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Abstract
Streaming graph has been broadly employed across various 
application domains. It involves updating edges to the graph 
and then performing analytics on the updated graph. How-
ever, existing solutions either suffer from poor data locality 
and high computation complexity for streaming graph ana-
lytics, or need high overhead to search and move graph data 
to ensure ordered neighbors during streaming graph update.
This paper presents a novel locality-centric streaming 

graph engine, called LSGraph, to enable efficient both graph 
analytics and graph update. The main novelty of this engine 
is a differentiated hierarchical indexed streaming graph rep-
resentation approach to achieve efficient data search and 
movement for graph update and also maintain data locality 
and ordered neighbors for efficient graph analytics simul-
taneously. Besides, a locality-aware streaming graph data 
update mechanism is also proposed to efficiently regulate 
the distance of data movement, minimizing the overhead 
of memory access during graph update. We have imple-
mented LSGraph and conducted a systematic evaluation on 
both real-world and synthetic datasets. Compared with three 
cutting-edge streaming graph engines, i.e., Terrace, Aspen, 
and PaC-tree, LSGraph achieves 2.98×-81.08×, 1.46×-12.56×, 
and 1.26×-10.31× speedups during graph update, while ob-
taining 1.02×-4.28×, 1.58×-3.55×, and 1.20×-2.72× speedups 
during graph analytics, respectively.

CCS Concepts: • Theory of computation → Dynamic 
graph algorithms; Data structures design and analysis.

Keywords: Streaming graph, Graph engine, Graph update, 
Graph analytics, Data locality
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1 Introduction
Graph analytics has been used in various domains, including
social networks [48], machine learning [4], and bioinfor-
matics [19]. Streaming graphs are pervasive in real-world
scenarios. Over time, streaming graphs require frequent up-
dates (i.e., insertion, deletion, or modification of vertices and
edges). For example, the relationships of users in Twitter and
Facebook social networks change every day [6, 72]. Graph
updates continue to arrive and are buffered in batches [31,
49, 50, 67]. After that, buffered updates are applied to the pre-
vious graph snapshot to construct the new snapshot, which
will be utilized by graph analytics tasks to obtain the updated
results. The graph update and graph analytics are usually
alternately performed [1, 3, 23, 26, 29, 52, 60, 65, 67, 68].
A streaming graph system, particularly its internal data

representation, is critical to support streaming graph analyt-
ics applications. Designing a streaming graph representation
necessitates efficient support for graph analytics (e.g., contin-
uous and ordered data storing) and graph update (e.g., data
searching and data moving). In other words, to run graph
analytics applications efficiently, it is essential to 1) quickly
access the neighbors of each vertex and 2) ensure that the
vertex’s neighbors are ordered. Firstly, this is because trav-
eling the neighbors of vertices is a core operation of these
applications. For example, in the PageRank algorithm [81],
vertices are required to access the scores of their neighbor-
ing vertices in order to update their own scores. Secondly,
streaming graph analytics relies on the ordered neighbors of
each vertex for low computation complexity [7, 11–13, 55].
For example, with ordered neighbors, cutting-edge Graph
Pattern Mining (GPM) systems [55] can efficiently process
set computations, which typically are the major performance
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(a) An example of a directed graph
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Figure 1. An example graph, in which edges of each vertex are depicted using the same color, and its popular data formats

bottleneck. Note that streaming graph update based on the
above ordered graph data representation requires (1) efficient
search operations to find the position and (2) minimizing
the overhead of data movement when this position already
stores data.
However, existing streaming graph representations can-

not address the combination of the aforementioned con-
cerns. Most prior work does not guarantee ordered neigh-
bors [2, 23, 25, 36, 47, 81], resulting in high computation
complexity for streaming graph analytics. To ensure ordered
neighbors and maintain locality for efficient streaming graph
analytics, the Packed Memory Array (PMA) [5, 71], i.e., an or-
dered gapped array, is recently adopted by streaming graph
representations [60, 68, 70, 71] to store graph data. But these
representations cannot efficiently ingest large graph updates
due to excessive data movement overhead. Note that As-
pen [18] and PaC-tree [17] leverage the search tree to pro-
vide efficient graph updates and ensure ordered neighbors,
but they suffer from numerous random memory accesses
for graph analytics. Terrace [54] is further designed to adopt
multiple data structures, including PMA [71] and B-tree [14],
yet still suffers from massive data movement when many
insertions are conducted.

We evaluate the performance of the cutting-edge stream-
ing graph systems and observe that the PMA can support
graph analytics well, but its update performance is poor
when inserting large batch edges. Therefore, we focus on
storing graphs using ordered gapped arrays to ensure the per-
formance of graph analytics and then trying to enhance the
efficiency of graph update. We further analyze the character-
istics of PMA and observe that PMA suffers from ineffective
search and numerous data movements. Specifically, PMA
searches the data using binary search with data dependen-
cies and poor spatial locality, and utilizes a single array to
store a large amount of graph data, resulting in a significant
overhead of data movement in order to guarantee ordered
neighbors.
To address the above issues, we design a locality-centric

streaming graph engine called LSGraph to support efficient

both graph update and graph analytics. LSGraph presents a
differentiated hierarchical indexed streaming graph repre-
sentation based on ordered gapped arrays to achieve efficient
search and maintain locality simultaneously. In particular, it
introduces Redundant Indexed Array (i.e., RIA) to efficiently
sample the graph data associated with low-degree vertices
to construct a compact index array for improving search
efficiency. For the graph data associated with high-degree
vertices, it also designs a Hybrid Indexed Tree (i.e., HITree) to
enable efficient search through integrating machine learning
models and RIA. LSGraph further regulates the distance of
data movement with a locality-aware mechanism to reduce
the overhead of memory access during graph update.
We implemented and evaluated LSGraph with four real-

world graphs and one synthetic graph. The results show
that compared with three cutting-edge streaming graph en-
gines, i.e., Terrace, Aspen, and PaC-tree, LSGraph gains the
speedups of 2.98×-81.08×, 1.46×-12.56×, and 1.26×-10.31×
during graph update, while achieving the speedups of 1.02×-
4.28×, 1.58×-3.55×, and 1.20×-2.72× during graph analytics,
respectively. In summary, LSGraph makes the following con-
tributions:

• We design a differentiated hierarchical indexed stream-
ing graph representation to enable efficient search and
maintain locality simultaneously.

• We regulate the distance of data movement with a
locality-aware mechanism for the above representa-
tion to reduce the overhead of memory access.

• We implement and evaluate a prototype of LSGraph1
and the results demonstrate the efficacy of LSGraph.

2 Background and Motivation
2.1 Static Graph Representation
Figure 1 illustrates the example graph and its two popular
static graph data formats. First, the compressed sparse row
(CSR) consists of two arrays: the edge array and the offset
array. The edge array contains all the outgoing edges of the
vertices, while the offset array stores the index of the first
1The source code is available at https://github.com/CGCL-codes/LSGraph
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Figure 2. An example to illustrate inserting data into PMA. The "S" in the edge array is a sentinel entry.
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Figure 3. Performances of graph analytics and graph up-
dates in Terrace and Aspen: (a) time to run BFS normalized
to Terrace; (b) throughput (edges/second) for insertion with
varying batch sizes on OR

edge in the edge array for each vertex. The utilization of
CSR is prevalent in several graph analytics systems due to
its space efficiency [46, 53, 62]. Second, the adjacency list
(AL) stores the edges of each vertex independently, and the
vertex array is employed to store the degree of each vertex,
together with a pointer to the corresponding edge array of
the vertex. Compared to CSR, AL is more compatible with
handling streaming graph updates since a graph update only
impacts the edge array of a single vertex.

2.2 PMA-based Streaming Graph Representation
To ingest graph updates and maintain locality, several sys-
tems [60, 68, 71] use the Packed Memory Array (PMA) [5] to
replace the edge array in the CSR format and store a sentinel
entry for each vertex in the PMA for updating the offset
array. As shown in Figure 2, PMA utilizes an ordered gapped
array to store data, where gaps between data represent the
unused space for insertion operations. The PMA maintains
an implicit complete binary tree. The size of the leaf nodes in
a binary tree is denoted as 𝑙𝑜𝑔(𝑁 ) (𝑁 is the size of the array),
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Figure 4. Performance analysis on different graphs for Ter-
race in large insertions: (a) time proportion of PMA [71] for
insertion; (b) time proportion of search for insertion, which
includes search and data movement in the evaluation

which is also referred to as the segment size. Each node of
the binary tree has a lower and upper density limit. When
the density of a node is below the lower limit or above the
upper limit, PMA will redistribute the data to neighboring
nodes in order to attain an appropriate density. Although the
PMA reserves unused space to facilitate insertion, all edges
of a graph are stored in an array, resulting in significant
data movement overhead when a large number of insertions
occur.

2.3 Limitations of Existing Solutions
Designing a streaming graph representation demands effec-
tive support for graph updates (including efficient search
and data movement) and graph analytics (including quick
access to the neighbors of each vertex and maintaining the
ordered neighbors of each vertex). Nevertheless, existing
streaming graph systems face challenges when addressing
the combination of the aforementioned concerns.
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illustration of RIA; (c) insert edges into RIA

To illustrate these problems, we evaluate two cutting-
edge streaming graph systems, namely Aspen [18] and Ter-
race [54], both ofwhich ensure ordered neighbors. Aspen [18]
leverages the compressed search tree to provide efficient
graph updates and reduce memory usage. Although apply-
ing the block technique to trees, it still suffers from numerous
random memory accesses, resulting in low performance in
graph analytics [54]. To tradeoff the performance of graph
updates and graph analytics, Terrace [54] adopts multiple
data structures. Specifically, Terrace stores edges of high-
degree vertices in B-tree [14] to support updates efficiently,
while other edges are stored in PMA [71] and vertex blocks
to enable locality. Note that vertex blocks are a data struc-
ture used in Terrace to store a few (or all) neighbors and the
metadata (e.g., degree and a pointer to the B-tree) of each
vertex. However, Terrace still suffers from ineffective search
and numerous data movements.

The details of the platform and datasets used in the evalua-
tion are presented in Section 6.1. Figure 3 shows that Terrace
outperforms Aspen by at least 2×, up to 3.5× when run-
ning the breadth-first search (BFS) algorithm, while Aspen
significantly outperforms Terrace when dealing with large
insertions. Large insertions are even more important given
the sharp rise of data in the era of big data. There are various
scenarios in real-world streaming graphs where frequent
insertion of edges occurs. For example, users on Twitter post
tweets every day [57].

Aspen’s low performance in graph analytics motivates us
to focus on Terrace and improve its graph update efficiency
when handling large insertions. To further investigate the
reasons for inefficient updates in Terrace, we estimate the
time proportion of updates for different data structures in
Terrace in large batch sizes, using a single thread to eliminate
the effect of multi-thread competition. We observe that the
PMA accounts for the most percentage (up to 97%) of the

total update time, as shown in Figure 4(a). This high over-
head is caused mostly by two reasons: ineffective search and
numerous data movements.
Ineffective Search. The example in Figure 2 demon-

strates this problem, assuming that both a cache line size and
a segment size of the PMA are four, and the lower and upper
densities of each segment in the PMA are 0.5 and 0.75, re-
spectively. To search the position of edge (1, 3) (➊), the range
for edges of vertex 1 is first located using the offset array (the
step ➀), i.e., [6, 37]. After that, the binary search algorithm is
used to find the position of 3 in the range. Specifically, since
21 is the middle position between 6 and 37, we compare the
element 22 in position 21 with 3 to determine the range (i.e.,
[6, 21], left of position 21 because 22 is larger than 3) of sub-
sequent comparisons (the step ➁). Then, we continue with
this process (the steps ➂, ➃, ➄) until we find position 8 for 3.
However, such processes suffer from data dependencies and
poor spatial locality. In particular, each cache line transfer
(i.e., transfer data to cache from memory) depends on the
result of the last transfer. Besides, most data of each transfer
fetched into the cache is not actually required (e.g., 1/4 is
used for comparison of binary search in the example), lead-
ing to the underutilization of cache resources and memory
bandwidth.
We analyze the impact of search on the overall insertion

performance. As illustrated in Figure 4(b), the results show
that in most cases, search time accounts for over 30% of
the overall time, reaching up to 43% in the worst case. Such
significant search-time proportions should not be neglected.
This motivates us to design efficient search strategies to
quickly find the appropriate position for each graph update.
Numerous Data Movements. We illustrate this issue

using the example of inserting edge (1,3) (➋) in Figure 2. Af-
ter searching position 8 for 3, we discover that the position
is already taken by 2, which we call position conflict. As a
result, data movement is necessary to store 3. The current
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segment cannot store 3 since its upper density is 0.75, and
thus we need to find a nearby segment where the upper
density does not exceed 0.75 after storing one element, i.e.,
segment 9. Finally, all data in the range [9, 34] needs move-
ment to guarantee ordered neighbors. Note that, as seen in
Figure 2, when inserting the edge (0,2) (➌) of vertex 0, it also
leads to abundant data movements for edges of vertex 1.

Massive data movements result in a significant increase in
memory accesses, particularly for the scenario with a large
number of insertions, thereby decreasing the performance of
graph updates. Figure 4(b) also illustrates the high data move-
ment overhead in Terrace. Furthermore, data movements
incur the occurrence of multi-thread contention issues since
two threads could try to update the same range of the PMA
simultaneously, resulting in the high overhead of lock and
cache coherence. In addition, the PMA maintains an upper
density bound for each segment to guarantee that segments
are never totally filled, ensuring that threads can always
insert without blocking or waiting [71]. However, this un-
derutilizes the space and increases data movement. These
problems drive us to design data structures that support
efficient data movements when handling graph updates.

3 Design of LSGraph
To overcome the above limitations, we first build indexes on
arrays with minimal memory consumption and computation
cost to improve search efficiency and maintain locality simul-
taneously, and then regulate the distance of data movement
to reduce memory access overhead.

3.1 Indexed Gapped Arrays
We store the edges of vertices based on the AL-based format
in Figure 1(b) to avoid inefficient data movement between
edges of vertices. Figure 5(a) shows that inserting (0,2) only
moves 3 elements, instead of 37 elements in Figure 2(➌). A
significant advantage of CSR over AL is the sequential ac-
cess to the edge array when executing the graph analytics
algorithms by the order of vertices’ ID. However, the sce-
narios for this computation approach are quite restricted
in streaming graphs. First, since streaming graph updates
only affect a fraction of the graph, rather than full graph
computation, most recent streaming graph systems employ

incremental computation [8, 31, 49, 50, 67], where most of
the accesses to the starting addresses in the edge array of a
vertex’s neighbors are random accesses because graph up-
dates arrive randomly. Second, even though computing the
entire graph, several systems [56, 77–79] asynchronously
process graph vertices with priority scheduling to speed up
the convergence of graph analytics algorithms.
To reduce the overhead of binary search as discussed in

Section 2.3, we build indexes with redundant data on gapped
arrays, which we call Redundant Indexed Array (RIA), to
speed up the search process by performing an efficient search
in the indexes at the beginning of the search. As illustrated
in Figure 5(b), RIA consists of an index array and a gapped
array. The gapped array is organized as a number of blocks
(block size is 4 in Figure 5) with contiguous address space.
The data in RIA are divided evenly among blocks according
to data size, and the first elements within each block are
copied and combined to form the index array. Thus, there
are no empty blocks in the gapped array, and consequently,
RIA is memory-efficient. Different from PMA [71], we do not
maintain the upper density for each block since we assign
updates of a vertex to a single thread to eliminate the issue
of multi-thread competition (details in Section 5).
For example, to search (1,3) in the RIA of Figure 5(c) (in

step ➀), we first search the index array of vertex 1 to decide
which block should store 3. Since 3 is less than 6 (which is the
first element in the second block), it will be stored in the first
block. After that, we search for the position of 3 and then
insert it in the first block. Therefore, we only need 2 cache
transfers for search and 2 element movements, rather than 5
cache transfers and 24 element movements in Figure 2(➋).

Limitations of RIA. Streaming graphs follow the power-
law degree distribution [54, 68], which means that the ma-
jority of vertices have a small number of edges, while a few
vertices have a very large number of edges. However, storing
edges of high-degree vertices in RIA will result in either an
inefficient search or a high overhead in memory usage. Fig-
ure 6 illustrates two solutions for building indexes for data
with 32 cache line sizes. Solution one creates an index for
each cacheline’s data and builds two-level indexes to enable
efficient searching (transfer 3∼4 cache lines, 1∼2 for first
level indexes, 1 for second level indexes, 1 for searching in
a block), but it consumes a high amount of memory usage
(10 cache lines). Solution two builds an index for eight cache
lines and uses less memory usage (1 cache line) than solution
one, but it raises the search overhead (transfer 6 cache lines)
since the search continues throughout the eight cache lines
(transfer 5 cache lines).

To alleviate these problems, we build learned indexes [34]
on arrays for the edges of high-degree vertices, which refers
to Learned Indexed Array (LIA) (details in Section 3.2). The
learned index is motivated by the observation that the Cu-
mulative Distribution Function (CDF) can be efficiently ap-
proximated by a model that predicts the position within an
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Figure 7. Illustration of learned index [34]

ordered array given a key. Based on this, prior work [34]
leverages Machine Learning (ML) models, such as Liner Re-
gression (LR), to estimate the CDF to find the key’s position.
As shown in Figure 7, given a key, the position (Pos) pre-
dicted by the model (LR) is imprecise with a min-error and
max-error, therefore, a local search (e.g., the exponential
search used by ALEX [20]) is needed to obtain the actual
position. Note that we do not create learned indexes for low-
degree vertices’ edges because a few edges make it difficult to
provide sufficient information to build a model, and building
models for a large number of low-degree vertices could lead
to significant computation overhead.
More importantly, when dealing with continuing inser-

tions, RIA suffers from massive data movement, similar to
PMA. As illustrated in Figure 5(c), after adding several edges
in RIA (the setp ➁), inserting edge 1 will result in a large
amount of data movement (the setp ➂). This drives us to
regulate data movement to minimize the overhead of data
movement.

3.2 Regulate the Data Movement
During inserting an element into an ordered data structure,
after searching the position, the key issue is how the element
and these elements in the structure should be moved when
a position conflict occurs between the new element and the
existing elements. The PMA [71] employs a strategy wherein
elements are inserted into leaf nodes that exceed their up-
per density, and subsequently will be moved to neighboring
nodes with lower density, which we refer to as horizontal
movement (HM). While the PMA does ensure cache local-
ity, the amount of data movement becomes enormous as
the inserted edges increase. On the contrary, the B-tree can
dynamically request small memory spaces for moving the
conflicted elements and then create a pointer to them, which
reduces the amount of data movement, which we refer to
as vertical movement (VM). But it cannot handle graph
analytics effectively due to its enormous data movements
over long distances.
Large amounts of data movement can result in frequent

memory accesses, leading to bandwidth bottlenecks. In ad-
dition, the frequent data movements with long distances,
which are typically random memory accesses, could lead to
an increased occurrence of cache misses [24], DRAM row
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Figure 8. The design overview of HITree

buffer misses [9], and even TLB misses [33], thereby degrad-
ing the performance of graph analytics and graph updates.
Generally speaking, when handling the position conflict, HM
conducts more data movements than VM, while HM moves
the data for shorter distances on average than VM. Therefore,
we prefer HM with limited short distances for cache locality,
and perform VM, particularly when frequent continuous in-
sertions for high-degree vertices, to reduce the amount of
data movement.
To reduce frequent data movements of insertions in the

case where there are few gaps in RIA (the step ➂ in Fig-
ure 5(c)), we set an upper bound for the distance of data
movement. When exceeding the upper bound, we expand
the space of RIA with more gaps to reduce the data move-
ment overhead caused by subsequent insertions. In general,
more gaps will reduce the data movement, enabling faster
updates, but it will also increase the memory usage and mem-
ory access of traversing edges of vertices in graph analytics.
To adjust the density of the gaps in the new expanded space,
we define the space amplification factor (denoted by 𝛼), and
the size of the new space is (old_size * 𝛼) (old_size is the size
of elements before expanding space).

Note that the PMA could move data across the entire array
based on its density limit in the worst case, and expanding
the space of the PMA is extremely expensive since it stores
most edges of the graph in Terrace [54]. Therefore, the PMA
reserves enormous gaps at initialization to reduce the chance
of expanding space. However, this results in significant mem-
ory usage (details in Section 6.4).

When storing edges of high-degree vertices which relate
to frequent updates in streaming graphs [54, 68], RIA also suf-
fers from high overhead of horizontal data movement (even
expanding the entire space), similar to the PMA. Therefore,
vertical data movement is needed to reduce the overhead of
horizontal data movement. This motivated us to design the
Hybrid Indexed Tree (HITree) that combines the two types of
movement to support efficient data movement.

HITree. As shown in Figure 8, the internal node (non-leaf
node) of HITree employs the LIA (➀ and ➁), while the leaf
nodes can be either a RIA (➂) or an array (➃). Firstly, the RIA
is preferred to LIA as leaf nodesmainly due to two reasons: (1)
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modeling small-sized data will lead to an enormous amount
of random memory accesses and training overhead; and (2)
when a position conflict occurs during insertion, the RIA
can efficiently move data horizontally or expand its capacity
without training overheads to reduce the depth of HITree.
Secondly, the LIA is designed to enable the creation of a child
node (vertical movement) to reduce the amount of horizontal
data movement when frequent position conflicts occur.

To reduce random memory accesses resulting from creat-
ing child nodes, we allow horizontal data movement with a
fixed space size (i.e., a block) in LIA. Specifically, instead of
vertical movement, we solve the position conflict problem
by moving data horizontally within a block, which not only
ensures efficient graph update performance, but also guar-
antees cache locality in graph analytics. In other words, if
there are position conflicts in LIA, the data are moved within
a distance (i.e., HM). If there still exist conflicts, a child data
structure (LIA, RIA, or array) is created (i.e., VM). Note that
LIPP [75] and AFLI [76] directly create a child node when
a position conflict occurs, thereby leading to a significant
number of random memory accesses.
Specifically, each LIA is comprised of three main compo-

nents: an array of entries, a model that takes the key as input
and outputs a position in the array, and a bit vector that
represents the types of entries. LIA has four types of entries:

• Unused (U): This entry is used to insert a new edge.
After that, the entry’s type is changed to Edge.

• Edge (E): The entry stores the destination vertex ID
of an edge. When a data conflict occurs at the entry
during insertion, its type is changed to Block.

• Block (B): The entry is designed to prevent the di-
rect creation of a child node in the event of a position
conflict, hence reducing random memory accesses. It
appears consecutively in a block size, where the be-
ginning of a block consists of the Edge type and the
subsequent is the Unused type. When there is no space
left in a block during insertion, the entry types of the
whole block are changed to Child Pointer.

• Child Pointer (C): The entry contains a pointer to a
LIA (➁), a RIA (➂), or an array (➃) in the next level to
construct the tree structures.

The model’s high accuracy usually requires higher train-
ing and prediction costs.We balance the trade-off between ac-
curacy and speed. Specifically, we use the LR models instead
of the piecewise linear regression (PLR) models, which are
commonly employed in several learned index systems [42, 43,
66]. While the PLRmodel exhibits higher predictive accuracy
than LR models, the training and prediction overheads in-
curred by the PLR model are significantly greater than those
of the LR model. For instance, when HITrees are employed
to store graph data of LJ in Table 1, it has been observed that
the graph update performance of the LR model is an order
of magnitude better than that of the PLR model.

1

2 8 14 0 25 0 46 0 112

     : Vertex blocks (degree <= 2)

0 1 2 3

4 5 14     : Array (degree < 6)

     : Redundant Indexed Array  (degree < 10)

6 16 86 16 17

     : Hybrid Indexed Tree  (degree >= 10)

52 16 1712

y = 0.77 * x - 1.04

107 8 97 1110
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3

4

Figure 9. The example graph stored in LSGraph

4 Graph Representation and Operations
4.1 Graph Representation
Based on the above design, we present a differentiated hi-
erarchical indexed streaming graph data representation, as
shown in Figure 9. We store edges of vertices in several data
structures, depending on the vertices’ degrees. First, we store
the degree, some (or all for low-degree vertices) edges, and
the pointer to other edges for each vertex in the vertex blocks
(➀), like Terrace [54]. Then, in the case of edges of a vertex
that exceed the space allocated to it in the vertex blocks (the
threshold is denoted by L), the remaining edges of the vertex
are stored into an individual space according to the degree
of the vertex. Finally, RIA (➂) and HITree (➃) are specifically
designed for storing edges of vertices with different degrees
(𝐿+𝑀 is the threshold). To reduce the memory usage of in-
dexes, we store the edges of a vertex in an array (➁) instead
of a RIA when the degree of the vertex is relatively small
(𝐿+𝐴 is the threshold).

Putting It All Together. As demonstrated in Figure 9,
the neighbors of each vertex are stored in at most two data
structures. First, each vertex has a small number of neighbors
stored using the vertex blocks. For example, all the neighbors
of vertex 0, which has two neighbors, are in the vertex blocks,
while vertices 1, 2, and 3 store only a part of their neighbors
in the vertex blocks since their degrees are larger than the
threshold 𝐿 (i.e., 2). Vertices 1, 2, and 3 use array, RIA, and
HITree to store their remaining neighbors (thresholds 𝐿+𝐴
and 𝐿+𝑀 are 5 and 10), respectively. Vertex 2 employs RIA
with indexes 6 and 16, which correspond to the first elements
of the two blocks in the gapped array. Vertex 3 has 12 el-
ements (larger than the threshold 10), which are stored in
HITree (including a LIA and a RIA).

4.2 Graph Operations
We employ the operations of HITree to demonstrate the
support for graph analytics and graph update since HITree
also contains the operations of RIA and the operations for
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Algorithm 1: The BulkLoad Algorithm for HITree
Input: 𝑛𝑠: an array of ordered elements; 𝛼 : the space

amplification factor;𝑀 : the threshold using RIA or
LIA; 𝐵𝐾𝑆 : the size of each block.

Output: 𝑛𝑝: the current node pointer.
1 if 𝑛𝑠 .size <=𝑀 then
2 𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦 = malloc(𝑛𝑠 .size * 𝛼);
3 𝑛𝑝.𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦 = malloc(⌈𝑛𝑠 .size * 𝛼 / 𝐵𝐾𝑆⌉);
4 DistributeData(𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦, 𝑛𝑠);
5 BuildIndex(𝑛𝑝.𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦, 𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦);
6 else
7 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 = malloc(𝑛𝑠 .size * 𝛼);
8 𝑛𝑝.𝑚𝑜𝑑𝑒𝑙 = BuildModel(𝑛𝑠 , 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦);
9 𝑝𝑜𝑠𝑠 = PredictedAllPositions(𝑛𝑠 , 𝑛𝑝.𝑚𝑜𝑑𝑒𝑙);

10 foreach subns, subposs in a BKS of np.array ∈ 𝑛𝑠 , poss
do

11 𝑏𝑎 = BlockAddress(𝑠𝑢𝑏𝑝𝑜𝑠𝑠 , 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦);
12 if is_unique(subposs) then
13 foreach u, pos ∈ subns, subposs do
14 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦[𝑝𝑜𝑠] = 𝑢; SetType(𝑝𝑜𝑠 , E);

15 else if 𝑠𝑢𝑏𝑛𝑠.𝑠𝑖𝑧𝑒 <= 𝐵𝐾𝑆 then
16 StoreBlock(𝑛𝑝.𝑎𝑟𝑟𝑎𝑦, 𝑏𝑎, 𝑠𝑢𝑏𝑛𝑠);
17 SetTypes(𝑏𝑎, B);
18 else if 𝑠𝑢𝑏𝑛𝑠.𝑠𝑖𝑧𝑒 > 𝐵𝐾𝑆 then
19 child = BulkLoad(𝑠𝑢𝑏𝑛𝑠 , 𝛼 ,𝑀 , 𝐵𝐾𝑆);
20 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 [𝑏𝑎] = 𝑐ℎ𝑖𝑙𝑑 ; SetTypes(𝑏𝑎, C);

21 MergeAdjacentChildren();
22 return np;

the vertex blocks and arrays are relatively simple. Given a
vertex 𝑣 or an edge (𝑣 , 𝑢), the main operations of HITree can
be categorized as follows:

• BulkLoad: it uses HITree to store neighbors of vertex
𝑣 for graph initialization.

• Traverse: it traverses the HITree and implements the
function 𝑓 for neighbors of vertex 𝑣 to support graph
analytics.

• Insert (Delete): it inserts (deletes) the edge (𝑣 , 𝑢) in the
HITree during graph update.

BulkLoad.Bulkload stores an ordered array𝑛𝑠 intoHITree
and returns a pointer to the root node, as described in Al-
gorithm 1. In the first step, we select RIA or LIA depending
on the threshold 𝑀 (line 1), and develop a separate imple-
mentation for each of the two cases. For RIA, the sizes of
the gapped array and index array are initially obtained by
multiplying the size of the 𝑛𝑠 and the amplification factor 𝛼
(the lower density is 1/𝛼), and the number of blocks in the
gapped array, respectively (lines 2–3). After allocating space
for the gapped array and index array, the elements of the 𝑛𝑠
are evenly distributed across the blocks of the gapped array

(line 4). Finally, the first element of each block in the gapped
array is copied to build the index array (line 5).

For LIA, we first allocate the space for 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 and build
a linear model based on 𝑛𝑠 and 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦.𝑠𝑖𝑧𝑒 (lines 7–8). The
model is then used to predict the positions (𝑝𝑜𝑠𝑠) in 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦
of all the elements in 𝑛𝑠 (line 9). After that, we iteratively
construct the HITree using the elements (𝑠𝑢𝑏𝑛𝑠) mapped to a
continuous𝐵𝐾𝑆 space in the𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 as the basic processing
group (line 10). If there is no same predicted position in the
𝐵𝐾𝑆 , we directly store the 𝑠𝑢𝑏𝑛𝑠 in their predicted positions
and then set their types to E (lines 12–14). Otherwise, we
calculate the starting address (𝑏𝑎) in 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 of the current
block (line 11) and then compare the size of the 𝑠𝑢𝑏𝑛𝑠 to the
𝐵𝐾𝑆 . If 𝐵𝐾𝑆 is larger than 𝑠𝑢𝑏𝑛𝑠.𝑠𝑖𝑧𝑒 , which indicates that
the current block has the capacity to accommodate them, we
place the elements of 𝑠𝑢𝑏𝑛𝑠 at the beginning of the current
block in 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 and set types to B (lines 15–17), thereby
eliminating the need to create a new child node. On the other
hand, we store a pointer at the beginning of the current block
in 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 to a child node created by 𝑠𝑢𝑏𝑛𝑠 and then set
types to C (lines 18–20). To further reduce random memory
access, we merge their children when multiple consecutive
blocks are C type (line 21). As shown in Figure 8 (➁), there
are two child pointers in the LIA pointing to the same RIA.
Figure 9 shows that the HITree (➃) for vertex 3 consists

of a LIA and a RIA. The array’s size in LIA is three blocks.
The first one has no position conflict and is made up of E
and U types, which are determined by the LR model (𝑦 =

0.77∗𝑥−1.04). Since the number of position conflicts exceeds
the size of a block, the second block creates a pointer to a
RIA. The last one has position conflicts, but since the total
number of elements in the block does not exceed the block
size, all elements predicted by the LR model in the block are
placed consecutively at the beginning of the block (i.e., 12,
16, and 17).

Traverse. For RIA, we apply function 𝑓 to elements in
the gapped array by scanning the array and skipping unused
space. For the LIA, we continue to traverse the elements in
𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 and check their types. For the U type, we continue
the iterative process. For the E type, we apply 𝑓 to the corre-
sponding element. For B types, we traverse the beginning
elements in the current block. For the C type, we follow the
pointer to traverse the next level of the HITree.
Insert. As illustrated in Algorithm 2, for RIA, we first

search the block position (𝑏𝑖𝑑) which stores 𝑢 in the index
array, and then try to insert 𝑢 into the block (lines 2–3). If
the insertion succeeds (e.g., the block has unused space),
we update the index array if necessary (lines 4–5). Other-
wise, we move the elements to the nearby blocks. Specif-
ically, based on the greedy algorithm, we continually tra-
verse the left or right blocks to find a block with unused
spaces. We set the upper bound on the number of blocks to
be searched to 𝑙𝑜𝑔(𝑛𝑢𝑚_𝑏𝑙𝑜𝑐𝑘) by default (num_block is the
number of blocks in 𝑛𝑝.𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦). If we find free space
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Algorithm 2: The Insert Algorithm for HITree
Input: 𝑛𝑝: the current node pointer; 𝑢: the insert element;

𝛼 : the space amplification factor;𝑀 : the threshold
using RIA or LIA; 𝐵𝐾𝑆 : the size of each 𝐵𝑙𝑜𝑐𝑘 .

1 if 𝑛𝑝 .size <=𝑀 then
2 𝑏𝑖𝑑 = SearchIndex(𝑛𝑝.𝑖𝑛𝑑𝑒𝑥_𝑎𝑟𝑟𝑎𝑦, 𝑢);
3 𝑖𝑛𝑠𝑒𝑟𝑡_𝑜𝑘 = InsertBlock(𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦, 𝑏𝑖𝑑 , 𝑢, 𝐵𝐾𝑆);
4 if insert_ok then
5 UpdateIndex(𝑛𝑝 , 𝑏𝑖𝑑 , 𝐵𝐾𝑆);
6 else
7 𝑚𝑜𝑣𝑒_𝑜𝑘 , 𝑟𝑎𝑛𝑔𝑒 = MoveNearBlocks(𝑛𝑝 , 𝑏𝑖𝑑 , 𝐵𝐾𝑆);
8 if 𝑚𝑜𝑣𝑒_𝑜𝑘 then
9 UpdateIndexes(𝑛𝑝 , 𝑟𝑎𝑛𝑔𝑒 , 𝐵𝐾𝑆);

10 else
11 𝑛𝑠 = MergeData(𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦, 𝑢);
12 𝑛𝑝 = BulkLoad(𝑛𝑠 , 𝛼 ,𝑀 , 𝐵𝐾𝑆);

13 else
14 𝑝𝑜𝑠 = Predicted(𝑛𝑝.𝑚𝑜𝑑𝑒𝑙 , 𝑢);
15 𝑡𝑦𝑝𝑒 = GetType(𝑝𝑜𝑠);
16 𝑏𝑎 = BlockAddress(𝑝𝑜𝑠 , 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦);
17 if type == U then
18 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦[𝑝𝑜𝑠] = 𝑢; SetType(𝑝𝑜𝑠 ,E);
19 else if type == E or type == B then
20 𝑛𝑠 = MergeDataBlock(𝑛𝑝.𝑎𝑟𝑟𝑎𝑦, 𝑝𝑜𝑠 , 𝑢);
21 if 𝑛𝑠.𝑠𝑖𝑧𝑒 <= 𝐵𝐾𝑆 then
22 StoreBlock(𝑛𝑝.𝑎𝑟𝑟𝑎𝑦, 𝑏𝑎, 𝑛𝑠); SetTypes(𝑏𝑎, B);
23 else
24 child = BulkLoad(𝑛𝑠 , 𝛼 ,𝑀 , 𝐵𝐾𝑆);
25 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 [𝑏𝑎] = child; SetTypes(𝑏𝑎, C);

26 else if type == C then
27 Insert(𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 [𝑏𝑎], 𝑢, 𝛼 ,𝑀 , 𝐵𝐾𝑆);
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Figure 10. Insertions in the LIA

within this upper bound, then we will move the data in the
𝑟𝑎𝑛𝑔𝑒 and update the index array (lines 7–9). Otherwise, we
merge elements of 𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦 and𝑢, and then expand
𝑛𝑝.𝑔𝑎𝑝𝑝𝑒𝑑_𝑎𝑟𝑟𝑎𝑦 with the space amplification factor 𝛼 (lines
10–12).

For LIA, we first use the 𝑛𝑝.𝑚𝑜𝑑𝑒𝑙 to predict 𝑢’s position
(𝑝𝑜𝑠) in the 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦, and then identify the type of 𝑢 (lines
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Figure 11. System architecture of LSGraph

14–15). If type is U, we store 𝑢 in the 𝑝𝑜𝑠 and set E type
for the 𝑝𝑜𝑠 (lines 16–18). If the type is E or B, we merge
the elements within the current block in 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦 and 𝑢 to
an ordered array 𝑛𝑠 and then either store 𝑛𝑠 in the current
block or create a child node for 𝑛𝑠 depending on the size of
𝑛𝑠 (lines 19–25). Finally, if the type is C, the child node in
the next level will recursively handle 𝑢 (lines 26–27).
An Example of Using LIA. The procedure of inserting

edges into LIA is illustrated in Figure 10, where the first four
spaces (a block) in LIA of vertex 3 are used as an example
for the explanation. There are primarily three cases. In Case
1, when inserting edge (3,6), the position of 6 in LIA should
be 3, denoted as 𝑛𝑝.𝑚𝑜𝑑𝑒𝑙 (𝑣) which indicates the position of
𝑣 predicted by the model in LIA. Then, we directly store 6 in
𝑛𝑝.𝑎𝑟𝑟𝑎𝑦[3] because the type of position 3 isU type. In Case
2, the predicted position of 4 is 2, which is already used by
5, and then we move elements horizontally within a block.
In Case 3, the block does not have enough space for 3, and
thus it is necessary to create a child node.
Delete. Similar to the insert operation, the delete opera-

tion involves finding the position of data, then changing its
type, and finally moving data. Specifically, after searching
the element, the E type will be changed toU. When all spaces
in a block are unused, we move data horizontally (in RIA)
and change types to U (in LIA).

5 Implementation of LSGraph
Based on the proposed graph representation and its oper-
ations, we developed LSGraph, a shared-memory stream-
ing graph engine. Figure 11 shows the system architecture,
where LSGraph ingests updates and then provides support
for graph analytics tasks through the interface, finally sup-
porting user queries. In particular, LSGraph consists of three
main components:
Batch Updates. Given a batch of updates, we first sort

them by the ID of the source vertices and then sort them
by the ID of the destination vertices. After that, we divide
the update edges of each source vertex into groups, each of
which will be assigned to the same thread for batch process-
ing, thereby improving locality and avoiding lock overhead.
Finally, we insert these updates into the graph data. The
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Table 1.A list of graph datasets with their number of vertices
and edges, and their average degree (Avg.Deg) for evaluation

Graph Vertices Edges Avg.Deg

LiveJournal (LJ) 4,847,571 85,702,474 17.7
Orkut (OR) 3,072,627 234,370,166 76.2
rMat (RM) 8,388,608 1,098,754,156 130.9
Twitter (TW) 61,578,415 2,405,026,092 39.1
Friendster (FR) 124,836,180 3,612,134,270 28.9

above steps are executed in parallel, and their time is in-
cluded in the overall time for graph updates to obtain the
throughput of LSGraph in Section 6.2.

Graph Data.We adopt the above graph representation to
store graph data, and its configuration is as follows consider-
ing cache locality. First, each vertex is assigned the size of a
single cache line within the vertex blocks. Additionally, the
𝐵𝐾𝑆 in RIA and LIA also fits within a cache line. Next, the
size of each array in RIA and HITree is set to multiple cache
line sizes, while ensuring that the starting memory addresses
of all arrays are aligned with a cache line size. Since inserting
an edge into RIA requires at least two cache line transfers
(one for index and one for block), we set the threshold 𝐴
to the size of two cache lines. The default threshold𝑀 and
amplification factor 𝛼 are 4096 and 1.2, respectively, which
will be discussed in Section 6.5.

Interface. To support graph analytics algorithms, we ex-
pand the interface of the EdgeMap primitive proposed by
Ligra [62] and implement it based on HITree’s Traverse op-
eration.

6 Evaluation
6.1 Experimental Setup
Baselines. We compared LSGraph with Terrace [54], As-
pen [18], and PaC-tree [17], three cutting-edge streaming
graph systems. Different from Aspen, which stores arrays
in each node of the tree and randomizes chunk sizes, PaC-
tree stores arrays only in the leaf node and optimizes the
selection of chunk sizes with stronger theoretical bounds
for several operations. We compared them with the through-
put of graph updates, the performance of different graph
analytics algorithms, and memory footprints. Note that we
have conducted the experiments to compare PaC-tree and
Sortledton [28]. The results show that Pac-tree outperforms
Sortledton by 40.56×-142.53×. Thus, we use PaC-tree as a
baseline instead of Sortledton.
Environments. We implemented LSGraph as a C++ li-

brary. Both LSGraph and Terrace used Cilk [40] for paral-
lelism and the OpenCilk [58] compiler (version 1.0) based
on the Tapir/LLVM [59] branch of the LLVM [39] compiler
(version 10.0.1). We compiled Aspen and PaC-tree using the
g++ compiler (version 9.4). We ran all experiments on a

dual-socket machine equipped with a 64-core 2-way hyper-
threaded Intel Xeon Platinum 8358 CPU @ 2.60GHz, which
has 96MB of L3 cache and 1 TB of memory. To avoid the ef-
fects of NUMA and ensure a fair comparison, we performed
all experiments on a single CPU socket with 32 physical
cores and 64 hyper-threads, like Terrace [54].
Graph Analytics Algorithms. For a fair comparison,

we use the same four algorithms from Terrace: breadth-
first search (BFS), single-source betweenness centrality (BC),
PageRank (PR), and connected components (CC). Besides, we
implement and optimize the triangle counting (TC) algorithm,
a well-known GPM algorithm that involves massive inter-
section computation, based on our graph representation.
Datasets. Table 1 summarizes the graphs utilized in our

experiments. We perform evaluations on four real-world
graphs (i.e., LJ [41], OR [41], TW [38], and FR [37]) and
one synthetic graph (i.e., RM). We generate RM using rMat
generator [10] with 𝑎 = 0.5;𝑏 = 𝑐 = 0.1;𝑑 = 0.3, which is
the same as Aspen [18]. To ensure a fair comparison with
Terrace and Aspen, we also test all the graphs with their
symmetrized versions.

6.2 Graph Update Throughput
To make a fair comparison of graph update throughput, our
experimental steps are consistent with Aspen and Terrace.
First, all edges of an existing graph are inserted into LSGraph.
Then, a batch of updated edges is inserted into the graph and
deleted from the graph subsequently, ensuring that the origi-
nal graph structure will not be changed during the insertion
and deletion for each batch size. Those updated edges are
generated by the rMat generator with the same parameters
as the RM graph. We report the results averaged over 5 trials,
each of which inserts the different edges.

Figure 12 illustrates the insertion’s throughput of Terrace,
Aspen, PaC-tree, and LSGraph with batch sizes ranging from
104 to 108. As shown in Figure 12, the graph update perfor-
mance for all cases of LSGraph outperforms that of Terrace,
Aspen, and PaC-tree, with speedups of 2.98×-81.08×, 1.46×-
12.56×, and 1.26×-10.31×, respectively (7.18×, 4.77×, and
4.80× on average). The throughput of LSGraph is to reach
a maximum of 3.5 ∗ 108 edges per second on LJ when han-
dling the batch of 108 updates. Note that, for edge deletions,
LSGraph also outperforms Terrace, Aspen, and PaC-tree by
3.59×-133.52×, 1.97×-26.77×, and 1.58×-24.41×, respectively.
Additionally, LSGraph also exceeds the baselines when deal-
ing with smaller batch sizes. For example, when the batch
size is 10, LSGraph outperforms Terrace, Aspen, and PaC-tree
by 1.05×-2.04×, 2.28×-3.58×, and 1.88×-2.52×, respectively.
The primary reason for Terrace’s poor performance is

attributed to the excessive data movement overhead and
inefficient search of PMA [71]. Although Aspen and PaC-
tree employ the tree structure to reduce the amount of data
movement, their numerous random memory accesses result
in lower performance than LSGraph. LSGraph accelerates the
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search by designing the index-based structures and proposes
the data movement strategies with a locality-aware approach
to reduce the overhead of memory access.
We observe that there is a steady improvement in the

overall performance of LSGraph, Aspen, and PaC-tree as the
batch size increases, whereas Terrace’s performance does
not. The main reason for this phenomenon is that Terrace
suffers from significant datamovement overhead as the batch
size increases because the PMA in Terrace stores most edges
of a graph in a single array [54], which leads to frequent
massive data movements and even expansion of the entire
array, in particular when dealing with large batch sizes on
small graphs, such as 108 on LJ, which has been validated by
our experiments. Unlike Terrace, Aspen uses trees to store
graph data, and LSGraph uses RIA and HITree to store edges
of vertices and optimizes their insertion strategies.

We also evaluate the contribution of RIA, HITree, and LIA
in the performance of LSGraph. In detail, to evaluate the
performance improvement contributed by RIA, we imple-
ment a version that uses PMA instead of RIA. For HITree,
we implement another version that stores the edges of high-
degree vertices using RIA instead of HITree. Finally, for LIA,
we implement the third version that uses the binary search
instead of the learned index in LIA. We compare the three
versions with LSGraph. The results show that RIA, HITree,
and LIA contribute 60.9%-83.4%, 6.9%-21.5%, and 1.8%-7.2% of
performance improvement, respectively. Note that, when in-
serting 108 edges, the number of changes from RIA to HITree
ranges from 29 (on LJ) to 1599 (on OR), which only causes

0.2%-3.1% runtime overhead. Without the changes, it will
take a longer time to perform graph updates.

6.3 Graph Analytics Performance
We compare the performance of graph analytics algorithms
running on four systems, and the results are shown in Fig-
ure 13 and Table 2. The results of PR, CC, and TC for Aspen
and PaC-tree are omitted due to missing implementations
in their open-source codes. The results are reported on the
average of five trials for each graph analytics algorithm.
Figure 13 illustrates the running time normalized to LS-

Graph on BFS and BC of all systems. LSGraph outperforms
Terrace, Aspen, and PaC-tree by 1.02×-1.16×, 1.98×-3.55×,
and 1.28×-2.72× on BFS, and 1.07×-1.21×, 1.58×-2.14×, and
1.20×-2.12× on BC, respectively. LSGraph and Terrace per-
form better than Aspen and PaC-tree in all cases since the
latters store all edges of the graph in the tree structure,
which leads to poor cache locality. LSGraph outperforms
Terrace mainly since the HITree designed by LSGraph has
better cache locality than B-tree used by Terrace, and we
also reduce the scenarios of HITree for higher locality due to
the good update performance of RIA (details in Section 6.5)
while reducing B-tree in Terrace heavily decreases its update
throughput [54].
Table 2 illustrates the running times and speed up of LS-

Graph and Terrace on PR, CC, and TC. LSGraph achieves
1.24×-1.69×, 1.04×-1.53×, and 1.45×-4.28× speedup over Ter-
race on PR, CC, and TC, respectively. In general, PR exhibits
superior speedup than BFS, BC, and CC since PR traverses
the edges of the whole graph at the beginning and high-
degree vertices usually converge after many rounds of itera-
tions [79], leading to the problem of poor cache locality of
B-tree more prominent. TC is a computationally intensive
algorithm that repeatedly traverses the edges of the same
vertices several times, especially the edges of high-degree
vertices [55]. Terrace implements TC through multiple in-
tersection operations by traversing different data structures.
To improve locality and reduce programming complexity,
we first store the edges of the vertices into arrays and then
perform the intersection operation based on these arrays.
Due to the fast traversal of our RIA and HITree, the overhead
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Table 2. Execution times (in seconds) of LSGraph and Terrace on PR, CC, and TC. T/L denotes the speedup of LSGraph with
respect to Terrace, Traversal and Tra/L denote the traversal time of LSGraph and the time ratio of traversal to LSGraph.

Graph PR CC TC
LSGraph Terrace T/L LSGraph Terrace T/L LSGraph Traversal Terrace T/L Tra/L

LJ 0.184 0.239 1.30 0.053 0.055 1.04 1.335 0.148 2.031 1.52 10.99%
OR 0.352 0.593 1.69 0.099 0.152 1.53 3.535 0.689 5.116 1.45 19.48%
RM 1.782 2.205 1.24 0.309 0.348 1.13 13.151 2.351 22.130 1.68 17.88%
TW 8.553 11.902 1.39 2.187 2.677 1.22 792.797 5.044 3394.430 4.28 0.64%

Table 3. Memory usage (GB) of graphs in Table 1 on the dif-
ferent systems (T, A, P denoted as Terrace, Aspen, PaC-tree),
and the ratio of index overhead (denoted as I/L) to LSGraph.
T/L is the ratio of Terrace’s memory usage to LSGraph.

Graph LSGraph T A P T/L I/L

LJ 0.61 1.51 0.58 0.35 2.48 2.90%
OR 1.27 2.51 0.89 0.73 1.98 4.96%
RM 5.67 18.02 3.99 3.47 3.18 5.43%
TW 16.58 44.70 12.36 8.92 2.70 3.16%
FR 23.66 51.72 22.76 14.99 2.19 4.06%

of storing the graph data in arrays is lightweight compared
to the overall time (0.64%-19.48%).

6.4 Memory Footprint
Table 3 presents the memory usage of the four systems. The
memory usage of Terrace is 1.98×-3.18× larger than that of
LSGraph, primarily due to Terrace’s utilization of a lower
density of (0.125, 0.25) for the PMA, which corresponds to
an amplification factor of (4, 8), whereas LSGraph uses an
amplification factor of 1.2 by default. LSGraph consumes
more memory than Aspen and PaC-tree, since they employ
compressed data structures, whereas LSGraph takes uncom-
pressed data structures. Although LSGraph consumes more
memory than Aspen and PaC-tree, LSGraph achieves signifi-
cantly higher performance. For batch sizes ranging from 104
to 107, the speedup-to-memory usage ratio of LSGraph is bet-
ter than Aspen and PaC-tree by 2.27×-9.66× and 1.73×-6.53×,
respectively. In addition, we analyze the amount of memory
space occupied by index in LSGraph, which is the total of
the index array of RIA and the model size of LIA. The results
in Table 3 demonstrate that the memory footprint overhead
of index in LSGraph is lightweight, with ratios ranging from
2.90% to 5.43%.

6.5 Sensitivity Analysis
To analyze the impact of 𝛼 and M, we evaluate the perfor-
mance of graph update and graph analytics of LSGraph on
LJ, RM, and TW datasets, with a range of 𝛼 between 1.1 and
2.0, and𝑀 ranging from 212 to 216.

Table 4. A list of real-world streaming graph datasets with
their characteristics

Graph Vertices Edges

mathoverflow (MO) [41] 24,818 506,550
askubuntu (AU) [41] 159,316 964,437
superuser (SU) [41] 194,085 1,443,339
wiki-talk-temporal (WT) [41] 1,140,149 7,833,140

Impact of Space Amplification Factor 𝛼 . As shown in
Figure 14, we observe that a drop in the value of 𝛼 leads
to a decrease in the overall performance of graph updates,
which is particularly obvious when 𝛼 changes from 1.2 to 1.1.
The reason for this is that lots of unused space decreases the
amount and distance of data movement during insertions,
resulting in improved performance. Large 𝛼 will incur more
memory access when traversing edges of vertices, thereby
lowering the performance of graph analytics, as shown in
Figure 15. There is little difference in the performance of
graph analytics when 𝛼 is below 1.3. Therefore, we set 𝛼 to
1.2 by default to trade off the performance of graph update
and graph analytics (we do not use 1.3 since it increases
memory usage).

Impact of Threshold𝑀 . Larger𝑀 results in more edges
stored by RIA and a large number of horizontal data move-
ments during insertion, which degrades graph update per-
formance, particularly when there are a few unused spaces
in the graph store. For example, as shown in Figure 14, when
𝛼 = 1.1, the performance of TW continues to drop as the
𝑀 increases since edges of these high-degree vertices are
stored in HITree. The graph update performance of LJ and
RM is smooth after 212 because they have few high-degree
vertices. Figure 15 illustrates that the performance of graph
analytics exhibits a consistent and steady trend starting from
212. Therefore, we set 𝑀 to 212 by default, primarily with
the aim of optimizing the efficiency of graph analytics. Note
that even if we set𝑀 to 210 that is the same as Terrace, our
graph analytics performance also outperforms Terrace (e.g.,
when running PR on TW, LSGraph and Terrace take 9.03
and 11.90 seconds, respectively), mostly due to the superior
cache locality of HITree compared to B-tree.
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Figure 14. Running times (in seconds) of inserting 108 edges in LSGraph on LJ, RM, TW with different𝑀 and 𝛼
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Figure 15. Running times (in seconds) of PR algorithm in LSGraph on LJ, RM, TW with different𝑀 and 𝛼
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Figure 16. Average (5 trials) running times (in seconds)
of continuous inserting 108 edges in LSGraph on OR with
different𝑀 and 𝛼

Scenarios with Frequent Insertions. To evaluate our
update performance in such scenarios, we continuously in-
sert five times in LSGraph onOR, with a batch size of 108 each
time. We report the average running time in Figure 16, and
the performance of the graph update degrades as the utiliza-
tion of HITree decreases, particularly when 𝛼 is quite small,
due to HITree’s vertical movement, which lowers large-scale
data movements. This demonstrates the significance of our
HITree design.

ScenarioswithReal-world StreamingGraphs.We also
evaluate the performance on real-world streaming graphs
(see Table 4) with realistic data arrival patterns. Like previ-
ous work [50, 68], we treated 10% of the graph datasets as
streaming edge additions and ran the test five times. The
results show that LSGraph outperforms Terrace, Aspen, and
PaC-tree by 1.63×-2.95×, 1.05×-2.42×, and 1.02×-1.82×, re-
spectively.
Scenarios with Larger Graph Datasets. To evaluate

the performance of LSGraph on larger graph datasets, we
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Figure 17. Scalability of multi-threading when inserting 107
edges in Terrace, Aspen, Pac-Tree, and LSGraph on OR in
different number of threads

use the graph500 generator [51] to generate a graph dataset
with 1 billion vertices and then convert it into a symmetrized
version that contains 4.3 billion edges. The results show that
LSGraph outperforms Aspen and PaC-tree by 4.64×-10.22×
and 2.88×-29.37×, respectively.

6.6 Scalability
Figure 17 illustrates that LSGraph , Aspen, and Pac-Tree scale
well across different numbers of threads, while Terrace does
not scale beyond 16 threads. The reason for this phenomenon
is mainly that several threads collaborate to insert data into a
single array (i.e., PMA [71]) in Terrace, and they could change
the same range of the array due to data movements, resulting
in a high overhead of lock and cache coherence. Instead, we
use an AL-based structure where edges of different vertices
do not affect each other and regulate the distance of the data
movement, thereby reducing the amount of data movement.
Besides, the updated edges for a vertex are assigned to a
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single thread for processing, which avoids the lock overhead
and enhances cache locality.

7 Related Work
The Data Representations for Streaming Graph Sys-
tems. To support streaming graph updates, several graph
representations have been proposed. Graph representations
based on the CSR utilize one ordered gapped array (i.e.,
PMA [5]) for ingesting graph updates [60, 68, 70, 71]. The
AL-based graph representations represent the edge sets of
a vertex in various methods, such as block-based linked
list [23, 26, 73, 74], array [3, 29, 81], hash table [2], and hy-
brid data structure [25, 28]. Tree-based graph representa-
tions leverage the search tree to provide efficient graph up-
dates [16, 18]. Terrace [54] and GraphOne [36] trade-off the
performance between graph updates and graph analytics
using multiple data structures. However, these solutions are
not efficient in simultaneously addressing the problems as-
sociated with graph update and graph analytics, including
search, data movement, cache locality, and ordered neigh-
bors.

Note that, similar to Terrace, LSGraph’s RIA also uses the
gapped array as Terrace’s PMA. However, PMA suffers from
high searching and moving overhead. Thus, RIA is not built
on top of PMA, or implemented by adapting PMA. Rather,
RIA is designed as a new data layout from scratch, which
integrates a novel set of strategies to reduce data movement
and searching. Further, LSGraph designs LIA and HITree to
optimize the update of high-degree vertices. Although Sor-
tledton [28] also targets similar memory access patterns as
LSGraph (set operations for GPM), compared with LSGraph,
Sortledton employs the array and the block-based skip list,
which suffer from high data searching and moving overhead.

In summary, the above data representations encompass
the design choices in three main directions: (1) one that
maintains contiguous edge storage and ordered edges’ IDs
for graph analytics while reducing data searching and move-
ment for graph update [17, 18, 54] , (2) one that focuses on
graph update optimizations [36] (e.g., edge-list in differen-
tial dataflow [52]), and (3) one that only focuses on graph
analytics optimizations [50]. LSGraph falls in the first di-
rection, and outperforms other latest design choices in this
direction. Note that several solutions are proposed to sup-
port transactions while running graph analytics on graph
databases [22, 32, 35, 61], which is mostly orthogonal to our
work.

The Learned Structures for Memory Systems. To sup-
port updated operations of the learned index, DPGM [27],
XIndex [66], and FINEdex [42] adopt the delta-buffer insert
strategy, which maintains delta buffers for inserting data
and merges the buffers into index structure periodically, and
ALEX [20], LIPP [75], and AFLI [76] use the in-place insert
strategy, which keeps gaps in arrays for inserting [64]. In

addition to the dynamic workloads, prior works also ap-
ply the learned index to various scenarios, such as LSM-
based [15, 45] and RDMA-based KV stores [43, 69], persistent
for NVM [80], flash-based SSD [63], and some learned sys-
tems [21, 30, 44]. However, they do not address the locality
problem of streaming graph updates and analytics.

8 Conclusion
This paper proposes LSGraph, a novel locality-centric stream-
ing graph engine to efficiently support both graph update
and graph analytics. We design a differentiated hierarchical
indexed streaming graph representation to enable efficient
search andmaintain locality.We further regulate the distance
of data movement when inserting into the above representa-
tion to reduce the overhead of memory access. Our evalua-
tion results indicate that LSGraph outperforms cutting-edge
streaming graph systems on both graph updates and graph
analytics.
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