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27 Abstract.

28 Measurements of ion cyclotron, emission (ICE) are planned for magnetically
gg confined fusion (MCF)plasmas ‘heated by neutral beam injection (NBI) in
31 the Wendelstein 7-X stellarator (W7-X). Freshly injected NBI ions in the edge
32 region, whose velocity-space distribution function approximates a delta-function, are
33 potentially unstableragainst the magnetoacoustic cyclotron instability (MCI), which
34 could drive a detectablenICE signal. Prediction of ICE from NBI protons in W7-X
35 hydrogen plasmas/is challenging, owing to the low ratio of the ions’ perpendicular
36 velocity to the local Alfvén speed, v, (npr)/Va =~ 0.14. We address this from
37 first principles, usihg the’ particle-in-cell (PIC) kinetic code EPOCH. This self-
38 consistently solves the{Lorentz force equation and Maxwell’s equations for tens of
39 millions of, computational ions (both thermal majority and energetic NBI minority)
40 and electrons, fully resolving gyromotion and hence capturing the cyclotron resonant
41 phenomenology, which gives rise to ICE. Our simulations predict an ICE signal
42 whi¢h is predominantly electrostatic while incorporating a significant electromagnetic
Zi component. Its frequency power spectrum reflects novel MCI physics, reported here for
45 the first'time. The NBI ions relaxing under the MCI first drive broadband field energy
46 at frequencies a little below the lower hybrid frequency wy g, across the wavenumber
47 range kw./V = 40 to 60, where w. and V4 denote ion cyclotron frequency and Alfvén
48 velocity. Nonlinear coupling between these waves then excites spectrally structured
49 ICE with narrow peaks, at much lower frequencies, typically the proton cyclotron
50 frequency and its lower harmonics. The relative strength of these peaks depends on the
51 specifics of the NBI ion velocity-space distribution and of the local plasma conditions,
52 implying diagnostic potential for the predicted ICE signal from W7-X.
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1. Introduction

Ion cyclotron emission (ICE) is spontaneously generated strongly suprathermal radiation
peaking spectrally at multiple harmonics of the cyclotron frequency of an energetic ion
population within a plasma. The narrowband character of the ICE ‘spectral peaks
implies that the source is strongly spatially localised. ICE spectra are.widely observed
in magnetic confinement fusion (MCF) plasmas, and the peak intensities axe usually a
few orders of magnitude stronger than the thermal radiation.

ICE was early observed from fusion-born ion populationg in puré deuterium and
DT plasmas in JET[1-4] and TFTR [5, 6], and from neutral,beam injected (NBI) ions
in TFTR][7]. Since 2017, ICE has been detected and analysed frem NBI and fusion-born
ions in the KSTAR[8-10], DIII-D[11-16], ASDEX-Upgrade[l7-21], NSTX-U[22, 23], JT-
60U[24-26], TUMAN-3M[27-29], EAST[30-33] and HL-2A[343:85] tokamaks, and the
LHD heliotron-stellarator[36-41]. The magnetoacoustic cyclotron instability (MCI) has
been identified as the excitation mechanism fordCE through analytical studies|6, 7,
42] and simulations[8-10, 12, 38, 39, 43-46]. TheMCL ¢an arise at spatial locations

where the velocity space distribution of an energetie ion population has a positive slope,

of
ov |

propagating nearly perpendicular to the magnetie field are excited on the fast Alfvén-

> 0 for values of v, 2 Vi, in the veloeity space. Under these conditions, waves

cyclotron harmonic branch through wave-particle cyclotron resonance, with the fast
ions transferring some of their energyito the excited waves. The spatial location of
the population inversion can be inferred by matching the frequency separation between
successive ICE spectral peaks to the local cyclotron frequency of the energetic ions, and
hence to the local magnetic field strength and the corresponding radial location. The
energetic ion species whose fregenergy has been found to drive ICE through the MCI
include fusion born ions[1-3, 5, 8,10, 14, 24, 25, 47-51], neutral beam injected(NBI)
ions[b, 7, 9, 11-14, 19, 244 38, 48, 49] and ions heated via ion cyclotron resonant
heating[52, 53].

In this paper,sve focusion'the likely prospects, physics basis and spectral character
for ICE associated with' NBI of energetic ions in future Wendelstein 7-X stellarator
plasmas. As neted aboves ICE due to NBI ion populations has been previously detected
from several tokamaks and the LHD heliotron-stellarator. Comparison between ICE
spectra from tekamaks and stellarators sheds light on the relative importance of overall
magnetic field structure compared to spatially localised physics. Edge NBI ICE has
been simulated in Refs. [9, 12, 38, 39] from first principles, using particle-in-cell (PIC)
kinétic codes'which solve the Maxwell-Lorentz system of equations self-consistently for
tens, of millions of gyro-orbit resolved particles. We note that simulations Refs [38, 39]
for thellkHD stellarator, unlike those presented here, were hybrid simulations with fluid
electrons and did not fully resolve electron gyrodynamics. Here we report the results
of PIC simulations using the EPOCH code[54] with fully gyro-resolved thermal ions,
energetic ions and electrons. We use a locally uniform (slab geometry) treatment of
the plasma physics of ICE emission in these simulations, as in the numerous previous
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PIC simulations for a wide range of MCF plasmas. This local treatment does mnot
incorporate toroidal magnetic field geometry, whether tokamak or stellaratory Its past
success in matching observed ICE signals suggests that these spectra are generated.by
the spatially localised physics that is captured in our code. In particular, the recent
success in matching ICE simulations to ICE observations from the{LHD heliotron-
stellarator [38-40] provides support for adopting here our predictive approach.for future
ICE physics in NBI-heated plasmas in the W7-X stellarator. These simulations are
computationally resource-intensive, partly due to the low ratio”of the perpendicular
velocity of the NBI ions to the local Alfvén velocity, Vipr/Va = 0.14. ﬁe sub-Alfvénic
regime of ICE, though uncommon, has been previously observed in TETR[5], ASDEX-
U[19] and LHD[39]. Our simulations capture the full frequency range from ion cyclotron
through lower hybrid and beyond, with high resolution. It appears that both the MCI
and the lower hybrid drift instability, found in related simulations[55, 56|, may operate
simultaneously under the Wendelstein 7-X plasmaonditions. It appears relevant that
turbulence in the lower hybrid frequency range“has.been observed from NBI-heated
plasmas in W7-X [57] and LHD[41]. Also important; and e’xplored here, is the extent to
which NBI-driven ICE phenomenology is predominantly electromagnetic or electrostatic.
In the stellarator context, we refer again toRefs.[38, 39] on this topic, together with the
PIC studies in Refs.[58, 59] which also bear'on lower hybrid aspects. The latter papers
are in the same spirit as the present workyg.and differ insofar as in Ref.[58] the higher-
frequency excitation is electromagnetic ag,distinct from electrostatic, and in Ref.[59] the
ion cyclotron and lower hybrid frequencies are substantially closer to each other. These
two instabilities, which are takemtozbe well separated in frequency and wavenumber in
a linear analytical description, and hence decoupled, appear here as manifestations of a
single coupled plasma phenemenon. atthe level of first principles self-consistent nonlinear
kinetics. The development of a predictive capability, in addition to interpretive, for
linking the spectral structure of ICE to the velocity-space structure and spatial location
of the emitting ion population i1s important for the diagnostic exploitation of ICE in
present and futurg[60, 61] fusion experiments.

2. Physical.and computational approach to W7-X ICE simulations

It is widely aecepted that ICE from MCF plasmas is driven by the MCI, whereby a
minority non-Maxwellian population of energetic ions excites modes on the fast Alfven-
cyclotrom,harmonic wave branches, transferring some of its energy also to the kinetic
energy of the thermal ions and electrons[42, 62-66]. Here we study the MCI under
conditions relevant to NBI populations (freshly ionised, or undergoing prompt loss) in
the W7=X"edge plasma. This location is the most likely one for excitation of NBI-
driven ICE in W7-X, as previously observed in the LHD heliotron-stellarator[38, 49]
and the TFTR/[5, 7], KSTAR|9], DIII-D[11-14] and ASDEX-Upgrade[21, 48] tokamaks,
for example. The reason is that, near the NBI injection point in the edge plasma,
the velocity-space distribution of freshly ionised NBI ions, which have not yet slowed
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down through collisions, is closest to a delta-function; and hence most strongly unstable
against the MCI which gives rise to the observed ICE signal. We adopt the firstéprinciples
approach previously used to interpret observations of NBI-driven ICE from other MCF
plasmas [9, 12, 38, 39]. This approach involves the use of the particle-in-cell (PIC)
code [67, 68] EPOCH [54], which captures the fully gyro-resolved Lorentz dynamics of
all particle species, and evolves these dynamics self-consistently with"the electric and
magnetic fields by solving the full Maxwell’s equations. We use EPOCH in 1D3V mode,
that is, the simulation domain incorporates one spatial axis, which can be oriented at
any angle to the direction of the ambient magnetic field, and all'three vector components
in velocity-space. It is known that the 1D3V approach, whi¢hhdemands substantial but
not unrealistic computational resources, provides a good description of MCI physics for
ICE simulation and interpretation [9, 12, 38, 39, 43]. Heénce one can be moderately
confident in now deploying this capability in predictive mode for W7-X.

EPOCH self consistently evolves the Maxwelliequations using a finite-difference
time-domain method (FDTD) for all three components of electric and magnetic fields
defined on a Yee staggered grid and the gyro orbit resolved charged particle dynamics
using a modified version of the Boris algérithm. The charged particles are represented
by macroparticles. To reduce noise in“thersystem, we use a fifth order weighing
scheme. The electrons and majority thermalion(pretons) populations form the maxwell
distributed pseudorandom thermal‘background: The minority fast ions representing the
NBI protons are initialised as a drifting ring-beam distribution, originally modelled with
a delta function for the perpendicular compenent in [42, 65] and later investigated with
a spread in the perpendicular gempenent in [69], given by

ooy (L)) )

2
r s

where v; and v ‘@xé the weloCity components perpendicular and parallel to the
background magnetic field, ug is initial perpendicular velocity and vy is initial drift along
the background magnetic field, u, and v, are the perpendicular and parallel velocity
spreads respectively. The system is then allowed to relax.

We rangseveral ssimulations using the physical and computational approach
described above' with ome, higher (by a factor of 8) resolution simulation used to
benchmarksthe eutputs of simulations at lower resolution. For all simulations except
the higher resolution simulation, we used 150,000 cells with the time step 0.95 times
that zequired by the CFL condition. The higher resolution simulation used 1,200,000
cells. PIC simulations typically require that the cell size is less than the electron Debye
length Ap_ thereby resolving the associated plasma physics. The Nyquist condition in
wavenumber space requires that dk, the resolution in wavenumber (k) space, is smaller
than'wg/v4 where w, is the ion cyclotron frequency and v, is the Alfvén velocity. To pre-
empt numerical heating of electrons, the cell size must resolve the smallest gyroradius
in the system which is the electron gyroradius. The spatial domain should also be long
enough to have at least several gyroradii of all species. The data from the simulation
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cannot be saved at every timestep due to memory limits, but but must nevertheless be
stored at sufficiently high cadence to resolve the physics being explored here. Fhis work
requires the resolution in angular frequency, dw, to be smaller than the ion cyclotren
frequencies as the MCI is a cyclotron resonant wave-particle phenomenon, hence the
time duration of our simulations must exceed several ion gyroperiods4The simulation
Nyquist frequency must exceed the largest frequency present in the’system, in our
case the electron cyclotron frequency, to avoid aliasing or adding noise in the lower
frequencies. The noise is also inversely dependent on the number/of macroparticles used
to represent the charged particles. Here we use 1,995,000 macro particles\for each species.
In these simulations, the spatial domain, and hence the allowable wavéenumber vectors,
was oriented quasiperpendicular (85-89.5 degrees) to the directiomef the magnetic field.
Other initial parameters are listed in Table 1. In the simulations presented here, we

Parameter Value
Electron density(n.) 6 x 108m=3
Thermal electron and Proton temiperaturen|” 30eV
Magnetic field 225 T
NBI Proton beam Energy 55keV
NBI Proton density 0.03 x n,
Beam injection Angle.w.r.t. B 70°
Initial drift alongB(v,) 1.11 x 10%mn/s
Initial Perpendicular velogity(ug) 3.05 x 10%m/s
Perpendiculaz-velocity spread(u,) 0.001 x ug
Parallel (velocity spread(v,) 0.01 X vy

Table 1. Physical ﬁrameters used in the simulations

find(see e.g. Fig. “6) that memlinear three-wave coupling plays a significant role in
the flow of energy in theifrequency-wavenumber space, and hence in determining the
structure of the simulated ICE spectra. This nonlinear coupling is quantified in Sec. 3
using bispectralanalysis techniques which are outlined briefly in Appendix A and has
previously been used to assist interpretation of ICE simulations in, for example, Fig. 3

of [8].

3. ICE simulation results

Our simulation results are encapsulated in the following six Figures, which we discuss in
detail below. To summarise these briefly, Fig. 1 displays the time evolution of the change
in energy densities of particles and fields. Figure 2 shows the spatiotemporal Fourier
transform of the energy associated with the z-component of the excited magnetic, that is,
the distribution of power across different frequencies and wavenumbers. Figure 3 plots
simulated ICE power spectra, derived by summing spatiotemporal Fourier transforms
over wavenumber, for a range of relevant parameters. We compare the power excited
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in electric versus magnetic field components in Fig.4. The time evolution of energy
with respect to wavenumber is shown in Fig.5. Nonlinear coupling of energy across
wavenumber space is quantified in the bispectral plots of Fig. 6, for both. electri¢rand
magnetic fields, at different propagation angles. Figure 1 shows the time eveolution of
particle and field energy densities from a 1D3V EPOCH PIC simulation of NBI' ions
relaxing under the MCI for W7-X edge plasma conditions. We emphasise that this
reflects spontaneous collective relaxation of millions of simulation particles = NBI ions,
thermal ions and electrons - together with the self-consistent eleetricand magnetic field
under the Lorentz-Maxwell system of equations; the MCI is not present}l the simulation
initial conditions and emerges as the simulation evolves.

MCIT involves a collective relaxation of non-Maxwellian iomspopulation, i.e. the
beam ions in our simulations. This is evidenced in Fig. »l which shows the change
in energy densities in the field components E, and B, and in the different particle
populations. In this sub-Alfvénic regime for the NBI ions, it is expected from previous
analyses of observations of NBI-driven ICE [7, 97383 39) that the MCI may include a
significant electrostatic component. This is seen here in F?g. 1, where the initial rise is
at times corresponding to the growth of field energy at/w ~ wpy(cf. Fig.2 and 5). This
transitions at ¢ = 1.257,, in Fig.1 (cf. Fig.5pbelow) to the growth of spectral peaks
at lower ion cyclotron harmonics. The system settles into its saturated regime, which
presumably corresponds to the state determining the observable ICE spectrum, well
before the simulation ends at three ion gyroperiods. In Fig.1, the time traces are flat
after two gyroperiods. As we shall see later, when resolved with respect to wavenumber,
there is correspondingly little ermno,time evolution in the upper third of Fig.5 below,
covering the time interval between two and three gyroperiods.

Magnetic field data from the simulation is used to calculate the spatiotemporal
Fourier transform(2D diserete Fast Fourier Transform), as shown in Fig.2(left) for the
case with wave propagation at an angle of 89.5° with respect to the magnetic field
B. The B, component of the magnetic field is chosen for the analysis, because it is
perpendicular to the simulation direction and hence the k-vector, thus capturing the
electromagneticgphysics of the system. Fig. 2(left) shows that the spontaneously excited
fields are congentrated,in‘distinct regions of (w,k) space: spectrally peaked at the second
ion cyclotron harmonic; and an extended lower hybrid feature between dimensionless
wavenumbers k = 10 to 30, and k = 50 to 60 (hereafter the “ELHF”) close to the lower
hybrid resonange frequency given by equation (5) in reference [70]

2 2 m; 9
wP=wiy (1 + ECOS 0) . (2)
Here m;, m. are the ion and electron masses, 6 is the angle of propagation and
wrpiisythe cold plasma lower hybrid frequency given by equation (1) in [70]. Using
equation (2) gives 14.96, 25.21, 34.41 and 54.19, normalised to w., for propagation
angles 89.5° 88°, 87° and 85° respectively. The ELHFs can be observed around these
frequencies also in the spatiotemporal Fourier transforms displayed in Fig. 6 (below),
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Figure 1. Time evolution of change in @nergy densities of particles, electric field

E, and magnetic field B, in he, 89.5° case. {The MCI starts around t = 1.17,,
which matches Fig.5 and is predominantly electrostatic, with the energy excited in E,
significantly greater than in B,.

where they are paired with their corresponding bispectra (discussed below). ELHF
might be related to the lower hybrid wave physics studied in [55, 71].

Integrating the squared spatiotemporal FFT of B, over k-space and multiplying by
the constant ﬁ yields the frequency power spectrum, Fig.2(right). Although the exact
values of the spectral peak in“am.experiment can vary depending on various factors
such as measuring device, technique, and position of antennae, the relative heights
of peaks should follew the sameé trend in these logarithmic plots. We note that a
difference of « in the logyscale (sometimes referred to as “prominence”) indicates that
the peak has 10% timesithe power compared to the base level. Multiple simulations
(Fig.3) for quasi=perpendicular propagation at angles between 85° and 89.5° to the
magnetic field'show that the excitation of spectral peaks at the 2nd and 3rd harmonics
is a robust feature. {Their,amplitude is at least three orders of magnitude above the
noise floeryrwhich is plotted in the upper two panels of Fig.3, and these peaks are
consistéently present (while others are consistently absent) in multiple simulation cases.
Comparison with the noise floor (which possesses spectral structure in consequence of
the fluctuation dissipation theorem, whereby noise energy is concentrated at normal
modes) also shows that the simulated ICE spectrum is strongly suprathermal. This
aligns with ICE observations in all experiments, and has been a prime driver of ICE
interpretation in terms of collective instability since the earliest measurements, see e.g.
Ref.[1]. This is a key prediction of the present work, reinforced by the overall invariance
of the phenomenology with respect to the modest variations in electron temperature
shown in Fig.3(b) and in velocity-space spread shown in Fig.3(c). The 1D3V EPOCH
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Figure 2. Left: Spatiotemporal Fourier transform of the zzcomponent of the magnetic
field (B,). The logarithmic (base ten) colour'scale quantifies the relative distribution
of energy across frequency-wavenumber space. Erequency is normalised to the proton
cyclotron frequency and wavenumber 0 the ratioef proton cyclotron frequency to
Alfvén velocity. The blue line shows the ¢old plasma dispersion relation(Eq. (5.49)
in [72]). The black line is the lower hybrid resonance frequency from Eq. (2). Right:
Corresponding simulated ICE power,spectrum obtained by summing, over all k, the
power at each frequency in the leftipanel, The extended lower hybrid feature appears
in both panels in the frequency range 11 <w < 16.

PIC simulations reported heredfollow all three vector components of both the electric and
the magnetic fields, which are evaluated at each timestep at each grid cell. This enables
us to quantify the balance of the simulated ICE spectrum with respect to electrostatic
and electromagnetic componen@, information which is important also from a diagnostic
perspective. For example; thefield component E, lies along the spatial domain of the
simulation, and is purely elec¢trostatic; whereas the oscillating component of B, is purely
electromagnetic. The frequeney power spectrum for the electrostatic component E, is
obtained in the sameway as.for the electromagnetic component B, described above, but
the multiplicatiye constant is replaced by . The two panels of Fig.4 shows examples
of these, together with a.computation of the ratio of the magnitude of the electrostatic
to electromagnetic components of this simulated ICE spectrum. It can be seen that the
electrostatic'eomponent is'dominant across most of the frequency domain, whereas the
electromagnetic_ eomponent is dominant around the 2nd cyclotron harmonic peak. The
relative differences in the electric and magnetic field spectra also indicate which probe
might be more suitable to detect the signal at different frequency ranges on W7-X.
Since the current B-dot probe ICE diagnostic[73] operates primarily inductively, it is
unlikely.that the predominantly electrostatic high frequency waves which comprise the
ELHF will be detected by it. They should however be detectable in the ICRF antenna
which will be introduced in the next experimental campaign, OP2.2. The variation
in nonlinear energy coupling between the electromagnetic and electrostatic channels is
explored further in Fig. 6 using bispectral analysis.
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Figure 3. Variation of simulated ICE power spectra with respect to k vector
orientation, electron temperature and NBI ion velocity space distribution. Spectra
plotted{ versus frequency following integration, over wavenumber, of spatiotemporal
Fourier transforms of the excited fields. a)(top) Each coloured trace corresponds to
a simulation with different quasi-perpendicular orientation of the spatial domain with
respect to the magnetic field direction, in the range of 85 to 89.5 degrees. The line
labelled thermal background shows the baseline spectrum from a simulation containing
no suprathermal ions. b)(middle) each trace corresponds to simulations with slightly
different electron temperatures. ¢)(bottom) shows power spectra from simulations with
slightly different spreads in vg4 from the ring-beam Eq. (1). The 2nd and 3rd harmonic
peaks arise in all cases with a ring-beam, together with harmonics 4, 5 and 6 in some
of them. The ELHF spans harmonics 8 to 18 in the 89.5° cases; 20 to 23 for 88°; and
is off scale to the right in the 87° and 85° cases. Note that the y-axis range is different
in each panel.
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Figure 4. (top)Simulated ICE power spectra of electric field E, and magnetic field
B, for the 89.5° case, plotted versus frequency following integration, over wavenumber,
of spatiotemporal Fourier transforms of 'the excited fields. (bottom)Frequency
dependence of the ratio‘ef the power in B, to F,.

The 1D FFTs of magnetic field component B, in the spatial domain at a given time
show the power in different wavenumbers(k) in the system at that instant. Horizontally
stacking these k-space spectra taken at successively later times in the simulation yields
us Figure 5. The ELHF stfticture éan'be observed growing first, before the ICE at lower
harmonics is initiated, and then dying out around the time when the lower harmonics
gain energy. This suggests the,KLHF may drive the ICE in the lower harmonics, with
the energy transferred by the nonlinear coupling, which has been tested using bispectral
methods as described below.

Fig. 6 shows the dispersion relations and the bicoherence(See Appendix A) of the
magnetic field B, and electric field F, signals. All the dispersion plots are qualitatively
similar with the/ELHF' loecated around the lower hybrid frequency and significant power
at the lower [CEsharmonics. The bicoherence plots have colourmaps ranging from 0 to
1 since bicoherénce is a normalised bispectrum, see again in the Appendix. This Figure
onlysinforms.about the strength of nonlinear coupling between each set of three phase-
matched waves, but not the direction of energy transfer among them. The wavenumbers
from the bicoherence can be matched to the dispersion plot to find the corresponding
frequencies. The change in energy in different wavenumbers from Fig. 5 indicates
which modes gain or lose energy. It can be seen that the ELHF is nonlinearly coupled
to the lower and middle harmonics for all cases, sometimes indirectly through a third
frequency. The bicoherence of the B, signal is similar, but not identical, to that of E,.
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Figure 5. Time evolution of 1D spatia
This shows the variation of t
(normalised to the ratio of ion
points in time (normalised to the
between wavenumbers 45
peaks at the 2nd and
ELHF declines.

of magnetic field component B,.
ion across different wavenumbers,k
ency to the Alfvén velocity), at different
eriod). The ELHF, located approximately
nd 0.574,. This is earlier than the spectral
hich rise around 1.2574,, at which time the

which is visible in the bicohe but not in that of E,, around (~ 58, ~ 2)for
the 89.5° cases, around ( , v the 88° case, and around (~ 115,~ 5) for the

exploring both elec
ICE phenomenology:
dispersion plots. s, seen also in Ref.[58], are a factor of order one thousand
weaker than the features of the spatiotemporal Fourier transform, hence are
close to the > floor in these simulations. While it cannot yet be established
whether the

rather t of the ELHF; they may repay investigation in future studies.

or physical in origin, it seems likely that they are an effect,

4.

We predict the excitation of ICE spectral peaks at the 2nd and 3rd proton cyclotron
harm in the edge region of hydrogen plasmas heated by proton NBI in the W7-X
or. The predominantly electrostatic character that we predict for these ICE
aks suggests that they could be detectable with probes, as previously in TFTR [5,
|, as well as antennas. The lower cyclotron harmonics in our simulation may be driven
nonlinear interactions within the ELHF structure, which is excited at frequencies
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on the left-hand margin. The first column shows the spatiotemporal FFTs of B,
with the logarithmic colour scale indicating the relative distribution of energies in the
(w, k) combination calculated in similar fashion to that in Fig. 2. The ELHF appears
in each case around the LH resonance frequency indicated by the black line. The
second and third columns show the bicoherence of the magnetic field B, and electric
field E, respectively.

indicating stronger nonlinear coupling between the two wavenumbers. The first two

The colour scale ranges from 0 to 1, with values closer to 1

rows correspond to the same case, but top row data was obtained from the higher
resolution simulation used in Fig. 2.
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closer to the lower hybrid frequency. The excitation of the ELHF, involving radiation
at frequencies comparable to the lower hybrid frequency, is our second main prediction:
Based on the change in power in the wavenumbers with time and the nonlinear coupling
revealed by the bispectral analysis of the fields excited in our simulations, ¢ross-scale
energy transfer is expected between the ELHF and the lower frequengy .ion cyclotron
harmonic peaks characteristic of ICE. Whilst these predictions aresSpecialised to the
W7-X NBI edge plasma scenario specified, we note that the nonlinéar coupling between
lower hybrid waves, identified here, could also arise in other MGF plasmas irrespective
of their overall confining magnetic field geometry, and indeed in golar-terrestrial and
astrophysical plasmas where ICE-type phenomena have béen observed[74-77]| or are
anticipated[78, 79]. In summary, the phenomenology predicted by these simulations is
not narrowly concentrated in frequency and wavenumber. Instead; energy flows initially
into wavenumbers corresponding to frequencies near the lower hybrid frequency, the
broadband ELHF. It appears from Figs.5 and 64that, probably, energy then flows
by nonlinear self-interactions into: wavenumbefs ¢orrésponding to the intermediate
frequency range, which would also be expected t@ be excited by standard MCI and
ICE physics; and to the lowest ion cyclotten harmonic/peaks.
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Appendix A

We use bispectral analysis to identify nonlinear phase coupling, which is indicative of
energy beingitransferred between waves. In particular, we indentify where three waves
interact nonlinearly while satisfying the wavenumber and (angular) frequency matching
conditions k3 = k1 + ky and w3 = w; + wy; i.e. where waves “1” and “2” interact to
produce “3”. We use a Fourier transform based bispectrum b;, defined as[80]

b3 (k1 ko) = | B(ky, ko)|* = [(F (k1) F (ko) F* (ky + ko)) (3)

where F'(kp) is the complex Fourier transform of the quantity being analysed, in our
case the electric field E, or magnetic field B,. The angled brackets (.) can represent
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averaging over time or ensemble. In our case, we implement ensemble averaging by
creating multiple records of the signal by using a sliding window of the signal with respect
to time. Computing this for the entire space is expensive, in terms of computation time
and memory. Therefore, we calculate the bicoherence around the regions with maximum
power in the spatiotemporal Fourier transform. The bispectrum can be normalised in
a number of ways[81, 82] to obtain the bicoherence, b., and we cheose to do so using
Schwartz’s inequality:

[(F' (k1) F (ko) F* (k1 + ko)) |2 ~
([F (k) F (ko) |2) (| F* (k1 + K2)12)

b2 (ke ks) = (4)
such that the bicoherence is bounded by 0 < b, < 1. A value eloser to 1 indicates
there is coupling between the two frequencies and their sum while a value close to 0
indicates its absence. For example, if there is an inteuse region around (a,b) then waves
with wavenumbers a, b and a + b are coupled. THe value of b? measures the fraction
of power at a + b that is coupled in the three wave coupling. The preceding definitions
are in terms of wavenumber(k) which is relevant to our cgtse, but the same definitions
and relations hold in (angular) frequency/space and k& can be substituted by w. We note
that Eq. (4) posses the following symmetriess, B(k1, ko) = B(ks, k1) = B*(—k1, —k2)
and B(ky, ko) = B(—ky — ko, k2) = B(k1, —k1= k2)[80]. These symmetries apply equally
to the bicoherence in three wave interactions(83).
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