x) = d(x, νM1
t
(x),M2

t ) = d((x, t), v,M2)

where v is the space-time vector-field on M1⌊(0, T ) given by

v : M1⌊(0, T ) → Rn+1,1,

v((x, t)) := (νM1
t
(x), 0).

It is trivial to verify v is smooth on the space-time track of M1 up to time T , from

which we conclude u is a smooth function in x and t on M1 on the time interval

(0, T ).

We now detail the construction of the functions ut. This is achieved by showing

there exists a time T > 0 such that at each time t ∈ (0, T ), we can apply Proposition

4.B.2 in each of the charts of some common graphical atlas for M1
t and M2

t .

One must find a T such that the following hold.

1. There exists a δ > 0 such that, for t ∈ (0, T ), πM1
t

is well defined and d(M1
t , ·)

is smooth in the tubular neighbourhood Tδ√t(M
1
t ).

2. For t ∈ (0, T ), M2
t ⊂ Tδ√t(M

1
t ).

3. For t ∈ (0, T ), there exists a ‘Common Graphical Atlas’ for M1
t ,M

2
t .

4. The height and gradient bounds required in Proposition 4.B.2 hold for each

function in our common graphical atlas.

Let T0 be as in Lemma 4.B.4, T1 as in Lemma 4.B.6 and Tδ such that Lemma 4.3.15

holds with h = δ. Set T = min{T0, T1, Tδ}.

Item (1) follows immediately from Lemma 4.B.4 with δ = µ (see [GT83]).

Item (2) follows from Lemma 4.3.15 with our choice of h = δ.

Item (3) is proven in Lemma 4.B.6.

Item (4) follows from Remark 4.B.7 and pseudolocality as follows. In charts

constructed by pseudolocality, we have height and gradient bounds for wi
x0

. For any

choice of η > 0, we have, by scaling,

∥∥ŵi
x0

(·, t)
∥∥
C0(Bn(x0,δCscale|x0|)) < ηδCscale|x0|,∥∥∇ŵi

x0
(·, t)

∥∥
C0(Bn(x0,δC|x0|)) < η.
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In charts derived from local smooth convergence to the expanding flow MΣ, we

use Remark 4.B.7 to deduce

∥∥ŵi
x0

(·, t)
∥∥
C0(Bn(x0,r

√
t))
< ηr

√
t,∥∥∇ŵi

x0
(·, t)

∥∥
C0(Bn(x0,r

√
t))
< η.

Thus, choosing η < η1, Proposition 4.B.2 can be applied. We deduce, for every

t ∈ (0, T ) and y ∈ M2
t , there exists an open set Vy,t, a point x ∈ M1

t and open set

V ′
y,t such that

M2
t ∩ Vy,t = graphV ′

x,t
u

where u(x, t) = d(x,M2
t , νM1

t
(x)). In each neighbourhood, the function is derived

from only extrinsic data and does not depend on the open sets. We may apply a

standard patching argument to deduce

M2
t = graphM1

t
u(·, t).

QED

4.4 Barriers from Linearised Dynamics

Our goal is to show two mean curvature flows from M0 satisfying Assumption 4.2.2

are equal if Σ satisfies Assumptions 4.2.3 and 4.2.4. In this section, we will con-

struct the barriers over the expander region using our assumptions on the linearised

dynamics.

Recall, the stability of the expander Σ ensures that, on any compact domain,

the first Dirichlet eigen-value of the stability operator LΣ is positive, moreover, the

associated eigen-function, ϕR1 , is positive on said compact domain. We hence define,

for a radius R ∈ (0,∞) and ‘growth correction parameter’ α ∈ (0,∞), the functions

fRα : ΣR → R

fRα := ϕ0 + αϕR1 ,

where ϕ0 was the function defining a Jacobi field on Σ with linear growth. Clearly,

such a function satisfies

LΣf
R
α = −αµR1 ϕR1 ,

and by standard linearised methods, we see the hypersurfaces defined by the graphs

of sfRα over ΣR (for R < R) will have positive rescaled mean curvature for sufficiently

small s > 0.
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The reader familiar with such barrier constructions will have noted that stabil-

ity alone is sufficient to construct barriers over a compact region, and hence may

wonder why we add a Jacobi field. As briefly mentioned in the introduction, the

linear growth afforded by the Jacobi field is required in order to employ a barrier

welding argument. In the second part of this section, we demonstrate that the radii

R, R, and parameter α may be selected to ensure the functions fRα grow sufficiently

between R and ClenR. The details of the welding are contained in the uniqueness

argument in Section 4.6 and the construction of entire barriers over Σ in Section 4.7.

Finally, we note the functions described above yield barriers relative to the ex-

pander Σ, a property we make use of in Section 4.7. This is, however, not sufficient

for the proof of uniqueness, for which we require barriers relative to some smooth

flow, M1, from M0 satisfying our tangent flow assumption. To construct barriers

that achieve this, at least in the expander region, we add the function u1 to fRα , where

u1 is the function parameterising the flow RM1 as a graph over Σ. We control the

error introduced through this by noting the linearisation error splits ‘binomially’.

4.4.1 Existence of Barriers

As commented above, we use the function fRα and the local graphical representation

of some flow RM1 over the expander Σ to construct barriers. We first specify the

region where the barriers will be defined.

Definition 4.4.1 (Length of the Collar Region). We set

Clen :=
21 maxx∈L ψ(x)

4 minx∈L ψ(x)
=

21 maxx∈L ψ(x)

4

where ψ is 1-trace at infinity of ϕ0. Recall, we take the normalisation convention

that minψ = 1.

This choice of collar length is used in Lemma 4.6.3 to show the welding process

‘hides’ the boundaries of the barriers.

Definition 4.4.2 (Barrier functions). Let M1 be a smooth flow from M0 and

suppose M1 satisfies Assumption 4.2.2. Fix R ∈ (1,∞), R ∈ (2ClenR,∞) and

ε0 ∈ (0, 15). By Lemma 4.3.11, we find a T0 > 0 such that Ω(ClenR, T0) is a

(Σ, ε0, ClenR)-expander region for M. Let u1 ∈ C⌊ 1
ε
⌋(Σ2ClenR × (−∞, log(T0)) be

the function parameterising RM1⌊Ω̃ as a graph. For each s ∈ (0, 1) and α ∈ (0,∞)

we define the functions

u±s,α,R,R : ΣClenR × (−∞, log(T0)) → R

u±s,α,R,R(x, τ) := u1(x, τ) ± sfRα (x).

Note, it is not immediate that u±s,α,R,R defines a smooth hypersurface.
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Remark 4.4.3. We suppress α,R,R in the notation, i.e. we write u±s ,Γ
±
s , as these

parameters will remain fixed once chosen.

Proposition 4.4.4. Let M, ε0, R,R be as in Definition 4.4.2. For every choice of

α ∈ (0,∞), there exists s0 = s0(α, ξ,R,R) ∈ (0, 1), and T1 ∈ (0, T0] such that for

s ∈ [0, s0], τ ∈ (−∞, log(T1)) the following holds.

1. The normal graph of u±s,α,R,R over ΣClenR,

Γ±
s (τ) := graphΣClenR

u±s,α,R,R(·, τ),

defines a smooth hypersurface.

2. The hypersurfaces Γ±
s (τ) satisfy

vΓ+
s

(x, τ)

(
∂τxΓ+

s
−H +

1

2
xΓ+

s

)
· νΓ+

s
≥ 0 (4.4)

vΓ−
s

(x, τ)

(
∂τxΓ−

s
−H +

1

2
xΓ−

s

)
· νΓ−

s
≤ 0. (4.5)

Proof. Fix a choice of α ∈ (0,∞). We prove the claims for u+s ,Γ
+
s . We suppress the

‘+’ in the proof to reduce notational complexity. The proof for u−s ,Γ
−
s is similar.

Recall, from Appendix 4.A, in order for the graph of function g : M → R
to define a hypersurface and to calculate geometric quantities in terms of g, it is

required Assumption 4.A.1 is satisfied for a chosen value of ξ < 1 †. That is, we

require

max{|A||u1|, |∇u1|2} <
ξ

4
(4.6)

max{|A||sfRα |, |∇sfRα |2} < ξ

4
(4.7)

max{|A||us|, |∇us|2} <
ξ

4
(4.8)

where the maximum is taken over ΣClenR × (−∞, log(T1)] for some T1 > 0 and

ξ ∈ (0, 1). We may presume 4.6 holds on (−∞, log(T0)] by the choice of ε0. Since

fRα is a smooth function, on the bounded set ΣR, we can pick s0 such that 4.7 holds

in ΣClenR. Finally, having fixed s0, 4.8 holds by taking T1 sufficiently small since

u1 → 0 locally smoothly as τ → 0.

It remains to show the inequality 4.4 holds if T1, s0 are taken sufficiently small.

This is achieved by using the linearised rescaled mean curvature flow equation. Using

Corollary 4.A.5, we calculate,

†The value of ξ will be fixed in Section 4.6.
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vΓs(x, τ)

(
∂τxΓs −H +

1

2
xΓs

)
· νΓs = ∂τu(x, τ) − LΣ(u+ sfRα )

− E(u+ sfRα )

= sαµR1 ϕ
R
1 − E(sfRα ) −Qmixed(u, sfRα ).

Note, we have used ∂τu1 = LΣ(u)+E(u). In addition, Corollary 4.A.5 and Theorem

4.A.10 show

|E(sfRα )| ≤ CEC
2
fR
α
s2

|Qmixed(u, sfRα )| ≤ CQCfR
α
∥u1(·, τ)∥C2(ΣClenR)

s,

where CfR
α

:=
∥∥fRα ∥∥C2(ΣClenR)

. Taking s0 satisfying

s0 <
αµR1

2CEC2
fR
α

min
x∈ΣClenR

ϕR1

and T1 sufficiently small that for τ ∈ (−∞, log(T1))

∥u1(·, τ)∥C2(ΣClenR)
<

αµR1
2CQCfR

α

min
x∈ΣClenR

ϕR1 ,

we see sαµR1 ϕ
R
1 > 0 dominates and the claimed inequality holds.

QED

4.4.2 Asymptotic properties of the barriers

We record an elementary result demonstrating we may pick α ∈ (0,∞) such that

the function fRα has ‘almost linear’ behaviour in our chosen collar. This is important

for the welding of barriers.

Definition 4.4.5. For each δ > 0 we define Rdecay = Rdecay(δ) < ∞ to be the

radius such that for x ∈ ERdecay
,

|ϕ0 − r · ψ ◦ πL0 |(x) < δ.

The existence of such a radius is a consequence of the asymptotics of ϕ0.

Lemma 4.4.6 (Linear growth in Collar region for fRα ). For every δ ∈ (0, 14),

R > Rdecay( δ2) and R ∈ (2ClenR,∞), there exists α0 = α0(δ,R,R) ∈ (0,∞) such

that for α ∈ (0, α0), we have

|fRα − r · ψ ◦ πL0 |(x) < δ for x ∈ ΣClenR ∩ ER.
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Remark 4.4.7. This lemma can be interpreted as a statement regarding the C0

closeness of graphΣ(±sfRα ) to the cone C±(s) in the collar region.

Proof. Fix δ ∈ (0, 14) and R > Rdecay( δ2). By Definition 4.4.5, we see

|ϕ0 − r · ψ ◦ πL0 |(x) <
δ

2
for x ∈ ER.

Let CϕR
1

:= maxx∈ΣR
ϕR1 and pick α0 = δ

2C
ϕR1

. Thus, for α ∈ (0, α0) we have

|αϕR1 |(x) <
δ

2
for x ∈ ΣClenR ∩ ER.

The claim follows from the triangle inequality. QED

4.5 Separation Estimate

In Section 4.4, we constructed a graph over the expander Σ that acts as a barrier in

the expander region relative to the flow M1. Since this definition explicitly depends

on functions defined on a portion of Σ, the barrier is defined only locally, and it is

not clear that there is a natural way to extend this to a barrier over the entire flow.

Instead, we construct a barrier in the pseudolocal region that can be welded

to the other barrier in the collar region. Our barrier takes the form of separation

estimate. We show that a bound on the height of the form |u| ≤ h
√
t along the

boundary of the ball B(0, R
√
t) on the time interval (0, T ) can be propagated to all

of M1⌊G(R, T ). Here, u denotes the function parameterising M2
t as a graph over

M1
t .

This is motivated by the observation in Proposition 4.B.10, where it is shown the

barriers from Section 4.4 provide a bound for function ũ (parameterising RM2 as a

graph over RM1) at radius R that is independent of rescaled time. Transforming

back to the non-rescaled flow, this corresponds to a bound of the form |u| ≤ h
√
t on

the boundary of the ball B(0, R
√
t).

Theorem 4.5.1. Suppose M0 ⊂ Rn+1 satisfies Assumption 4.2.1. Let M1 and M2

be mean curvature flows from M0, smooth on (0, T ) and satisfying Assumption 4.2.2

B with respect to the chosen expander Σ. Suppose there exists a radius R > 0 such

that the curvature of M1 satisfies

max
(x,t)∈M1 s.t |x|≥R

√
t
|A|2(x, t) < 1

2(1 +D)t
, t ∈ (0, T ), (4.9)

where D = D‡(ξ, n) ∈ (0,∞) is as in Proposition 4.A.9.

‡Choice of ξ dictated in Section 4.6.
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Finally, suppose u : M1 → R is a smooth function such that

M2
t = graphM1

t
u(·, t), t ∈ (0, T ),

with maxx∈M1
t
|A||u|(x, t) < ξ < 1 on (0, T ).

If the height of u satisfies

max
{(x,t)∈M1 s.t |x|=R

√
t}
|u|(x, t) < h

√
t, t ∈ (0, T ), (4.10)

where h > 0, then,

max
{x∈M1

t s.t |x|≥R
√
t}
|u|(x, t) < h

√
t, t ∈ (0, T ).

Proof. One can verify the graph of ±h
√
t over M1

t \B(0, R
√
t) is a super/sub-solution

to mean curvature flow starting from M0 using the linearisation of the geometric

quantities. The claim then follows from the avoidance principle with boundary data;

a full proof is provided for completeness.

We proceed using a maximum principle argument. We seek to show contradiction

if |u| ≥ h
√
t occurs at an interior point. To do this, one first needs to show that the

inequality is not immediately violated. We recall, by Lemma 4.3.15, u decays like

o(
√
t) as t→ 0. That is, for any sufficiently small ϑ > 0 there is some time interval

(0, t0), t0 = t0(ϑ), for which

|u|(·, t) < (h− ϑ)
√
t, t ∈ (0, t0].

Suppose for contradiction that the claimed bound does not hold for all t ∈ (0, T ).

By the above reasoning, there must be some first time, t1 ∈ (t0, T ) at which the

inequality is violated in M1
t1\B(0, R

√
t1). We call such a time the ‘first touching

time’. By Assumption 4.10, this must occur at an interior point of M1
t1\B(0, R

√
t1).

This point is hence a local, spatial, critical point of u. We suppose this is a positive

local maximum of u. Denote this point (xmax(t0), t0). The proof for a negative

minimum follows similarly.

Since |A||u| < ξ, Proposition 4.A.9 shows that at a positive local maximum of u,

the bound on the error term takes a particularly useful form. At a local, positive,

maximum of u we have

∂u

∂t
(xmax(t1), t1) ≤(1 +D)(|A|2u)(xmax(t1), t1).
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Thus,

∂

∂t
(u− h

√
t)(xmax(t1), t1) ≤(1 +D)|A|2u(xmax(t1), t1) −

h

2
√
t1

<
1

2t1
u(xmax(t1), t1) −

h

2
√
t1
.

Where we have used the curvature bound, Assumption 4.9. Factoring the above, we

deduce

∂

∂t
(u− h

√
t)(xmax(t1), t1) <

1

2t1
(u(xmax(t1), t1) − h

√
t1) = 0,

with the final equality coming from u(xmax(t1), t1) − h
√
t1 = 0.

Recall, we supposed t1 > 0 was the first touching time. Thus, we must have

∂

∂t
(u− h

√
t)(xmax(t1), t1) ≥ 0,

a contradiction.

The theorem follows by noting the same argument applied to h
√
t−u establishes

a lower bound at a negative, local minima of u. QED

4.6 Uniqueness

We now prove our uniqueness theorem. In the following, we suppose C is a smooth

cone and M0 satisfies Assumption 4.2.1. That is, M0 is a compact hypersurface

with isolated conical singularity modelled on C. We fix Σ, a smooth expander with

C(Σ) = C, satisfying Assumptions 4.2.3 and 4.2.4. Finally, we assume M1 is a mean

curvature flow from M0, smooth on some time interval (0, T̂ ) satisfying Assumption

4.2.2 B with respect to Σ, i.e. the tangent flow of M at (0, 0) is MΣ, and satisfies a

Type-I curvature estimate. Recall, in Lemma 4.3.13, we demonstrated this includes

any unit-regular, cyclic mod 2 Brakke flow from M0, satisfying Assumption 4.2.2.

In order to apply the tools developed in the previous sections, we need to fix our

free parameters. For the results contained in the appendices, we fix the graph height

parameter, ϑ ∈ (1, 2) and ‘low-energy’ parameter ξ ∈ (0, 1). We take δ ∈ (0, 14),

which in turn fixes the radius Rdecay(δ/2) in Definition 4.4.5. Fix ε0 ∈ (0, 15) and let

RAC(ε0) be as in Corollary 4.3.6.

We now take

R >max

{
1, Rdecay, RAC,

√
2(1 +D)

CAC

}
(4.11)

R >2ClenR (4.12)

where D is as in Proposition 4.A.9. We additionally assume ε ∈ (0, ε0) is taken
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small enough so we may apply the results of Section 4.B.2. Having fixed δ,R,R,

we find α0 ∈ (0,∞) satisfying the conclusions of Lemma 4.4.6, allowing us to fix

α ∈ (0, α0). We take T ∈ (0, T̂ ) such that Corollary 4.3.6 holds on (0, T ) and

Ω(ClenR, T ) is a (Σ, ε, ClenR)-expander region for M1. The above choice of R and T

ensures Corollary 4.3.6 holds with at least the curvature bound required in Theorem

4.5.1 and the function fRα satisfies Lemma 4.4.6 for α ∈ (0, α0).

Finally, with the above choices of ε,R,R and α, we use Definition 4.4.2 to define

the barrier functions u±s,α,R,R and use Proposition 4.4.4 to pick T1 > 0 and s0 > 0

such that {Γ±
s,R,R(τ)}τ∈(−∞,log(T1)) satisfies the conclusion of Proposition 4.4.4 for

s ∈ (0, s0]. For simplicity, we may assume T has been taken sufficiently small T = T1.

Definition 4.6.1 (Barriers for Rescaled Flows). Let M′ be another mean curvature

flow from M0, smooth on (0, T ), satisfying Assumption 4.2.2 B with respect to Σ.

Suppose that Ω(ClenR, T ) is a (Σ, ε, ClenR)-expander region for M′. Let

u′ : ΣClenR × (−∞, log(T )) → R

be the function parameterising RM′ as a graph over the expander in the chosen

expander region.

We say the family {Γ±
s (τ)}τ∈(−∞,τ0) is a barrier for RM′ on the time interval

(−∞, τ0), τ0 ≤ log(T ) if

u−s (x, τ) < u′(x, τ) < u+s (x, τ)

holds for each (x, τ) ∈ ΣClenR × (−∞, τ0).

We now show that for any other flow, M′, from M0 satisfying Assumption 4.2.2

B with respect to Σ, there exists a time interval I = (−∞, τs0(M′)) such that M′

remains between the barriers {Γ±
s0(τ}τ∈I .

Lemma 4.6.2. Suppose M2 is another mean curvature flow from M0, smooth on

(0, T ), satisfying Assumption 4.2.2 B with respect to Σ. Then, for each s ∈ (0, s0]

there exists a rescaled time τs ∈ (−∞, log(T )] such that {Γ±
s (τ)}τ∈I is a barrier for

RM2 on (−∞, τs).

Proof. This follows from the avoidance principle for ancient rescaled flows, provided

we can find some time τs, before which RM2 and {Γ±
s (τ)}τ∈(−∞,τs) are disjoint

along the boundary ∂ΣClenR × (−∞, τs). Clearly such a τs exists: the rescaled flow

RM2 converges locally smoothly to Σ as τ → −∞, and u
+(−)
s → +(−)sfRα > 0

(resp. < 0) as τ → −∞, on its domain of definition. QED

Using a welding argument, we can improve this time interval to the entire interval

on which Γ±
s (τ) satisfies Proposition 4.4.4.
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Lemma 4.6.3. Suppose M2 is another mean curvature flow from M0, smooth

on (0, T ) satisfying Assumption 4.2.2 B with respect to Σ. Suppose T is such

that Ω(ClenR, T ) is a (Σ, ε, ClenR)-expander region for M2. Further, we suppose

M2
t can be parameterised as a normal graph over M1

t , with |u||AM1
t
| < ξ, for

t ∈ (0, T ). Then, for every s ∈ (0, s0], {Γ±
s (τ)}τ∈(−∞,log(T )) is barrier for RM2

on (−∞, log(T )).

Remark 4.6.4. Of course, by Lemma 4.3.13, Proposition 4.3.15 and Proposition

4.3.16, we can always find a T > 0 such that M2
t can be parameterised as normal

graph over M1
t with |u||A| < ξ for t ∈ (0, T ).

Proof. Fix s ∈ (0, s0] and write log(T ) = τ0. We suppose for contradiction that

{Γ±
s (τ)}τ∈(−∞,τ0) is not a barrier for RM2 on (−∞, τ0). Appealing to Lemma 4.6.2,

there exists a time τs on which {Γ±
s (τ)}τ∈(−∞,τs) is a barrier to RM2 on (−∞, τs).

We may presume τs < τ0, else there is an immediate contradiction. We deduce there

must be a first time, τ1 ∈ (τs, τ0), such that either

u2(x1, τ1) = u−s (x1, τ1)

or

u2(x1, τ1) = u+s (x1, τ1)

for some x1 ∈ Σ, |x1| = ClenR.

Equivalently, there exists a point x1 ∈ Σ, |x1| = ClenR with

|u2 − u1|(x1, τ1) = sfRα (x1),

from which we deduce

|u2 − u1|(x1, τ1) = sfRα (x1)

≥ s min
|y|=ClenR

fRα (y)

> s(ClenRmin
x∈L

ψ(x) − 1

4
),

where the last inequality comes from Lemma 4.4.6. Observe, using Definition 4.4.1

and the normalisation of ψ, we have

ClenRmin
x∈L

ψ(x) − 1

4
=

1

4
(21Rmax

x∈L
ψ(x) − 1) ≥ 5Rmax

x∈L
ψ(x).

We will deduce a contradiction to the last inequality using our separation esti-

mate. By the above reasoning, {Γ±
s (τ)}τ∈(−∞,τ1) is a barrier to RM2 on (−∞, τ1).
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For τ ∈ (−∞, τ1], we have

max
|x|=R

|u2 − u1|(x, τ) ≤ s max
|x|=R

fRα (x).

Using Theorem 4.B.10, we deduce, for t ∈ (0, exp(τ1)],

max
x∈M1

t ,|x|=R
√
t
|u|(x, t) ≤ ϑs max

|y|=R
fRα (y)

√
t,

where u : M1 → R is the function parameterising M2 as a normal graph.

Recall, R and T were chosen at the start of this section such that we may apply

Theorem 4.5.1. Recalling our choice of ϑ ∈ (1, 2), we set h = 2smax|y|=R f
R
α (y) and

deduce, for t ∈ (0, exp(τ1)],

max
x∈M1

t ,|x|≥R
√
t
|u|(x, t) < h

√
t.

Appealing to Theorem 4.B.11, we deduce, for x ∈ Σ, |x| = ClenR, τ ∈ (−∞, τ1],

|u2 − u1|(x, τ) < ϑh

= 2ϑs max
|y|=R

fRα (y)

< s(4Rmax
z∈L

ψ(z) + 1)

< 5sRmax
z∈L

ψ(z).

A contradiction for τ = τ1. QED

Remark 4.6.5. The above proof demonstrates that the welding of the barriers,

Γ+
s (τ) with h

√
t, and Γ−

s (τ) with −h
√
t, yields barriers, in the standard sense,

relative to M1. Here, the welding process occurs in the collar Col(R,ClenR, T ). We

use the reparameterisation results from Section 4.B.2 demonstrate the boundaries

of each of the barriers components are hidden above the other barrier, and thus the

welding is well defined. See Figure 1.3.2.

We now state our uniqueness theorem.

Theorem 4.6.6. Suppose M1, M2 are two smooth (or unit-regular, cyclic mod 2)

flows from M0 satisfying Assumption 4.2.2 B (resp. Assumption 4.2.2) with respect

to Σ. Then, for as long as the flows are smooth,

M1 ≡ M2.

Proof. This follows immediately from Lemma 4.6.3 and Remark 4.6.4. Indeed, using

the assumptions from the start of the section, we deduce {Γ±
s (τ)}τ∈(−∞,τ0) is a

barrier to RM2 on (−∞, τ0) for every s ∈ (0, s0], with τ0 = log(T ). Moreover, this
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implies we can apply the separation estimate, Theorem 4.5.1, with h > 0 arbitrarily

small. We deduce the flows M1 and M2 must agree on (0, T ). By standard theory

for smooth mean curvature flow, we deduce equality up to the first singular time,

T̂ > T . QED

Theorem 4.6.7. Let C be a smooth cone, and suppose Σ is a smooth expander,

with C(Σ) = C. Suppose the level-set flow from C does not fatten and the only mean

curvature flow from the cone C is MΣ. If M0 is a compact hypersurface with conical

singularity modelled on C, the level-set flow fromM0 does not fatten instantaneously.

Moreover, there is a unique, unit-regular, cyclic mod 2 Brakke flow from M0, smooth

until the next singular time.

Proof. Following the motivating discussion at the start of Section 4.2, we note that

the uniqueness of Σ implies Σ satisfies Assumptions 4.2.3 and 4.2.4. Let M be

a unit-regular, cyclic mod 2 flow from M0. Any Type-1 blow-up of M around

(0, 0) ∈ Rn+1 × [0,∞) sub-converges to a unit-regular, cyclic mod 2 Brakke flow on

(0,∞). This limit can be extended to include the cone C at time 0, as dilations of the

initial condition converge locally smoothly to the cone away from 0. MΣ is assumed

to be the only flow from C, and thus any Type-I blow-up around the space-time

origin is modelled on Σ. M hence satisfies Assumption 4.2.2. Since M was chosen

arbitrarily, every unit-regular, cyclic mod 2 flow from M0 satisfies Assumption 4.2.2.

We apply Theorem 4.6.6 to deduce M is the unique unit-regular, cyclic mod 2 flow

from M0 until the first singular time T̃ > 0. Recall, the inner and outer Brakke

flows of Hershkovits–White are unit-regular and cyclic mod 2, and so the inner and

outer flows from M0 are equal until t = T̃ . We conclude the level-set flow from M0

does not fatten instantaneously. QED

In ambient dimensions (n+ 1) ∈ [3, 7], all expanders are automatically smooth,

by classical results for minimal surfaces. We deduce,

Corollary 4.6.8. For n ∈ [2, 6], let Cn ⊂ Rn+1 be a smooth cone. Suppose Mn
0 ⊂

Rn+1 satisfies Assumption 4.2.1. If the level-set flow from C does not fatten, then the

level-set flow from M0 does not fatten instantaneously. Moreover, there is a unique,

unit-regular, cyclic mod 2 Brakke flow from M0, smooth until the next singular time.

4.7 Fattening

We now discuss how the functions fRα introduced in Section 4.4 can be welded to a

constant to yield global barriers over the expander. We then use these barriers to

demonstrate that if the mean curvature flow from the asymptotic cone fattens, then

so does the flow from a compact hypersurface with conical singularity modelled on

said cone. We work with the inner flow oriented with the outward pointing normal.
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The same results hold for the outer flow, though one must change the relevant signs

to get barriers on the correct side.

Lemma 4.7.1. Let Cn ⊂ Rn+1 be a smooth cone, and suppose the outermost ex-

panders are smooth. Let Σ be the inner expander asymptotic to C. There exists a

radius R ∈ (0,∞) such that for any h ∈ (0, 1), the hypersurface

ΓR,h := graphER
h (4.13)

defines a sub-solution to rescaled mean curvature flow.

Proof. The graph of u = h ∈ (0, 1) is well defined over the expander Σ in the region

where |A| ≤ 1. Since the asymptotic geometry is conical, there exists R1 such that

the graph over ER1 of h ∈ (0, 1) defines a smooth hypersurface. We now show this

hypersurface is a sub-solution. As in the proof of Theorem 4.4.4, we calculate

vΓR,h
(x, τ)

(
∂τxΓR,h

−H +
1

2
xΓR,h

)
· νΓR,h

= −LΣ(h) + E(h)

=

(
1

2
− |A|2

)
h+ E(h).

Since h is constant its derivatives vanish. We can apply the same reasoning as in

the proof of Theorem 4.A.9 to bound the error in terms of h and |A|2. Note, the

contributions to the error from the drift term vanish, as they depend on ∇h = 0.

We have

vΓR,h
(x, τ)

(
∂τxΓR,h

−H +
1

2
xΓR,h

)
· νΓR,h

≥
(

1

2
− (1 +D)|A|2

)
h.

Once again using the asymptotic geometry, we find R2 such that

max
x∈ER2

|A|2(x) <
1

2(1 +D)
.

We conclude, for R ≥ R2

ΓR,h := graphER
h (4.14)

is a sub-solution to the rescaled mean curvature flow. QED

In the following proposition, we use the choice of parameters, R,R, α, discussed

at the start of Section 4.6. In addition, we assume R has chosen large enough to

satisfy Lemma 4.7.1.

Proposition 4.7.2. Let Cn ⊂ Rn+1 be a smooth cone, and suppose the outermost
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expanders are smooth. Let Σ be the inner expander. Fix

h = max
x∈Σ∩∂B(0,R)

fRα (x),

and set

us(x) =


sfRα (x) x ∈ ΣR

smin{fRα (x), h} x ∈ ER\ΣClenR

sh x ∈ EClenR.

Then, there exists s0 ∈ (0, 1h) such that for s ∈ [0, s0] the graph

Γs = graphΣus

defines a sub-solution to rescaled mean curvature flow.

Remark 4.7.3. The above theorem shows {
√
tΓs}t∈(0,∞) defines a sub-solution to

mean curvature flow starting from the cone C(Σ).

Proof. Using the argument of Proposition 4.4.4, we find s0 such that for s ∈ [0, s0],

graphΣClenR
sfRα is a smooth hypersurface and defines a sub-solution (over ΣClenR).

It follows from a standard argument that the minimum of two sub-solutions is itself

a sub-solution, provided they intersect in the correct manner. This is guaranteed

by our choice of collar region and parameter α. By definition we have h ≥ fRα (x)

for x ∈ Σ, |x| = R and, by Lemma 4.4.6 and the choice of Clen, h ≤ fRα (x) for

x ∈ Σ, |x| = ClenR. QED

We are now able to state and prove our key theorem for singularities modelled

on cones with fattening level-set flow.

Theorem 4.7.4. Let Cn ⊂ Rn+1 be a smooth cone, with fattening level-set flow.

Suppose the outermost flows from C are modelled on smooth expanders. Let M0 be a

smooth hypersurface with a conical singularity modelled on C. Then, every tangent

flow at the origin of any unit-regular, cyclic mod 2 Brakke flow supported on the

inner flow from M0 is modelled on the inner expander of C. The same relation holds

for the outer flow from M0 and the outer expander.

Remark 4.7.5. We must choose the orientation of the cone C so that the notion

of ‘inside’ agrees with the ‘inside’ of the hypersurface M0. This is so that the inner

flow from M0 will have tangent flows modelled on the inner flow from C.

Proof. Let Cn ⊂ Rn+1 be a smooth cone, and fix the appropriate orientation. Sup-

pose the outermost flows from C are modelled on the smooth expanders Σ+,Σ−, the

outer and inner expanders respectively. We define

Gap(C) := Int(Σ+) ∩ Ext(Σ−).
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Observe, {
√
tGap(C)}t∈(0,∞) defines the level-set flow from C, and thus every flow

from C is contained in this region. We note, as a consequence of the work of

Deruelle–Schulze, the inner and outer expanders of C decay towards each other

at rate O(r−n−1 exp(− r2

4 )).

Suppose M is any unit-regular, cyclic mod 2 Brakke flow starting from M0.

Using the same argument as in the proof of Theorem 4.6.7, we see any forward

tangent flow of M must be some flow starting from the cone. Whilst the tangent

flow may not be unique, every tangent flow will be contained in {
√
tGap(C)}t∈(0,∞).

We deduce the following claim:

Claim 4.7.1. Let M be a unit-regular, cyclic mod 2 Brakke flow from M0. For

every ε > 0, R̃ <∞, there exists a time T = T (ε, R̃,M) > 0 such that the rescaled

flow RM⌊B(0, R̃) × (−∞, log(T )) is contained in the ε-thickening of Gap(C).

We now consider a unit-regular, cyclic mod 2 Brakke flow supported in the

inner flow from M0. Recalling the construction of Hershkovits–White, [HW20],

we approximate M0 by a sequence of smooth hypersurfaces, Mi, from the inside,

with limi→∞Mi = M0 in the varifold sense. Additionally, we assume local smooth

convergence away from the singular point. Moreover, if Mi are unit-regular, cyclic

mod 2 Brakke flows starting from Mi, then there exists a subsequential limit Minner,

supported on the inner flow from M0.

We note at this point it is not clear Minner is the only unit-regular, cyclic mod 2

Brakke flow supported on the inner flow. Once we show Minner is modelled on the

inner expander near the cone point, we can apply Proposition 4.3.8 to see the support

is smooth fon some time interval. We can then appeal to [CCMS20, Corollary F.4]

(Theorem 2.2.6) to conclude Minner is the only unit-regular, cyclic mod 2 Brakke

flow supported on the inner flow on this time interval.

Let Γs be the global sub-solutions constructed in Proposition 4.7.2 for each s ∈
[0, s0] relative to the inner expander Σ−. Recall, they lie on the outside of Σ−.

Claim 4.7.2. For each s ∈ (0, s0], there exists a radius Rs such that, for each

R̃ ≥ Rs, one may find a time T = T (s, R̃,Minner) > 0 so that Minner⌊Ω(R̃, T ) lies

strictly on the inside of {
√
tΓs}t∈(0,T ).

Proof. Fix s ∈ (0, s0]. The flow {
√
tΓs}t∈(0,∞) is a sub-solution to mean curva-

ture flow starting from C by Proposition 4.7.2. Indeed, any Brakke flow starting

from a compact, smooth hypersurface lying interior to the cone C will never touch

{
√
tΓs}t∈(0,∞) by the avoidance principle.

Fix ε = s
4 and let Rs <∞ be the radius such that the distance between Γs and

the ε-thickening of Gap(C) is at least ε outside B(0, Rs). Such a radius exists by the

decay proved by Deruelle–Schulze [DS20]. Fix R̃ ≥ Rs. Let T = T (ε, R̃,Minner) >

0 be the time from Claim 4.7.1 for Minner. By checking the boundary data, it

is straightforward to adapt the above avoidance argument to see that the flows
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Mi⌊Ω(R̃, T ) avoid {
√
tΓs}t∈(0,T ) in B(0, R̃

√
t). We conclude that Minner⌊Ω(R̃, T )

must also avoid the barrier by taking limits. QED

Using this observation, any tangent-flow of Minner must lie on one-side of the

barriers
√
tΓs for every s ∈ (0, s0]. The only flow from C for which this is true is

{
√
tΣ−}t∈(0,∞). We conclude every tangent flow of Minner is modelled on the inner

expander.

QED

As an immediate corollary, we may apply Theorem 4.6.6 to deduce the following.

Corollary 4.7.6. The unit-regular, cyclic mod 2 Brakke flow supported on the inner

flow from M0 is smooth until the next singular time and is the unique flow with

tangent flows modelled on the inner expander. The analogous statement holds for

the outer flow from M0.
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Appendix

4.A Linearisation of Geometric Quantities

In the following, let M1
t ,M

2
t ⊂ Rn+1 be smooth, 1 parameter families of smooth

hypersurfaces for t ∈ I ⊂ R. Suppose there exist open sets U1, U2 ⊂ Rn+1 such that

M2
t ∩ U2 can be parameterised as a graph over M1

t ∩ U1. That is, for every t ∈ I,

there is a smooth function u(·, t) : M1
t ∩ U1 → R such that

M2
t ∩ U2 = graphM1

t ∩U1
u(·, t)

We restate the following theorems from the recent work of Chodosh–Choi–

Schulze [CCS23]. Similar results have been shown throughout the literature. We

compute standard geometric quantities on M2
t in terms of those on M1

t and the

function u. We note the convention H = Hν (which yields a scalar mean curvature

with opposite sign than is typical). We begin by defining

v(x, t) = (1 + |(Id − uSM1
t
)−1(∇M1

t
u)|2)

1
2 .

Theorem 4.A.1. The upwards pointing normal along M2
t can be written

νM2
t
(x + uνM1

t
) = v−1(−(Id − uSM1

t
)−1∇M1

t
u+ νM1

t
). (4.15)

In particular

v = (νM1
t
· νM2

t
)−1

Theorem 4.A.2. For x ∈M1
t ∩U1, the mean curvature of M2

t at x+u(x, t)νM1
t
(x)

satisfies

v(x, t)HM2
t
(x + u(x, t)νM1

t
) = HM1

t
(x) + (∆M1

t
u+ |AM1

t
|2u)(x, t) + EH

Furthermore, EH can be decomposed into

E = uEH
1 + EH

2 (∇M1
t
u,∇M1

t
u)
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where EH
1 ∈ C∞(M1

t ) and EH
2 ∈ C∞(M1

t ;T ∗M1
t ⊗ T ∗M1

t )

Theorem 4.A.3. The support function along M2
t satisfies

v(x, t)(xM2
t
· νM2

t
) = x · νM1

t
+ u(x, t) − xT · ∇M1

t
u+ uEx·ν

Corollary 4.A.4. If M1
t is a smooth mean curvature flow, then

v(x, t)(∂txM2
t
−H) · νM2

t
= ∂tu− (∆M1

t
u+ |AM1

t
|2u)(x, t) + E.

Moreover, there exists CE = CE(ξ, n) ∈ (0,∞) such that

∥E(u)(·, t)∥C1(M1
t )

≤ CE ∥u(·, t)∥2C2(M1
t )
.

Additionally, if M2
t is a smooth mean curvature flow, then

∂tu = (∆M1
t
u+ |AM1

t
|2u)(x, t) + E

Corollary 4.A.5. If M1
t is smooth rescaled mean curvature flow then

v(x, t)(∂txM2
t
−H +

1

2
xM2

t
) · νM2

t
=

∂tu−
(

∆M1
t
u+

1

2
xT · ∇M1

t
u+

(
|AM1

t
|2 − 1

2

)
u

)
(x, t) + E.

Moreover, there exists CE = CE(ξ, n) ∈ (0,∞) such that

∥E(u)(·, t)∥C1(M1
t )

≤ CE ∥u(·, t)∥2C2(M1
t )
.

Additionally, if M2
t is a smooth rescaled mean curvature flow, then

∂tu =

(
∆M1

t
u+

1

2
xT · ∇M1

t
u+

(
|AM1

t
|2 − 1

2

)
u

)
(x, t) + E.

We note, [CCS23] prove better estimates for the error term E than those stated

here. In particular, they show control of higher spatial and time derivatives of

E(u)(x, t). In the remainder of this section, we expand on their exposition to discuss

how the error terms depend on the function u and its derivatives.

We state the Sherman–Morrison formula .

Lemma 4.A.6 (Sherman–Morrison). Let V be a vector space and suppose A is an

invertible linear map A : V → V . Suppose u ∈ V and v ∈ V ∗. Then, the linear map

A+ u⊗ v : V → V

is invertible if and only if 1+vA−1u ̸= 0. Moreover, the inverse has the following

explicit form.
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(A+ u⊗ v)−1 = A−1 − A−1 ◦ u⊗ v ◦A−1

1 + vA−1u
.

Let S denote the shape operator of M1
t . We recall the following linear map

discussed in [CCS23].

G :TxM → TxM (4.16)

G : = (I − uS)2 + ∇u⊗ du. (4.17)

When |u||A| < 1, (I−uS) is invertible, with an explicit formula via Taylor series.

Provided the first derivative exists, we may apply the Sherman–Morrison formula

to G, as

du((I − uS)−1∇u) > 0.

Remark 4.A.7. We note there is no requirement for ∇u to be bounded for the

inverse to exist, only finite at each point. We will use this fact in the proof of

Proposition 4.A.9, however, we will later impose bounds on the first and second

derivative so that we may apply the Taylor expansion of 1/(1 + t) to understand

how the error decomposes.

We assume |u||A| < 1. We then may apply the Taylor expansion of 1/(1 − t) to

(I − uS)−1 to deduce

(I − uS)−1 = Id +

∞∑
n=1

(uS)n

and thus

G−1 = Id + L (4.18)

where we have used the Shermann–Morrison formula to define

L := 2

∞∑
n=1

(uS)n +

( ∞∑
n=1

(uS)n

)2

− (I − uS)−1 ◦ ∇u⊗ du ◦ (I − uS)−1

1 + du((I − uS)−1∇u)
. (4.19)

4.A.1 Derivation of Linearisation

We repeat the derivation contained in [CCS23], without dropping ‘quadratic’ terms.

In doing so, we show the explicit form of the error operator seen in the linearisation

of the mean curvature.

By integrating the first variation formula by parts, Chodosh–Choi–Schulze
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demonstrate

vHM2
t

=
v2√
detG

div(
√
GG−1∇u) + v2(tr(G−1S) − tr(G−1S2)u).

We first note

v2(x, t) = 1 + |(Id − uSM1
t
)−1(∇M1

t
u)|2

= 1 + |(Σ∞
k=0u

kSk
M1

t
)(∇M1

t
u)|2. (4.20)

Now, analysing the divergence term in more detail, we have

1√
detG

div(
√

detGG−1∇u) = div(G−1∇u) +
1

2
∇ log det(G) · G−1∇u. (4.21)

div(G−1∇u) = div((Id + L)∇u) (4.22)

= ∆u+ div(L∇u). (4.23)

To analyse the ∇ log det term, we recall the Jacobi Formula,

d

dt
detA(t) = detA(t) · tr

(
A−1(t) · dA(t)

dt

)
.

We calculate,

∇ log det(G) · G−1∇u =
1

det(G)
∇i det(G)(G−1∇u)i = tr(G−1∇iL)(G−1∇u)i

= tr(∇iL)((Id + L)∇u)i + tr(L∇iL)((Id + L)∇u)i (4.24)

where (v)i denotes the ith component of the vector v.

Finally, we analyse the terms involving the trace. We see

tr(G−1S) − tr(G−1S2u) =HM1
t

+ |AM1
t
|2u+ tr((L− 2uS)S − LS2u). (4.25)

Definition 4.A.8. For future reference, we group the higher order terms from the

divergence and trace terms as follows.

Ediv(u) : = div(L∇u) + tr(∇iL)((Id + L)∇u)i + tr(L∇iL)((Id + L)∇u)i

Etr(u) : = tr((L− 2uS)S − LS2u).

4.A.2 Error at a critical point

We now consider the structure of the error at a critical point of u.

By definition, at a critical point of the function u, we have ∇u = 0. Considering
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equations 4.19 and 4.20, we see the error terms, Definition 4.A.8, simplify. From

this, we can deduce bounds on how fast the function u is increasing or decreasing.

This observation was noted for minimal surfaces in [CM11], and for mean cur-

vature flow in [Her17]. We provide a proof below for completeness.

Proposition 4.A.9. For i = 1, 2, Let {M i
t}t∈(0,T ) be a smooth mean curvature flow.

Suppose there exists a smooth, 1-parameter family of smooth functions

{
u(·, t) : M1

t → R
}
t∈(0,T )

,

with |u||A| < ξ < 1 such that M2
t can be parameterised as the normal graph of u(·, t)

over M1
t .

Then, at a positive spatial maximum of u(·, t), we have

∂u

∂t
≤ (1 +D)|A|2u,

and at a negative spatial minimum of u(·, t), we have

∂u

∂t
≥ (1 +D)|A|2u,

where D = D(ξ, n) ∈ (0,∞).

Proof. Let X0 be a spatial critical point of u, we have ∇u(X0) = 0, and hence

equation 4.20 immediately shows v2 = 1. We also note

L = 2

∞∑
n=1

(uS)n +

( ∞∑
n=1

(uS)n

)2

= 2uS + (uS)2

 ∞∑
n=0

(uS)n +

( ∞∑
n=0

(uS)n

)2
 .

Using equation 4.A.4 and the derivation in Section 4.A.1, we see u satisfies the

following differential equation at X0.

∂u

∂t
(X0) = divM1

t
((I + L)∇u) + |A|2u+ Etr(u).

Substituting the above formula for L at a critical point into the equation for

Etr(u), we deduce

|Etr| ≤ D|A|3|u|2,

for some constant D depending only on ξ and the dimension n. This follows from

|u||A| < ξ and the Cauchy-Schwartz inequality.
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The linear map G is symmetric and positive definite, and hence G−1 = I + L

is symmetric and positive definite. Thus, by a standard argument (see for example

[Eva10, Section 6.4.1. Theorem 1]), divM1
t
((I + L)∇u) will have the same sign as

∆M1
t
u at a critical point. Note, terms from div(L∇u) involving derivatives of L

vanish, as any such term will also involve ∇u, which is equal to 0.

If X0 is a positive maximum, or negative minimum, we conclude∣∣∣∣∂u∂t
∣∣∣∣ (X0) ≤ |A|2|u| +D|A|3|u|2.

The proposition follows by recalling |A||u| < 1. QED

4.A.3 Decomposition of the Error Operator

We wish to show the Error Operator decomposes binomially when applied to the

sum of functions. These results can be interpreted as ‘local continuity’ of E as an

‘operator’ at u with respect to perturbations by functions with small C2 norm.

Let Sij , 1 ≤ i, j ≤ n, denote the components of the shape operator of M1
t . We

recall the linear map G : TxM
1
t → TxM

1
t . We write

Gij =δij − 2uSij + u2SikSjk + uiuj .

We set Qij(u) := u2SikSjk + uiuj , Bij := −2uSij +Qij :

Gij =δij − 2uSij +Qij(u)

=δij +Bij(u).

In the following, we directly apply the Taylor expansion of 1/(1 + t) to G =

I + B, rather than applying the Sherman–Morrison formula. For the Taylor series

to converge, we make the following assumption.

Assumption 4.A.1. Let ξ ∈ (0, 1). To ensure all of the Taylor series converge, we

make the assumption

max
{
|u||A|, |∇u|2

}
<
ξ

4
.

This ensures

| − 2uA+ u2A2 + ∇u⊗ du| ≤ 2|u||A| + |u2A2| + |∇u|2

< ξ.
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By Taylor expansion, we deduce

G−1 = Id +
∞∑
n=1

(−1)nBn (4.26)

L(u) =
∞∑
n=1

(−1)n(B(u))n. (4.27)

Consider g = u+f and assume u, f and g satisfy Assumption 4.A.1. We calculate

Q(g) = g2SikSjk + gigj

= Q(u) +Q(f) + 2(uf)SijSjk + uifj + ujfi

:= Q(u) +Q(f) +M(u, f).

Hence,

B(g) = B(u) +B(f) +M(u, f).

Having decomposed B(g), we look to decompose B(g)n. Applying the binomial

theorem, we deduce

B(g)n = (B(u) +B(f) +M(u, f))n

=

n∑
p=0

p∑
q=0

(
n

p

)(
p

q

)
B(u)n−pB(f)p−qM(u, f)q

= B(u)n +B(f)n +
n∑

p=1

p∑
q=1

(
n

p

)(
p

q

)
B(u)n−pB(f)p−qM(u, f)q.

Substituting the above formula into the Taylor series for L(g), equation 4.27, we

calculate

L(g) =

∞∑
n=1

(−1)n(B(u) +B(f) +M(u, f))n

=
∞∑
n=1

(−1)nB(u)n +
∞∑
n=1

(−1)nB(f)n

+

∞∑
n=1

(−1)n
n∑

p=1

p∑
q=1

(
n

p

)(
p

q

)
B(u)n−pB(f)p−qM(u, f)q

= L(u) + L(f) + Emixed(u, f).

We note that the series Emixed(u, f) converges, in at least a C1 sense, as

Emixed(u, f) = L(g) − L(u) − L(f),

where the right hand side is well defined, since u, f, g satisfy Assumption 4.A.1.
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Substituting this formula for L(g) into equations 4.23, 4.24,4.25 and 4.20, we

deduce the following theorem.

Theorem 4.A.10. Let Mi, i ∈ {1, 2, 3} be smooth hypersurfaces. Suppose there

exist open sets Ui ⊂ Rn+1, i ∈ {1, 2, 3} and C2(M1) functions

u2 : M1 ∩ U1 → R

u3 : M1 ∩ U1 → R,

such that

Mi ∩ Ui = graphM1∩U1
ui, i ∈ {2, 3}.

Suppose further

max{|ui||A|, |∇ui|2} <
ξ

4
, i ∈ {2, 3}.

Then, for x ∈ M1 ∩ U1, the scalar mean curvatures of M2 and M3 at the image of

x under ui satisfies

vM3HM3(x + u3νM1(x)) − vM2HM2(x + u2νM1(x)) (4.28)

= ∆M1f + |AM1 |2f + E(f) +Qmixed(u2, f), (4.29)

where f := u3 − u2 and Qmixed is a degree 1 homogeneous polynomial with bounded

coefficients in

{u2,∇iu2,∇2
i,ju2} × {f,∇if,∇2

i,jf},

for i, j ∈ {1, . . . , n}. That is, a polynomial in the totally mixed terms of order 2.

Moreover,

∥Qmixed(u2, f)∥C1(M1)
≤ CQ ∥u2∥C2(M1)

∥f∥C2(M1)
,

where CQ = CQ(ξ, n) ∈ (0,∞).

Remark 4.A.11. We note that the related decomposition of the error holds for the

linearisation of the rescaled mean curvature. In [CCS23, Lemma A.3], it is shown

v(x, τ)(xM2
τ
· νM2

τ
) = x · νM1

τ
+ u− x · ∇u− u

∞∑
k=1

uk−1x · Sk(∇u).

For functions g = u+f , one decomposes the infinite series via the binomial theorem

as above to get a mixed term of the same form as the mixed term in Theorem 4.A.10.
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4.B Cartographic considerations

We prove a collection technical results for graphs over hypersurfaces.

4.B.1 New coordinates from Old

Definition 4.B.1 (Signed distance in a given direction). Let v be a unit vector,

M ⊂ Rn+1 and x ∈ Rn+1. Let

B(x, v,M) := {α ∈ R,x + αv ∈M}.

Let α0 ∈ B(x, v,M) be the element such that

|α0| = min
B(x,v,M)

|α|.

We define the signed distance from x ∈ Rn+1 to a subset M ⊂ Rn+1 in the direction

v as

d(x, v,M) := α0.

That is, the signed length of the shortest line segment parallel to the direction

v connecting x to a point in M . We take the convention d(x, v,M) = ∞ if there is

no intersection.

Proposition 4.B.2. Let M1,M2 be smooth, closed hypersurfaces in Rn+1. Let Tδ
denote a tubular neighbourhood of M1 with radius δ > 0 on which πM1 : Tδ(M1) →
M1 is well defined and d(·,M1) : Tδ(M1) → R is a smooth function. Suppose further

that there exist a point x ∈ Rn+1 and open sets of Mi, Ui,x := C(x, r) ∩Mi such

that

Ui,x = graphBn(x,r)ui,x,

where Bn(x, r) is the n-ball of radius r in some n-plane through x and ui,x ∈
C1(Bn(x, r)). Let T (M1∩U1) denote the subset of Tδ(M1) that projects to M1∩U1.

Additionally, we define

V2 := U2,x ∩ T (M1 ∩ U1,x)

V1 := πM1(V2).

Given the above, there exists an η1 > 0 such that, if

∥ui,x∥C0(Bn(x,r)) < η1r.
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∥∇ui,x∥C0(Bn(x,r)) < η1.

Then,

1. V2 is an open subset of M2,

2. V2 is non-empty and contains the image of 0 under u2,x,

3. V2 can be parameterised as a normal graph over V1 i.e.

M2 ∩ V2 = graphV1
u,

where the function u : V1 → R is given explicitly by the signed distance in νM1 to

M2.

Proof. Let x ∈ Rn+1 be as in the statement of the proposition and write Ui = Ui,x.

To simplify our discussion, we scale to take r = 1, translate x to the origin, and

rotate such that the normal of the plane containing Bn(x, 1) is en+1.

Item (1) is trivial from the definition of open sets in the submanifold topology.

Item (2) follows from standard trigonometry. It is clear we may choose η1 > 0

such that the image of the origin under u2 is in V2.

To prove Item (3), we show there exists a choice of η1 > 0 such that πM1 restricted

to M2 ∩ V2 is injective. The moral of the proof is that the gradient bound on u2 is

violated if two points project to the same point on M1, provided the normal at each

point of M1 ∩ U1 is sufficiently close to vertical.

Using equation 4.15, it is straightforward to show that if ∥∇u1∥C0 < η1, there

exists C <∞ depending only on the dimension such that

∥νM1(x) − en+1∥ < Cη1. (4.30)

We hence prove the following.

Claim 4.B.1. If η1 < (1 + C)−1, then πM1 restricted to M2 ∩ V2 is injective.

Suppose for contradiction this is false. Fix η1 < (1 + C)−1. By our assumption,

there exists 2 non-equal points y1,y2 ∈ M2 ∩ V2, and x ∈ M1 such that πM1(y1) =

πM1(y2) = x. Let y′
j = πBn(0,1)(yj).

Using the definition of πM1 we deduce

y1 − y2

|y1 − y2|
= ±νM1(x).

Thus, considering the en+1 component of y1−y2

|y1−y2| and using equation 4.30, we

have

1 − Cη1 <
|u2(y′

1) − u2(y
′
2)|

|y1 − y2|
. (4.31)
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We now show equation 4.31 is bounded above by η1. Let b := |y′
1 − y′

2| and

define the function

f :[0, b] → R

f(z) : = u2(
z

b
y′
1 +

b− z

b
y′
2).

The regularity of u2 implies f is at least once differentiable, hence we may apply the

mean value theorem for functions of one variable. There exists z′ ∈ [0, b] such that

|y′
1 − y′

2|
df

dz
(z′) = f(b) − f(0) = u2(y

′
1) − u2(y

′
2).

Observe,

df

dz
(z′) = Du2

(
z′

b
y′
1 +

b− z′

b
y′
2

)(
y′
1 − y′

2

|y′
1 − y′

2|

)
.

Using ∥∇u2∥C0 < η1, we deduce ∣∣∣∣dfdz (z′)

∣∣∣∣ < η1.

With this bound, we calculate

|u2(y′
1) − u2(y

′
2)|

|y1 − y2|
· |y

′
1 − y′

2|
|y′

1 − y′
2|

=

∣∣∣∣dfdz (z′)

∣∣∣∣ |y′
1 − y′

2|
|y1 − y2|

(4.32)

=

∣∣∣∣dfdz (z′)

∣∣∣∣
√1 +

(
df

dz
(z′)

)2
−1

< η1, (4.33)

where we have used |y1 − y2|2 = |y′
1 − y′

2|2 + |u2(y′
1) − u2(y

′
2)|2.

Combining 4.31 and 4.32,

1 < (1 + C)η1.

This contradicts our assumption η1 < (1 + C)−1. QED

Definition 4.B.3 (Interior/exterior ball condition). We say a point x0 in a hyper-

surface M satisfies an interior/exterior ball condition at x0 with radius r if

B(x0 ± rνM (x0), r) ∩M = x0

where νM (x0) denotes the unit normal to M at x0. We say a hypersurface M ⊂ Rn+1

satisfies an interior/exterior ball condition with radius r if the interior/exterior ball

condition holds for every x0 ∈M with radius r.

Lemma 4.B.4. Let C be a smooth cone and Σ be a smooth expander with C(Σ) = C.
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Let M0 satisfy Assumption 4.2.1 and suppose M1 is a smooth flow on some time

interval starting from M0 that satisfies Assumption 4.2.2. There exists a radius

µ > 0 and a time T0 > 0 such that for t ∈ (0, T0), M
1
t satisfies the interior/exterior

ball condition with radius r = µ
√
t

Proof. This is a consequence of local smooth convergence of the rescaled flow RM1

to Σ and pseudolocality everywhere else.

In Proposition 4.3.8, it was shown there exists T such that for 0 < t < T , M1
t is

a smooth hypersurface. Since M1
t is compact, there certainly exists some µ(t) such

that M1
t satisfies an interior/exterior ball condition with r = µ(t).

We first examine the expander region. Σ is a smooth, asymptotically conical

hypersurface. Since the asymptotic geometry is controlled, we see there is uniform

µΣ > 0 such that Σ satisfies an interior ball condition with r = µΣ. As noted in the

proof of Lemma 4.3.11, the flow RM1 converges locally smoothly to Σ as τ → −∞.

We deduce, for every θ ∈ (0, 1), there exists some time τ0 = τ0(θ,R) such that for

τ ≤ τ0, the interior/exterior ball condition is satisfied at x ∈ RM1
τ ∩ B(0, 2R) with

radius θµΣ. Taking θ = 1
2 and switching back to the non-rescaled flow, we see that

at (x, t) ∈ M1⌊Ω(R, exp(τ0(
1
2 , R))), the interior/exterior ball condition is satisfied

with radius µΣ
2

√
t.

Turning our attention to the pseudolocal region, we consider a point (x, t) ∈
M1⌊G(R, T ). By our definition of the pseudolocal region, there exists a point x0 ∈
M0 such that,

D(Cscale|x0|)−1(M− x0) ∩ C(0, δ)

can be parameterised as a smooth graph of the function wx0 over Bn(0, δ). In

[INS19], pseudolocality is proven by using the monotonicity formula to verify that

there is only one ‘sheet’ of M1
t contained in the cylinder C(0, δ). Indeed, the same

reasoning shows D(Cscale|x0|)−1(M1
t ) satisfies an interior/exterior ball condition at x′

(the image of x under the above transformation) with some radius µPL, depend-

ing only on the closeness to the plane in the ball B(0, 1) of the (dilated) initial

condition. Importantly, µPL is independent of x and x0. Reversing the dilation

and noting |x0| > R
2

√
t (Proposition 4.3.4), we deduce at (x, t) ∈ M1⌊G(R, T ), the

interior/exterior ball condition is satisfied with radius µPLCscaleR
2

√
t.

Finally, we set µ = min
{

µΣ
2 ,

µPLCscaleR
2

}
. We conclude, for t < T0 = exp(τ0), the

interior/exterior ball condition is satisfied at every x ∈M1
t with radius µ

√
t.

QED

Definition 4.B.5 (Common Graphical Atlas). Let M1,M2 ⊂ Rn+1 be two hyper-

surfaces. Let xj ∈ Rn+1 for j ∈ I, where I is some indexing set. Suppose there

exists an n-ball Bn(xj , rj) of radius rj in some n-plane through xj , open (in the
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topology on M i) sets

Uj,i := C(xj , rj) ∩Mi,

and functions wi
xj

such that

Uj,1 = graphBn(xj ,rj)w
1
xj
,

Uj,2 = graphBn(xj ,rj)w
2
xj
.

We say ⋃
i∈{1,2}

⋃
j∈I

{(
wi
xj
, Bn(xj , rj), Uj,i

)}
forms a common graphical atlas for M1,M2 if the open sets Ui,j form a cover for Mi.

i.e.

Mi = ∪j∈IUj,i

for i ∈ {1, 2}.

Lemma 4.B.6. Let C be a smooth cone and Σ be a smooth expander with C(Σ) = C.
Let M0 satisfy Assumption 4.2.1 and suppose M1,M2 are smooth flows satisfying

Assumption 4.2.2 B with respect to Σ.

There exists T > 0 such that, for each t ∈ (0, T ) there exists a common graphical

atlas for the hypersurfaces M1
t ,M

2
t ⊂ Rn+1.

Moreover, the above atlas yields a common (space-time) graphical atlas for the

space-time hypersurfaces M1,M2 ⊂ Rn+1,1 restricted to the time interval (0, T ).

Proof. This follows from pseudolocality and local smooth convergence of the rescaled

flow to Σ.

Fix ε > 0 small and take Rmin as in Proposition 4.3.4 and fix R > 2Rmin. We

find T0 > 0 such that G(R, T0) is a pseudolocal region and Ω(4R, T0) is a (Σ, ε, 4R)-

expander region.

We claim T = T0 satisfies the claim made in the statement of the lemma. To see

this, we fix t0 ∈ (0, T ), and split into the pseudolocal and expander regions.

Claim 4.B.2. There is a common graphical atlas for M1
t0\B(0, R

√
t0) and

M2
t0\B(0, R

√
t0).

Proof. For x0 ∈ M0\{0}, let Bn(x0, r) denote the n-ball of radius r > 0 in the

tangent plane Tx0M0 and C(x0, r) denote the cylinder at x0 over Bn(x0, r).

Recalling Definition 4.3.3, we write ŵi
x0

for the parabolic dilation of the function

constructed via pseudolocality at x0 ∈M0 by Cscale|x0|.
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Proposition 4.3.4 hence shows⋃
i∈{1,2}

⋃
x0∈MRmin

{(
ŵi
x0

(·, t0), Bn(x0, δCscale|x0|), C(x0, δCscale|x0|) ∩M i
t0

)}
,

forms a common graphical atlas for M1
t0\B(0, R

√
t0) and M2

t0\B(0, R
√
t0), where

MRmin := M0\B(0, Rmin
√
t0))

QED

Claim 4.B.3. There exists a common graphical atlas for M1
t0 ∩ B(0, 4R

√
t0) and

M2
t0 ∩B(0, 4R

√
t0).

Proof. This is achieved by finding suitable charts on a portion of the expanding

flow MΣ and using convergence. We recall Remark 4.3.10: in the expander region

Ω(4R, T ), each time-slice of the flows RMj⌊Ω̃(4R, T ) can be parameterised as graphs

over a non-explicit, but controlled, subset of the expander Σ. We write Ξ = Σ4R+ε.

Further, our parameterising function is defined on Σ8R, so we can be sure the flow

is well defined as a graph over Ξ.

On the time interval (0,∞), MΣ is a smooth flow with well understood asymp-

totic geometry. We can find a uniform radius r > 0 and functions

wx0 : Pn((x0, 1), r) → R,

where Pn((x0, 1), r) := Bn(x0, r) × (1 − r2, 1 + r2)§, such that we may write, for

every (x0, 1) ∈ Σ × {1},

MΣ⌊C(x0, r) × (1 − r2, 1 + r2) = graphPn((x0,1),r)wx0 .

As a consequence of local smooth convergence, we may presume T0 has been chosen

small enough that we may write, for t0 ∈ (0, T0), x0 ∈ Ξ,

M̂i⌊C(x0, r) × (1 − r2, 1 + r2) = graphPn((x0,1),r)w
i
x0,t0

where M̂i = D√
t0

(Mi) and wi
x0,t0 : Pn((x0, 1), r) → R.

Remark 4.B.7. Note, by scaling we may presume r > 0 has been taken sufficiently

small that, for τ ∈ (1 − r2, 1 + r2),

∥wx0(·, τ)∥C0(Bn(x0,r))
<
η1r

2
,

∥∇wx0(·, τ)∥C0(Bn(x0,r))
<
η1
2
,

where η1 is the constant from Proposition 4.B.2 and ∇ denotes the spatial deriva-

tives. Such a scaling argument works as Σ is smooth.

§We call Pn a parabolic n-ball
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We return to the proof. By taking T0 > 0 sufficiently small, we may presume for

x0 ∈ Ξ and τ ∈ (1 − r2, 1 + r2)

∥∥wi
x0,t0(·, τ)

∥∥
C0(Bn(x0,r))

< η1r,∥∥∇wi
x0,t0(·, τ)

∥∥
C0(Bn(x0,r))

< η1.

Reversing the dilation, we have⋃
i∈{1,2}

⋃
x0∈

√
t0Ξ

{(
ŵi
x0,t0(·, t0), Bn(x0,

√
t0r), C(x0,

√
t0r) ∩M i

t0

)}
forms a common graphical atlas for M1

t0 ∩B(0, 4R
√
t0) and M2

t0 ∩B(0, 4R
√
t0). As

in the pseudolocal case, ŵ denotes the parabolic dilation of the function w. QED

Since G(R, T ) and Ω(4R, T ) overlap in Col(R, 4R, T ), we have constructed a

common graphical atlas for M1
t0 and M2

t0 . This holds for all t0 ∈ (0, T ).

To construct the space-time atlas, we note that the functions constructed above

were time-slices of functions defined over parabolic n-balls. Choose {tj}∞j=1 ⊂ (0, T )

to be a set of times dense in [0, T ]. Repeating the above construction for each tj , and

taking the union over j, yields a space-time graphical atlas for M1, M2 restricted

to the time interval (0, T ). QED

4.B.2 Transforming between coordinate systems

Our barriers are defined by considering graphs over the expander, whilst the sep-

aration estimate describes the behaviour of graphs over the smooth flow M1. We

therefore need to be able to translate the ‘height’ information between these two

coordinate systems. This is used in Lemma 4.6.3, where we first use the ‘barrier

height’ to get a ‘height’ of RM2 as a graph over RM1. This is then propagated out

over the rest of the flow by the maximum principle, Theorem 4.5.1. To complete

the argument, we turn this height back into the ‘height over the expander’ in order

to take ‘lower’ barriers on the same time interval.

For the following results, we will use the setup as stated in Section 4.6. To recall,

we let M1,M2 be two mean curvature flows from M0, smooth on the time interval

(0, T ), T > 0. We suppose M0 satisfies Assumption 4.2.1 and the flows Mi satisfy

Assumption 4.2.2 B with respect to the chosen expander Σ. Fix R ∈ (1,∞),R ∈
(2ClenR,∞) and α ∈ (0,∞) and let s0, ε0 be as in Proposition 4.4.4. Let T be such

that Ω(ClenR, T ) is a (Σ, ε0, ClenR)-expander region for both M1,M2. We suppose

the functions

u±s,α,R,R : ΣR × (−∞, log(T )) → R

satisfy the conclusion of Proposition 4.4.4 for s ∈ [0, s0].
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Lemma 4.B.8. For every ϑ ∈ (1, 2), there exists a ε1 = ε1(ϑ) ∈ (0, ε0) such that if

Ω(ClenR, T
′) is a (Σ, ε1, ClenR)-expander region for M, we have

|d(x, νRM1(x, τ),Γ±
s (τ))| ≤ ϑsfRα (u−1

1 (x, τ)),

where (x, τ) ∈ RM1, |x| = R, τ ∈ (−∞, log(T ′)) and s ∈ (0, s0).

Remark 4.B.9. The above result is motivated by the Euclidean model case. Con-

sider the n-plane:

Π : = {x ∈ Rn+1 s.t. ⟨en+1,x⟩ = 0}

and the cone

C := graphΠ(a+ b|x|).

Let V : Π → Rn+1 be a unit-vector field on Π. By elementary trigonometry, for

every ε > 0 there exists a δ = δ(b, ε) > 0 such that if |V − en+1| < δ, we have,

a ≤ d(0, V (0), C) < (1 + ε)a.

Proof. Fix ϑ ∈ (1, 2). We show the claim for Γ+
s (τ), the claim for the other barrier

follows with the relevant signs and orientations reversed. The idea of the proof is to

exploit the bounds on the gradient to reduce the problem to the above remark.

We define the ‘truncated cone’

V +(γ, σ) :=
{
v ∈ Rn+1, |v| ≤ γ,∠ (v, en+1) = σ

}
,

where ∠ (v1, v2) denotes the angle between the vectors v1, v2. For every s ∈ [0, s0],

u+s is a smooth function on ΣClenR × (−∞, log(T )). By the definition of u+s , we

have gradient bounds on (−∞, log(T )). In particular, the Lipschitz constant for

each u+s (·, τ) is bounded by a constant uniform in s and τ . We deduce¶ there exist

γ0 ∈ (0,∞), σ0 ∈ (0, 1) such that

V +(y, τ, s, γ0) :=
{
y + u+s (y, τ)νΣ(y) + v, v ∈ A(en+1, νΣ(y))V +(γ0, σ0)

}
lies strictly outside Γ+

s (τ) for each y ∈ ΣClenR, and s ∈ [0, s0], τ ∈ (−∞, log(T )).

Here, A(en+1, νΣ(y)) denotes the rotation taking en+1 to νΣ(y).

¶This follows by noting the intrinsic distance of Σ is ‘close’ to the Euclidean distance in some
small ball around each point. Note, the radius of this ball can actually be taken uniform across Σ,
since the asymptotic geometry is controlled.
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We consider the following set of unit vectors:

W+(y, τ, s0, γ) :=

{w ∈ Rn=1,w :=
s0f

R
α (y)νΣ(y) + v

|s0fRα (y)νΣ(y) + v|
, v ∈ A(en+1, νΣ(y))V +(γ0, σ0)},

these are precisely the directions of the line segments joining x to points in

V +(y, τ, s0, γ0).

For γ0 = 0, we have

V +(y, τ, s0, 0) = {u+s0(y, τ)νΣ(y) + y},

and thus

W+(y, τ, s0, 0) = {νΣ(y)}.

Thus, by continuity, there exists γ1 = γ1(ϑ, s0) ∈ (0, γ0) such that for

w ∈W+(x, τ, s0, γ1) we have

d(x, w, V +(y, τ, s0, γ1)) ≤ ϑs0f
R
α (y).

Moreover, for s ∈ [0, s0], a straightforward scaling argument yields

d(x, w, V +(y, τ, s, γ1)) ≤ ϑsfRα (y).

From Lemma 4.3.11 there exists a T ′ such that for τ ∈ (−∞, log(T ′)), we have

νRM1(x, τ) ∈W+(y, τ, s0, γ1),

since νΣ(y) ∈W+(y, τ, s0, γ1).

The lemma follows since the line segment joining x to V +(y, τ, s, γ1) must pass

through Γ+
s (τ), since V +(y, τ, s, γ1) and x are on opposite sides of Γ+

s (τ). QED

Proposition 4.B.10. For every ϑ ∈ (1, 2), there exists an ε1 = ε1(ϑ) ∈ (0, ε0) such

that, with the same assumptions as Lemma 4.B.8, we have

|d(x, νRM1(x, τ),Γ±
s (τ))| ≤ ϑ max

y∈Σ,|y|=R
sfRα (y),

where (x, τ) ∈ RM1, |x| = R, τ ∈ (−∞, log(T ′)) and s ∈ (0, s0).

Proof. Fix ϑ ∈ (1, 2) and (x, τ) ∈ RM1 as in the statement. The function fRα is

smooth, and thus Lipschitz, i.e.

fRα (y) ≤ fRα (z) + ωfR
α
dΣ(y, z),
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for y, z ∈ ΣR, where ωfR
α

denotes the Lipschitz constant of fRα and dΣ is the intrinsic

distance function for Σ.

Let Z := {z ∈ Σ, |z| = R}. Note, if Ω(ClenR, T ) is a (Σ, ε1, ClenR)-expander

region, then by Remark 4.3.10, ||u−1
1 (x, τ)| − R| ≤ ε. Thus, it is clear we can take

ε1 sufficiently small that

dΣ(u−1
1 (x, τ), Z) < (

√
ϑ− 1)

maxy∈Σ,|y|=R f
R
α

ωfR
α

.

With this choice of ε1, we have

fRα (u−1
1 (x, τ)) ≤

√
ϑ max

y∈Σ,|y|=R
fRα (y).

If we additionally take ε1 sufficiently small that Lemma 4.B.8 holds for
√
ϑ, then

the proposition follows. QED

The second part of the welding argument requires we go from a bound on the

‘height’ over M1 to a ‘height’ over Σ.

Proposition 4.B.11. Let R For every ϑ ∈ (1, 2), there exists ε2 ∈ (0, ε0) such that

if ε < ε2 and Ω(ClenR, T
′) is a (Σ, ε, ClenR)-expander region, and

|u|(x, t) ≤ h
√
t, x ∈M1

t \B(0, R
√
t), t ∈ (0, T ′).

Then,

|u2 − u1|(x, τ) ≤ ϑh, x ∈ Σ, |x| = ClenR, τ ∈ (−∞, log(T ′)).

Proof. This again follows from essentially the same trigonometric argument as

Lemma 4.B.8, as our choice of ε2 controls (at least) the C2-norm of u1(x, τ), and

the angle between νΣ(x) and νRM1(u1(x, τ)). Note, the trigonometry is more

straightforward as we now consider barriers that are a constant height over the

flow RM1. QED
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