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Abstract

The development of the next generation of heterogeneous catalysts requires

a deep understanding of the fundamental processes that occur when molecules inter-

act with metal surfaces. A key challenge to this goal is that nonadiabatic processes

represent a key energy dissipation pathway when molecules interact with metal sur-

faces. Such processes lay outside the Born-Oppenheimer potential energy surface

(PES) picture that is ubiquitous throughout chemistry and upon which electronic

structure methods in computational chemistry rely. Modeling such systems is chal-

lenging because they combine large inhomogeneous models, in-plane periodicity with

a need to combine electronic excitations with vibrational effects.

The dynamics algorithm independent electron surface hopping (IESH), which

attempts to account for nonadiabatic effects when molecules interact with metal

surfaces, has shown promise in reproducing experimental observations. IESH sim-

ulations require two diabatic PESs, of neutral and anionic charge transfer states.

This thesis aims to create accurate diabatic PESs using the linear expansion delta

self-consistent field (le-∆SCF) excited state method. The two forms of le-∆SCF,

density based (ρle-∆SCF) and wavefunction based (Ψle-∆SCF) are assessed for the

systems of NO-Au(111) and CO-Au(111). Only ρle-∆SCF is shown to be a viable

methodology for constructing charge constrained diabatic PESs due to SCF conver-

gence issues. A new methodology for defining charge constraints in ρle-∆SCF, which

accounts for charge transfer between molecule and metal in the ground state, is de-

veloped and used to construct 2D diabatic PESs as a function of molecule-surface

separation and molecule bond length, for CO interacting with Au(111) and Ag(111).

IESH dynamics simulations of CO scattering from Au(111) and Ag(111) across a

range of initial vibrational states and translational kinetic energies are performed

and the results are compared to other methods and to experiment.
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Chapter 1

Introduction

The chemistry of surfaces has been the recipient of a great deal of interest and effort,

over the past century in particular, and rightly so. The modern world as we know it

owes much to technologies that have been made possible by our increasingly detailed

understanding of this unique realm of chemistry. A surface in the context of surface

chemistry is the interface between two phases of matter, for example solid-gas, solid-

liquid, liquid-gas etc. The work presented in this thesis deals exclusively with the

solid-gas class of surfaces, specifically, the interface of a crystalline metal interacting

with gas phase molecules and how to model their physics. Such surfaces represent

an interesting challenge in chemistry because they are interfaces between two better

known and usually more easily understood areas of chemistry: the solid phase and

the gas phase. Crystals are highly ordered periodic structures that can be efficiently

and accurately modelled by taking advantage of the 3D periodicity by introducing

periodic boundary conditions (PBC) into models. Gas phase molecular chemistry

is rich and complex, but the species involved are very often small enough that

sophisticated high-level theories can be applied to model them. Surface chemistry

offers the challenge of combining the two domains. Surface systems are periodic

in only two dimensions, x and y. Surfaces also possess unique chemistry because

when a bulk crystal is cleaved, the exposed surface has electronic and vibrational

‘surface’ states that are 2D localised to the top few layers of the exposed surface.

In particular, metal surfaces provide access to potentiall new areas of chemistry

because of these surface states that enable new chemistry when molecules interact

with the surface, via the transfer for electrons from the to the molecules [1].

Two dominant areas of application that have played a big part (though cer-

tainly not the only part) in motivating the advancement of surface science are semi-

conductors and heterogeneous metal catalysts. It is difficult to overstate the impact
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semiconductor technology has had on modern life. Almost all of us use devices every

day, such as mobile phones, tablet computers, and PCs that contain semiconductor

chips with billions of individual transistors on them. The rapid reduction in size

of an individual transistor on a semiconducting surface, that makes powerful com-

putation so fast and commonplace, has relied heavily on surface characterisation

techniques of ever increasing sophistication and precision to better understand and

design semiconductor chips [2].

Another major area of focus in surface science that has had an equally, if

not more, important impact on the world today is heterogeneous catalysis. Society

today is reliant on catalytic surfaces in ways that most people take for granted or

are entirely unaware of, such as the generation of commercially important chemicals

and fuels, or the reduction of pollutants expelled from automobile exhausts using

catalytic converters. Perhaps the most striking and far reaching example of this

impact is the Haber-Bosch process [3, 4].

At the turn of the 20th century humanity was facing an existential crisis when

intensive farming was depleting the nitrogen content of soils, which is essential for

healthy crops and good yields [5]. The primary source of fixed nitrogen used at the

time to replenish the soils was guano, the excrement of seabirds (or bats) that had

built up into large deposits over many years. Unfortunately guano deposits build up

far too slowly to keep up with the demand and were a quickly dwindling resource.

An alternative method of reintroducing fixed nitrogen to soils was desperately re-

quired to avoid crop failure leading to mass starvation in the coming decades. One

of the simplest nitrogen containing molecules that can be readily converted to more

complex nitrogen containing molecules, which can then be used by plants, is ammo-

nia (NH3). The constituent elements are abundant all over the earth, and yet for

centuries scientists failed to find an efficient way to convert N2 and H2 into NH3.

Many experiments that can essentially be boiled down to variations on the idea of

putting the gasses into a container and exposing them to extreme temperatures and

pressures where attempted, but alas, the yields of ammonia were pitiful. It was

only in 1908 after Fritz Haber performed a similar experiment in the presence of

an osmium catalyst that ammonia was produced in significant yields [3]. Just three

years later Bosch had made the first mass production ammonia plant [4]. Both men

subsequently received Nobel prizes for their respective work; they had solved the

existential crisis that was facing humanity, as no longer would millions potentially

starve when depleted soils could no longer produce high yields of crops. Now, re-

plenishing the nitrogen content of soils was simple, using fertilizers derived from

NH3. It was the inclusion of the catalytic surface chemistry of Os that made the
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process viable. Since the initial work of Haber and Bosch, the process has been fur-

ther optimised and the osmium surface has been replaced, primarily with iron-based

catalysts; however, work to find new and more efficient catalysts continues to this

day [6].

A host of other industrially, commercially and environmentally significant

chemical reactions are routinely carried out all over the world using heterogeneous

catalysis. Another important example is the catalytic converters that are mandatory

in all modern cars with internal combustion engines [7]. Pt, Pd and Rh based

catalysts, along with cerium oxide as a promoting agents, are used to convert toxic

and environmentally damaging NOX molecules to benign N2 and oxidise any residual

hydrocarbons present in combustion engine exhausts, due to incomplete combustion

of the fuel, to CO2. Without the widespread use of catalytic converters, levels of air

pollution, particularly in urban areas, would be much higher and have huge impacts

on public health [7].

Clearly, having a deep and rigorous theoretical understanding of the processes

that govern surface catalysis is incredibly important, not to mention extremely valu-

able. For the last 100 years the majority of catalyst development has been a costly

process of trial and error in which potential catalytic materials and additives are

screened empirically in different ratios and under different conditions until the most

optimal combinations are found [2, 8]. Such is the value of new catalysts, however,

that this cost has been endured and new catalysts have been developed. Since the

1950 and 60s there has been an explosion in the available techniques for analysing

and characterising surfaces based on their composition, structure and morphology,

electronic states and the nature of molecular adsorption and reaction [1]. More

recently the development of those experimental techniques has worked in tandem

with accurate atomic scale theories based on quantum mechanics to accurately model

these systems [9, 10]. There is a sense in which experimental surface science and

theoretical surface models have ‘met in the middle’.

One of the strengths and/or weaknesses of theoretical surface models, de-

pending on what one is interested in, is that, due to large computational costs, they

must be simplified to exclude much of the complexity of real world surfaces. This

means the ‘messiness’ of real world chemistry, such as surface defects, step edges,

high temperatures, complex mixtures, or aggregates of reactants and solvent effects

are excluded. The reduction on complexity allows a sharp focus on the remaining

degrees of freedom at the expense of all others. Experimentalists often seek to work

with simplified systems in order to rigorously control as many degrees of freedom as

possible. They have managed, at great effort, to also exclude much of the complexity
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of practical catalyst under reactive conditions and instead work with so-called model

catalysts. For example, by performing studies under ultra high vacuum conditions

and using single crystals with low miller index surfaces exposed [1, 2]. The use of

model catalysts ultimately means that a typical model used in theoretical atomic

scale simulations, a clean slab of metal atoms interacting with a single molecule and

surrounded by empty vacuum is, not as far from the experiments as it would be

compared to a practical catalyst environment.

It is known that ultimately the chemical possesses unfolding at surfaces, cat-

alytic or not, are governed by quantum mechanics, the rules of which are well un-

derstood. However, even setting aside the complexity of the chemical system itself,

the sheer complexity in finding solutions to the equations that describe quantum

mechanics present a huge barrier to modelling chemical processes. This problem

was described eloquently be Dirac in 1929: ‘The underlying physical laws necessary

for the mathematical theory of a large part of physics and the whole of chemistry

are thus completely known, and the difficulty is only that the exact application of

these laws leads to equations much too complicated to be soluble’ [11]. Therefore,

the computational chemist must find reasonable ways of reducing complexity and

making sensible approximations to both the physical system being modelled and the

theory, and hence the equations, that describe them, to have any hope of gaining

insight. A simplified description of the path our theoretical understanding takes

when attempting to create accurate models of chemistry at metal surfaces, and in

particular catalytic surfaces, is to reduce the complexity of the problems while still

managing to capture the essential physics. There are 3 main forms these simplifica-

tions take and together they form the so-called standard model of surface science [9,

10]. Firstly, the level of theory; almost all first principles atomistic models used to

study surface reactions are based on density functional theory (DFT), rather than

using high-level quantum chemistry methods, that are more accurate than DFT.

The second approximation is reduced dimensionality, where non-essential degrrees

of freedom (DOF) are excluded from models. For example restricting substrate mo-

tion or modeling core electrons using pseudopotentials. The final approximation is

to use the Born-Oppenheimer approximation (BOA) or the electronic adiabaticity

approximation (described in detail in Section 2.1.2) to dramatically reduce the com-

plexity of the numerical problems to be solved [12]. A much more detailed discussion

of these approximations is given in Section 3.2. The work in this thesis uses all three

of the aforementioned approximations to construct accurate models of interactions

of diatomic molecules interacting with metal surfaces. In particular, this work fo-

cuses on the third approximation (BOA), including its consequences and ways to
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accurately describe the non-adiabatic behaviour. The vast majority of the results

displayed herein are focused on CO or NO molecules interacting with Au(111) or

Ag(111) surfaces because these are systems that have been experimentally observed

to display nonadiabatic behaviour and there is a large amount of very high quality

data to compare to [10, 13–15]. CO/NO molecules in a vibrationally excited state

can engage in nonadiabatic energy transfer when scattered from the metal surfaces.

A significant proportion of the vibrational energy (often several quanta) is trans-

ferred from molecule to surface when vibrational modes of the molecule couple with

electronic states of the metal and trigger the excitation of electron-hole pairs, which

is a clear violation of the BOA since one of the main consequences of the BOA is

that nuclear and electronic motion are decoupled. These systems are investigated

using the occupation-constrained DFT method linear expansion ∆SCF (le-∆SCF)

[16, 17] to construct adiabatic and diabatic potentials in order to model the interac-

tion between molecule and metal. The effectiveness of le-∆SCF and the potentials is

assessed. Subsequently the models are used to perform nonadiabatic molecular dy-

namics (NAMD) simulations using the independent electron surface hopping (IESH)

[18] algorithm and the results are compared to trends from experiment.

The primary reason for this, aside from a general aspiration to build accurate

models that can reproduce experimentally observed behaviour, is that previously

published works in which a neutral and an anionic diabatic potential energy surface

(PES) was constructed and combined with the IESH method for the system of NO

on Au(111) are flawed in the way it modelled diabatic charge states [18, 19]. The

anionic and neutral charge states of the molecule as it interacts with the surface

were modelled by applying a small electric field, in order to move charge either from

metal to molecule or vice versa. The use of an explicit excited state method such as

le-∆SCF, which was developed with the aim of being able to model charge transfer

states of molecules absorbed on metal surfaces, can facilitate the construction of

more accurate diabatic PESs [16]. Creating high quality diabatic PESs is important

because it helps make clearer how much any flaws (or success) of IESH simulations

is due to the IESH method itself, rather than the underlying PES.

This concludes the introduction chapter, which has provided a broad overview

of the background and motivations for the work presented in this thesis. The struc-

ture of the remainder of this thesis is as follows: Chapter 2 provides a rigorous

explanation of the theories that are used throughout the work presented in this the-

sis. Chapter 3 will describe previous works in the literature relating to nonadiabatic

effects at metal surfaces, starting with experimental findings (3.1), followed by com-
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putational studies (3.2). Chapter 4 will assess the ability of the le-∆SCF method

to model charge transfer states of CO and NO at metal surfaces and determine

a reliable methodology, using le-∆SCF, to construct diabatic PES. Chapter 5 will

use the methodology developed in Chapter 4 to construct 1D and 2D PES for CO

interacting with Au(111) and Ag(111) surfaces. Chapter 6 will use the 2D PES pre-

sented in Chapter 5 to perform nonadiabatic dynamics simulations of CO scattering

from Au(111) and Ag(111) surfaces and compare the results to experimental obser-

vations. Finally, Chapter 7 will summarise the work presented in previous chapters

and describe how future works might build on the work presented here.
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Chapter 2

Theoretical overview

2.1 Quantum mechanical models of chemical systems

This section will describe how chemical systems are described using quantum me-

chanics, starting from the full many-body Schrödinger equation and introducing

several approximations that reduce the complexity to enable computational models

to be implemented.

2.1.1 The many-body problem

All information about a system in a pure quantum state is contained in the wavefunc-

tion Ψ(r). Information regarding how the particles of the system interact with each

other and how the wavefunction evolves over time is captured by the Schrödinger

equation [20]:

i
d

dt
Ψ(r1, r2, . . . , rN , t) = ĤΨ(r1, r2, ..., rN , t), (2.1)

where Ψ is a function of the positions of each particle r and time t in an N particle

system. The time evolution of the Schrödinger equation is discussed later in this sec-

tion. This section will be limited to discussion of solutions to the time-independent

Schrödinger equation, so called stationary states:

ĤΨi(r1, r2, ..., rN ) = EiΨi(r1, r2, ..., rN ). (2.2)

By removing the time dependence, the problem has been simplified to an eigenvalue

problem, where Ψi are the eigenfunctions and Ei are the eigenvalues. The index i

denotes a different solution on the eigenvalue spectrum, where i = 1 is the ground-

state solution and each subsequent i is the i− 1 excited state.

The derivations in this chapter will use atomic units to make the equations

7



clearer. As an example, the Schrödinger equation for a single hydrogen atom in full

SI units it is written as: [
− h̄2

2me
∇2 − e2

4πϵ0r

]
Ψ = EΨ, (2.3)

where h̄ is Plank’s constant h divided by 2π, me is the mass of an electron, −e is

the charge of an electron and ϵ0 is the dielectric permittivity in vacuum. Eqn (2.3)

can be rewritten in a dimensionless form if we say that x, y, z → λx′, λy′, λz′ and

define λ such that it satisfies:

h̄2

2meλ2
=

e2

4πϵ0λ
= EH , (2.4)

where EH is the atomic unit of energy called a Hartree. Solving Eqn (2.4) for λ

gives:

λ =
4πϵ0h̄

2

mee2
= a0. (2.5)

a0 is the atomic unit of length, known as the Bohr radius. We can use the identities

in Eqns (2.4) and (2.5) to rewrite Eqn (2.3) as:

EH

[
−1

2
∇′2 − 1

r′

]
Ψ′ = EΨ′. (2.6)

If we then set:

E′ =
E

EH
, (2.7)

we obtain the dimensionless equation:[
−1

2
∇′2 − 1

r′

]
Ψ′ = E′Ψ′. (2.8)

This is the Schrödinger equation for the hydrogen atom written in atomic units.

Any derived quantity can easily be converted back to SI units by a simple multipli-

cation with the appropriate conversion factor, tables of which are available in many

textbooks and online [21]. From this point on the prime notation will be omitted,

but all quantities should be assumed to be in atomic units.

Using atomic units, the Hamiltonian energy operator in Eqn (2.2) is written

explicitly as:

Ĥ = −
N∑
i=1

1

2
∇2

i −
M∑

A=1

1

2MA
∇2

A −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB
. (2.9)
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The 1st and 2nd terms on the left side of Eqn (2.9) are the kinetic energies of the

electrons and nuclei, respectively, where MA is the ratio of the mass of nucleus A

to the mass of an electron. The remaining three terms are energy contributions

due the Coulomb interactions between the particles. Left to right they are: the

electron-nuclear attraction, the electron-election repulsion and nuclear-nuclear re-

pulsion for a system of N electrons and M nuclei. Since the wavefunction contains

all the information about a system and the equations to capture it are known, it

may seem that any system could in principle be described precisely by solving these

equations, which would mean most of chemistry could be ‘solved’. Unfortunately,

solving the Schrödinger equation is an exceedingly difficult problem for the vast ma-

jority of chemically relevant systems. It can only be solved analytically for at most

2 particles. In terms of chemistry, this limits us to a lone hydrogen atom. The dif-

ficulty stems from the high-dimensional nature of the wavefunction, which requires

3(N + M) spatial variables, since each particle can move independently in three

dimensions. The impracticality of solving the full Schrödinger equation and the

ensuing search for simplifications to solve it, while retaining as much of the correct

physics as possible, is known as the quantum many-body problem. To use a quantum

mechanical treatment for chemically interesting systems, some significant approxi-

mations are required. The first and most important one is the Born-Oppenheimer

approximation (BOA).

2.1.2 The Born-Oppenheimer approximation

As described above, the crux of the many-body problem is that there are too

many coupled degrees of freedom (DOF) to make solving the time-independent

Schrödinger equation computationally tractable. Born and Oppenheimer [12] sug-

gested the separation of DOF where the coupling is weak. The prime candidates

are nuclear and electronic motion. The mass of the protons and neutrons that con-

stitute nuclei are approximately 1800 times greater than the mass of the electron.

This means that electrons can respond to any change in the environment much more

rapidly than the nuclei and, to a reasonable approximation, the electrons respond

instantaneously to any change in nuclear positions. Another way of phrasing this

is to say that we can approximate the uncertainty in the nuclear position as zero.

In practice this is done by setting the h̄2 in the nuclear kinetic energy part of the

many-body Hamiltonian to zero, which renders the entire nuclear kinetic energy

term equal to zero. This new simplified Hamiltonian (Ĥel(r;R)), referred to as the

electronic Hamiltonian, only depends parametrically on the nuclear coordinates and

the associated electronic wavefunction (Ψel) is solved for a given set of fixed nuclear

9



coordinates. This first step of the BOA is called the clamped nuclei approximation:

Ĥel = −
N∑
i=1

1

2
∇2

i −
N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB
. (2.10)

The rightmost term in Ĥel is the nuclear repulsion term, which is a constant. The

electronic Schrödinger equation associated with Ĥel is:

Ĥel(r;R)Ψel(r;R) = EΨel(r;R). (2.11)

Finding approximate solutions to the electronic Schrödinger equation is at the heart

of ab initio quantum chemistry and is the central task around which electronic

structure software is built.

Let us suppose that we have a set of k solutions to Eqn (2.11). We can now

rewrite the many-body wavefunction as an expansion:

Ψ(r,R) =
∑
k

Ψk
n(R)Ψk

el(r;R), (2.12)

with 〈
Ψk′

el

∣∣∣Ψk
el

〉
= δk′k, (2.13)

and Ĥel is diagonal: 〈
Ψk′

el

∣∣∣Hel

∣∣∣Ψk
el

〉
= δk′kEk(R). (2.14)

If the full time independent Schrödinger equation is multiplied by Ψk
el(r;R) and

integrated with with respect to r it results in a set of k coupled eigenvalue equations

that no longer depend on r and now only depends on R:

[Ĥn(R) + Ĥel(R)]Ψ(R) = EΨ(R) (2.15)

Ψ(R) in Eqn (2.15) is a vector of length k, in which the kth element is Ψk
n(R).

The matrix Ĥn(R) is non-diagonal, with off-diagonal elements (Ck′k) representing

coupling, through Tn, between different states k and k′. When this coupling is

ignored, the Born-Oppenheimer nuclear Schrödinger equation is obtained:

[Tn + Ek(R)]Ψk
n(R) = EΨk

n(R). (2.16)

Now that we have derived nuclear and electronic Schrödinger equations, the

BOA is complete. However, it is important to understand under what circumstances
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the BOA is a good and valid approximation to make and where it is likely to break

down. To do this, we begin with the definition of the nuclear kinetic energy operator:

Tn =
∑
A

∑
α=x,y,z

PAαPAα

2MA
, (2.17)

where

PAα = −i ∂

∂RAα
. (2.18)

Using the equations above and by applying the Leibniz rule for differentiation we

can write the matrix elements of Tn as:

(Tn(R))k′k ≡ Ck′k = δk′kTn−
∑
A,α

1

MA

〈
Ψk′

el

∣∣∣PAα

∣∣∣Ψk
el

〉
PAα+

〈
Ψk′

el

∣∣∣Tn ∣∣∣Ψk
el

〉
, (2.19)

where the condition

〈
Ψk′

el

∣∣∣PAα

∣∣∣Ψk
el

〉
=

〈
Ψk′

el

∣∣∣ [PAα, Hel]
∣∣Ψk

el

〉
Ek(R) − Ek′(R)

(2.20)

must be satisfied. The difference in energy between state k and k′ appear in the

denominator of Eqn (2.20), meaning that Ckk′(R) will be small when the two states

are well separated in energy. Since in the BOA these couplings are ignored, the

BOA is most valid when the states under consideration are well separated in energy

and it becomes a less valid approximation where states are closer in energy. For

example, excited states of a molecule far from a conical intersection (regions in

which PESs intersect one another) may be well modelled in a BOA picture, but as

the molecule approaches the intersection, a treatment beyond the BOA would be

required to accurately describe the unfolding physics. The consideration of energy

spacing also explains why dynamics at metal surfaces are prone to violations of the

BOA, because metal states are not well separated in energy and are more analogous

to a continuum of states, where the nonadiabatic coupling is more likely to be large.

Hn = −
M∑

A=1

1

2MA
∇2

A + Etot. (2.21)

The values of Etot for a given set of nuclear coordinates {RA} form the

potential energy surfaces (PES) on which nuclear motion evolves. PESs based on

the BOA are ubiquitous throughout chemistry to describe reactions and kinetics.

To avoid confusion, it should be noted that the separation of fast and slow

DOF is called an adiabatic approximation. The Born-Oppenheimer approxima-
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tion is an example of an adiabatic approximation. However, in the literature the

phrases Born-Oppenheimer approximation and adiabatic approximation are often

used interchangeably. For the remainder of this thesis the subscripts el and n will be

dropped and all references to Hamiltonians should be assumed to be the electronic

Hamiltonian, unless stated otherwise.

2.1.3 Spin Polarisation

The description of QM wavefunctions provided thus far has not made any mention

of spin. For some closed shell systems in the electronic ground-state, wavefunctions

that exclude spin and depend only on spatial variables may be sufficient to describe

the essential physics of the system. However for many systems, in particular open-

shell systems (those with unpaired electrons), explicit inclusion of spin is essential to

correctly capture behaviour and the underlying physics. Spin is an intrinsic property

of quantum mechanical particles. Electrons, and all other fermions, have a spin of
1
2 . Spin is described using two functions, α(σ) and β(σ) representing spin up and

spin down where σ is a spin variable. α and β form a complete and orthonormal

basis.

⟨α|α⟩ = ⟨β|β⟩ = 1, (2.22)

⟨α|β⟩ = ⟨β|α⟩ = 0. (2.23)

The notation for the electronic wavefunction coordinates is changed to reflect the

inclusion of spin. Whereas spatial wavefunctions are dependent on 3 spatial variables

per particle, spin polarised wavefunctions also depend on a spin-variable, i.e., 4

variables per particle. Therefore r is replaced with x where:

x = {r, σ}, (2.24)

so the spin-polarised wavefunction is written as:

Ψ(x1,x2...xN ). (2.25)

With spin now included in the variables, all quantum numbers defining an electron

are accounted for.

2.1.4 Orbitals

A wavefunction of a single electron in a many body system shall be referred to as an

orbital ψ(x). Mathematically, orbitals are spatial distribution functions that return
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the probability density of finding an electron in an infinitesimal volume element

dr when squared |ψi(r)|2dr. These wavefunctions should be smooth, continuous,

multiply differentiable and square integratable. If spin is not important to the

system under study, spatial orbitals can be used to produce reliable results. However,

for the many cases where explicitly accounting for spin is required, we must use spin

orbitals. A spatial orbital can be transformed into a spin orbital by multiplying a

spatial orbital by a spin function α or β (spin up and spin down). The set of spatial

or spin orbitals must be an orthonormal set. If a set of spatial orbitals which is

orthonormal are transformed into spin orbitals, the set of spin orbitals will also be

orthonormal.

χi,α(x) = ψi(r)α(σ). (2.26)

χi,β(x) = ψi(r)β(σ). (2.27)

2.1.5 Hartree products and Slater determinants

At this stage a further approximation based on partitioning the problem into easier

to solve sub-problems is required. The many body electronic Hamiltonian can be

broken into two terms as shown in Eqn (2.28)

Ĥelec = Ĥ0 + Ve−e, (2.28)

Ĥ0 =

N∑
i=1

ĥi, (2.29)

where Ĥ0 is the Hamiltonian operator of a system of N non-interacting electrons and

Ve−e is the a term accounting for electron-electron repulsion. ĥi is the Hamiltonian

for the ith non-interacting electron. The most sensible choice of eigenfunctions are

the set of spin orbitals {χj,σ}. Each ĥi has a corresponding Schrödinger equation:

ĥi,σχj,σ(xi) = ϵj,σχj,σ(xi). (2.30)

By using non-interacting electrons, the many body wavefunction becomes a product

of the contributing orbitals:

ΨHP(x1,x2...xN ) = χi,σ(x1)χj,σ(x2)...χk,σ(xN ). (2.31)
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ΨHP is known as the Hartree product and is an eigenfunction of Ĥ0, meaning the

energy E is the sum of single particle eigenvalues:

EHP =
∑
i=1

ϵi. (2.32)

ΨHP alone will still fail, as currently written, to fully describe a QM system because

it does not account for some quantum effects. The anti-symmetry principle requires

that all electrons must be indistinguishable and that the wavefunction should change

sign upon particle exchange.

Ψ(x1, ...,xi, ...,xj , ...,xN ) = −Ψ(x1, ...,xj , ...,xi, ...,xN ) (2.33)

However, a single Hartree product state does distinguish between electrons. In the

case of 2 electrons (x1,x2) iin 2 spin orbitals (χ1, χ2), there are 2 possible Hartree

products:

ΨHP
12 (x1,x2) = χ1(x1)χ2(x2) (2.34)

ΨHP
21 (x1,x2) = χ1(x2)χ2(x1) (2.35)

Thus ψHP distinguishes electrons χ1 and χ2. However, it did not change sign upon

particle exchange. In practice, both indistinguishability and Eqn (2.33) are enforced

by careful choice of how the many-body wavefunction is expressed, namely as a Slater

determinant [22]:

Ψ(x1,x2...xN ) = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) ... χk(x1)

χi(x2) χj(x2) ... χk(x2)
...

...
...

...

χi(xN ) χj(xN ) ... χk(xN )

∣∣∣∣∣∣∣∣∣∣
(2.36)

A Slater determinant represents a linear combination of Hartree products for

each possible pairing of electron and orbital. Each column represents an orbital and

each row an electron. The (N !)−
1
2 term is a normalisation coefficient. When any two

rows are swapped, the sign of the determinant and hence the sign of the wavefunc-

tion also changes sign, thereby fulfilling the requirement of Eqn (2.33). By including

terms for each combination of electron and orbital, the electrons are treated identi-

cally.
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2.2 Ground-state methods

2.2.1 Hartree-Fock Theory

Hartree-Fock (HF) theory is a practical and computationally cheap method for

finding approximate solutions to the many-body Schrödinger equation [22–24]. HF

was once the work-horse of the computational chemistry community. In modern

times it is very rare that HF calculations are used on their own in any real research

environment; however, a set of more advanced quantum chemistry methods known

as post-Hartree-Fock methods often perform a HF calculations as an initial step [25].

In terms of being the work-horse of computational chemistry, this title now belongs

to DFT. Never the less, HF provides a solid basis upon which many more accurate

theories are built and therefore it will be briefly described here, before moving on

to more advanced theories.

If the wavefunction that describes a system is a single Slater determinant of

Hartree products, |Ψ0⟩, then in order to obtain the ground-state energy (and any

subsequently derived properties), the wavefunction should be varied such that it

minimises the equation:

E0 = ⟨Ψ0| Ĥ |Ψ0⟩ . (2.37)

The orbitals constituting the wavefunction are optimised self-consistently via the

Hartree-Fock equation:

f̂iχ(xi) = ϵχ(xi), (2.38)

where f̂i is the effective one electron operator acting on electron i and is called the

Fock operator:

f̂i = −1

2
∇2

i −
M∑

A=1

ZA

riA
+ V HF

i . (2.39)

Importantly the last term, called the Hartree-Fock potential, V HF
i reintroduces the

electron-electron repulsion that was removed during the introduction of Hartree

products. This is not the same many-body potential Ve−e that was removed, but

rather an averaged potential that electron i will feel due to the other N -1 electrons.

The variational principle states that the true ground-state energy is always lower

(or equal) to any trial wavefunction for a given Hamiltonian. This means the HF

ground state energy is obtained by starting with some initial guess of the orbitals and

improving them iteratively until self-consistency is reached, according to algorithm

in figure 2.2.1.

In summary, HF theory makes several approximations to the many-body

electronic wavefunction to allow computationally tractable calculations of quantum
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Figure 2.1: The SCF procedure for obtaining the HF ground-state energy.

mechanical systems. The key approximations are: first, separate the wavefunction

in to the product of single particle orbitals and secondly, to account for the electron-

electron repulsion using the mean-field approximation. Within the HF picture, there

are two types of electron correlation: Fermi correlation and Coulomb correlation.

Fermi correlation comes from exchange and is actually fully accounted for in HF

theory; Coulomb correlation is what is missed by using the mean-field approximation

for the electron-electron interaction.

2.2.2 Density functional theory

Density functional theory (DFT) is a formal quantum mechanical framework that

uses the electron density ρ(r) as the central quantity as opposed to the wavefunction.

The motivation for using the electron density is that, no matter how many electrons

a chemical system contains, the density is a function of only 3 spatial variables

(x, y, z), while the wavefunction requires 3 additional variables for each electron in

the system (4 if spin polarised). The computational cost of accurate wavefunction

calculations scales poorly with system size and modelling any system of more than

a few atoms becomes unfeasible without making significant approximations. Using

the electron density as the central quantity in quantum mechanical calculations was

considered as early as 1927 by Thomas and Fermi [26, 27], shortly after Schrödinger’s

introduction of the quantum mechanical wavefunction. However the Thomas-Fermi

method could not produce reliable results, due to large errors arising primarily from

the approximate treatment of kinetic energy and electron exchange, and a complete
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neglect of correlation [28].

After the initial works of Thomas and Fermi, it took another 40 years until

the seminal work of Hohenberg and Kohn [28] for the theoretical foundations of

DFT to be formally established. Their primary contributions are two theorems that

underpin all of modern DFT. The first establishes that the external potential Vext is

a unique functional of ρ(r). The significance of this statement is that there exists an

invertible 1-to-1 mapping of Vext to ρ(r). The proof of the 1st theorem is provided

via a reductio ad absurdum approach as follows. Let us assume that there exist two

external potentials, Va and Vb that map to the same, non-degenerate, ground-state

density ρ0(r). Since Va and Vb are different, the Hamiltonians Ha and Hb must also

have different ground-state wave functions ψ0
a and ψ0

b . The ground-state energy of

system a is shown in Eqn. (2.40) and Eqn. (2.41)

E0
a =

〈
Ψ0

a

∣∣Ĥa

∣∣Ψ0
a

〉
, (2.40)

where

E0
a =

∫
ρ(r)Va(r)dr + F [ρ(r)]. (2.41)

By replacing the ground-state wave function of a with that of b, we arrive at in-

equality (2.42):

E0
a <

〈
Ψ0

b

∣∣Ĥa

∣∣Ψ0
b

〉
. (2.42)

We next add and subtract Hb:

E0
a <

〈
Ψ0

b

∣∣Ĥa + Ĥb − Ĥb

∣∣Ψ0
b

〉
. (2.43)

E0
a <

〈
Ψ0

b

∣∣Ĥa − Ĥb

∣∣Ψ0
b

〉
+ E0

b . (2.44)

We now insert Eqn. (2.41) into Eqn. (2.44) and note that our assumption at the

start of this proof states that the same ρ0(r) is returned by both Va and Vb, so the

terms that depend only on the density will cancel, giving Eqn. (2.45):

E0
a <

∫
ρ0[Va(r) − Vb(r)] + E0

b (2.45)

The systems a and b are as yet undefined, therefore the choice of a was arbitrary

and it is equally valid to perform the same procedure, replacing a with b and visa

versa.

E0
b <

∫
ρ0[Vb(r) − Va(r)] + E0

a (2.46)
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By adding Eqns. (2.45) and (2.46), we arrive at Eqn. (2.47).

E0
a + E0

b >

∫
ρ0[Va(r) − Vb(r)] + E0

b +

∫
ρ0[Vb(r) − Va(r)] + E0

a (2.47)

Clearly, the 2 integrals on the right hand side of Eqn. (2.47) will be of equal magni-

tude and opposite sign and therefore cancel out. This leads to the final inequality

of this proof:

E0
a + E0

b > E0
b + E0

a (2.48)

This is obviously nonsensical and implies that the initial assumption, that two differ-

ent external potentials can return the same ground-state density, was incorrect; and

there is a 1-to-1 mapping from the external potential to the ground-state density.

The second theorem of Hohenberg and Kohn states that ρ(r) obeys a vari-

ational principle. Put another way, the density that minimises the total energy is

the exact ground-state density. The second proof begins by observing from the first

theorem that ρ(r) uniquely determines Vext and N . Vext determines the Hamilto-

nian and therefore the exact ground-state wavefunction Ψ0. This means that the

wavefunction must be a unique functional of the density.

F [ρ(r)] = ⟨Ψ|F̂ |Ψ⟩ (2.49)

The work of Hohenberg and Kohn limits itself to V -representable densities, meaning

densities, ρ(r), that are ground-state densities of some external potential, Vext [29].

The energies, Ev[ρ(r)] associated with such densities may be expressed in terms

of only the density and external potential, as in Eqn. (2.50), or in terms of the

wavefunction and the external potential, as in Eqn. (2.51):

EHK[ρ(r)] =

∫
ρ(r)Vext(r)dr + F [ρ(r)] (2.50)

EHK[Ψ] = ⟨Ψ|F̂ |Ψ⟩ + ⟨Ψ|V̂ext|Ψ⟩ (2.51)

If we assume Ψ is the exact ground-state wavefunction associated with Vext, then

the variational principle states that replacing Ψ with any other wavefunction Ψ′ will

return a greater energy.

⟨Ψ|F̂ |Ψ⟩ + ⟨Ψ|V̂ext|Ψ⟩ <
〈
Ψ′∣∣F̂ ∣∣Ψ′〉+

〈
Ψ′∣∣V̂ext∣∣Ψ′〉 (2.52)
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By referring to Eqn. (2.50) we see that∫
ρ(r)Vext(r)dr + F [ρ(r)] <

∫
ρ′(r)Vext(r)dr + F [ρ′(r)] (2.53)

Expressed more succinctly, the final expression of Hohenberg-Kohn’s 2nd theorem

is:

EHK[ρ] < EHK[ρ′] (2.54)

The work of Hohenberg and Kohn provided a formal basis for the use of the density

as the central quantity in a quantum mechanical framework. However, they only

proved the existence of a single (non-degenerate) ground-state density for a given

external potential, but no insight on how to obtain that density practically. The

following year, Kohn and Sham [30] described such a practical methodology. Now

referred to as Kohn-Sham DFT (KS-DFT), virtually all modern implementations

of DFT are based on KS-DFT. The conceptual leap of Kohn and Sham, which

paved the way for DFT to become the workhorse of computational chemistry, was

to introduce a fictitious density of non-interacting electrons, which experience a so-

called Kohn-Sham effective potential VKS. The reason this is so useful, is that the

ground-state density of the non-interacting system is defined to be the same as that

of the fully interacting system, while being computationally much easier to solve.

Kohn and Sham separated the universal energy functional of the non-interacting

density (EKS[ρ]) into 3 terms: the KS kinetic energy T̂KS[ρ], the classical electrostatic

energy also called the Hartree energy EH[ρ], and the so-called exchange correlation

energy EXC:

EKS[ρ](r) = T̂KS[ρ](r) + EH[ρ](r) + Exc[ρ](r). (2.55)

The kinetic energy of the non-interacting system is known exactly and is relatively

simple to calculate as shown in Eqn (2.56). Inaccurate treatment of the kinetic

energy had been a major source of error in the work of Thomas and Fermi that

preceded KS-DFT.

T̂KS[ρ] =
N∑
i=1

⟨ψi| −
1

2
∇2 |ψi⟩ (2.56)

Exc is a term that contains the corrections that are required to recover the exact

energy from the non-interacting approximation made for the kinetic and Hartree

energies. These corrections are all many-body effects. Exc includes a correction for

the self-interaction energy, which arises due to the fact that any electron interacting

with the average potential of the total electron density will have itself contributed

to the density. This leads to a spurious over-delocalisation of the density. Exc
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also corrects for any non-classical contributions to the electrostatic interaction in-

cluding Pauli repulsion. Pauli repulsion is a quantum effect that stems from the

anti-symmetrisation principle, and manifests as a repulsive force preventing elec-

trons of the same spin from occupying the same state and space. Exc also corrects

for many-body correlations, which are forces which arise due to quantum fluctua-

tion of electrons. An exact form of Exc is unknown and all implementations of DFT

require the use of an approximate XC functional. The non-interacting electrons

are represented using KS-orbitals that each have an associated effective 1-particle

equation:

[−1

2
∇2 + VKS](r)]ψi(r) = ϵiψi(r), (2.57)

where VKS[ρ](r) is the effective KS-potential,

VKS[ρ](r) = Vext[ρ](r) + VH[ρ](r) + Vxc[ρ](r). (2.58)

In order to impose the anti-symmetric exchange that all fermions are subject

to, the KS wavefunction is expressed as a Slater determinant of the single particle

wavefunctions, as described in the previous section. The use of single particle wave-

functions makes the scalability of DFT calculations much more favourable since,

when N increases, the problem to be solved does not become more complex, i.e.,

no additional degrees of freedom, but rather the list of single particle Schrödinger

equations to be solved becomes longer. The density (interacting or not) can be

recovered as the sum of the inner-products of the wavefunctions.

ρ(r) =
N∑
i

|⟨r|ψi⟩ ⟨ψi|r⟩|2 (2.59)

The KS equations are then solved self-consistently to obtain the ground-state density

and energy, as shown in Figure 2.2

2.3 Excited state methtods

2.3.1 TD-DFT

Ground state DFT is, as the name suggests, concerned with only ground state prop-

erties. In this regard it is an excellent method for investigating energies, forces,

equilibrium geometries, density distributions and a host of other ground-state prop-

erties. There are methods that use ground-state DFT to approximate excited state

properties, such as ∆SCF. However, such methods are often limited in the states
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Figure 2.2: Flowchart for the SCF procedure to obtain the ground-state density in
KS-DFT.

they can approximate, typically only higher lying stationary states. It does not

allow one to describe the dynamical response of the system to some external per-

turbation. Time-dependent-DFT (TD-DFT) extends the static picture given by

DFT to include time-dependent phenomena. For example, TD-DFT is well suited

to describe the optical excitation of a molecule from its ground-state to an excited

state. The formal justification of TD-DFT follows a similar structure to that used

for ground-state DFT. First it will be shown that there is a one-to-one mapping of

a time-dependent potential to time-dependent density. Secondly, the use of a KS

formalism for TD-DFT will be described.

It is known from the time dependent Schrodinger equation that there is a

1-to-1 mapping of a time-dependent potential V (r, t) onto a time-dependent wave

function Ψ(t), and from Ψ(t) one can recover a time dependent density ρ(r, t). What

needs to be shown, and what the Runge Gross theorem proves is that this map can

be made in reverse, i.e., ρ(r, t) → Ψ(r, t) → V (r, t). The time-dependent density

can completely describe the dynamics of the system. Runge and Gross proved that

two different time dependent potentials V (r, t) and V ′(r, t) will always produce two

different time-dependent densities ρ(r, t) and ρ′(r, t) [31].

It is important to first make clear what it means for two densities to be

different. In time dependent wavefunction theory, wave functions that differ by only

a time dependent phase factor (α(t)) are considered the same. The wavefunctions

are complex valued functions and therefore will have a phase factor. The density,

on the other hand, is a real valued function and therefore does not contain a phase

21



factor. If two time-dependent densities are constructed from two wave functions

that differ only by an arbitrary phase factor, then the resulting densities will differ

only by an additive time-dependent scalar function c(t) and therefore under this

definition the potentials in Eqn (2.60) would not be considered different.

V ′(r, t) = V (r, t) + c(t) → Ψ′(r, t) = e−iα(t)Ψ(t). (2.60)

dα

dt
= c(t). (2.61)

Eqns (2.60) and (2.61) show the relationship between the phase factors α(t) and

scalar functions c(t).

Runge and Gross first showed that the current density j(r, t), the charge flux

passing through the boundary enclosing the system, must diverge if the potentials

are different. They then used this result to extend the proof using current density

to the electron density:

V ′(r, t) ̸= V (r, t) + c(t) → j′(r, t) ̸= j(r, t). (2.62)

TD-DFT is the workhorse of excited state calculations in computational chemistry.

It offers a good balance between computational cost and accuracy. However, it

retains the short-comings of static DFT, most notably the over-delocalisation of

electron density due to the self interaction error. TD-DFT performs well when cal-

culating optical excitation spectra, finding optimal geometries of excited states, and

many other excited state properties [32, 33]. However, TD-DFT tends to perform

poorly for high lying excited states and in instances of charge transfer [34–36].

2.3.2 ∆SCF

∆SCF is a time-independent excited state DFT method that that prioritises com-

putational efficiency, and is is similar to ground-state KS-DFT in terms of com-

putational cost. In ∆SCF, one approximates the vertical excitation energy as the

difference between two self-consistent solutions of the KS equations. The first is

a normal KS-DFT ground-state solution. The second solution, the excited state

energy, is the result of a SCF optimisation performed under the constraint of

non-ground-state occupations of the KS states, such that the occupations mimic

a single particle state to state transition relevant to the excited state of inter-

est. For example, consider the simplest molecular system H2. Self-consistently

solving the KS-equations for the ground-state density will return a solution with

both electrons in the σ bonding orbital. The lowest energy electronic excitation
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is the S0 → S1 transition; i.e ,̇ the promotion of a single electron to the σ∗ or-

bital. The excited state energy can be approximated by running a second SCF

optimisation, while constraining σ to be singly occupied. The vertical excitation

energy is the difference between the energies of the two solutions, ES1 − ES0 .

By applying this procedure while varying the system geometry, PESs are easily

constructed. Despite its apparent simplicity, ∆SCF can, with appropriate choice

of constraints and XC functional, produce energies of similar accuracy to TD-

DFT in some molecular systems, as was shown for the case of organic dyes [37].

The earliest record of excited state calculations that can be considered ∆SCF were

published in 1962 by Clementi [38] where two SCF solutions using analytical func-

tions were employed. The method as it exists today is developed primarily by the

works of Gunnarsson and Lundqvist [39], Zeigler [40] and von Barth [41]. ∆SCF was

broadly considered an ad-hoc method for most of its history, up until 1999, ∆SCF

was only proven to be formally justified for the lowest excitation of a given sym-

metry and was an otherwise unjustified method [42]. This would limit the method

to a very small subset of all the excitations that are likely to be chemically rele-

vant. For example, excitations in which a molecule with a singlet ground state is

excited to a higher lying singlet, like the dihydrogen example, are important all

across chemistry and physics; however, these excitations lay outside of the formally

justified set. Ziegler proposed a solution to this problem by adding a simple em-

pirical correction known as the Ziegler sum rule [40] for singlet to singlet transitions:

Eex = 2Esinglet − Etriplet, (2.63)

where Eex is the corrected S0 → S1 excitation energy, Esinglet and Etriplet are the

∆SCF excitation energies for S0 → S1 and S0 → T1 respectively. ∆SCF has been

widely applied beyond this very limited sub-set of excitations and found to still

perform well [37, 40]. The seemingly unwarranted accuracy of ∆SCF encouraged

further work to find a formal justification. The Hohenberg and Kohn theorems only

apply to V-representable densities, i.e., densities that are ground states of some

external potential. This is why all excited states, apart from the lowest energy state

of a given symmetry, are outside the realm of KS-DFT. The work of Görling [42]

provides an alternative and more general counterpart to the proofs of Hohenberg

and Kohn for DFT. The key difference in Görling’s work is that all electronic states

are treated on an equal footing. The derivation invokes a so-called generalised

adiabatic connection (GAC). Subsections of a Hilbert space, corresponding to N

particles and antisymmetric wavefunctions, are extended by adding an additional
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dimension representing the coupling (α) between electrons. α = 0 corresponds to the

non-interacting system and α = 1 to the fully interacting system. While keeping

the density and external potential fixed, moving from α = 0 to α = 1 creates a

continuous path through the Hilbert space, and these paths are called GACs. As

a consequence, each eigenstate of the α = 0 system is adiabatically connected to

an eigenstate of the α = 1 system. Importantly, the energetic ordering of the

eigenstates does not necessarily match; i.e., a ground state of the a=0 system may

be adiabatically connected to a higher-lying eigenstate of the a=1 system and vice

versa.

GAC-DFT gives ∆SCF formal justification, with the caveat that an as yet

unknown orbital-dependant functional, one that treats each electronic state dif-

ferently, must be used. In practice ∆SCF calculations are carried out using XC

functionals based on traditional ground state KS-DFT. Therefore, while in theory

∆SCF has a formal justification, as it is practiced it does not. However, even within

KS-DFT all currently implemented functionals are themselves approximations of

the true universal functional.

2.3.3 Linear expansion ∆SCF

Linear expansion ∆SCF (le-∆SCF) is the excited state method used throughout

the work in this thesis. It will be described briefly here, with a detailed discus-

sion of the method and its intricacies in Chapter 4, as that chapter assesses the

performance of the method applied across a range of systems and its limitations.

The majority of ∆SCF calculations in literature are performed on isolated

molecular systems and these are the systems the method is best suited to, since the

orbitals are typically well separated in both space and energy and so it is more likely

that a single-particle state to state transition can be approximated by reordering the

occupations of such orbitals. However, ∆SCF has been shown to perform similarly

to TD-DFT at approximating band gaps when extended to crystalline solids, pro-

vided an appropriate functional is used [43]. The method is pushed beyond its limits

at hybrid interfaces, for example molecules adsorbed at metal surfaces, especially in

the case of charge transfer between metal and molecule. Consider an excitation of a

metal electron to the LUMO of a molecule adsorbed at the metal surface. The ∆SCF

procedure states that one should constrain the occupation of the LUMO to be 1.0.

However, upon interaction with the surface the molecular LUMO is hybridised across

a continuum of metal states, especially over the d-band in the case of transition

metals. This means the choice of which orbital should be constrained to accept the
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electron is not clear, since each state would only capture a small contribution on the

transition. In fact, there is no way of approximating the transfer of an electron to a

molecular resonance by changing the occupations of any subset of the full system KS

states [16]. To be applicable to strongly hybridised systems, the method needed to

be adapted. The shortcomings of ∆SCF motivated the development of le-∆SCF [16].

Prior to the advent of le-∆SCF, the best one could do to model charge transfer

excitations of a molecule-metal system within the ∆SCF framework would be to

select the orbital that has greatest overlap with the desired excitation state orbital.

In some very simple cases, like H2 on metals, this may be a reasonable approxima-

tion, since the S orbitals of hydrogen will likely have good overlap with S bands in

the metal. However, even other simple diatomics (e.g. CO, NO, N2) will hybridize

strongly with the surface states, rendering ∆SCF unviable. The solution offered

by Gavnholt et al. [16] is that, rather than only constraining occupations of KS

orbitals, constraints are applied to new so-called resonance orbitals |Ψc⟩ that are

linear combinations of KS orbitals.

|Ψc⟩ =
∑
i

Ci

∣∣Ψi
〉
, (2.64)

where the superscript c represents the cth resonance orbital/constrained state.

In principle, any arbitrary linear combination is possible, however the advan-

tage of this adapted method is that it is possible to select a linear combination such

that the resulting resonance orbital approximates a resonance on the molecule. In

the example of charge transfer from metal to molecule, this would mean constructing

the resonance orbital to approximate the unhybridised molecular LUMO, so that

constraining its occupation would effectively constrain charge to the molecule and

the constrained SCF solution would mimic the charge-transfer state. If multiple k-

points are sampled, then the linear combination must be performed at each k-point

separately. The question arises, of how to choose expansion coefficients, such that

the linear combination best approximates a molecular resonance? The first step

is to perform a single point calculation on a secondary system that represents the

un-hybridised adsorbate, i.e. the molecule in gas phase. However, this ‘gas phase’

system must have the same unit-cell and k-point sampling as the full system, where

typically one would use non-periodic boundary conditions or a much larger unit-cell

and only sample a single k-point. Therefore, it is more accurate to call the ‘gas

phase’ system a freestanding molecular over-layer (FSMO), since the system is a

periodic array of freestanding molecules. Figure 2.3 shows a visualisation of how a
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FSMO model compares to the full system and a true gas phase.

Figure 2.3: A full molecule-metal slab model (left) with several metal layers, in

which the width of the unit cell (dashed lines) is defined by the dimensions of the

metal slab. The k-point sampling of the full system uses a T × T × 1 grid, where

T is an integer greater than 1. A FSMO model (middle) has identical unit cell and

k-point sampling to the full system, but only contains the molecular atoms. A gas

phase molecule model (right), where the molecule sits at the centre of a very large

unit cell and only a single k-point is sampled.

The FSMO orbital most closely resembling the molecular resonance is then

chosen as a target of the linear combination. Projector overlaps of the FSMO target

orbital on to the full-system states are used to generate the expansion coefficients.

Eqn (2.65) is the simplest form Ci takes and excludes any normalisation terms that

are described in detail in chapter 4.

Ci = ⟨Ψi|ϕj⟩ (2.65)

The FSMO target orbital should be based on the particular excitation of interest. In

the case of charge transfer excitations between metal and molecule where there is no

internal molecular excitation involved, the FSMO ground-state orbitals should be

used. Upon transfer of a metal electron to the molecule, the orbitals of the molecule

will respond and so will differ further from the ground-state FSMO orbitals. How-
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ever, to more accurately model those orbitals would require a simulations of the

molecular anion and so the FSMO calculation would have a negatively charged

unit-cell. In practice the addition of a compensating background charge often ren-

ders the anionic FSMO target orbital a less suitable reference state and the FSMO

groundstate orbitals are the better choice [17]. If the excited state of interest does

involve internal rearrangement, for example a molecule in an S1 state approaching a

surface, it is beneficial to optimise the FSMO orbital to the S1 solution. This can be

easily achieved by using simple ∆SCF calculation to generate the FSMO orbitals.

le-∆SCF has been shown to perform well when modelling charge transfer at hybrid

metal-organic interfaces, in the cases of small diatomics on Au(111) and azobenzene

on Ag(111) [16, 17, 44, 45].

2.4 Dynamics

The theoretical considerations thus far have focused on how to calculate energies of

a given quantum mechanical system in a specific geometry, i.e., a static picture. Of

course, nature is not static and it is often essential to be able to simulate dynamical

processes to gain insight into chemical behaviour. This section will discuss how this

is achieved. Firstly, Born-Oppenheimer ab-initio molecular dynamics (BO-AIMD)

will be discussed before moving on to non-adiabatic molecular dynamics (NAMD),

in particular surface hopping methods.

2.4.1 Adiabatic molecular dynamics

Although the word molecular appears in the phrase AIMD, it is not restricted to

molecular systems and can, in principle, be applied to simulate the motion of any

atomistic system. There are two essential ingredients required for AIMD. The first

is the potential upon which the dynamics will unfold, which provides the energy and

forces. The second is the algorithm for propagating the dynamics. The potential

is calculated by solving the time-independent Schrödinger equation, as described

in previous sections, for example using DFT. The potential may be precalculated

by sampling relevant geometries and interpolating to construct a PES or calculated

on-the-fly during each step of the simulation. The propagation algorithm most

commonly uses Newton’s second law, as shown in Eqn (2.66), and nuclei are treated

as point like particles moving classically on the PES.

FA = MAaA = MA
d2RA

dt2
= −∂V (R)

∂RA
, (2.66)
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where the subscript A represents a given particle (nucleus) and FA, MA, aA, and

RA are the force, mass, acceleration and position of that particle at time t. The

rightmost term in Eqn (2.66) shows how the force can be calculated from the po-

tential (V (R)). Since aA is the second time derivative of position, integrating once

with respect to time will give the velocity (νA(t)) and integrating twice would give

the position as a function of time (RA(t)). If (RA(t)) is known then the dynamics

of the system are known; however, for any system containing more than one nuclei

it is not possible to obtain this function analytically. The most common way that

positions of particles are propagated in time is via the velocity-Verlet algorithm [46],

which updates the positions and velocities as follows:

RA(t+ ∆t) = RA(t) + νA(t)∆t+
FA(t)

2MA
∆t2 (2.67)

νA(t+ ∆t) = νA(t) +
FA(t) + FA(t+ ∆t)

2MA
∆t (2.68)

where ∆t is the time step and is the amount of time that will pass in between each

snapshot that is explicitly calculated.

2.4.2 Nonadiabatic molecular dynamics

For many dynamical processes, it is sufficient to perform dynamics using the velocity-

Verlet algorithm with a PES calculated using DFT. However, this is a strictly BOA

picture and if a system displays nonadiabatic behaviour it will not be captured

using this method. An alternative algorithm must then be used to propagate the

dynamics, that may include multiple PESs as way for accounting for electronic

transitions between different states (surfaces).

The essence of nonadiabatic dynamics of molecules interacting with metal

surfaces is that the motion of nuclei couples to the electronic states of the metal,

and energy is transferred, thereby altering the trajectories of the nuclei and the en-

ergy dissipation compared to a fully decoupled (BO) system. The Newns-Anderson

Hamiltonian (ĤNA) is a common way of coupling molecular states to so-called bath

states, that represent a continuum of electronic states that mimic a metal [47–49].

ĤNA(R) = T̂nuc(R) + ĤNA
el (R). (2.69)

The first term on the right hand side of Eqn (2.69) is the familiar nuclear kinetic

energy operator, but the other, ĤNA
el , is the Newns-Anderson electronic Hamiltonian,

which contains all the information about the bath states and how they couple to
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the molecular states:

ĤNA
el (R) = U0(R) + (U1(R) − U0(R))ĉa

†ĉa +

∫ Emax

Emin

dϵ ϵĉ†ϵ ĉϵ

+

∫ Emax

Emin

dϵV (ϵ;R)(ĉa
†ĉϵ + ĉ†ϵ ĉa),

(2.70)

ĉa, ĉ†a ,ĉϵand ĉ†ϵ are the creation and annihilation operators for an electron in the

molecular adsorbate state (a), and metallic state ϵ. Emin and Emax are the lower

and upper bounds of the metal band. U0 and U1 are the neutral and anionic diabatic

PESs respectively. V describes the coupling of adsorbate orbital |a⟩ to metal orbitals

{|ϵ⟩}. One of the biggest strengths of the Newns-Anderson method is that it allows

for a description of hybridisation between adsorbate and metal states as the molecule

moves into areas of stronger coupling (close to the surface).

For any practical implementation, the continuum must be replaced by a

discrete set of bath states. Therefore the integrals within Eqn (2.70) are transformed

into summations, producing the discretized Newns-Anderson Hamiltonian:

ĤNA
el (R) = U0(R) + (U1(R) − U0(R))ĉa

†ĉa +

Ne∑
k=1

ϵk ĉ
†
k ĉk +

Ne∑
k=1

Vk(R)(ĉa
†ĉk + ĉ†k ĉa),

(2.71)

where k is the index of the kth bath state.

In addition to the modified Hamiltonian, a new propagation algorithm is also

required to perform MQCD. Where metal surfaces are involved, as is the case for the

work in this thesis, a full quantum mechanical description of all degrees of freedom

is not computationally tractable and a mixed quantum-classical dynamics (MQCD)

approach is required. There are three stand out MQCD methods for molecule-

metal interactions: Ehrenfest dynamics [50–52], molecular dynamics with electronic

friction (MDEF) [53] and independent electron surface hopping (IESH) [54].

In Ehrenfest dynamics, the nuclei evolve on a mean-field PES that is av-

eraged over all electronic states, which themselves are weighted according to their

population. It is deterministic and so simulations are computationally efficient in

comparison to MDEF and IESH, which are stochastic. However, the range of nona-

diabatic systems it is able to describe well are limited to those where nonadiabatic

coupling is weak. This makes it unsuitable for the type of systems investigated in

the thesis, which involve explicit charge transfer between adsorbate and metal, and

the nonadiabatic coupling is strong. In MDEF, the dynamics evolve on a single PES
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where nonadiabatic excitation and energy transfer are accounted for via a frictional

damping force. MDEF is also best suited to systems where nonadiabatic coupling

is weak. This is exemplified by simulations of NO on an Au(111) surface where the

single quanta vibrational (de)excitations are captured in the MDEF picture, but the

experimentally observed multi-quanta (de)excitations are not [55].

IESH in contrast to Ehrenfest and MDEF methods is able to model adsorbate-

metal systems that exhibit strong nonadiabatic coupling. The nuclei move on multi-

ple PESs and can transition or ‘hop’ between the different surfaces and the probabil-

ity of a hop occurring during any time step is governed by the nonadiabatic coupling.

While Ehrenfest and MDEF both simulate dynamics on a single PES, albeit with

modification to account for nonadiabatic energy transfer, the multiple PESs used

in IESH make it well suited to describing dynamical processes that involve explicit

charge transfer, such as in the cases if CO/NO scattering form Ag(111)/Au(111)

studied in this thesis. For these reasons, the theory underlying the IESH method

will be described in the following section.

IESH is a modification of the original trajectory surface hopping algorithm:

fewest switches surface hopping (FSSH) [56]. The primary difference is that FSSH

propagates a single many-electron wavefunction coherently during the dynamics.

IESH instead treats each electron independently, and hence propagates Ne single

electron wavefunctions, which collectively form a single Slater determinant. This

adaptation makes running dynamics simulations for systems with many electrons

(i.e. metals) much more efficient.

Eqn (2.72) shows how the dynamics will unfold in the IESH method. Nuclear

motion will evolve according to the time-dependent classical Hamiltonian:

HIESH(R, t) = Tnuc(R) + U0(R) +
∑

k∈s(t)

λk(R). (2.72)

U0(R) is the state-independent term and represents the neutral diabatic surface.

λk(R) is the energy of the kth single electron state. The sum over {λk(R)} is

restricted to occupied states. The time dependent occupations are captured by s(t).

λk are eigenvalues of the electronic Hamiltonian shown in Eqn (2.73).

Ĥ1
el(R) = U0(R) + (U1(R) − U0(R)) |a⟩⟨a| +

N∑
k=1

ϵk |k⟩⟨k|

+

N∑
k=1

Vk(R)(|k⟩⟨a| + |a⟩⟨k|),

(2.73)

30



The superscript 1 indicates a single electron operator. The states |a⟩ and |k⟩ are the

adsorbate and metal states that correspond to the ĉa and ĉk operators, respectively.

The nuclear and electronic dynamics are propagated separately via their respective

Hamiltonians.

The many electron Hamiltonian (Ĥel) can be diagonalised using the eigen-

values of Ĥ1
el:

Ĥel =
∑
j

λj(R)b†jbj , (2.74)

where b†j and bj are the creation and annihilation operators for an electron in an

adiabatic orbital |ϕj(R)⟩. An Ne electron eigenstate of Ĥel can then be constructed

as a Slater determinant of one electron adiabatic orbitals:

|j⟩ = |ϕj1 , ϕj1 , ...ϕjNe
|. (2.75)

The nonadiabatic coupling between two adiabatic states j and k is:

djk =

(
U †(R) ∂

∂RĤ
1
el(R)U(R)

)
jk

λj − λk
, (2.76)

where U(R) is the transformation operator that converts from the diabatic to adia-

batic representation. At each step of a simulation, the coupling between the nuclear

and electronic subsystems is captured by surface hops. This happens when the oc-

cupation function s(t) changes, due to the evolution of the electronic subsystem.

s(t) is a vector containing the indices of all occupied states at each time step ∆t. A

maximum of one hop (a transition from an occupied state to an unoccupied state)

is permitted per time step. The probability that a hop form state j to state k will

occur is given by:

gk→j = max

(
Bjk∆t

Akk
, 0

)
, (2.77)

with

Bjk = −2Re(Akj)
p

m
djk, (2.78)

where p and m are the momentum and mass of the particle and Ajk is the element

of the total density matrix A, corresponding to states j and k. The algorithm for

running an IESH trajectory is as follows:

1. The initial nuclear coordinates (R) and momenta are specified by the user.

The electronic state is initialised as an eigenstate of the many electron Hamil-

tonian at R. The adiabatic surface upon which the dynamics will initiate is
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given by k.

2. Nuclear propagation: the classical motion of the nuclei given by Eqn (2.72) is

integrated over time step ∆t.

3. Electronic propagation: the Ne electronic wavefunctions are integrated over

∆t by solving the Schrödinger equation corresponding to Ĥ1
el.

4. Hopping probabilities gk→j for switching from adiabatic surface k to all other

surfaces j are calculated, provided j and k only differ by a single occupation.

A random number (ζ) from a uniform distribution between 0 to 1 is generated.

If ζ > gk→j no hop will occur at the current time step, return to step 2.

5. Perform hop: replace k with j. Re-scale the velocities to maintain energy

conservation. If there is insufficient energy to re-scale the velocity the hop

(now referred to as a frustrated hop) is refused. Remain on surface k and

return to step 2.

U0 and U1 can, in principle be any diabatic surfaces, but in the original

implementation of IESH [54] and in this work they represent neutral and anionic

diabats of a molecule interacting with a metal surface. In this work, U0 always refers

to the energy of a diabatic state modeled in a charge constrained form of DFT where

the molecule (CO or NO) is forced to be neutral at all nuclear coordinates R, and

U1 is where the molecule is forced instead to have an anionic charge state. This

diabatic two state system can be represented as a 2×2 Hamiltonian, where diagonal

elements are U0 and U1 and the off-diagonals are the effective coupling (Vc) as

shown in Eqn (2.80). This can be transformed into an adiabatic representation via

a diagonalisation process to give Eqn (2.81), where the diagonal elements are the

adiabatic ground and excited state and off diagonals are 0.

Ha = PT

(
U0 Vc

Vc U1

)
P. (2.79)

Vc =
√

(U0 − E0) + (U1 − E0). (2.80)

Ha =

(
E0 0

0 E1

)
. (2.81)

The two state representation must be incorporated into a Newns-Anderson Hamil-
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tonian in order to perform IESH dynamics simulations, which is expressed as:

HNA =


U1 − U0 c · · · c

c ϵ0
...

. . .

c ϵM

 , (2.82)

where the first diagonal element is the difference between the two diabatic surfaces

and the remaining diagonal elements are the energies of the bath states. The non-

diagonal elements are f coupling elements c, which are fitted with the constraint

that:

E0 = U0 +
∑
i

f(λi)λi, (2.83)

Eqn (2.83) represents the statement that the adiabatic ground state is equal to the

sum of the energy of the lowest diabatic state and all occupied single electron states.

The reason for this is that the same ground-state energy will be recovered from both

the two state Hamiltonian and the Newns-Anderson Hamiltonian [57].

2.5 Conclusion

This chapter has described the theories that underpin the work presented in the

remainder of this thesis; from pure theory in how quantum mechanics can be used

do describe chemical systems to practical implementations of theories that can be

used to run simulations and gain chemical insights. The results presented later in

this work rely, in particular, upon applications of ground-state KS-DFT and excited

state le-∆SCF to construct PESs of molecule-metal systems and the nonadiabatics

method IESH to run simulations of molecular scattering experiments.
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Chapter 3

Nonadiabatic Molecule-Surface

Interactions

3.1 Experimental Background

Processes that display physics that are in violation of the BOA are referred to as

nonadiabatic processes. The essence of the BOA is that nuclear and electronic

motion are decoupled. The physical consequence is that the full many-body wave-

function, which takes the position of each nucleus and each electron as a separate

variable, is replaced by the product of a nuclear wavefunction and an electronic

wavefunction. The nuclear wavefunction only depends on the nuclear positions. The

electronic wavefunction, however, depends on the electron positions but only para-

metrically depends on the nuclear positions, as in Eqn (2.11). This product ansatz

means that any nuclear dynamics, for example vibrational modes, are accounted for

by the nuclear wavefunction and that electron dynamics, such as electronic tran-

sitions are accounted for by the electronic wavefunction. If, for example, energy

were to flow between a vibrational mode and an electronic state, causing an elec-

tronic transition, this would be a violation of the BOA, and therefore nonadiabatic

behaviour. For the vast majority of chemical systems, the BOA is a good approxima-

tion because it enables chemical dynamics to be described using adiabatic potential

energy surfaces (PES) that are used throughout the study of chemistry; wherein

each point on the surface represents a different nuclear configuration for which the

electronic wavefunction is solved self-consistently to give the electronic energy. Sta-

ble structures are represented on a PES by local minima, transition states by saddle

points, and reaction pathways are continuous paths from one minimum to another.

Despite the prevalence and effectiveness of the BOA over a wide range of chemical
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systems, there are some systems that require nonadiabatic effects to be accounted

for in order to describe accurately, for example, photochemistry. It is now widely

excepted that nonadiabatic effects can occur when molecules come into contact with

metal surfaces because electronic excitation of metal electrons requires almost no en-

ergy and molecular motion is sufficient to cause the excitation of electron hole pairs

[9, 10, 15]. The following sub-sections describe how our understanding of nonadia-

batic effects, and which conditions enhance or suppress nonadiabatic processes, has

been built up over time using increasingly sophisticated experimental techniques.

In particular the focus is on two seminal experimental techniques: molecular beam

scattering and chemicurrent experiments.

3.1.1 Atomic and Molecular Beam Scattering

In molecular (or atomic) beam scattering experiments, a beam of gas phase molecules

(or atoms) is scattered from a surface under ultra-high vacuum (UHV) conditions

[58]. Such experiments provide the most compelling and comprehensive evidence

for nonadiabatic energy transfer between atoms/molecules and a metal surface. By

carefully controlling the initial state (the translational kinetic energy in the case

of atoms and additionally the rotational and vibrational states of molecules) and

recording the final energies and states after scattering, details about the nonadi-

abatic energy transfer process can be revealed. There are several possible energy

dissipation channels when molecules or atoms are scattered from surfaces. Both

translational and vibrational energy can be transferred to the surface, via an adi-

abatic channel in which energy is transferred to/from surface phonon modes, or

a nonadiabatic channel, where the excitation of electron hole pairs (EHP) in the

metal states mediates the energy transfer. There is also reflective scattering where

(almost) no energy is transferred, trapping where the molecule loses kinetic energy

such that it cannot escape the surface, and finally, dissociation wherein molecular

bonds are broken and new bonds to metal atoms are formed. A simple schematic

of these processes is shown in Figure 3.1. Of all these processes, only those that are

mediated by EHPs are nonadiabatic processes.
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Figure 3.1: Schematic diagram of potential molecule-surface interactions and energy

dissipation pathways during a beam scattering experiment.

An early example of nonadiabatic effects observed experimentally came from

vibrational lifetimes of CO molecules on a Cu(100) surface, where infrared spectra

indicated a vibrational life time in the picosecond range [59]. Later experiments

using pump-probe spectroscopy improved this estimate to 2.0 ± 1.0 ps [60]. The

observed lifetimes for the molecules adsorbed on the Cu(100) surface are extremely

short when compared to the lifetimes on an insulating surface, such as NaCl, of

approximately 4 ms [61]. Although the decreased vibrational lifetime of CO on

metal surfaces was an indication that nonadiabatic effects may be at play, there were

competing theoretical models that tried to replicate the experimental observations,

some of which were adiabatic while others were nonadiabatic [62, 63]. No model was

able to accurately reproduce all the experimental results, but by changing various

input parameters both adiabatic and nonadiabatic models were able to reproduce

some trends at the expense of others. By comparing different models and input

parameters, Gross and Brenig observed that the nonadiabatic models predicted the

NO survival probability (how likely NO is to remain in the initial vibrational state) is

strongly dependent on the incidence translational energy (Ei), whereas this was not

the case for the adiabatic models. The observation inspired Wodtke and coworkers

to perform molecular beam scattering experiments using NO molecules in the ν = 2

vibrational state, scattered from an Au(111) single crystal at different Ei ranging

from 0.05–0.75 eV [64, 65]. They observed that increased Ei strongly promoted both

excitation and deexcitation of the vibrational state, in line with the nonadiabatic

models.

One question that immediately arises from Wodtke’s results is, if molecules
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in νi = 2 can efficiently transfer energy nonadiabatically, what would be seen if the

molecules had much more initial vibrational energy? Stimulated emission pumping

(SEP) is an experimental technique for preparing molecules in a high-lying vibra-

tional state of the electronic ground state [13]. It uses multiple laser pulses to

achieve this: The first pulse (pump pulse) excites molecules to a non-ground elec-

tronic state (possibly but not necessarily also to a higher vibrational state). A

second pulse (dump pulse) is then used to stimulate the deexcitation back to the

ground electronic state, but a high lying vibrational state. Using SEP allows for

a great deal of control over the initial vibrational states for any subsequent exper-

iment. SEP is required because selection rules for purely vibrational excitations

of molecules state ∆ν = 1. Sequential excitation of vibrational states is therefore

highly impractical, if possible at all, and would lead to a distribution over many

vibrational states for a collection of molecules.

Molecular beam scattering experiments, using SEP to prepare NO molecules

in high lying vibrational states prior to scattering, revealed that the energy transfer

process proceeds via multiquantum (de)excitation [66, 67]. A single crystal Au(111)

surface was covered with an adlayer of Cs atoms, resulting in a metal surface with

a low work function (1.3–1.6 eV). Importantly, the reduced work function is smaller

than the vibrational energy of NO molecules excited to ν = 8 or higher. This results

in the emission of electrons from the surface when the highly excited NO molecules

are scattered from it, transferring vibrational energy to EHPs in the metal. The

kinetic energy of the exoelectrons was measured to ascertain the energy transferred.

The energies correspond to several quanta of vibrational energy being transferred

in a single step, as opposed to a stepwise process where only a single quanta is

transferred at a time. Exoelectrons were only observed if the vibrational energy

was greater than the work function and the limiting factor in the observed final

kinetic energy distribution was the available vibrational energy. These experiments

also showed that the energy transfer process is highly efficient. An unexpected

finding from this experiment was that increasing incidence energy saw a small, but

detectable, suppression of electron emission. This was initially incorrectly used to

infer that increasing translational energy decreases vibrational (de)excitation prob-

ability. Later state-to-state experiments, in which both the initial and final (vibra-

tional) states are directly observed, by the same group, showed this interpretation

to be false. While it is true that electron emission is suppressed, this is due to a crit-

ical region 5–10 Å from the surface in which electron emission can occur. Increasing

translational energy reduces the time a molecule spends in the critical region and

therefore electron emission probability is reduced. The state-to-state experiments
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were able to directly observe the final vibrational states of the scattered molecules,

circumventing the need to add a Cs adlayer to the surface and rely on exoelectrons

to infer the final vibrational state distributions. The state-to-state experiments

showed that increasing incidence translational energy in fact promotes vibrational

(de)excitation. The key points from this experiment are that the nonadiabatic en-

ergy transfer is incredibly efficient with large quantities of vibrational energy being

transferred in a single scattering event and that higher vibrational states strongly

promote nonadiabatic energy transfer into EHPs.

Having established that the dominant pathway for vibrational energy trans-

fer processes is indeed nonadiabatic, studies were performed to elucidate the un-

derlying mechanism. It is now widely accepted that the nonadiabatic vibrational

energy transfer process proceeds via a so called vibrational auto-detachment mech-

anism [65, 67]. As the molecule approaches the surface, back-bonding via the

LUMO (π∗) occurs and as the bond oscillates, the stability of the LUMO changes

and charge from the surface oscillates into and out of the LUMO. Vibrational

energy is transferred to the electronic states of the metal creating an electron

hole pair. The excited electron hops from the surface to the molecule at or near

the outer turning point of the vibration. As the bond compresses, the anionic

molecule becomes less stable and a second transfer occurs from the molecule back

to the metal. The neutral molecule leaves the surface in a lower vibrational state.

In the years following the experiments described above, there were several key ad-

vances in experimental techniques that enabled far greater control of the molecular

degrees of freedom and additional information could be gleaned from the molecules

after scattering from the surface:

• Extensions to the standard SEP scheme called pump-dump-sweep, allow for

greater quantum state purity of the molecules by suppressing unwanted spon-

taneous emission from intermediate excited states that would otherwise pollute

the sample with molecules in non-target vibrational states [68].

• Resonance enhanced multi-photon ionisation (REMPI) spectroscopy allows

observation of the final vibrational state [69]. REMPI is a more direct way of

gaining information on the state of the molecules and does not interfere with

the scattering process itself, unlike earlier exoelectron experiments [69].

• In prior works, the orientation of the molecules could only be controlled using

hexapole focusing, which could only be applied at low translational energies. A

new technique called optical state selection with adiabatic orientation enables
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selection of molecular orientation prior to the scattering event [70].

Using all of the aforementioned techniques in combination, Wodtke et al per-

formed a comprehensive study of NO–Au(111) scattering to assess which degrees of

freedom (DOF) are most important to promote or suppress nonadiabatic effects.

The study used 5 different incidence translational energies (Ei) ranging from 0.05

to 0.97 eV, 3 different incidence vibrational states νi = 3, 11, 16 and 2 molecular

orientations, namley N towards the surface and O towards the surface [69, 71]. For

all combinations of the molecular DOF explored, the dominating factor is the initial

vibrational state (νi). There is a clear enhancement of vibrational energy trans-

fer when molecules impact the surface with N facing the surface compared to O

(see figure 3.2) that can be explained by noting that the auto-detachment mech-

anism involves the transfer of an electron from the metal into the LUMO of the

molecule. The LUMO has more density at the N end and therefore if the molecule

approaches the surface with N down there will be a greater overlap of the LUMO

with the metal orbitals. Thus making the charge transfer more favourable than

if the molecule approached with O facing the surface. However, when NO is in a

sufficiently high vibrational state, the preference for the N down orientation makes

very little difference as the probability of the transfer is already in excess of 0.95

as can be seen in figure 3.2. A similar trend is seen with respect to Ei. Larger

Ei increases the probability of vibrational energy transfer. Again, if the molecules

are in a high vibrational state, the vibrational energy transfer is so efficient that

the effect of the translational energy diminishes and is not an important factor.

39



Figure 3.2: Experimental results of NO-Au(111) scattering experiments reproduced

from [69] using WebPlotDigitizer. Final vibrational state populations are plotted

for νi = 11 (top) and νi = 16 (bottom) with translational energies of 0.51 and 0.52

eV respectively. Note: the lack of numbers on the y axis mimics the way the data

was presented in [69].
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Figure 3.3: Results of NO-Au(111) scattering experiments reproduced from [69]

using WebPlotDigitizer. Relaxation probability is plotted as a function of Ei for

incident vibrational state νi = (3, 11, 16).

Having now covered the degrees of freedom of the molecule, let us turn our

attention to the influence of the surface. When the Au(111) surface is replaced

by an Ag(111) surface, the vibrational (de)excitation is enhanced [72]. Since the

auto-detachment mechanism requires that a metal electron be transferred to the

molecule, it should be obvious that the metal work function is an important pa-

rameter, with lower work functions promoting the transfer. The work function of

Ag(111) is indeed lower, 4.7 eV compared to 5.3 eV [72]. However, there are other

differences aside from the lower work function that may contribute to the increased

efficiency of nonadiabatic energy transfer. The authors offer two additional consid-

erations for explaining the mechanism for enhanced nonadiabatic energy transfer.

Firstly, the adsorption energy of NO on Ag(111) is greater than for Au(111) indi-

cating that the molecule is able to get closer to the surface before hitting a repulsive

wall. The decreased molecule-metal distance may promote energy transfer. The

second possible factor is that NO has been observed to dissociate on Ag(111) but

not on Au(111). The auto-detachment mechanism relies upon the stretched bond

to transfer the electron and form a transient ion. Therefore if the molecule is ap-
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proaching the transition state to dissociation this may promote electron transfer. A

similar effect has been observed for H2 on Cu(111) where vibrational inelasticity is

enhanced due to a dissociation transition state [73].

There are many examples of similar scattering experiments in the literature

involving different small molecules and noble metals. In order to keep this section

relevant to the work presented in this thesis, only two other systems will be dis-

cussed: CO/Au(111) and CO/Ag(111). CO is very similar to NO in many respects,

and the CO anion is isoelectronic with neutral NO. However, CO has a significantly

lower electron affinity, a parameter of central importance to the auto-detachment

process. As a result, vibrationally excited CO has a much lower, but still observ-

able probability and magnitude of nonadiabatic energy transfer. For example, for

CO (ν=17) scattering from Au(111) with an incidence energy of 0.6 eV, the vibra-

tional relaxation probability is around 35% while under the same conditions the

vibrational relaxation probability for NO(ν=16) is greater than 98%. Apart from

the decreased probabilities CO follows similar trends to NO. Increased translational

energy enhances vibrational relaxation and relaxation with C facing the surface is

more favourable than O facing the surface.

The explicit charge transfer steps in the auto-detachment process imply that

the energy required to remove an electron from the surface, the work function (ϕsurf),

and the change in energy when an electron is added to the molecule, the electron

affinity (Eaff) are properties of central importance in determining the extent of nona-

diabatic energy transfer during scattering events. By reviewing all of their previous

scattering results involving CO, NO, Au(111) and Ag(111), Wodtke and cowork-

ers were able to construct a simple model for predicting the vibrational relaxation

probability (Prlx) [74]. They used the difference between two parameters as an es-

timate of Prlx. The first is the energy difference between the neutral and anionic

molecule at the classical outer turning point of a given vibrational state, denoted

as Eν(rout), which is Eaff at that bond length. The second is the ϕsurf . The data

from their model has been extracted and plotted in figure 3.4. The rationale is

that Eν(rout) − ϕsurf is the energetic cost of transferring an electron from metal to

molecule. The image charge stabilisation (ICS) must be of equal or greater magni-

tude in order to make the electron transfer step energetically feasible. ICS occurs

when an anion approaches a metal and a partial positive compensating charge is

induced in the metal, thereby stabilising the anion. Stabilisation increases with de-

creasing molecule-surface separation. However below a certain distance the molecule

will hit a repulsive wall, which cannot be overcome by ICS. Wodtke and cowork-

ers argue that when Eν(rout) − ϕsurf <5.25 eV the molecule cannot approach close
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enough to the surface for ICS to make electron transfer feasible and so no relaxation

is seen. Clearly there is strong correlation between Prlx and Eν(rout)−ϕsurf and the

model may allow for a reasonable estimation of relaxation probabilities for systems

involving CO/NO and Ag/Au. However the model is quite limited because it is

based on a minimal data-set from a small set of systems. It is not clear whether

it can accurately describe vibrational relaxation in other systems. It also does not

offer insight into the magnitude of the vibrational relaxation. It is important to

seek out models that can accurately capture relaxation probabilities without rely-

ing on highly expensive computation and this model is an important step in the

right direction. However, clearly this model needs to be compared to other systems

including different metals and molecules before a rigorous assessment of the model

efficacy can be made.

The high-quality data from state-to-state molecular beam scattering exper-

iments, such as those described above, in which initial Ei and νi are systemati-

cally varied and compared to final distributions of νf , represent an ideal benchmark

against which to measure the work that will be presented in this thesis. I will use the

le-∆SCF method to create diabatic PESs which will then be used to preform nona-

diabatic dynamics simulations of molecular scattering events at metal surfaces. The

success or failure of this methodology will be primarily determined by comparison

to experimental results.
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Figure 3.4: Vibrational relaxation probability of various combinations of CO, NO,

Au and Ag as a function of Eν(rout) − ϕsurf . Data has been reproduced from [74]

using WebPlotDigitizer.

3.1.2 Chemicurrents

Chemicurrent experiments involve creating a device that will produce a measurable

current when energy is transferred during the experiment which causes the excitation

of EHPs [75]. Primarily there are two types of devices used, firstly metal-insulator-

metal (MIM) devices and secondly Schottky diodes. MIMs have a top thin-film metal

layer on which the chemistry of interest will take place, an insulating middle layer

and a metal bottom layer. Electrodes are connected to the top and bottom layers. A

Schottky diode is very similar; the top metal layer is a thin-film but the insulator is

replaced with a semiconducting layer. The bottom layer is absent and the electrode

connects directly to the semiconductor. In each case the second layer acts as a filter

for electrons that may reach the bottom layer/contact. The basic principle is that

energy from an interaction on the surface which leads to excitation of electron hole
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pairs that, provided the electron (or hole) has sufficient kinetic energy, will travel

through the conduction band of the insulator/semiconductor to the back contact

and produce a current. This allows inference to be made regarding the rates and

magnitude of energy being transferred to the electronic states of the metal. By mak-

ing the Schottky diode using either n-doped or p-doped Si semiconductor layers, it is

possible to observe negative and positive charge carriers, i.e., electrons and holes [76].

Figure 3.5: Panel A shows a diagram of a typical Schottky diode device used in

chemicurrent experiments [76, 77]. Electrons (or holes) that are excited when atom-

s/molecules are scattered from the metal thin film surface can create a detectable

current by travelling through the semiconductor layer, to the back contact, thereby

completing the circuit. Panel B shows a band structure diagram representation of

a Schottky diode producing a chemicurrent: An electron-hole pair is excited within

the metal film. The electron (white circle) moves into the conduction band of the

semiconductor, towards the back contact.

The majority of chemicurrent experiments in literature involve H2 adsorp-

tion; however, experiments have also been performed for a variety of atomic and

molecular species, such as NO, NO2, O2 and Xe, all of which produced measur-

able currents [76–79]. When NO was absorbed onto a Ag/n-Si Schottky diode, a

strong current peak was observed for the initial NO adsorption [76]. This is further

evidence that chemical interactions of NO with metal surfaces can directly excite

electron-hole pairs through nonadiabatic energy transfer.

Evidence from chemicurrents is compelling but also suffers from some issues

that should give pause when interpreting the data. While the scattering experiments
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are performed using a single crystal and under UHV with very fine control of experi-

mental degrees of freedom, chemicurrent experiments require fabrication of a device

[75]. The device fabrication occurs under less rigorously controlled and non-UHV

conditions, although the experiment in which the current is measured is performed

under UHV conditions. For the initial chemicurrent experiments, adsorbing H on

Ag films produced 30 times the current observed for a Cu film. The commonly

accepted explanation for this is that the devices were prepared under different con-

ditions, which indicates that precise control and characterisation of any devices used

is essential in order to draw meaningful conclusions [10]. The extent to which device

fabrication and experimental conditions may impact the observed chemicurrents in a

given experiment is still an ongoing area of research [75], however the statement that

the observation of chemicurrents is direct evidence of nonadiabatic energy transfer

at metal surfaces is not in question.

The experimental evidence that nonadiabatic processes occur at the molecule-

metal interface is vast and compelling. Teasing out the details of these processes

has been and continues to be a long and complex process. There have been many

advances in experimental techniques and understanding. However there is still much

to be revealed. During the same time period there has been a huge effort to con-

struct accurate computational models of these systems that has worked in tandem

with experiment. The theoretical work will be described in the following section.

3.2 Computational Background

Surface chemistry is commonly modelled using first principles methods for a vast

combination of molecules and surfaces. So much so, that that a so-called “standard

model of surface reactivity” has been established [10]. Any realistic surface con-

tains a vast number of atoms, and in a transition metal surface each atom contains

many electrons. In order to make any simulation of such surfaces computation-

ally tractable, approximations and simplifications must be made, while retaining as

much of the correct physics as possible. For these reasons, the standard model of

surface chemistry primarily consists of three approximations.

1. The level of theory. Almost all atomistic electronic structure models used to

study surface reactions are based on DFT because of the balance it offers with

respect to accuracy and cost [80]. Simple gas phase molecular reactivity is

often modelled using high-level quantum chemistry methods, that are more

accurate than DFT. However, the huge computational cost associated with

applying these methods to surface chemistry makes them unfeasible to use and

46



DFT is the widely accepted method of choice. Additionally, the exchange-

correlation functional used determines the level of theory within the DFT

domain [81]. Simulations are typically performed at the generalised gradient

approximation (GGA) level. While higher level functionals are available, such

as meta-GGAs, the GGA level is seen as a reasonable compromise between

accuracy and efficiency [80].

2. Reduced dimensionality. By their very nature metal surfaces contain many

atoms and very many electrons. It would be impossible to treat realistically

sized systems with any sort of rigor. The so-called slab model is used instead.

A few layers of a metal substrate are placed in a unit-cell where the surface

atoms span across the entire cell in x and y, but with a large vacuum gap above

and below the substrate layers. PBC are enforced that repeat the unit cell in

all three directions. The resulting model is then a stack, in the z direction,

of infinitely wide slabs. The z distance between slabs in one unit cell and its

neighbours must be large enough that there is no interaction between the slabs.

To make the model more akin to a real surface, the bottom layers are fixed

in their bulk positions while the top layers are allowed to relax. Finally, any

atoms/molecules that will interact with the surface are added to the unit cell.

The unit cell should have a sufficiently large vacuum gap that the adsorbate(s)

only interact with the slab within the same unit cell and not the neighbour

above. Once any adsorbates are added, it is also important to make sure that

the unit cell is large enough in x and y that any lateral interactions between

adsorbates in neighboring unit cells as close to zero as possible.

The central task in any DFT calculation is obtaining the ground-state solu-

tion of the electron density (ρ(R)). This task is computationally intensive

and formally scales on the order of N3 with the number of electrons (Ne).

Therefore for many systems, and particularly in the case of metal surfaces,

it can greatly increase the efficiency of the calculation if Ne can be reduced.

Chemistry is dominated by changes in the interactions of valence electrons

while core electrons remain unaffected. This means that, whenever the elec-

tronic wavefunctions are being optimised, core electrons may be modelled by

an effective potential rather than being explicitly included, without having an

effect on the ground-state ρ that is obtained at the end of the calculation. The

two most common schemes for replacing core electrons are the pseudopotential

method and the projector augmented wave (PAW) method [82–84].

Additionally, any nuclear DOF (i.e. atomic motion) that are deemed to be
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non-essential to the chemistry in question may be restricted or excluded. For

example, substrate motion may be excluded using a frozen surface approxi-

mation and reactant motion may be restricted to chemically relevant paths.

3. The Born-Oppenheimer approximation (BOA) or the electronic adiabaticity

approximation is used in all DFT calculations to dramatically reduce the com-

plexity of the numerical problems to be solved [12]. The resulting adiabatic

PES, which are constructed by sampling different configurations of nuclear

coordinates and solving the electronic problem with static nuclei at each con-

figuration, are ubiquitous throughout the study of chemistry [21]. Common

ideas in chemistry such as steric repulsion, transition states and activation

energies are all references to the topology of the adiabatic PES.

For much of surface chemistry, the BOA is a valid approximation and the

adiabatic PES works well in providing a description of the chemistry. However, as

described in Section 3.1, molecules interacting with metal surfaces is a domain of

chemistry where the BOA is less valid and can break down entirely. Experiments

have shown that nonadiabatic channels can be a significant energy dissipation path-

way in some molecule-metal systems, in particular via energy transfer between ad-

sorbate motion and electronic states at metal surfaces. To account for such effects

in models, the nonadiabaticity must be somehow ‘added back in’ after constructing

potentials that rely on the BOA. Mixed quantum-classical dynamics (MQCD) al-

gorithms, wherein the motion of nuclei progresses classically but electron dynamics

are treated on a quantum level, are the method of choice in this respect because

they offer a good balance between accuracy and efficiency. There are two primary

implementations that have shown some success in modelling nonadiabatic effects

at surfaces: the MQCD algorithms of molecular dynamics with electronic friction

(MDEF) [85] and independent electron surface hopping (IESH) [18] combined with

a Newns-Anderson Hamiltonian (Section 2.4).

What follows is a summary of some key computational results in simulating

the nonadiabatic dynamics of the NO vibrational (de)excitation molecular beam

scattering results, described in Section 3.1.1, using IESH and MDEF.

The first applications of both IESH and MDEF to the NO scattering from

Au(111) surface used very high initial vibrational states νi = 15 and low incidence

kinetic energy Ei = 0.05 eV [86, 87]. Both MDEF and IESH are able to capture

the significant vibrational deexcitation seen in experiment, which is missing in the

purely adiabatic dynamics. Both models seem to overestimate the deexcitation to

lower-lying states, however the experiments do not capture data for molecules in νf
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lower than 5. It is also not entirely clear how much the disagreement with experiment

stems from the MQCD method compared to potential flaws in the underlying PES

used in either case. Both studies used PES generated using the PW91 functional and

a Au(111) slab with a single NO molecule per unit cell. However, the IESH results

used neutral and anionic diabatic PESs generated by applying an electric field across

the unit cell, which is less ideal than a proper charged constrained scheme [19]. The

MDEF PES was restricted to two DOF: the vertical molecule-surface separation and

the NO internal bond stretch.

When trajectories were initiated in the lowest vibrational state, νi = 0,

IESH was still able to qualitatively reproduce experimental trends of vibrational

excitation, although the discrepancy between simulation and experiment increased

with higher final vibrational state νf ∈ {1, 2, 3} [88]. MDEF predicted no excitation

at all, leading to the conclusion that IESH is the method best suited to modelling

nonadiabatic surface scattering under these conditions.

The IESH simulations also indicated that there was a strong steric effect that

produces a dynamical steering force that increases the likelihood that the molecules

would impact the surface with N facing towards the surface [86]. This prompted

further beam scattering experiments that proved this was a real effect and not an

artifact of theory [69, 71]. The confirmation of the steering force shows that even

with the limited models available, theoretical simulations can offer valuable insights

for experimentalists that can inform a deeper understanding of dynamics at sur-

faces. Despite the initial observation of the steric effect coming from simulation, the

IESH results underestimated the orientation dependence compared to experiment.

A potential cause for this is forces are derived from the underlying PESs, which are

approximate.

With the success of those initial nonadiabatic computational studies, and

with improved experimental techniques, a much larger set of experimental results

were gathered over a much wider range of incidence energies and initial vibrational

states [88]. Subsequent comparison between simulation and experiment revealed

much more deviation in observed trends. Scattering experiments were performed

with νi ∈ {3, 11, 16} with Ei ∈ {0.5, 1.0} eV. When the final state distributions

were compared to IESH and MDEF, both methods showed an underestimation of

multiquantum deexcitation in all cases [88]. For the νi = 3 results, the differences

were relatively small, however for νi = 11 and especially for νi = 16 the discrep-

ancy was very large. It was found that many of the trajectories included multiple

bounces from the surface. Based on angular distribution analysis in experiment,

the multi-bounce phenomenon was deemed to be an artifact of the simulations and
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not something seen in experiment. This was attributed to the PES being too ‘soft’,

enabling more sticking than expected. By excluding multi-bounce trajectories from

the analysis both MDEF and IESH result were improved, but still significantly

underestimated multiquantum deexcitation. The potential explanations for the de-

viation from experiment are primarily associated with the PES. The neutral and

anionic PESs used in IESH were calculated by applying a electric field across the

unit-cell, rather than an explicit excited state method [19]. Additionally, the in-

terpolation of the explicitly calculated energies may result is surfaces that are too

corrugated. It is also suggested that geometries approaching the dissociation bar-

rier of NO, which is not included in the PES, may also be relevant in facilitating

vibrational deexcitation [10]. This is especially the case in the νi = 16 case where

the outer turning point of the vibration is close to the dissociation barrier. Further

evidence that inaccurate PESs may be a significant factor comes from analysis of

the final molecular translational energy distribution. IESH and adiabatic molecular

dynamics both underestimate the final translational energy by a similar amount,

even though, by definition, adiabatic molecular dynamics do not include any nona-

diabatic energy transfer. Although it seems clear that at least some of the issues

with the simulations can be attributed to the PESs, there may also be a contribu-

tion from the underlying IESH method, especially at high νi where disagreement is

strongest. As currently implemented only one excited state of NO is included (the

anion) and spin effects were ignored. It is possible that where there is such large

vibrational energy, other excited state(s) are involved that make the vibrational re-

laxation process much more efficient. Nothing in the theoretical framework of IESH

would prohibit including more states, but doing so would be much more complex,

especially transitioning from the simple 2 × 2 model Hamiltonian representation of

the diabatic energies and coupling (see Section 2.4) to a 3 × 3 or potentially even

larger model Hamiltonian and deriving new diabatic coupling terms. The most

sensible approach would be to first focus efforts on generating the most accurate

PESs that are reasonably possible and investigate how much discrepancy between

simulation and experiment remains, before making the model more complex. The

construction of accurate PESs, particularly anionic and neutral diabatic PES, using

the le-∆SCF method is a central goal of the work in this thesis.
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Chapter 4

Assessing the le-∆SCF Method

The primary goal of the work presented in this thesis is to construct meaningful

excited PESs that can be used in NAD simulations to model the physics of molecular

beam scattering experiments. Before this work, the only existing excited state PES

for these type of systems was that of NO on an Au(111) surface where the diabatic

potentials were constructed using an applied electric field [89]. In this work, we

examine the constrained DFT excited state method le-∆SCF which is used to build

accurate diabatic PESs. This chapter discusses the method and how it can be

applied to these systems. There are two implementations of le-∆SCF: density-based

(ρle-∆SCF) implemented in the real space projector augmented wave electronic

structure software package GPAW and wavefunction-based (Ψle-∆SCF) which is

implemented in the planewave pseudopotential electronic software package CASTEP

[16, 17, 82, 90]. Although they both fall under the umbrella of le-∆SCF, they

are different and will produce quite different PESs for the same charge state of a

given system. What they share in common is that they both construct resonance

orbitals based on FSMO orbitals and the constraints are defined with respect to the

resonance orbitals.

4.1 ρle-∆SCF

The first practical implementation of le-∆SCF used the projector augmented wave

based electronic structure software package GPAW [16]. It enforces constraints by

modifying the electron density, as opposed to the wavefunctions, and will therefore

be referred to as the ρle-∆SCF method. The first step is to create a resonance
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orbital via a linear expansion of the set of Kohn-Sham states.

|Ψc⟩ =
∑

subspace

Ci

∣∣Ψi
〉
, (4.1)

Where c is the index referring to the given constraint. The expansion coefficients

differ from Eqn (2.65) by the inclusion of a normalisation term.

Ci =
⟨Ψi|ϕj⟩

(
∑

subspace

|⟨Ψi|ϕj⟩|2)
1
2

(4.2)

The aim is that |Ψc⟩ should be a good representation of a molecular orbital of

the FSMO (|ϕj⟩), such that constraining charge to |Ψc⟩ will effectively constrain

charge to the molecule. Within ρle-∆SCF constraints are enforced by creating a

constrained electron density (ρ̃(r)). Each constraint specifies the amount of negative

charge (∆qc) that should be added to the full-system density, based on the shape

and location of |Ψc⟩. To construct ρ̃(r), first, a Fermi distribution is calculated

for the system but containing only Ne −
∑
c

∆qc electrons and used to construct a

pre-density (ρpd(r)). Secondly, densities corresponding to each constraint (ρc(r))

are constructed by taking the outer product of the resonance orbital with itself and

multiplying by total electrons being constrained (Nc), as in Eqn (4.3), and added

to ρpd(r).

ρc(r) = |Ψc⟩ ⟨Ψc|Nc (4.3)

ρ̃(r) = ρpd(r) +
∑
c

ρc(r) (4.4)

It is important to note that ρ̃(r) is not used directly as the input density (ρin(r))

or the output density (ρout(r)) during an SCF cycle. Whether an le-∆SCF (or

ground-state DFT) calculation has converged is determined by whether the differ-

ence between ρin(r) and ρout(r) is smaller than the chosen tolerance (Etol) as shown

in Figure 4.1. ρ̃(r) indirectly affects the ρout(r) that the SCF cycle will arrive at

because the effective Kohn-Sham potential (Vks) is calculated using ρ̃(r). Vks, in

turn, enters the Kohn-Sham equations, which are solved to give a new estimate of

the KS wave functions that are used to construct ρout(r).
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Figure 4.1: Flowchart showing the modified SCF procedure used during a ρle-∆SCF

calculation.

Eqn (2.64) implies that the sum for the expansion should run over all |Ψi⟩,
but in Eqn (4.1) the sum only runs over a subset of |Ψi⟩. While in principle any

state could be included in the linear expansion, in practice ρle-∆SCF requires that

only a sub-set of all states are included, either all the unoccupied states or all occu-

pied states, to enforce orthogonality [16]. If states outside the correct subspace are

included the SCF procedure will (usually) converge, but will return incorrect ener-

gies due to a violation of constant Ne and therefore a breakdown of the variational

principle.

The most common charge transfer excitations for molecules at metal surfaces

are molecular anions, where the molecule accepts charge from the metal states [91].

To model this, the charge constraints must involve moving charge from a state at

the Fermi level to a resonance orbital resembling the molecular LUMO. In cases

where the charge density of the resonance orbital is increased, the sum in Eqn (4.1)

should run over the unoccupied states only, because these are already orthogonal

to the occupied states and therefore the resulting resonance orbital will also be
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orthogonal to all other occupied states. In cases where electron density should be

removed from the resonance orbital e.g. to approximate a cationic molecule on the

surface, the sum should instead run over the occupied states, since these are the

states that contribute to the density on the molecule. The use of resonance orbitals

and constraints makes the le-∆SCF methodology ideal for modelling excited states

at molecule/metal interfaces and in particular charge transfer states. However it also

imposes some limitations compared to ground state DFT. The Hellman-Feynman

theorem can not be applied to le-∆SCF because it is only valid for eigenstates

of the KS-Hamiltonian, not for linear combinations of eigenstates [92]. Gavnholt

showed that le-∆SCF forces based on the Hellman-Feynman theorem are incorrect

[16]. This results in one of the key limitations of the le-∆SCF method: it cannot

provide analytical forces. The introduction of non-KS states also means the formal

justification for simple ∆SCF does not apply to le-∆SCF and it reverts to being an

ad-hoc method. Despite these drawbacks, it can still produce very useful results,

provided the system and constraints are chosen carefully [17, 44, 45].

In a previous study, ρle-∆SCF was tested on several systems that showed

that higher lying excited states are less accurately modelled than low lying ones,

therefore this method is likely only suitable for low lying excitations [16]. In that

study, and all other previously published ρle-∆SCF studies, charge transfer states

were modelled by adding/removing one full electron [16, 44]. This choice assumes

the molecule adsorbed on the surface will retain its gas phase occupations, i.e., in a

neutral charge state, and ignores the fact that in the ground-state the molecule will

exchange charge with the surface ∆qgs. Neglecting ∆qgs leads to too much charge

being added for anions and too little charge being removed for cations. The work

presented in this thesis uses a modified approach where the constraints are based

on the difference between ∆qgs and the charge state of interest. As an example, if

a resonance orbital representing the FSMO LUMO (|Ψc
L⟩) has an occupation of 0.0

far from the surface and picks up 0.25 electrons upon adsorption on the surface,

to approximate a molecular anion 0.75 electrons should be added to |Ψc
L⟩. ∆qgs is

calculated using molecular orbital projected density of states (MODOS) analysis for

each FSMO state |ϕj⟩.
MODOS analysis is a method for gaining insight into how molecular states

are hybridised upon interaction with a surface and can be integrated to obtain

MODOS charges, which are a measure of the amount of charge transferred to the

molecule [93]. Similarly to le-∆SCF, the molecular states are modelled by FSMO
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states (|ϕj⟩). The MODOS (Pj(E)) of FSMO state |ϕj⟩ is given by:

Pj(E) =
∑
i

|⟨ϕj |Ψi⟩|2δ(E − ϵi), (4.5)

where E is energy and ϵi is the eigenvalue of |Ψi⟩. Figure 4.1 shows two examples of

MODOS analysis performed for the system of CO in an upright orientation, with C

atom facing down, above the top site of an Au(111) surface, modelled using a p(3×3)

four layer slab, an 8× 8× 1 Monkhorst-Pack k-point grid and the RPBE functional

in GPAW 20.1.0 [90, 94]. In panel A of Figure 4.1 the distance between the C atom

and the Au(111) surface (ZAu−C) is 7.0 Å. (Pj(E)) of the FSMO HOMO (green)

and LUMO (blue) is plotted on top of the DOS of the full system (black). At this

distance, there is almost no hybridisation between molecular and metal states and

so both HOMO and LUMO peaks are narrow. The HOMO peak sits entirely below

EF, indicating that the state is fully occupied and the LUMO is entirely above EF,

meaning it is completely unoccupied, as would be expected of the neutral molecule

in the limit of no interaction with the metal. In panel B of Figure 4.1, ZAu−C=2.5

Å and there is significant hybridisation between molecule and metal states, which

is seen as a broadening of the HOMO and LUMO peaks across a wider range of

energies. Parts of the LUMO peak are now also below EF, meaning the molecule

has picked up some charge from the surface, i.e., ∆qgs > 0.

Integrating (Pj(E)) to the Fermi level gives MODOS charge (qj) associated

with state |ϕj⟩ as in Eqn (4.6), which can used to infer how much charge a molecular

state has gained or lost upon interaction with the surface relative to the charge in

the neutral FSMO.

qj =

EF∫
−∞

Pj(E), (4.6)

The full molecular charge (qmol) can be obtained by summing all qj :

qmol =
∑
j

qj . (4.7)

The difference between qmol at a given full system geometry and qmol in the limit of

infinite ZAu−C, i.e., the number of electrons in the neutral molecule) gives qgs.

As an example of how to apply MODOS analysis to define constraints in

a ρle-∆SCF calculation consider the anion case: in order to model a molecular

anion on the surface, there must be one electron in the LUMO. Therefore, the

resonance orbital must be constructed from unoccupied full-system states only. ∆qc
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Figure 4.2: Molecular orbital projected density of states (MODOS) of the HOMO
(green) and LUMO (blue) of a CO molecule in a upright orientation with C atom
facing the surface above a top site of Au(111). The DOS of the full system is
shown in black. Shaded areas represent occupied states, i.e., states that are below
the Fermi energy (dashed line). In panel A, the molecule is 7 Å above the surface
and the molecular peaks are narrow because there is little hybridisation with the
metal states. Panel B shows the same peaks when the molecule is 2.5 Å above the
surface, where the molecular peaks have broadened due to hybridisation. Some of
the contribution to the LUMO is below the Fermi energy, meaning the molecule has
picked up charge from the metal. It should be noted the molecular peaks have been
scaled by a factor of 20 to aid visualisation.

should be a positive number and the difference between the ground-state MODOS

occupation and the desired occupation. If occupied states were included in the

linear expansion, adding ∆qc would overfill the states and result in a breakdown

of the variational principle because Ne is not conserved. Conversely, if the excited

state of interest is the neutral molecule then the LUMO should be emptied of any

charge it picked up from the surface. Therefore, the expansion should only include

occupied full-system states and ∆qc should be negative. The example of LUMO

occupations and the choice of anionic and neutral charge states are arbitrary. The

consistent principle applied to any system when performing a ρle-∆SCF calculation

is that increases in occupation of resonance orbitals should use only unoccupied

states and decreases should use only occupied states to construct |Ψc⟩. Subspace

selection provides versatility for modeling a wide range of systems and charge states.

However, it also places limits on system size. There must be sufficiently many

states in the relevant subspace that the resonance orbital is a good representation

of the FSMO orbital. For the occupied subspace, this is not an issue because any

calculation will always include the required states. The unoccupied subspace is

more often an issue because increasing the number of unoccupied states increases
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the cost of the calculation, but does not provide any additional accuracy to the

ground-state energies. Any results based on a poor representation of the FSMO

orbital are physically meaningless. Therefore, the cost of increasing the number of

bands included in the calculation is simply part of the cost of using this method.

The quality of the representation is assessed using Eqn (4.8), where values range

from 0 to 1 with 1 meaning a perfect representation.

∥Ψc(r)∥ =
∑
i

|⟨Ψi|ϕj⟩|2 (4.8)

The main benefit of this approach, as opposed to Ψle-∆SCF, is that the problem

the SCF procedure is attempting to solve is very similar in complexity to that of

finding the ground state, but with a partially rearranged density regardless of the

number of constraints. One drawback is that one must include a lot of unoccupied

states to ensure there are enough terms in the expansion to properly approximate

the molecular resonance. If the incorrect subspace, or even the full space is used the

code will still return an energy but it will be unphysical. Often, particularly in the

case of anions, the energies will be several eV below the ground-state energy, which

is a very obvious sign that the energies should not be trusted. However, sometimes

the energies are wrong but are not below the groundstate energy and therefore it

can be difficult to tell that the results are wrong and instead one relies on having

some physical/chemical intuition for how the system should behave if the constraints

are correctly applied. Often this will be the case, but it can somewhat limit the

applicability.

4.2 Ψle-∆SCF

The more recent implementation of le-∆SCF by Maurer and Reuter (Ψle-∆SCF)

defines the expansion coefficients and enforces constraints differently [17]. It uses

both occupied and unoccupied full system KS states for construction of resonance

orbitals:

|Ψc⟩ =
∑
i

|Ψi⟩ ⟨Ψi|ϕ⟩ (4.9)

This process of constructing the resonance state can be conceptualised as projecting

the FSMO states onto each full system KS state and scaling the latter based on the

magnitude of overlap.

Constraints are enforced by directly modifying the wavefunctions during each

SCF cycle and modifying the occupations. First, the full-system KS-state that
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has the largest overlap with the resonance orbital is removed and replaced by the

resonance orbital. The problem of enforcing orthogonality between the KS orbitals

and the resonance orbitals is solved by explicitly performing a reorthogonalization

procedure during each SCF step:∣∣∣Ψ̃i

〉
= |Ψi⟩ −

∑
j

|ϕj⟩ ⟨ϕj |Ψi⟩. (4.10)

This renders all modified KS states {
∣∣∣Ψ̃i

〉
} orthogonal to the resonance orbitals

{
∣∣ΨR

〉
}, but breaks the orthonormality of the complete set of orbitals used in the

calculation: {
∣∣∣Ψ̃i

〉
,
∣∣ΨR

〉
}. Therefore, a separate re-orthonormalization procedure

is performed at each SCF step. The constraints are enforced by restricting the

occupation of the resonance orbital and applying a modified Fermi distribution to

the non-constrained states, such that Ne is conserved. During each SCF cycle, all

non-resonance wavefunctions are optimised, while the resonance orbital must remain

unchanged. This is in contrast to simple ∆SCF where all wavefunctions, including

constrained ones, can be optimised. The modification was seen to produce more

accurate results compared to simple ∆SCF, when tested on the system of azobenzene

on Ag(111) [17].

The main benefit of the Ψle-∆SCF implementation compared to ρle-∆SCF

is that including the resonance orbitals in the set of wavefunctions and explicitly

enforcing the excited state occupations means the kinetic energy is treated correctly.

However, each additional constraint applied to the system replaces a KS state with a

resonance orbital (non-KS state) and further modifies the remaining KS states, and

therefore moves the calculation further from the KS-DFT formalism. Additionally,

each constraint significantly increases the difficulty of the constrained optimisation

problem that must be solved. This is not the case in ρle-∆SCF where no wavefunc-

tions are modified and constraints act through a single rearrangement of the density.

The explicit orthogonalization step negates the need to select a subspace when con-

structing the resonance orbital. Therefore, all full-system states are included in the

expansion. This reduces the number of full-system bands that must be included

in order to obtain a good representation of the FSMO orbital, and therefore the

computational cost of the calculation compared to ρle-∆SCF. However, in practice

Ψle-∆SCF calculations tend to suffer from more SCF convergence issues and so any

reduction in cost is minimal.
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4.3 Results

4.3.1 Ψle-∆SCF results

A key goal of the work presented in this thesis is to construct high-quality PESs of

charge transfer states of molecules interacting with metal surfaces that can then be

used to perform nonadiabatic dynamics simulations of molecular scattering. As the

nonadiabatic dynamics method chosen for this project is IESH, the PESs required

are neutral and anionic diabatic PESs. The neutral diabatic state (neutral diabat)

is modeled be enforcing that the molecule remains neutral and does not exchange

any charge with the metal. Similarly the anionic diabat is modelled by enforcing

the molecule has a charge of -1 and does not exchange charge with the metal. The

initial work for this thesis, towards this goal, used the Ψle-∆SCF implementation in

CASTEP 18.1 to model diabatic anionic and neutral states for NO on Au(111) [17,

82]. The GGA functional PBE, norm-conserving pseudopotentials and a plane wave

cutoff of 600 eV were used [95]. The Au surface was made from a 6-layer p(2 × 2)

unit cell with 20 Å of vacuum above the slab. Vertical binding energy curves above

a bridge site on the surface were constructed. The NO molecule was fixed parallel

to the surface normal, with the N atom closest to the surface, at the gas phase

equilibrium bond length of 1.195 Å. The molecule was then displaced vertically,

and the energy sampled at each geometry.
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Figure 4.3: A graphical representation of the molecular orbitals of an NO molecule

(equivalently a FSMO of NO molecules). States 6 and 7 are degenerate and together

they represent the highest single occupied molecular orbital. All lower states are

fully occupied and state 8 is fully unoccupied.

To model the neutral and anionic diabatic state, resonance orbitals for all

FSMO states from 1-8 (see Figure 4.3) were constrained, with states 6 and 7 forming

the degenerate highest singly occupied molecular orbital (HSOMO). The resulting

vertical binding energy curves are shown in Figure 4.4.
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Figure 4.4: Vertical binding energy curves of NO above the bridge site of a p(2× 2)

6-layer Au(111) surface. DFT ground state (green), Ψle-∆SCF neutral (blue) and

anionic (red) diabats.

For geometries with a larger molecule-surface separation (ZAu−N) than 3.0 Å,

converging the anionic diabat calculations was not possible. In each failed calcula-

tion the SCF procedure continued over several hundred cycles without approaching

the convergence criteria. The basic principle of an SCF optimisation is that, start-

ing from some initial guess of the density, in each step the model improves upon

the previous guess of the ground-state density (in this case a charge constrained

density), until certain criteria of convergence parameters are met. The most impor-

tant convergence parameter in CASTEP SCF optimisations is the energy gain per

atom; the log of which must be less that −6 for three consecutive SCF cycles for the

calculation to be converged. In Figure 4.5 the log of energy gain per atom is tracked

for a successful SCF optimisation which converges within 77 steps (blue line) and a

non-converging SCF optimisation (red line). In the well-behaved example, although

not every sequential SCF cycle reduced the log of energy gain per atom, there is

a clear downwards trend. This is not the case for the non-converging calculation

where the value moves up and down throughout the calculation but does not gen-

erally result in lower log of energy gain per atom, i.e., does not tend towards SCF
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convergence.

Figure 4.5: Representative examples of SCF convergence behaviour. The blue curve

shows a well behaved SCF procedure where convergence occurs after 77 SCF steps.

The red curve shows typical behaviour of a non-converging calculation. The dashed

grey line indicates the threshold for convergence, where the log of energy gain per

atom must be less than −6 for three consecutive SCF steps.

The typical recourse when facing SCF convergence issues in DFT is to modify

the density mixing settings. During the SCF optimisation process each new density

is constructed, in part, using densities from previous steps. Density mixing settings

refer to choices for how the previous densities are included in the construction of

the newest density. The density mixing setting parameters are: the density mixing

amplitude (β), the history length (hmax), the maximum reciprocal lattice vector to

be included in the density mixing (Gmax) and the density mixing algorithm itself,

which in CASTEP is either the Broyden or the Pulay algorithm [96, 97]. β deter-

mines the proportion of the new density that will be made up of contributions from

previous densities and hmax is the number of previous densities that will contribute

to the new density. Using both Broyden and Pulay algorithms, all possible com-

binations of β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, hmax ∈ {1, 2, 3, ...12} and

hmax ∈ {0.5, 1.0, 1.5} Å
−1

were trialled to converge the anionic calculations using

a test system which had the same numerical settings and physical parameters as

those described above and shown in Figure 4.4, with ZAu−N = 4.0 Å. None of

the calculations had converged after 400 SCF cycles, at which point the calculation

was terminated. No change in the general trends of convergence parameters was

observed under any of the modified density mixing settings, i.e., allowing more SCF

cycles would not have resulted in convergence. Since such a large set of combinations

of density mixing parameters had not resulted in improved convergence behaviour
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it was important to investigate whether something about the physical model being

used may be somehow causing the issues, my modifying the model. The physical pa-

rameters that were modified to improve convergence were the vacuum spacing in the

z direction (10, 15, 20, 25 and 30 Å), the MP k-point grid density (k ∈ {2, 4, 6, 8, 12}
in a k × k × 1 grid), surface coverage (p(2 × 2), p(3 × 3) and p(4 × 4) unit cells),

Fermi-surface smearing (0.1 and 0.15 eV), initial spin state and overall spin con-

straints (unrestricted, single, doublet). However, none of these resulted in improved

convergence behaviour.

As described above, an SCF optimisation starts with an initial guess of the

density. In CASTEP, this initial guess is based in a random seed. However, a

user can choose the initial guess to be a different density. It was hoped that by

choosing an initial density that is closer to the desired solution than a random

guess, convergence trends might be improved. Two options were trialled for the

initial density. Firstly, using the converged groundstate density. Secondly, using the

density of an anionic calculation with similar geometry that had converged, which in

practice meant an anionic calculation in which the molecule is closer to the surface.

Neither approach resulted in convergence and after the first few steps the relevance

of the initial density is lost, and typical non-converging behaviour is observed.

Having encountered such serious difficulties in obtaining convergence with

NO, it was decided that the molecular species should be changed. Another system

that is highly relevant to nonadiabatic molecule-surface scattering is CO on Au(111).

This system was also modelled using the Ψle-∆SCF method with the same model as

in Figure 4.4, but exchanging the molecule for CO, with some limited success (see

Figure 4.6). While issues converging some geometries remain, the system is overall

more conducive to convergence than NO. However, this system suffers from other

issues. The anionic vertical binding energy curve was not smooth in the region of

the adsorption minimum. Varying the MP k-point grid density (k ∈ {6, 8, 12} in a

k × k × 1 grid), surface coverage (p(3 × 3) and p(4 × 4) unit cells), Fermi-surface

smearing (0.1 and 0.15 eV) did not result in a less jagged adsorption minimum.
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Figure 4.6: Vertical binding energy curves of CO on a Au(111) surface. DFT ground

state (green), Ψle-∆SCF neutral (blue) and anionic (red) diabats.

The neutral diabat also shows unphysical behaviour. As the molecule ap-

proaches the surface, the neutral diabat exactly follows the ground-state energy

until ∼1.7 Å where the neutral energy is ∼0.015 eV above the ground-state energy

and hits a strong repulsive wall at 1.45 Å. At large ZAu−C, it is correct that the

neutral and ground-state energies should be identical, since in the absence of the

influence of the surface the ground state of the molecule is the neutral state. How-

ever, charge analysis using MODOS, Eqn (4.7), shows that at ZAu−C < 4.5 Å the

molecule has picked up charge from the surface, meaning that enforcing that the

molecule should remain neutral must incur an energy penalty and the neutral and

ground-state energies must be different. In the range that the neutral curve does

start to deviate from the ground-state energy 1.45–1.70 Å, the ground-state molecule

has gained 1.98–2.00 electrons from the surface according to MODOS analysis. To

remove this much charge from the molecule should cause much more than 0.015 eV

energy difference. This is an indication that the molecule may not be in a truly

neutral charge state.
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Figure 4.7: Net charge of the CO molecule, relative to neutral CO as a function of

distance between molecule (C atom) and the top layer of the Au(111) slab, using

MODOS charge analysis.

It was clear at this point that there are severe limitations in how the Ψle-

∆SCF method can be applied to these systems. With the SCF convergence issues

being an important limitation, a series of test calculations were applied to a set of

molecular species with different bonding and chemical character to investigate which

systems might be prone to SCF convergence issues. Anionic calculations were ap-

plied to the following species: H2, CO, NO, CO2, ethane, benzene, pyrole, pyridine,

cyclohexane and azobenzene at heights of 2.5, 5.0 and 8.0 Å above a Au(111) sur-

face. The CASTEP default density mixing settings were used throughout: β = 0.8,

hmax = 7 and Gmax = 1.5Å
−1

. The results are shown in Table 4.3.1 where the

green cells indicate calculations that converged within 200 SCF steps and red for

calculations that did not converge. In all cases of failed convergence, the trend of

convergence parameters do not indicate that more SCF steps would increase the

probability of convergence, as can be seen in Figure 4.5. The qualitative trends

are that the convergence of diatomic species is highly geometry dependent; for non-

conjugated molecules convergence is very difficult; and that conjugated molecules

readily converge without issue. This is consistent with behaviour reported by Mau-
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rer and Reuter [17, 98].

Table 4.1: Table indicating success (green) or failure (red) of anionic Ψle-∆SCF

calculations.

The polarizability of LUMO orbitals in conjugated species may mean that

there is more variational freedom in charge transfer state calculations compared

to fully sigma bonded species. However, this would need to be investigated more

systematically to draw strong conclusions beyond the qualitative trend.

Having found such extensive convergence issues with Ψle-∆SCF as well as

unphysical behaviour for the CO/Au(111) diabats, attention turned to ρle-∆SCF.

The same test set of molecular species were tested for convergence using the ρle-

∆SCF method, as implemented in GPAW 20.1.0, and all systems converged in under

60 SCF steps. This led to a shifting of focus with respect to modelling the CO/NO

systems using ρle-∆SCF.

4.3.2 ρle-∆SCF results

As with the Ψle-∆SCF work, the first task was to construct vertical binding energy

curves. Equivalent p(3 × 3) NO on Au(111) geometries as those used in Ψle-∆SCF

calculations were used in conjunction with the projector augmented wave electronic

structure package GPAW 20.1 [83, 90], using a real-space finite difference basis set

with grid-spacing of 0.2 Å, RPBE functional, 8×8×1 Monkhurst-Pack k-point grid

[94, 99].

Before any excited state calculations can be carried out, good quality ground-

state solutions must be obtained in order to allow the MODOS analysis that defines

constraints in ρle-∆SCF. Far from the surface the NO molecule in the ground state

should have doublet character, i.e., one unpaired spin as shown in Figure 4.3. How

the energies of the spin states might change if the molecule were to approach the

surface is not so clear. For this reason, three ground state vertical binding energy

curves were constructed, one with unrestricted spin, another with a net magnetic

moment of 0.0 (singlet) and one with magnetic moment of 1.0 (doublet). These

three curves are shown in Figure 4.8. Far from the surface the doublet energy is

indeed lower than the other two solutions, by around 0.2 eV, and remains lower in

energy for most geometries as the molecule approaches the surface until ZAu−N <
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2.2Å. However, the doublet energies at ZAu−N = 4.0, 4.5 and 5.0 Å are significantly

higher than even the singlet and unrestricted energies. The source of this behaviour

stems from the way in which the spin constraints are fulfilled. Ground-state DFT

calculations only allow restriction of the net spin of the full system, rather than to

specific atoms or molecules. This means the SCF procedure will tend towards one

of two solutions. The first matches the physics we seek to capture, where the excess

unpaired spin density is primarily associated with the molecule; the other solution

puts the excess spin density onto the surface. This can be seen in Figure 4.8, where

the projected atomic magnetic moments of the sub systems (molecule and slab) are

plotted. The geometries where the doublet energy jumps up above the singlet in

the top panel of Figure 4.8 are the same ones in which the sign of the net magnetic

moments associated with the molecule and surface change sign in the bottom panel

of Figure 4.8. Attempts were made to force the SCF optimisation towards the

desired solution in three different ways. Firstly, the calculations were initialised

with the local atomic magnetic moments set so the molecule had the correct spin

state. Secondly, by sampling different density mixing amplitude coefficients (β)

and finally by using the converged density of a calculation in a similar geometry

which had converged to the desired spin solution as the initial input density. All

these attempts were unsuccessful and there appears to be no way to enforce the

correct molecular spin character. Defining meaningful constraints for ρle-∆SCF is

impossible for those points where the excess spin density is associated with the

surface because the constraints are based on MODOS analysis and MODOS charges

would carry over the incorrect spin character.
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Figure 4.8: Top panel: Vertical binding energy curves of NO above the bridge site

of an Au(111) surface for three spin constraints: singlet (orange), doublet (purple)

and unrestricted spin (green). Bottom panel: Sum of projected atomic magnetic

moments for NO molecule (red) and Au(111) slab (black) for the doublet restricted

calculations. The spike in the doublet energy corresponds to instances where the

doublet constraint of the full system is enforced by placing the excess spin density

primarily on the surface and not the molecule (an inversion of the intended solution)

The ground-state calculations for the CO on Au(111) system are much sim-

pler, since the CO molecule has a singlet ground state and any issues with spin

restrictions only apply in the anionic state. Figure 4.9 shows vertical binding en-

ergy curves for CO in an upright orientation above the HCP site of a p(2 × 2)

68



Au(111) slab, with C facing towards the surface, calculated using GPAW 20.1 [83],

with a real-space finite difference basis set with grid-spacing of 0.2 Å, PBE func-

tional and 4 × 4 × 1 Monkhorst-Pack k-point grid [95, 99]. The diabatic states are

modelled using ρle-∆SCF and the constraints are defined according to the differ-

ence between ground-state MODOS charges and desired charge state, as described

above in Section 4.1. All three curves are smooth and display qualitatively correct

physics. However, similarly to the Ψle-∆SCF calculations, the anionic state could

not be converged beyond 3.0 Å from the surface.

Figure 4.9: Vertical binding energy curves of CO in an upright orientation above a

top site of a p(2× 2) Au(111) slab. Anionic (red) and neutral (blue) diabatic states

are modeled using ρle-∆SCF.

With spin being such a significant obstacle to constructing meaningful po-

tentials, it was decided that simplifying the model by removing spin polarisation

entirely may be the best route towards progress. Figure 4.10 shows energies of the

DFT ground state, neutral diabat and anionic diabat as a CO molecule is vertically

displaced above a top site of a p(2 × 2) Au(111) slab using the same settings as in

Figure 4.9 but with spin polarisation switched off.
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Figure 4.10: Non-spin polarised vertical binding energy curves of CO in an upright

orientation above a top site of a p(2× 2) Au(111) slab. Diabatic states are modeled

using ρle-∆SCF.

All non-spin polarised ρle-∆SCF calculations converged without issue and

the resulting curves are smooth and display qualitatively correct physics, i.e., upon

approaching the surface the neutral curve exactly matches the ground state until

the molecule picks up charge in the ground state, where the neutral curves becomes

repulsive. This is expected as transferring charge to the molecule lowers the energy of

the system and the neutral diabat does not allow this stabilisation. Additionally the

anionic curve is around 2.5 eV above the ground state far from the surface, where a

neutral CO molecule should be far more stable. As the anionic molecule approaches

the surface the energy is lowered, due to the image charge stabilisation (ICS) effect,

until very close to the surface where steric repulsion overcomes ICS, resulting in an

adsorption minimum. However, the excitation energy, Eanion−Eneutral, far from the

surface is too low (discussed in more detail in Chapter 5).

Ultimately, these calculations were aimed at finding parameters and con-

straint sets that will facilitate the construction of PESs that can then be used to

perform NAD simulations. As only the non-spin polarised system could produce
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reliable convergence and qualitatively correct physics, this is the model that was

used to construct PESs that are described in detail in the next chapter.

4.4 Conclusion

The goals of this chapter have been to describe the two implementations of le-∆SCF:

ρle-∆SCF and Ψle-∆SCF and assess their suitability for constructing diabatic PESs

for systems relevant to nonadiabatic molecular scattering at metal surfaces: CO and

NO on Au(111). While both implementations can produce energies of the anionic

and neutral diabats, the SCF convergence issues severely limit their applicability

to the construction of large PESs because convergence behaviour is highly geom-

etry dependent. Ψle-∆SCF calculations in particular are very difficult to reliably

converge. Simple 1D vertical binding energy curves using Ψle-∆SCF could not be

completed for either NO-Au(111) or CO-Au(111) because of difficulty converging

anionic calculations for the former and neutral calculations for the latter.

An investigation into SCF convergence behaviours across a set of different

molecular species on Au(111) surfaces using Ψle-∆SCF produced a qualitative trend

that conjugated species converge far more readily than sigma bonded species, such

as ethane or cyclohexane. In smaller (2-3 atom) species, convergence behaviour is

highly geometry dependent, as noted above in the CO and NO cases.

ρle-∆SCF was shown to have far less SCF convergence issues than Ψle-∆SCF.

However, difficulty in enforcing the correct spin state meant it was not possible

to construct meaningful spin polarised PESs using the method. A simpler model

using ρle-∆SCF, excluding spin polarisation, was able to reliably produce smooth

and qualitatively correct PESs for CO-Au(111) without any significant convergence

issues.

As a result of the limitations described above, the construction of PES

throughout the remainder of this thesis will use a non-spin polarised ρle-∆SCF

model and the molecular species will be limited to CO.
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Chapter 5

Potential Energy Surfaces

There is a deep desire to understand the non-adiabatic effects that are known to

occur during some molecular scattering events at metal surfaces. An important

avenue towards that goal is to perform nonadiabatic molecular dynamics (NAMD)

simulations and observe trends and compare to experiment. In order to obtain

the most accurate results possible from NAMD simulations and evaluate how well

various methods, such as IESH, are able to capture experimentally observed physics,

high quality PESs must first be generated upon which the dynamics will unfold.

This chapter will describe and discuss PESs of two chemical systems that

have been used in molecular beam scattering experiments to study nonadiabatic

dynamics, namely CO on Au(111) and CO on Ag(111). These two systems have

been chosen on the basis of two factors: first, there is high quality experimental data

that shows nonadiabatic energy transfer occurs during molecular beam scattering

experiments. Secondly, the le-∆SCF methodology allows for the reliable construc-

tion of PESs over a wide range of geometries, as discussed in the previous chapter.

5.1 Methodology

All results shown in this chapter used the ρle-∆SCF formalism implemented in the

projector-augmented-wave electronic structure package GPAW [90], using a real-

space grid basis set with a grid spacing of 0.2 Å, an 8×8×1 Monkhorst-Pack k-point

grid and the RPBE XC functional [94]. Au(111) and Ag(111) optimised lattice

constants were calculated to be 4.154 and 4.116 Å, respectively. Each metal surface

was modelled using a p(3× 3) 4-layer slab and 36 Å of vacuum. The top two layers

were relaxed using the BFGS algorithm implemented in ASE, while the bottom two

layers were fixed in their bulk positions. The unit cells were periodic in x and y
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but non-periodic in z. A dipole correction was applied along the z coordinate. 500

non-spin polarised bands were included in each full system single point calculation.

For each geometry, two single point ground-state DFT calculations were car-

ried out in order to define the constraints of the ρle-∆SCF calculation. The first

is a standard DFT ground-state calculation of the full system (i.e., molecule and

metal surface). The second is a ‘gas phase’ calculation of the molecule in the same

position in the unit cell as it is in the full system, but with metal atoms removed.

This ‘gas phase’ system is more accurately described as a free standing molecular

over-layer (FSMO). This is because to accurately model a gas phase molecule, one

would typically use non-periodic boundary conditions and only a single k-point .

However, in order to perform MODOS analysis and also to construct a resonance

orbital, the unit cell, PBC and k-point sampling of the full system must be retained.

Therefore, what is being modeled in a FSMO calculation is an infinite 2D periodic

array of free standing molecules, rather than a single molecule in isolation. The full-

system wavefunction, denoted |Ψi⟩, and the FSMO wavefunction, denoted |ϕj⟩, are

used to perform MODOS analysis according to Eqn (4.5) to obtain Pj(E) for each

|ϕj⟩. Integrating Pj(E) up to EF returns the MODOS occupation, which is a value

between 0 and 1, with 0 indicating the state is fully unoccupied and 1 indicating a

fully occupied state. In the previous chapter, the quantity returned upon integra-

tion was referred to as a MODOS charge (qj). This is valid if |ϕj⟩ is spin polarised

because a fully occupied state contains exactly one electron and so the terms occu-

pation and charge can be used interchangeably, provided it is understood that any

charges that are being counted are referring to negative charges. However, if |ϕj⟩ is

a spatial orbital, a MODOS occupation of 1.0 corresponds to two electrons. All the

calculations discussed in this chapter are non-spin polarised and so any MODOS

occupation can be converted to a MODOS charge by dividing by two.

Figure 5.1 shows a simple graphical representation of the MOs of a neutral

CO molecule. It shows that the HOMO is fully occupied and that the LUMO is

degenerate. This degeneracy is important because it means any constraints applied

to the LUMO are shared equally between the two orbitals. For example, adding one

electron to the LUMO would correspond to adding half an electron to each orbital.
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Figure 5.1: A graphical representation of the molecular orbitals of a neutral CO

molecule. The HOMO (state 5) is fully occupied. The LUMO consists of two

degenerate states (6 and 7). (Note: MOs made from the 1s orbitals of C and O have

been excluded, meaning state 1 corresponds to the third lowest eigenstate of a real

CO molecule).

Neutral and anionic diabats were modeled by performing ρle-∆SCF calcu-

lations in which the net charge on the molecule is constrained to be 0.0 (neutral)

or -1.0 (anion) relative to a neutral CO molecule. This was performed by first in-

tegrating the MODOS of each |ϕj⟩ separately, to obtain the charge qj of |ϕj⟩, and

then comparing the set of occupations to the idealised occupations in the charge

state of interest. The resonance orbitals (
∣∣∣Ψc

j

〉
) used in the ρle-∆SCF calculations

correspond to all |ϕj⟩ that have occupations different to the idealised occupations

(excluding unbound states) and the constraints are the difference between the ideal

and the observed ground-state MODOS occupations for each |ϕj⟩, in order to correct

from the ground state to the charge state of interest. An illustrative example of this

is shown in Figure 5.2 below, where 4 resonance orbitals are required to model both

anion and neutral diabats. In both cases, |Ψc
5⟩ needs a constraint to add a small

charge to take the occupation to 1.0 and |Ψc
8⟩ needs a constraint to remove charge

and return the occupation to 0.0. Two more constraints are required to increase the

occupations of |Ψc
6⟩ and |Ψc

7⟩ to 0.25 (anion) or decrease to 0.00 (neutral). All lower
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states match the desired charge occupation and all higher lying states are unbound.

Figure 5.2: An illustrative example of MODOS occupations of an idealised neutral

(blue) and anionic (red) CO molecule interacting with a metal surface. The green

bars represent the occupations derived by performing MODOS analysis on DFT

ground-state wavefunctions, where state 5 is the HOMO and states 6 and 7 are the

degenerate LUMO (see Figure 5.1).

All calculations were performed using ARCHER2, UK National Supercom-

puting Service, using 4 nodes with 128 cores per node. Four calculations were run

for each system geometry and the average computational costs were: full-system

gound-state = 271.8 CPUh, FSMO ground-state = 5.7 CPUh, full-system anion

354.4 CPUh and full-system neutral 312.0 CPUh. A step-by-step guide to perform-

ing the ρle-∆SCF calculations that produced the results shown in the remainder of

this chapter, including example scripts is included in Appendix A.
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5.2 1D Potential energy curves

In the following section, 1D slices of the PES for diabatic and adiabatic states

for CO on Au(111) and CO on Ag(111) are described as a function of various

degrees of freedom. However, the during the development of a reliably convergeable

methodology for producing diabatic curves, established in Chapter 4, both p(2× 2)

and p(3×3) were used. For the construction of meaningful PESs, that are presented

in this chapter, it is essential to first establish whether either of these system sizes

if sufficiently large in x and y to exclude lateral interactions between molecules in

neighbouring unit cells. Figure 5.3 shows band structure diagrams for CO FSMOs

using both p(2 × 2) and p(3 × 3) unit cells. An isolated molecule should produce

flat bands and curvature of bands indicates there are significant lateral interactions

between neighbouring unit cells. The two LUMO states should be degenerate. This

is the case for p(3 × 3) (lines in Figure 5.3 overlap), but not for p(2 × 2) where the

bands are neither flat or degenerate. Therefore, a p(2×2) unit cell is too small. The

LUMO+1 band is significantly curved in both cases. However, even in a p(6 × 6)

unit cell where the The LUMO+1 band is much closer to flat (90 meV bandwidth),

the state is so weakly bound that the orbital will be highly diffuse and applying

constraints to the state will not constrain charge locally on the molecule. Therefore

the best option is to only apply constraints to the LUMO and lower states; meaning

a p(3 × 3) unit cell is sufficiently large to produce sensible binding curves and for

this reason was used for all ρle-∆SCF data presented in the remainder of this thesis.
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Figure 5.3: Band structure diagrams for a single CO molecule in a p(2 × 2) (top)

and p(3 × 3) (bottom) unit cell.
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The remainder of this section presents and discusses 1D PES slices for dia-

batic and adiabatic states for CO on Au(111) and CO on Ag(111). Firstly, vertical

displacement curves of the molecule fixed at the gas phase equilibrium bond length

of 1.14 Å, above either a top site or HCP hollow site, are discussed. In each plot

the molecule is held in one of three different orientations relative to the surface:

parallel to the surface normal with C closest to the surface (upright); orthogonal to

the surface normal (flat); and parallel to the surface normal with the O atom clos-

est to the surface (upside down). The ground-state energies were calculated using

KS-DFT and the anionic and neutral diabats were calculated using ρle-∆SCF. The

diabatic coupling (Vc) was calculated according to Eqn (5.1). The adiabatic excited

state was not explicitly calculated using DFT but rather by diagonalising a 2 × 2

Hamiltonian as shown in Eqn (5.2).

Vc =
√

(Eneu − Egs) + (Ean − Egs). (5.1)

Ha =

(
Eneu Vc

Vc Ean

)
. (5.2)
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Figure 5.4: Vertical binding energy curves of a CO with rC−O fixed at the gas

phase equilibrium value of 1.14 Å over a frozen, bulk truncated, metal surface. The

molecular axis is orthogonal to the surface plane with C atom closest to the surface,

i.e., the ‘upright’ orientation. Panel A shows the molecule above a top site of

Ag(111), panel B above a top site of Au(111), panel C above a HCP site of Ag(111)

and panel D above a HCP site of Au(111).

The top site is the more energetically favourable of the two adsorption sites in

the ground state for both surfaces, with binding energies of −0.13 and −0.24 eV for

Ag(111) and Au(111), respectively, compared to −0.10 and −0.19 eV for the HCP

sites. In the case of adsorption at the HCP site on Au(111), the chemisorption well

is clearly defined but is higher in energy than the fully desorbed molecule. There is

a physisorption well further from the surface, which is the most favourable geometry

sampled for the HCP-Au(111) system. For the HCP site on Ag(111), there are also

both chemisorption and physisorption wells, but the chemisorption well is the lower

in energy of the two. This is consistent with evidence from literature, where Ag(111)

is known to interact more strongly with most adsorbates [100, 101]. The adiabatic

excited state, which corresponds to the molecule having one more electron than in

the ground state, including any charge the molecule picks up from the surface upon

adsorption in the ground state, possesses a deep minimum in all four systems in
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Figure 5.4. This is expected for a charged species approaching a metal surface, due

to the image charge stabilisation effect, wherein the electron density of the surface

rearranges to form a partial positive charge that compensates the negative charge

of the approaching molecule. The location of the adiabatic excited state minima

is fairly consistent across all four systems, occurring at 2.2–2.5 Å from the surface.

This is also consistent with the stabilisation being mainly due to the image charge

effect.

Similarly, the anionic diabat also sees a deep minimum in all four systems,

which can be largely attributed to the image charge effect, since the well cannot

be due to an exchange of charge with the surface as in the ground state. The

anionic diabats are the only states in Figure 5.4 that are not entirely smooth, as

they have a sharp turning point at the minima. The reason for this behaviour,

and the locations of the minima, are that the MODOS analysis of the ground-state

wavefunctions, which defines the le-∆SCF constraints, sees the molecule pick up

more than one full electron close to the surface. As the anionic diabat is defined

as the molecule having a charge of exactly −1.0 at all times, when approaching

the surface, there comes a point where the constraints switch from adding charge

to removing charge from the molecule. This inevitably means there is a height at

which the anionic diabat touches the ground-state curve because the constraints are

zero and this ultimately determines the position and shape of the minima. The

neutral diabats, in contrast, are always repulsive. This is expected as the molecule

exchanges charge with the surface, in the ground state, to stabilise the interaction,

but the neutral diabat enforces that no charge may be exchanged and so there is

no stabilisation. The general behaviour is very similar between all four systems.

The onset of the repulsion in the neutral diabats is always around 4 Å from the

surface, but the rate at which it increases is slightly different for the two adsorption

sites, with the top site curves rising more rapidly. The reason for this is that the

molecule approaches directly over a metal atom in the top site and the energetic

cost of moving the density away from the molecule and therefore also away from the

metal atom is greater than in the case of the HCP site, were density is primarily

removed from the space in between metal atoms. The neutral diabats are very

similar between the two metal surfaces and the adsorption site plays a bigger role

in determining the energetic profile of the curve than the type of the metal. The

distance from the surface at which the diabats cross is very similar for both surfaces

and at both adsorption sites, at 2.4–2.5 Å. This represents an area of high coupling

and the coupling reduces as the molecule moves closer to the surface, before rising

again steeply upon close approach to the surface. As will be seen below, the upright
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orientation is consistently the most energetically favourable, which matches previous

models of CO adsorption on Ag(111) and Au(111) surfaces [102, 103]. A feature

which does not match physical considerations and is present in all four systems

is that the differences between the ground and excited adiabatic states (Eex) at

distances far from the surface are too small; the nature and cause of this error is

discussed in detail in Section 5.3 below.

Figure 5.5: Vertical binding energy curves of a CO with rC−O fixed at the gas

phase equilibrium value of 1.14 Å over a frozen, bulk truncated, metal surface. The

molecular axis is parallel to the surface plane in the ‘flat’ orientation. Panel A shows

the molecule above a top site of Ag(111), panel B above a top site of Au(111), panel

C above a HCP site of Ag(111) and panel D above a HCP site of Au(111).

Figure 5.5 shows equivalent data as Figure 5.4 but with the molecule in

the flat orientation. The adiabatic ground-state curves show the most dramatic

change in behaviour as all chemisorption wells have been removed and the curves are

repulsive further from the surface compared to the upright orientation. The diabatic

anion wells are shallower and further form the surface in the flat orientation. This

is partly because the MODOS charges on the molecule associated with the ground-

state curves do not exceed 1.0 at the same geometries as for the upright orientation

and so there is no touching of the ground-state curve, as described above, until

81



around 1.4–1.7 Å where the the ground-state and all other curves have already hit

the Pauli repulsion wall. Another reason for the shallower wells in the diabatic anion

and adiabatic excited state curves is that, with the molecule parallel to the surface

plane, any repulsion due to overlap of molecule and metal densities occurs over a

larger surface area along the surface plane. This larger overlap also explains why

the neutral curve rises more steeply in the flat orientation compared to upright. The

ZAu−C at which the crossing of the two diabats occurs is retained from the upright

curves; however, they sit at around 0.4 eV higher in energy. The higher energy curves

of the flat orientation qualitatively match the experimental observation that there

are dynamical steering forces that reorient molecules to display a higher likelihood

of impacting the surface in the most energetically favorable orientation (C atom first

in this case) when gas phase molecules are scattered from the surface [71].

Figure 5.6: Vertical binding energy curves of a CO with rC−O fixed at the gas

phase equilibrium value of 1.14 Å over a frozen, bulk truncated, metal surface. The

molecular axis is orthogonal to the surface plane with O atom closest to the surface,

i.e., the ‘upside down’ orientation. Panel A shows the molecule above a top site of

Ag(111), panel B above a top site of Au(111), panel C above a HCP site of Ag(111)

and panel D above a HCP site of Au(111).

The final set of vertical binding energy curves, in Figure 5.6, show the

82



molecule in the upside-down orientation, i.e., with the O atom closest to the surface.

This is clearly significantly less favourable than the previous two orientations. The

ground-state and neutral curves are very closely aligned and the same is true for

the anionic diabat with the adiabatic excited state. The reason for this is that the

molecule in the ground state exchanges very little charge with the surface. The lack

of charge transfer qualitatively matches experimental evidence that significantly

less vibrational (de)excitation is seen in state-to-state molecular beam scattering

experiments when CO (or NO) molecules are forced to impact the surface O first,

since the auto-detachment mechanism relies on efficient charge transfer [71]. It also

further supports the claim that this model captures the dynamical steering force

experienced by molecules approaching the surface.

Figure 5.7: Binding energy as a function of molecule surface angle θ of CO relative

to the surface normal, with the upright orientation corresponding to 0o. rC−O is

fixed at the gas phase equilibrium value of 1.14 Å over a frozen, bulk truncated,

metal surface. Panel A shows the molecule above a topsite of Ag(111), panel B

above a top site of Au(111), panel C above a HCP site of Ag(111) and panel D

above a HCP site of Au(111).

The DOF in Figure 5.7 is the molecular angle relative to the surface normal

(θ), with 0o corresponding to the upright geometry. The molecule is positioned
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at its equilibrium adsorption height in the ground state, 2.20 Å for top sites and

1.55 and 2.0 Å for HCP sites on Au(111) and Ag(111), respectively. The molecule is

then rotated around its centre of position and the energy is sampled in 10o intervals,

where the plane of rotation is such that, for HCP curve, 90o has O atom over top-

site and C over bridge site and 270o has the opposite. For the top site curve, 90o

has the O atom over a FCC hollow-site and C over a HCP hollow-site. The systems

appear largely similar except the HCP-Au(111) case, where the shorter distance

between molecule and surface causes increased repulsion. As expected from the

vertical binding energy analysis above, the adiabatic ground state is at a minimum

at θ = 0o and smoothly transitions to a maximum at 180o. The anionic diabats

and the adiabatic excited states follow a similar trend to the ground state albeit at

higher energies. However there is a slight deviation for the Ag(111) surfaces where

there is a slight reduction in energy at 180o. The other very obvious difference is

the HCP-Au(111) case where the upright geometry shows maxima for the diabatic

anion and adiabatic excited state and the minima are instead shifted to a tilted

geometry. This is likely due to a balance being struck between factors: firstly,

the upright orientation is the most favourable geometry at larger separations and

secondly there is increased steric repulsion experienced by a molecule so close to a

surface.

The neutral diabats show maxima at the upright orientations, as expected

from examination of the vertical binding energy curves. However, θ = 180o does

not show a minimum, but a second maximum. The neutral rotational minima are

at 100o and 260o, which is close to the flat geometry. This is because it minimises

the overlap of the molecule and metal density and therefore repulsion. The reason

the minima are not exactly at the flat geometry is that this would cause a repulsive

interaction between molecule and metal over two metal sites, a top site and a bridge

site. By tilting the molecule slightly the overall repulsive interaction is reduced. It

is consistently the C end of the molecule that is rotated away from the surface to

obtain the neutral minima, whether C is over the top site or the bridge site. This

is somewhat unexpected as there is greater total electron density at the O end of

the molecule in the gas phase. A likely explanation is that the lobes of molecular

LUMO are larger on the C end of the molecule and therefore LUMO overlap with

the surface is higher, and charge transfer greater, when C is closer to the surface.

Since the neutral diabat does not allow charge transfer, having the C end closer to

the surface would be more energetically costly in a neutral state.

The anionic curves are all similar except the HCP site on Au(111). This

is due to the equilibrium adsorption height about which the molecule is rotated
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being closer to the surface. The close proximity to the surface means that a balance

is struck between reducing steric repulsion and facilitating good overlap between

the molecular LUMO and the orbitals of the metal, resulting in the minima at 50o

(equivalently at 310o). In the other three systems, the minima are at 0o and the

energy smoothly increases as the molecule is tilted.

Figure 5.8: Binding energy as a function of rC−O with the C atom fixed in the same

position, in the equilibrium adsorption geometry for rC−O = 1.14 Å, over a frozen

metal surface. Panel A shows the molecule above a top site of Ag(111), panel B

shows the molecule above a top site of Au(111).

In the final set of 1D curves, Figure 5.8 the DOF sampled in the C-O bond

length. The C atom is held fixed at 2.0 Å above top site of the Ag(111) and Au(111)

surfaces, while the O atom is displaced along the bond axis, stretching and com-

pressing the C-O bond. The bond stretch curves, in contrast to the previous degrees

of freedom sampled, produce qualitatively incorrect results. The explanations of the

auto-detachment mechanism given in literature invoke the crossing of neutral and

anionic diabats when the C-O bond is stretched and compressed, with the anion

being more stable at large bond-lengths and the neutral more stable under com-

pression [67]. The results in Figure 5.8 do show a crossing, and the anionic state is

slightly lower in energy at extended bond lengths; however, the anion also appears

to be significantly lower in energy when the bond is compressed, which is the op-

posite of the expected behaviour. In addition, when rC−O is sampled at any other

fixed distance from the surface, the neutral and anionic diabats do not cross at all.

Close to the surface the anion is more stable at all values of rC−O and far from the

surface the neutral is more stable. The ordering of the diabatic states is primarily

controlled by ZAu−C. The lack of dependence on rC−O is likely due to the resonance

orbitals to which the charge constraints are applied. Resonance orbitals are based

on the FSMO orbitals and so their shape and size is independent of the proximity of
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the molecule to the surface. The FSMO orbitals are quite diffuse, especially at short

bond lengths where the LUMO becomes weakly bound. To model the neutral state,

when the molecule is close to the surface, density must be removed from where it

would otherwise reside in the adiabatic ground state, i.e., around the metal atoms.

The energy penalty for carving out this density is greater than for adding additional

density to this region and so the anionic state appears more stable. Using a more

spatially confined reference orbital to construct the resonance orbitals would likely

move this model towards more physically accurate predictions of rC−O dependence

close to the surface. Alternatively, using reference orbitals that respond to the pres-

ence of the metal surface, without causing the hybridisation of states seen in the full

system, perhaps by applying an artificial potential to the FSMO model, may also

aid in solving the problem. As a more short term fix, it may be beneficial to experi-

ment with alternative XC functionals to select one which does not cause the LUMO

to become more weakly bound, and therefore more diffuse when the bond is com-

pressed. The outlook section of this thesis discusses these potential modifications in

more detail.

Overall, the quality of the ρle-∆SCF PES based on the 1D cuts is good and

most trends are correct, and all states vary smoothly, which is important for the

prospect of applying dynamics and machine learning to these models. However,

there are two major issues. 1. The energy difference between ground and excited

state PESs is too small, meaning that any dynamics based on these surfaces would

likely see too much surface hopping. 2. The neutral and anionic diabats do not

cross when bond length is varied near the surface, which does not match expectations

based on considerations of the auto-detachment mechanism. The diabats do however

cross when the distance from the surface is varied, meaning surface hopping will

likely be observed during scattering dynamics.

The nature and origins of these flaws are described in the following section

via the analysis of a 2D PES and a function for molecule-surface separation and

C-O bond length.

5.3 2D PES

2D PESs were constructed for both the CO-Au(111) and CO-Ag(111) systems, with

CO in the upright orientation above a top site, by scanning through a 2D grid of

geometries as a function of rC−O and ZAu−C. Figure 5.9 shows contour plots for the

CO-Au(111) (right) and CO-Ag(111) (left) systems in adiabatic ground and excited

states.
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Figure 5.9: 2D Binding energy PES as a function of rC−O and ZAu−C for CO-

Ag(111) (left) and CO-Au(111) (right) in the adiabatic ground state (top) and

adiabatic excited state (bottom). Gridlines indicate the parts of each PES that

were explicitly calculated, where an intersection of two grid lines corresponds to a

sampled data point.

The adiabatic surfaces for the Ag(111) and Au(111) systems are very similar.

The Ag(111) surfaces produce slightly steeper minima in both states and extends

further from the surface in the excited state compared to Au(111). The locations of

the minima are also very similar between the two systems, with both ground-state

surfaces having a minimum at ZM−C = 2.2 Å and rC−O = 1.14 Å. In the excited

state, the minima are shifted away from the surface and both lie at ZM−C = 2.4 Å.

The length of rC−O for the excited state minima is slightly less clear. Within the

data points sampled during construction of the 2D PES, for the Au(111) system the

minimum is at rC−O = 1.14 Å, which is the same as the groundstate; however, for

Ag(111), where an additional 1D binding curve of data at rC−O = 1.16 Å has been

sampled, the minimum lies at 1.16 Å, approximately 30 meV lower than rC−O = 1.14

Å. In both cases, the next largest rC−O sampled is at 1.20 Å. In order to determine
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the precise value of rC−O of the excited state minima, much finer sampling of data

would be required. The additional sampling would be costly, while offering very little

in terms of improvement of the overall model and has therefore not been included

in this work. For clarity, it should be noted that the additional 1D binding curve

worth of data points at rC−O = 1.16 Å was only generated due to a typo in the script

used to create the full 2D PES and was not an intentional choice. All four PESs

in Figure 5.9 vary smoothly, which will be important if future works are to apply

this methodology with machine learning to construct larger and higher dimensional

models. The surfaces largely match physical expectations: in the ground states the

lowest energy rC−O are in the region of the gas phase equilibrium bond length for

CO of 1.14 Å. The energy rises steeply upon deviation from this bond length, with

compression causing a steeper rise in energy than extension. A steep repulsive wall

is seen in both states upon close approach to the surface. The excited state shows

stronger repulsion, which is expected for a negatively charged molecule approaching

a surface. The location and shape of the repulsive walls are very similar between

the two systems and do not depend strongly on the metal species.
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Figure 5.10: 2D Binding energy PES as a function of rC−O and ZAu−C for CO-

Ag(111) (left) and CO-Au(111) (right) systems in the neutral diabatic state (top)

and anionic diabatic state (bottom). Gridlines indicate the parts of each PES that

were explicitly calculated, where an intersection of two grid lines corresponds to a

sampled data point.

The neutral diabatic PESs also show similar typologies between the Ag(111)

and Au(111) systems. In the Au(111) system, as the molecule approaches the metal,

the neutral surface starts to become repulsive at a greater distance from the surface;

however, below ∼2 Å from the surface the two systems are almost identical. A

similar trend is seen for the anionic PESs, where the Ag(111) adsorption well is

slightly deeper and extends further from the surface, but close to the surface there

is very little difference.
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Figure 5.11: 2D diabatic coupling surface as a function of rC−O and ZAu−C for CO-

Ag(111) (left) and CO-Au(111) (right). Gridlines indicate the parts of each PES

that were explicitly calculated, where an intersection of two grid lines corresponds

to a sampled data point.

The diabatic coupling (Figure 5.11) covers a range from 0.0 eV to a maximum

of 2.69 and 2.49 eV for the Ag and Au systems, respectively. The areas of zero

coupling are far from the surface and at extended bond lengths. This is because

in these regions there is no exchange of charge between molecule and surface and

therefore the ground-state and neutral energies are identical. The same is true for

the anion and adiabatic excited state. Compressing the bond below 1.0 Å always

results in increased coupling. The regions of maximum diabatic coupling are at

small ZM−C with maxima at rC−O of 1.0 Å in both systems.

Both systems show a feature that is unphysical and may lead to inaccuracies

when using le-∆SCF based PESs for nonadiabatic dynamics: the difference between

the ground and excited adiabatic states (∆Eex) is too small. Consider the case in

which the molecule is far enough from the surface that there is no exchange of charge

with the surface. The energetic cost of moving from the ground state to the excited

state would be the sum of the cost of removing an electron from the surface to the

vacuum (i.e., the work function) Φsurf and the change in energy when attaching an

electron from vacuum to the neutral molecule, i.e., the electron affinity (Eaff). The

work functions were calculated by using the same slab model from the full system

calculations and are equal to the difference in energy between the Fermi level (EF)

and the averaged electrostatic potential far from the surface, and were found to be

5.04 eV for Au(111) and 4.26 eV for Ag(111). Eaff of CO could not be calculated

using GPAW, which had been used for all other calculations, because when the

charged molecule is placed in a unit cell, even a very large one, the ground-state
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LUMO becomes an unbound state. This means any anion energy would be highly

unphysical. For this reason an experimentally determined Eaff of 1.34 eV [104, 105]

was used in the determination of expected ∆Eex. In the absence of any charge

exchange between molecule and metal, the expected ∆Eex for Au(111) and Ag(111)

are 6.34 and 5.60 eV, respectively, however, in the ρle-∆SCF model at ZM−C = 8.0

Å and rC−O =1.14 Å ∆Eex is 3.01 and 2.09 eV for the Au(111) and Ag(111) systems

respectively. This is a very large underestimation and would have a dramatic effect

on any dynamics simulations that rely on these PESs. As an immediate, if only

partial, solution to this problem of underestimated ∆Eex, a rigid vertical shift was

applied to the anionic surfaces, such that ∆Eex at ZM−C = 8.0 Å and rC−O =1.14

Å matches the estimation based on the sum of Φsurf and Eaff . This, of course, does

not address any potential errors in the way the energy changes as ZM−C and rC−O

are varied from this single geometry, but using the shifted surfaces will still likely

result in more physically accurate surface hopping dynamics compared to the non-

shifted surfaces. The adiabatic ground state and the neutral diabatic state remain

unchanged; however, the diabatic coupling and the adiabatic excited state are both

calculated using the anionic energy and so will change significantly. Figure 5.12

shows the shifted anionic, adiabatic excited state and diabatic coupling PESs for

the Au(111) and Ag(111) models. All dynamics simulations in the next chapter are

performed on both shifted and non-shifted PESs and the results are compared.
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Figure 5.12: 2D shifted PESs with Ag(111) PESs on the left and Au(111) on the

right. Anionic (top row), adiabatic excited state (middle row), diabatic coupling

(bottom row). Gridlines indicate the parts of each PES that were explicitly calcu-

lated, where an intersection of two grid lines corresponds to a sampled data point.

∆Eex as a function of geometry in the different PES sets will have a direct

impact on the results of any nonadiabtic dynamics. This is because the magnitude

of ∆Eex directly affects the probability that an electron hopping event, in which

an electron from a bath state transfers to the molecule, will occur during a time-
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step of an IESH dynamics trajectory. 2D PES of ∆Eex are shown in Figure 5.13

for the shifted and non-shifted models. Both Ag(111) and Au(111) show a very

similar distribution of ∆Eex, indicating that they will likely produce very similar

dynamics results. It can also be seen that fewer hopping events will occur during

dynamical trajectories using the shifted surfaces, as opposed to the non-shifted

surfaces, because of the greater excitation energies.

Figure 5.13: ∆Eex (Ees - Egs) of non-shifted surfaces (top) and after shift is applied

(bottom). Ag(111) on the left and Au(111) on the right. Gridlines indicate the

parts of each PES that were explicitly calculated, where an intersection of two grid

lines corresponds to a sampled data point.

5.3.1 Constrained DFT

Disclaimer: The results presented in this subsection are based on outputs of a

machine learned model provided by collaborators Gang Meng and Bin Jiang working

at the University of Science and Technology of China. I had no involvement in the

creation of this model; however, I have used the outputs of the model to construct

potential energy surfaces.
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At the time of writing, in order to move beyond the simple electric field

method previously used by Tully and coworkers, there are only two viable methods

for accurately modelling the types of diabatic charge transfer PESs that are required

to simulate the type of charge transfer states at metal surfaces that are of central

interest in this work; and that are important for gaining a deep understanding of the

non-adiabatic processes that occur during molecular beam scattering experiments

[19]. Those two methods are le-∆SCF and constrained DFT (CDFT) [106]. Equiv-

alent PESs to those from le-∆SCF discussed in this chapter have been created using

a machine learned model based on CDFT data, so that a comprehensive comparison

of the two methods can be performed.

All CDFT derived energies and coupling presented here are the outputs of

a machine learning model produced by collaborators Gang Meng and Bin Jiang

at the University of Science and Technology of China [107]. Any reference to the

training data used to train the model will be referred to as CDFT data and any

outputs of the model will be referred to as ML-CDFT data. The CDFT training

data was produced using the CP2K electronic structure package [108] with a Gaus-

sian plane wave triple-zeta TZ2VP-MOLOPT-GHT basis set and Geodecker-Teter-

Hutter pseudopotentials using the vdW-DF xc functional [109]. All calculations

were non-spin polarised. The Au(111) surface was modelled using a 6× 6 super cell

with 4 metal layers, 25 Å of vacuum spacing and a single k-point centered at Γ. The

volumes to which the charge constraints were applied were based on Hirshfeld vol-

umes [110] and the charge was assessed using the Bader charge partitioning scheme

[111].

Parameter le-∆SCF CDFT

unit cell p(3 × 3) p(6 × 6)
K-grid 8 8 1 1 1 1

XC functional RPBE+vdWsurf vdW-DF
basis set tripple-zeta finite difference

ionic cores pseudopotential PAW
vacuum height 36 Å 25 Å

metal layers 4 4

Table 5.1: A comparison of parameters used in DFT ground-state and excited state
calculations associated with le-∆SCF and CDFT based models.
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Figure 5.14: 2D PESs of CO on Au(111) based on ML-CDFT energies: adiabatic

ground state (top left) adiabatic excited state (top right), diabatic neutral (mid-

dle left), diabatic anion (middle right) and diabatic coupling (bottom). Gridlines

indicate the parts of each PES that were extracted from the ML model, where an

intersection of two grid lines corresponds to a sampled data point.

The ground-state PES looks very similar to the one produced using GPAW.

This is expected because no excited state method has been applied, and any dif-

ferences are due to differences in the computational and numerical parameters, as

shown in Table 5.1. Several of the different parameters are due to the different soft-
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ware used. The CDFT implementation in CP2K is not parallelised over k-points,

and so only a single k-point can be sampled. To account for this a much larger unit

cell (p(6 × 6)) was used. This is not the case in GPAW where a smaller unit cell

(p(3×3)) and many k-points were used. The differences in basis sets and treatment

of ionic cores are also due to the different software because CP2K is a plane-wave

pseudopotential based software and GPAW is a real-space projector augmented wave

code.

Figure 5.15: 2D PESs of the difference between adiabatic excited state and anionic

diabat, referred to as the upper states (left) and neutral diabat and adiabatic ground-

state referred to as the lower states (right), for the CO on Au(111) ML-CDFT set of

PESs. Despite one being an adiabatic representation and the other being a diabatic

representation the upper states are highly similar to one another and the the same

is true for the pair of lower states

The diabatic anion and adiabatic excited state surfaces (upper surfaces) are

extremely similar to one another and the same is true for the diabatic neutral and

adiabatic ground-state (lower surfaces). For clarity, Figure 5.15 shows only the

differences between the upper surfaces (left) and the lower surfaces (right). The

key point to take from Figure 5.15 is that the similarities in the set of ML-CDFT

PESs are much greater than is the case for the le-∆SCF surfaces. This is because

the area of zero/low coupling in the ML-CDFT model covers much more of the

PES and the maximum coupling observed is only 1.43 eV, compared to 4.69 eV

for the shifted le-∆SCF model. By the definition of the diabatic coupling (Vc),

where the coupling is zero, the differences must also be zero, which is why the

difference plots in Figure 5.15 map almost perfectly onto the diabatic coupling in

Figure 5.14. The overall distribution of the diabatic coupling is also quite different

between the ML-CDFT and le-∆SCF models. In the ML-CDFT model the coupling
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is only high where both ZAu−C and rC−O are small. In contrast, the le-∆SCF model

predicts high coupling close to the surface, at ZAu−C below ∼3.0 Å regardless of

rC−O. the differences in coupling are likely to affect the hopping dynamics in any

IESH simulations. The small area of negative coupling around ZAu−C = 4–4.5 Å

and ZAu−C = 0.9 Å in the ML-CDFT coupling should not be possible based on

Eqn (5.1) and is an indication that the machine learned model that produced this

coupling might require additional training; however, it should not have a significant

impact on any dynamics simulations.

Figure 5.16: 2D PESs of adiabatic excitation energies for CO on Au(111) ML-

CDFT model (left). Difference in excitation energy between models: ML-CDFT -

(non-shifted) le-∆SCF (right).

Figure 5.16 compares ∆Eex between the ML-CDFT and le-∆SCF models.

The shifted le-∆SCF ∆Eex values are much more similar to those of ML-CDFT

than the non-shifted surface. The overall distribution of high and low areas of

∆Eex are broadly similar between the two methods. However, ML-CDFT shows

more dependence on rC−O, with the largest values of ∆Eex in either method seen

at compressed rC−O far from the surface. While le-∆SCF also sees relatively high

∆Eex in this region, the greater dependence on ZAu−C means the maximum of ∆Eex

is seen close to the surface and largely invariant to extension of rC−O. Since both

ZAu−C and rC−O should significantly affect the magnitude of excitation energy, it

is not immediately clear which of these models best captures the physics of the

real system. The only way to determine the superior model is to run nonadiabatic

dynamics simulations and compare the results to experimental results. This will be

the basis of the next chapter.
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Chapter 6

Dynamics

6.1 Introduction

This chapter will present and discuss results of nonadiabatic molecular dynamics

(NAMD) simulations. The 2D PESs presented in the previous chapter were used in

conjunction with the independent electron surface hopping (IESH) algorithm to sim-

ulate molecular scattering events of CO molecules impacting Au(111) and Ag(111)

surfaces. The initial vibrational state (νi) and the incident translational kinetic

energy (Ei) of the molecule were systematically varied to assess nonadiabatic vibra-

tional (de)excitation. The goal of these simulations was to assess the suitability of

the ρle-∆SCF and ML-CDFT methodologies of constructing PESs that, in combi-

nation with the IESH algorithm, can accurately capture the nonadiabatic physics

that occurs within these systems. The trajectories were initialised with the molecule

traveling toward the surface with a translational kinetic energy (Ei) between 0.2-1.2

eV. For each set of initial conditions, 1000 trajectories were simulated. A given

initial condition comprises of a value for νi and Ei.

6.2 Convergence tests

To enable meaningful conclusion to be drawn from any dynamics simulations, nu-

merical convergence testing must be performed. The key numerical settings that

must be chosen in order to produce meaningful results from IESH dynamics are the

time-step (dt) and the number of bath states. In principle an infinitesimally short

time step should be used to maximise accuracy, but real-world computations require

that dt is finite. Provided the dt used is only a fraction of the fastest dynamical

process unfolding during the dynamics, almost no information is lost and the results
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are reliable. Within IESH the fastest occurring process is the hopping of electrons

between states and so dt must be sufficiently small that all hopping events are cap-

tured; if two or more hops would be likely to occur during a single time-step then

dt is too large. The property that was converged as a function of decreasing dt was

the nonadiabatic contribution to the IESH energy (ENA):

ENA = EIESH(R, t, s) − EIESH(R, t, s0). (6.1)

ENA is the difference between the full IESH energy (EIESH(R, t, s)) and the IESH en-

ergy when s corresponds to the ground state (s0), i.e., when the Ne electrons occupy

the lowest Ne bath states. Eqn (6.2) shows the functional form of EIESH(R, t, s):

EIESH(R, t, s) = Tnuc(R) + Eneu(R) +
∑

k∈s(t)

λk(R). (6.2)

where λk(R) is the energy of the kth bath state and the sum runs over occupied

bath states.

For each dt ∈ {0.5, 0.2, 0.1} fs, 1000 IESH trajectories were calculated. Each

trajectory was initiated with ZM−C = 5.0 Å and 1.0 eV translational kinetic energy

(Ei) in the direction of the surface. At each time step, ENA was averaged over the

1000 trajectories and the results are shown in Figure 6.1.
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Figure 6.1: ENA averaged over 1000 trajectories for dt ∈ {0.5, 0.2, 0.1} fs. The

top left panel show results for all three values of dt without error bars because the

overlapping error bars would make the plot difficult to interpret. The other three

panels show a line for a single dt value with error bars showing standard deviation.

Each trajectory was initialised with Ei=1.0 eV, νi = 8 and the molecule 5.0 Å

above the surface. The PES set used was the shifted ρle-∆SCF CO-Au(111) model.

There is little difference between the dt values, indicating that dt=0.5 is already

well converged.

The time step is well converged at even the largest dt sampled, 0.5 fs. How-

ever, all results presented in the remainder of this thesis use a time step of 0.1 fs.

While this is not the most economic way of running calculations it a very well con-

verged parameter and results are reliable. The reason simulations were carried out

using dt = 0.1 fs is that a previous set of convergence tests, using an incorrectly

implemented version of the IESH code, had suggested dt was not well converged at

values larger than 0.1 fs; and dt was not changed when the code was corrected. All

dynamics results presented in this thesis use the correct implementation of IESH in

the updated NQCD.jl package.

The second parameter which requires convergence testing is the number of

bath states. In IESH simulations, nonadiabatic energy transfer is accounted for via
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electronic transitions (hops) between an impurity (molecular) state and a set of bath

states representing metal states. As described in Section 2.4, to make a practical

implementation of IESH theory, a continuum of metal states must be discretised

into a finite set of (bath) states. Increasing the number of bath states more closely

mimics the continuum and increases the accuracy of any dynamics simulations, but

also increases the computational cost. Similarly to the dt convergence tests, a series

of simulations were carried out using different numbers of bath states to find the

point at which adding more states no longer increases the average ENA. The set

of bath states in this work were discretised using the Gaussian quadrature scheme,

wherein there is a greater density of states around the Fermi level, as previous work

has shown that fewer bath states are required to reach numerical convergence than

if a set of evenly spaced states are used [49]. The convergence tests for dt were

repeated for the total number of bath states (Nb), but with dt fixed at 0.1 fs, νi=6

and Ei = 1.0 eV. The results are shown in Figure 6.2. The results are converged

at Nb = 150 bath states, therefore 150 bath states will be used in all subsequent

results presented in this chapter.
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Figure 6.2: ENA averaged over 1000 trajectories for Nb ∈ {20, 50, 100, 150, 200}.

The top left panel show results for all values of Nb without error bars because the

overlapping error bars would make the results difficult to interpret. The remaining

panels each show a single Nb value with error bars representing standard deviation.

The bath width was 7.0 eV in all cases. Each trajectory was initialised with Ei = 1.0

eV, νi = 6 and the molecule 5.0 Å above the surface. The PES set used was the

shifted ρle-∆SCF CO-Au(111) model. ENA is converged at Nb = 150.
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6.3 Methodology

All simulations were performed using the IESH implementation in the NQCDynam-

ics.jl package in the Julia programming language [57, 112]. All 2D PESs described

in the previous chapter were fitted using the spline2D function in the Dierckx.jl

package prior to being used for any dynamics simulations. Based on convergence

tests, the bath of metallic states was discretized using the Gaussian quadrature

scheme [113] and 150 states. The width of the bath was 7.0 eV in order to mimic

the s band of Au/Ag and is in line with previous work by Tully et al [18, 19]. Each

trajectory used a time step of 0.1 fs and simulated a maximum of 400 fs; however,

the simulation was truncated if ZAu−C of 8 Å was reached after scattering from

the surface. The initial bond length (rC−O) and bond velocity of the CO molecule,

for each trajectory, was sampled from a distribution created using the Einstein-

Brillouin-Keller quantization scheme (EBK) [114] and corresponding to the initial

vibrational state (νi) of choice. The results section that follows corresponds to anal-

ysis of a large set of dynamical trajectories that model CO scattering from Au(111)

or Ag(111). The trajectories vary in the initial conditions: νi ∈ {0, 2, 8, 12, 17} and

Ei ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2} eV. For each set of initial conditions, 1000 trajecto-

ries were simulated. The dynamic simulations were performed using all sets of PESs

described in the previous chapter: shifted and non-shifted ρle-∆SCF Au(111) and

Ag(111), and ML-CDFT Au(111). A set of 4 PESs (adiabatic ground and excited

state plus neutral and anionic diabatic states) will be referred to as a PES set. All

simulations were preformed using both IESH and classical AIMD. All trajectories

used dt = 0.1 fs and 150 bath states based on the results of the convergence tests.

The initial ZM−C was 5.0 Å. The initial rC−O and bond velocity were randomly

sampled from a distribution based on the appropriate νi generated using the EBK

method [114].

6.3.1 Error bars

For each set of initial conditions using a given dynamics method and PES set an

inelastic probability (Υ) is calculated as the proportion of the 1000 trajectories for

which νi ̸= νf . An error bar associated with each Υ had to be calculated. The

method for determining the standard deviation is as follows:

1. Divide the set of 1000 trajectories into the following smaller groups:

• 20 groups of 50 trajectories

• 10 groups of 100 trajectories
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• 5 groups of 200 trajectories

• 4 groups of 250 trajectories

2. calculate Υ for each group.

3. Calculate the variance over the groups of a given size

4. Shuffle the order of the initial 1000 trajectories and repeat steps 1–3 50 times,

recording the variances each time

5. Average the variance over the 50 shuffles

6. Plot inverse variance against group size

7. Use a linear regression to fit the inverse variance

8. Extrapolate the fit of inverse variance to a group size of 1000

9. Calculate the standard error from the extrapolated inverse variance

6.4 Trapping probabilities

The trapping probability (Ptrp) is the probability that a molecule will not escape

the surface during the course of a trajectory, after it has impacted the surface. In

the context of this work, a molecule is deemed to have scattered from the surface

if the trajectory reaches ZM−C > 5.0 Å, after contact with the surface. Ptrp was

calculated for each set of initial conditions and using each PES set. For all AIMD

calculations, Ptrp was always 0.0. This is expected as the dynamics unfold on the

ground-state PES only, and therefore no transitions between electronic states can

occur which could offer a significant energy dissipation pathway, and the molecule

always escapes the ground-state well.

The Ptrp of the IESH dynamics is very different between the different PES

sets. Figure 6.3 shows Ptrp for all four ρle-∆SCF derived PES sets, as a function of

the initial conditions. Ptrp tends towards zero with increasing Ei. Generally, higher

νi leads to higher Ptrp, however the influence of νi is reduced with increasing Ei. Both

of these trends match simple physical considerations. Greater initial translational

kinetic energy means that even if the scattering event is translationally inelastic,

the final translational kinetic energy is more likely to be great enough to escape

the potential well near the surface. A larger initial vibrational energy increases the

likelihood of a hopping event close to the surface. If an electron hops from the

surface to the molecule then the dynamics proceed on the excited state PES, until
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the electron hops back to a metal state. The excited state surfaces have deep minima

of around 1.6 eV, meaning that escape from the surface requires greater translational

kinetic energy than if the dynamics were proceeding on the ground-state PES. Based

on these considerations it should be expected that, when comparing results using

the shifted PES set, the trends should remain, but the magnitude of Ptrp should be

smaller. Indeed, this is exactly what is seen in Figure 6.3; the Au(111) trapping

probability is consistently slightly higher than for Ag(111). The maximum depth of

the excited state wells are very similar, within 0.1 eV of each other. However, the

Au(111) well is steeper, so for a given translational kinetic energy, trapping is more

likely.

Interestingly, the ML-CDFT Ptrp is always exactly zero for the IESH dy-

namics. This is likely due to a lower hopping probability when using the ML-CDFT

PESs compared to the shifted ρle-∆SCF PESs. As was shown in the previous chap-

ter, for most of the geometries covered by the PESs, Eex was significantly larger

in the ML-CDFT case. Therefore, it is reasonable to consider the lack of trapping

in the ML-CDFT IESH dynamics as an ‘extension’ of the suppression of trapping

probabilities that was seen when moving from non-shifted to shifted ρle-∆SCF PESs.

Experimentally observed trapping probabilities for CO scattered from an

Au(111) surface are only available for the νi = 0 case [115]. There is good agree-

ment between simulations presented here and experiment, especially in the respect

that trapping is practically non-existent for Ei above 0.4 eV. This is in contrast to

molecular dynamics with electronic friction (MDEF), where the method has been

shown to overpredict trapping probabilities, when tested for NO scattering from an

Au(111) surface [116].
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Figure 6.3: IESH trapping probabilities (Ptrp) for CO scattering from Au(111) (left)

and Ag(111) (right) using shifted (top) and non-shifted (bottom) ρle-∆SCF PESs

6.5 Final state distributions

The key experiments that have shown nonadiabatic energy transfer during molecular

scattering events from metal surfaces, and which this work seeks to model, rely

on the observation of (multi-quantum) vibrational (de)excitation. With this in

mind, an essential measure of how well the methodology of PES construction and

IESH dynamics are able to capture the essential physics of such systems are the

distributions of νf as a function of the PESs set and initial conditions. This section

will discuss such results in detail.

Figure 6.4 shows examples of the final vibrational state distributions corre-

sponding to CO scattering from Au(111), for three different νi: 2, 8 and 17; and at

Ei=0.6 eV. Similar plots for all other initial conditions are included in Appendix B.
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Figure 6.4: Final state distributions of IESH scattering trajectories for CO and

Au(111) with Ei = 0.6 eV and νi = 2, 8 or 17 using non-shifted ρle-∆SCF Au(111)

PES set in light green (A, B and C), shifted ρle-∆SCF Au(111) PES set in dark

green (D, E and F) and ML-CDFT Au(111) PES set in red (G, H, I).

The final state distributions of the non-shifted ρle-∆SCF PESs (top row, light

green in Figure 6.4) show far more vibrational inelasticity than the shifted ρle-∆SCF

or ML-CDFT PESs, both in the proportion of trajectories that were inelastic and in
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the magnitude of ∆ν. As discussed above in regard to Ptrp, the underestimation of

Eex that is present in the non-shifted PES set leads to an increase in the prevalence

of electron hopping events during a trajectory. As it is the electron hopping events

that facilitate the transfer of vibrational energy, it is expected that dynamics using

the non-shifted PESs would result in greater inelasticity.

The distributions based on the shifted PESs (middle row, dark green in Fig-

ure 6.4) show very different behaviour. For all three sets of initial conditions, by far

the largest peak is at νf = νi, i.e., most scattering events are elastic. The propor-

tion of trajectories that are inelastic and the maximum magnitude of ∆ν increases

with increasing νi. This trend matches expectations as greater vibrational energy

increases the probability of electron hopping events and therefore the likelihood of

vibrational (de)excitation.

The trends in the final state distributions based of the ML-CDFT PES set

are broadly similar to the shifted ρle-∆SCF results, especially in regard to the

proportion of trajectories that are inelastic. Where the ML-CDFT distributions

differ is in the spread of final state peaks around the elastic (νi = νf ) peak. For all

three values of νi the significant majority of inelastic trajectories showed ∆ν = ±1,

whereas the shifted ρle-∆SCF distributions are much broader. This is because the

excitation energies in the ML-CDFT PES set are larger than the ρle-∆SCF PES

sets.

108



Figure 6.5: Final state distributions of scattering trajectories for CO and Ag(111)

with Ei = 0.6 eV and νi = 2, 8 or 17 using non-shifted ρle-∆SCF Au(111) PES set

in light blue (A, B and C), shifted ρle-∆SCF Ag(111) PES set dark blue (D, E and

F).

Final state distributions using the shifted and non-shifted ρle-∆SCF PES

sets for Ag(111) are shown in Figure 6.5. The trends are very similar to what was

seen in the Au(111) case, with the non-shifted surfaces resulting in greater inelas-

ticity and a wider range of final states. It is striking that the Au(111) and Ag(111)

PES sets produce such similar results that any influence of the surface is barely

visible; whereas different methods using the same surface (i.e., shifted-le-∆SCF vs

ML-CDFT) do show distinctly different behaviour. This does not match experi-

mental observations, where the influence of the surface (via the work function) is

seen to be an important predictor of vibrational inelastic probabilities and leads to

greater inelastic scattering from Ag(111) than Au(111) surfaces [74]. This can be

understood by noting that the auto-detachment mechanism, that facilitates nona-

diabatic vibrational energy transfer, involves the transfer of an electron from the
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surface to the molecule, therefore a lower work function increases the likelihood an

electron transfer will occur.

A key goal of this work is to assess the suitability of the excited state methods

(le-∆SCF and ML-CDFT) and IESH dynamics to replicate experimentally observed

behaviour. It is therefore essential to compare the results in this work to published

experimental data. However, such comparisons are limited in several ways. Firstly,

the PESs used only include two degrees of freedom and as such exclude any effects

that arise from rotational motion of the molecule. It also means every trajectory

results in the molecule impacting the surface in a perfectly upright orientation with

the carbon atom closest to the surface, above a top site and leaving the surface

again along the same coordinate. Secondly, substrate motion is also excluded and

the frozen surface approximation is used. Finally, there are only a limited number

of experimental results available of the CO-Ag(111) and CO-Au(111) systems and

these do not cover the full range of initial conditions sampled here. The results that

do exist are incomplete because the technique used to determine νf , REMPI, is only

sensitive to νf between 14-17 and cannot detect CO molecules with νf outside this

range [69]. Nevertheless, it is informative to investigate how well this simple model

is able to capture experimental trends and how differences in PES landscapes affect

the final state distributions.
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Figure 6.6: Comparison of IESH dynamics results to experiment for CO scattering

from Au(111) with νi=17. νf distributions using ML-CDFT PES set (red), shifted

ρle-∆SCF PES set (green) and experimental data (yellow) from refs [74, 117].
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Figure 6.6 shows final state distributions for CO molecules scattered from a

Au(111) surface, in the format published in [117]. Experimental Ei do not precisely

match those of the dynamics simulations and in each case the closest value has been

included. The experimental νf = 14 − 17 peaks for a given Ei sum to 100%; i.e., an

assumption is made that no scattered molecules had νf outside of this range. IESH

results in Figure 6.6 are plotted in the same way to enable meaningful comparison.

However, IESH dynamics does result in molecules with νf outside of this range using

both the ML-CDFT and shifted ρle-∆SCF PES sets and the results shown in Figure

6.6 only account for approximately 80% of trajectories. It is also likely experimental

scattering resulted in molecules with νf outside of the detectable range.

Despite the model limitations described above, the IESH results match ex-

periment quite well, but IESH tends to overestimate the extent of multiquantum

deexcitation within the experimentally observable range. The elastic channel in the

ρle-∆SCF data does not vary much with increasing Ei and, in fact, elasticity appears

to increase with increasing Ei. This is the opposite to the experimentally observed

trend of increasing Ei leading to increasing inelastic scattering. Overall, there is no

systematic variation of elasticity with Ei for either ML-CDFT or ρle-∆SCF when a

wider range of Ei are taken into account. The experimental results display a strong

dependence on Ei, with higher Ei leading to increased inelastic scattering. The

Ei dependence is a consistent feature of nonadiabatic molecular beam scattering

experiments [74]. The IESH results, in contrast, show a much weaker dependence

on Ei, especially the ρle-∆SCF where the final state distributions are essentially

independent of Ei.

Figure 6.7 compares IESH and experimentally observed final state distribu-

tions for CO scattering from an Ag(111) surface [74]. In this case the experimental

peaks do not sum to 100% and the results account for the fact many molecules

will have νf outside the experimentally detectable range (νf = 14–17). The IESH

results are plotted to match this format in order to enable meaningful comparison.

Only IESH results based on ρle-∆SCF PESs could be used as currently available

ML-CDFT PES data is limited to Au(111). The IESH results are very similar to

the Au(111) model, which is expected given how similar the PES sets are for the

two metal surfaces. However, this is not the case for the experimental results, where

Ag(111) surfaces show far more inelastic scattering, which means that the IESH

results offer a very poor representation experimentally observed behaviour. As with

Au, the ρle-∆SCF results show almost no dependence on Ei. The Ei dependence in

experiment is still present, but is less pronounced than for Au due to the large error

bars across the distribution (no error bars were included in the published results

112



for the Au scattering experiments). Also a significant proportion of the scattered

molecules (∼ 60%) had νf outside the detectable range (14-17), making the de-

tectable signal weaker. Despite limitations in the experimental data, it is clear that

the IESH results significantly underestimate inelastic scattering.

Overall, IESH does a reasonable job of modeling the Au scattering experi-

ments using both the ρle-∆SCF and ML-CDFT derived PES sets, even with the lim-

ited models used in this work, but the Ag results are poor. It is not straightforward

to determine how much of the shortcomings are due to 1. reduced dimensionality of

the model, 2. excited state methods used to generate PESs and 3. the IESH method

itself. However, the fact that the Au and Ag ρle-∆SCF PESs are so similar make

it inevitable that any dynamics results will also be similar, which is in contrast to

experiment, even if IESH were able to perfectly capture the nonadiabatic behaviour.

Expanding the methodology used in this work to larger, higher dimensional models,

including a CDFT based model of the Ag system and expanding to include NO as

the molecule would help make clearer where shortcoming originate. This is discussed

in more detail in chapter 7.
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Figure 6.7: Comparison of IESH dynamics results to experiment for CO scattering

from Ag(111). νf distributions using shifted ρle-∆SCF PES set (blue) and experi-

mental data (grey) from ref [74].

6.6 Vibrational inelasticity

6.6.1 Classical dynamics

The key factor during molecular beam scattering experiments that indicate nona-

diabatic energy transfer has occurred is that the scattering events are vibrationally

inelastic, i.e., νi ̸= νf . However, not all vibrationally inelastic scattering events are

solely due to nonadiabatic effects. To better understand how well IESH can capture

the behaviour of nonadiabatic molecular scattering, it is essential to investigate the
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inelasticity seen during classical molecular dynamics, to establish a baseline that

can later be used to disentangle nonadiabatic energy transfer from effects that are

due to the groundstate PES. Figure 6.8 shows vibrational inelastic probability (Υ)

calculated from AIMD trajectories. Υ is calculated as the ratio of trajectories where

νi ̸= νf to the total number of trajectories (1000). For each combination of νi and

Ei, 1000 AIMD trajectories were simulated for each of the groundstate PES from

each PES set.

Figure 6.8: Inelastic scattering probabilities of adiabatic molecular dynamics sim-

ulations using the DFT ground state of the ρle-∆SCF CO-Au(111) PES set (top

left), ρle-∆SCF CO-Ag(111) PES set (top right) and ML-CDFT CO-Au PES set

(bottom). The ML-CDFT results show significantly more vibrational inelasticity

for νi of 8 and above.

Figure 6.8 does not distinguish between the shifted and non-shifted ρle-∆SCF

models because only the groundstate PES is used, which remains unshifted at all

times. There are some low levels of inelasticity seen in the ρle-∆SCF results for Au

but it does not vary systematically with either νi or Ei. The Ag scattering is mostly

elastic apart from νi=17, which is significantly higher and Υ sits around 20-30%

across the full range of Ei sampled. ML-CDFT trajectories show low Υ at νi =

0, 2 similar to the ρle-∆SCF Au equivalent. However, where νi = 8, 12, 17 there

is significantly higher Υ. Although it is the three highest νi that show higher Υ,
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there is no systematic ordering to indicate a general rule that higher νi should mean

higher υ.

The models used to obtain the groundstate PESs associated with the ML-

CDFT and ρle-∆SCF PES sets, and their differences, are described in Table 5.1.

Despite attempting to model the same physical system the groundstate PESs are

distinct and it is those differences that are responsible for the differences in Υ.

Figure 6.9 shows a contour plot of the difference between the ML-CDFT and ρle-

∆SCF groundstate PESs.

Figure 6.9: Contour plot of the difference between the groundstate PESs associated

with the ML-CDFT and ρle-∆SCF PES sets (ECDFT − Ele−∆SCF) for Au.

Figure 6.9 shows that the ML-CDFT groundstate has a much steeper repul-

sive wall as the molecule approaches the surface. This is likely the cause of greater

inelasticity a softer potential wall, as seen in the ρle-∆SCF, is more likely to allow

elastic scattering. The key point in the AIMD data is that a small amount of vibra-

tional inelasticity seen in IESH trajectories will be due to purely adiabatic effects

and that, assuming all other factors are equal, ML-CDFT IESH trajectories will

contain a higher inelasticity that is independent of nonadiabatic electron hopping.
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6.6.2 IESH dynamics

Figure 6.10: Inelastic scattering probabilities of IESH molecular dynamics simula-

tions using shifted ρle-∆SCF PES sets (top row), non-shifted ρle-∆SCF PES sets

(middle row) and ML-CDFT CO-Au PES set (bottom). Inelasticity for all ρle-∆SCF

PES sets is highly ordered according to νi. The shifted PES set see significantly more

inelasticity. ML-CDFT inelasticities are similar to results seen for adiabatic dynam-

ics.
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The Υ of the ρle-∆SCF IESH data is well ordered with respect to νi, but is largely

independent of Ei. Where there is variation along the Ei axis, it is not a systematic

increase that is expected based on experimental results [74]. There is a dramatic

reduction in inelasticity when the ρle-∆SCF surfaces are shifted, with the maximum

observed inelasticity increasing by around 50%. This behaviour is expected because

the shift increases the energetic cost of an electron hopping event, which is the

primary factor in determining nonadiabatic energy transfer. The Υ observed in the

IESH results using the ML-CDFT PES set are much less well-ordered in relation

to νi than for the ρle-∆SCF case. While there is still a general trend of higher

νi producing higher inelasticity, at several points the ordering is swapped so that,

for example, νi = 12 shows less inelasticity than νi = 8 at Ei = 0.6 eV. This is

due to the combination of two factors. Firstly, trajectories unfolding on the ML-

CDFT groundstate PES show significant vibrationally inelastic behaviour, which is

disordered with respect to νi, before any nonadiabatic effect are taken into account.

Secondly, as discussed below in sub-section 6.7, IESH trajectories using the ML-

CDFT PES set contain fewer hops than the ρle-∆SCF equivalent, resulting in less

nonadiabatic vibrational (de)excitation. This means the adiabatic inelasticity is a

significant contribution to the final ML-CDFT Υ shown in Figure 6.10. In contrast,

the ρle-∆SCF Υ is low in the adiabatic trajectories and higher hopping rates in

IESH mean nonadiabatic energy transfer dominates the IESH Υ; and nonadiabatic

contributions to Υ are very sensitive to νi.

Using the same data shown in Figure 6.10, Figure6.11 compares IESH values

for Υ to experimental data from [74].
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Figure 6.11: Comparison of Υ to experimentally determined data from refs [74,

117]. Results are shown for νi=17 using a Au(111) surface (top left) and a Ag(111)

surface (top right) and νi=2 on a Au(111) surface (bottom left).

Where νi = 2 and using an Au(111) surface, experiment predicts almost

no inelasticity. Using both the shifted and non-shifted ρle-∆SCF PES sets causes

an overestimation of inelasticity. ML-CDFT performs better, except at Ei = 1.0

eV. However, fully adiabatic models are able to describe this behaviour and IESH

is not required. Where νi = 17, all PES sets significantly overestimate inelastic-

ity. The opposite is true with respect to the Ag surface, where the shifted PES

set underestimates inelasticity and the non-shifted PES set performs best, despite

overestimating Υ. All error bars (not including those from experimental data) using

both methods are very small, indicating that the features in the inelasticity plots

are all genuine predictions of the model and are not due to statistical variation. As

described above, the 2D PESs used in this work mean that meaningful comparison

to experiment is limited. In order to rigorously test the methods used in this work,

higher dimensional PES would need to be constructed.

119



6.7 Hopping probabilities

IESH attempts to account for nonadiabatic contributions to energy transfer between

molecule and metal surfaces by allowing so-called electron hops to occur during the

course of a dynamics trajectory. This is when an electron ‘hops’ from one state to

another, whether that is a bath-state or an ‘impurity’ (molecular) state. Therefore,

an important factor to consider in this work is the rate of electron hops during

trajectories and how that changes based on initial conditions.

Figure 6.12 shows the number of hops per trajectory (NH) averaged over 1000

trajectories, for a given initial condition. The difference in average NH between

the three methods (ML-CDFT, shifted and non-shifted ρle-∆SCF) is very large.

This is reflected in the y axis scales in Figure 6.12, which are shared within a row

(method) but are very different between rows to make all the data visible. The

difference between Ag and Au results, within a given method, is small. However,

Ag does show slightly increased hopping compared to the Au at νi > 8. The non-

shifted trajectories show far higher hopping rates than either the shifted ρle-∆SCF

or ML-CDFT results. Amongst the 72,000 trajectories sampled using the non-

shifted method, only 12 had no hopping events. The shifted trajectories show much

lower rates of hopping, but even at νi = 0 the average NH is above 1.0 meaning

a trajectory is more likely than not to contain a hopping event. Only within the

ML-CDFT trajectories are hopping events rare, with the average NH always below

one.
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Figure 6.12: Average NH as a function of Ei with each line representing a different

νi. Each subplot shows data for a different PES set: non-shifted ρle-∆SCF Au (top

left) and Ag (top right), shifted ρle-∆SCF Au (middle left) and Ag (middle right)

and ML-CDFT Au (bottom). The error bars show the standard error of NH

The pattern of inelastic probabilities being strictly ordered by νi in the ρle-

∆SCF data is reflected in the average NH per trajectory. Similarly, the ML-CDFT

data shows a general trend that higher νi causes increased hopping; however, νi = 17
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violates this rule. Nevertheless, the ML-CDFT average hopping data is more well

ordered than the Υ data. The presence of the same disorder in the AIMD data for

ML-CDFT indicates that the disorder in Υ with respect to νi is primarily from the

topology of the groundstate PES and not the IESH method. The greater hopping

rates seen in the ρle-∆SCF trajectories mean that any disorder in Υ that is present

in the AIMD results is washed out in IESH trajectories and a clear ordering with

respect to νi emerges. The relationship between average NH and Ei is not what

might be expected based on experimental observations. Although the influence of

Ei is weak, there is an observable trend that the average NH tends to decrease with

increasing Ei. This may be due to the fact that the key factor determining whether

a hop occurs during a given time step is the excitation energy (Eex), and greater Ei

means the molecule spends less time in the regions of the PES where Eex is small.

6.8 Conclusion

Overall, the methods used in this work show some promise in replicating nonadi-

abatic behaviour at surfaces. The ML-CDFT PES set performed best in terms of

matching experiment, despite the limitations of the 2D model used in this work [74,

117]. The ρle-∆SCF PES set performed similarly to ML-CDFT when the surfaces

are shifted. However, having to apply a rigid shift of several eV points to significant

problems with this method when producing diabatic PESs. The origins of, and po-

tential solutions to, these issues are discussed in detail in the following chapter. The

similarity between the ρle-∆SCF Au(111) and Ag(111) PES sets, and consequently

the IESH dynamics results, are another indication that the method cannot capture

all the physics required to model the types of nonadiabatic dynamics in this work.

Nevertheless, this methodology of combining a form of (occupation) constrained

DFT with IESH represents a step forward from the overly simplistic models pre-

viously used in this field. The final chapter in this thesis will discuss the outlook

for the type of methodology used in this work and how it might be improved and

expanded on to enable accurate simulation of nonadiabatic dynamics and metal

surfaces.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

Modelling charge transfer states of molecules interacting with metal surfaces, in

particular with a view to capture nonadiabatic effects, is an ongoing challenge to

the computational chemistry community. Understanding nonadiabatic dynamics of

molecules at metal surfaces is an essential step to gaining a deeper understanding of

the fundamental processes that occur during heterogeneous catalysis reactions. If

modelling methods become sufficiently accurate, the insights they offer can inform

the design of the next generation of catalysts. The path towards progress in devel-

oping more accurate first principles models for performing nonadiabatic dynamics

simulations can be broken into two complementary routes. The first is the develop-

ment of methods that produce high quality and accurate PESs. The second is the

development of dynamics algorithms that incorporate nonadiabatic effects, such as

electronic friction or IESH dynamics [18, 85]. Improvements in both directions are

needed to arrive at models that can accurately reproduce physics seen in experiment.

Deficiencies in both PESs and dynamical algorithms can contribute to inaccuracies

found in results.

The central goal of the work presented in this thesis has been to build on

previous works by constructing high quality diabatic (anionic and neutral) PESs for

systems known to display nonadiabatic physics, using the le-∆SCF method. When

the project started, the only diabatic PESs that had been used in combination with

the IESH algorithm for this purpose were those developed by Roy, Shenvi and Tully

using an applied electric field to enforce charge constraints for the system of NO

interacting with an Au(111) surface [19]. The le-∆SCF method was developed with

the express goal of being an excited state method capable of accurately modelling
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charge transfer states of molecules at metal surfaces and as such is a natural choice

for constructing more accurate PESs that could improve on the previously published

works [16]. The works of Roy et al, focused on the NO-Au(111) system because in

the preceding few years several experimental works of the group of Wodtke were able

to gain detailed state-to-state information of energy transferred from NO molecules

scattered from an Au(111) surface which provided an ideal benchmark against which

to test the method [64, 66, 118].

The NO-Au(111) system was one of the targets of the work in this thesis,

but as described in Chapter 4, SCF convergence issues meant that ultimately no

PESs were constructed for NO-Au(111) and the PESs used were limited to the

CO-Au(111) and CO-Ag(111) systems. Fortunately, since the original works using

NO, the state-to-state scattering experiments of Wodtke and coworkers have been

expanded to include CO scattering from both Au(111) and Ag(111) surfaces, which

offers high quality experimental data with which to compare results in this thesis

[74, 117]. During the course of this project, other CO on Au(111) diabatic PESs

were reported in literature by Meng and Jiang using CDFT [107]. PESs created

using an EANN machine learned model that was trained using CDFT data have

been included in this thesis and compared to le-∆SCF PESs.

A secondary goal of this thesis was to use the PESs created using le-∆SCF

and ML-CDFT, in combination with IESH, to perform nonadiabatic dynamics sim-

ulations to compare and assess the differences between methods and compare to

state of the art in this field, such as the various electronic friction based methods.

In Chapter 4, I assessed the ability of the le-∆SCF method to model diabatic

states CO/NO on Au(111)/Ag(111) surfaces. Both the density and wavefunction

based methodologies suffer from serious convergence issues that significantly limit

their ability to be used for constructing large PESs. Even a simple 1D vertical bind-

ing energy curve of anionic NO above a Au(111) surface proved unfeasible because

several important geometries could not reach SCF convergence, despite sampling a

wide range of density mixing parameters and modifications to model parameters.

Applying the Ψle-∆SCF method to the CO on Au(111) system saw improved con-

vergence behaviour in the anionic state, but the neutral state could not be converged

in geometries where the molecule is far from the surface. Additionally, the areas of

the diabatic curves that did converge displayed incorrect physics; the anionic curve

for this system had a jagged adsorption minimum, which indicated the system may

be attempting to converge to two or more near degenerate SCF solutions.

An investigation into SCF convergence behaviours across a set of different

molecular species on Au(111) surfaces produced a qualitative trend that conjugated
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species converge far more readily than sigma bonded species, such as ethane or cy-

clohexane. In smaller (2–3 atom) species, convergence behaviour is highly geometry

dependent, as noted above in the CO and NO cases. This explains why Maurer et al.

did not encounter SCF convergence issues when applying Ψle-∆SCF to Azobenzene

[17, 98].

ρle-∆SCF was shown to experience far fewer SCF convergence issues than

Ψle-∆SCF; however, difficulty in enforcing the correct spin state meant it was not

possible to construct meaningful spin polarised PESs using the method. A simpler

model, using ρle-∆SCF but excluding spin polarisation, was able to reliably produce

smooth and qualitative correct PESs without any significant convergence issues.

The ρle-∆SCF results in Chapters 4 and 5 use an improved method for

defining charge constraints compared to previous work in literature. Older works

used integer charge constraints and assumed the molecule absorbed at the metal

surface was in the same charge state as the gas phase molecule [16, 17, 44, 45].

This ignores the exchange of charge that occurs when the molecule approaches a

metal surface. The methodology used in this thesis instead quantifies the charge

transfer that occurs during the molecule absorption using MODOS analysis and

defines constraints by adding or removing charge based on the difference between

the ground-state MODOS charge and the charge state of interest.

In Chapter 5, the non-spin polarised ρle-∆SCF method was used to con-

struct a series of 1D potential energy curves as a function of different molecular

degrees of freedom and orientations. The curves are well-behaved and physically

reasonable. The neutral vertical binding energy curves are always repulsive as the

molecule cannot exchange charge with the surface, as it would in the ground state.

The anionic vertical binding energy curves all have deep minima due to the image

charge stabilisation effect of a charged molecule approaching a metal surface. The

orientational dependence of nonadiabatic vibrational inelasticity is captured by the

method, which can be seen in the 1D curves as an increased excitation energy when

CO is rotated away from the ‘upright’ C-down orientation, with the O-down ori-

entation having the largest excitation energy. However, not all properties of the

curves match expectations based on experimental observations. Explanations of

the auto-detachment mechanism in literature require that the energetic ordering of

neutral and anionic states change as rC−O is varied when the molecule is near its

equilibrium absorption height, with compressed rC−O favouring the neutral state

and extended rC−O favouring the anion [117, 119]. This is not seen in the ρle-∆SCF

curves, where the difference in energy between the anionic and neutral states does

not vary strongly with rC−O and the anionic state is slightly more stable at com-
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pressed rC−O. A major flaw of the non-spin polarised ρle-∆SCF model is that it

underestimates the excitation energy. When the molecule is in its equilibrium bond

length and far from the surface, the excitation energy should be equal to the sum of

the electron affinity (Eaff) and the work function of the metal surface (ϕsurf). The

model underpredicts the excitation energy at this geometry by around 3.2–3.3 eV.

In order to perform nonadiabatic dynamics simulations, 2D PES sets of CO

interacting with Ag(111) and Au(111) surfaces were constructed by varying rC−O

and ZM−C, using the ρle-∆SCF method. The 2D PESs are well-behaved and vary

smoothly. They contain the qualitatively correct physics described for the 1D curves,

but also the flaws, chiefly the underestimation of excitation energy. To address this,

two additional PES sets were created in which the anionic surface has been shifted

upwards in energy to match expectations of excitation energy based on the sum of

Eaff and ϕsurf at large ZM−C and equilibrium rC−O. A final PESs set was constructed

using an EANN model trained on CDFT data of CO on Au(111) using the protocol

described in [107]. This allowed a comparison of le-∆SCF and CDFT which, at

the time of writing, are the only two viable methods for creating accurate diabatic

PESs of charge transfer states of a molecule interacting with a metal surface that

go beyond the simple electric field method used by Roy et al. without resorting to

prohibitively computationally intensive methods.

The primary differences between the ML-CDFT and ρle-∆SCF PES sets

are energy gaps between the lower states (ground state and diabatic neutral) and

upper states (adiabatic excited and diabatic anion). The lower states in the ρle-

∆SCF model are very different from one another. The ground-state PES shows both

physisorption and chemisorption wells, whereas the neutral state is only repulsive.

The two become equal in energy only far from the surface. In the ML-CDFT

model, the lower states are very similar to one another; the neutral state has a

chemisorption minimum that should not be seen when a strictly neutral molecule

approaches the surface, since it is exchange of charge that creates the well. The

upper states follow a similar but subdued trend. The ρle-∆SCF model predicts a

deeper well in the anionic state than the adiabatic excited state, for both metals. The

ML-CDFT model produces upper states that are almost identical to one another. As

a consequence of this trend, ρle-∆SCF predicts significantly higher diabatic coupling.

The ML-CDFT model does not contain the issue of underestimation of the excitation

energy and in fact ML-CDFT predicts Eex that is 1.48 eV above the expected value,

based on the sum of Au(111) work function and the electron affinity of CO.

In Chapter 6 the results of molecular scattering dynamics trajectories were

discussed, using both the nonadiabatic dynamics algorithm IESH and standard adi-
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abatic MD algorithms. Each of the 2D PES sets described in Chapter 5 were used

as the underlying PESs upon which the dynamics unfolded. A large range of initial

conditions were sampled, with a given initial condition consisting of a value for νi

ranging from 0 to 17 and a value for Ei from 0.2-1.2 eV.

Adiabatic results were compared to IESH results to distinguish between adi-

abatic and nonadiabatic effects. Some vibrational inelasticity was seen in νi dis-

tributions of the adiabatic dynamics with ML-CDFT showing significantly higher

adiabatic inelasticity compared to ρle-∆SCF. This is attributed to the steeper re-

pulsive wall encountered as the molecule approaches the surface in the ground-state

PES associated with the ML-CDFT PES set, compared to the ρle-∆SCF equivalent.

This shows the precise nature of the DFT ground-state PES is important in deter-

mining vibrational inelasticity and that not all vibrational inelasticity seen in IESH

dynamics can be attributed to nonadiabatic effects. Any study of nonadiabatic en-

ergy transfer using IESH requires simulations to be repeated using adiabatic MD to

distinguish between adiabatic and nonadiabatic energy transfer.

While all AIMD trajectories saw Ptrp of zero, IESH trajectories using both

shifted and non-shifted le-∆SCF PES sets displayed significant trapping, with the

non-shifted PES set showing the highest Ptrp. For all PES sets, higher νi is associated

with higher Ptrp. Increasing Ei causes a strong reduction in Ptrp, which matches

experimental data [115]. Switching from the non-shifted PES sets to the shifted

PES sets maintains the general trends described above, but reduces the magnitude

of Ptrp. ML-CDFT IESH trajectories showed no trapping due to the significantly

lower rates of hopping, which stems from the greater excitation energy over large

regions of the PESs compared to ρle-∆SCF PESs.

The PES set associated with the three methods: non-shifted ρle-∆SCF,

shifted ρle-∆SCF and ML-CDFT produced different νf distributions. The low exci-

tation energies of the non-shifted ρle-∆SCF PES sets caused a large overestimation

of inelasticity, in both the proportion of trajectories that were inelastic and also

the magnitude of ∆ν. The distributions based on the Au(111) and Ag(111) PES

sets produced very similar results. The shifted ρle-∆SCF PES sets led to less vi-

brational inelasticity and νf distributions that are closer to experiment in the case

of Au(111). Again, the Au(111) and Ag(111) shifted ρle-∆SCF PES sets produced

very similar νf distributions to one another, which does not match experiment where

Ag(111) is observed to cause significantly higher inelasticity [120]. The least vibra-

tional inelasticity was seen when using the ML-CDFT PES set, due to much lower

hopping rate. The proportion of trajectories that were inelastic is similar to shifted

ρle-∆SCF; however, the magnitude of ∆ν is smaller and most trajectories that are
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vibrationally inelastic only see ∆ν = ±1. The ML-CDFT distributions are also

the best match to experimental data, although only Au(111) data is available for

ML-CDFT so it is not clear whether the trend of a good match to experiment for

Au(111) and a poor match for Ag(111), seen in shifted ρle-∆SCF, would be repeated

for ML-CDFT.

The dominant factor in determining nonadiabatic vibrational inelasticity is

νi, with higher νi leading to a greater probability of a trajectory being vibrationally

inelastic, which matches experimentally observed trends [74]. All vibrational inelas-

tic probability (Υ) results, using either shifted or non-shifted le-∆SCF PES sets,

were highly ordered with respect to νi. While Υ using the ML-CDFT PES set are

mostly ordered according to νi, the ordering is not strictly adhered to. This is due to

the combination of greater adiabatic vibrational inelasticity and lower rate of hop-

ping when using the ML-CDFT PES set. The value of Ei, in contrast, has almost

no effect upon vibrational inelasticity and any variation is not systematic. This is

in stark contrast to experimental evidence, where Ei is known to be an important

predictor of vibrational inelasticity. The invariance of Υ with respect to Ei was

seen for all PES sets used in this work and so is likely a flaw in the IESH method;

however, the dynamics trajectories in this thesis have been limited to a 2D model

so including more molecular and substrate DOF may impact this trend.

In summary, the work presented in this thesis has assessed the le-∆SCF

method’s ability to model charge transfer states of NO and CO interacting with

Au(111) and Ag(111) surfaces. A new protocol for defining constraints that takes

into account ground-state charge transfer between molecule and metal has been de-

veloped and implemented. The Ψle-∆SCF and ρle-∆SCF methodologies have been

compared and the latter was used to construct 2D diabatic PES for CO interacting

with Au(111) and Ag(111) surfaces. The PESs were used in nonadiabatic dynamics

simulations, using the IESH method, to model nonadiabatic vibrational inelastic-

ity observed in state-to-state molecular beam scattering experiments. In the case

of CO-Au(111), an equivalent set of PESs were constructed based on ML-CDFT

energies, and nonadiabatic dynamics simulations were performed. A comparison

between the ρle-∆SCF and ML-CDFT dynamics results show both were able to

qualitatively reproduce experimental results for the CO-Au(111) system although a

vertical shift in energy had to be applied to the ρle-∆SCF anionic PES in order to

achieve this outcome.
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7.2 Outlook and future work

The work presented in this thesis shows that the ρle-∆SCF method can be used to

model diabatic states and construct PESs that can be used, in combination with

IESH, to model nonadiabatic energy transfer of CO interacting with Au(111) and

Ag(111) surfaces. However, there is significant room for an expansion of the work

and improvements to the method more generally.

The model PESs constructed in this work only had two DOF: molecule sur-

face distance (ZM−C) and CO bond length (rC−O). Adding additional DOF would

improve the model and allow for a more meaningful comparison to experiment.

Firstly, molecular translations in x and y directions would allow the molecule to in-

teract with different absorption sites on the metal surface. The 1D vertical binding

energy curves in Chapter 4 show that the absorption well depth and position of the

minima (in the z direction) differ between the top site included in the 2D model

and the HCP site, and as such would affect the dynamics. Secondly, molecular ro-

tations would allow both the orientational dependence of vibrational elasticity and

the dynamical steering effects that have been observed in nonadiabatic molecular

scattering experiments and simulations to be accounted for [86]. Finally, substrate

motion was shown in the works of Roy et al. to significantly affect the trapping

probabilities and vibrational inelasticity and so substrate DOF should also ideally

be included in future models [18]. The expansion of the number of DOF any model

includes can be achieved without any changes to the current ρle-∆SCF method used

in this work. Of course, including more DOF will greatly increase the number of

single point calculations required to generate a PES and a balance must be struck

between sampling as many points as possible and computational cost. This balance

would best be achieved by training a machine learning model to predict the 2×2 di-

abatic Hamiltonian, using ρle-∆SCF diabatic state calculations of AIMD molecular

scattering trajectories.

The biggest flaw in the ρle-∆SCF model used to construct PESs in this

thesis is the significant underestimation of the excitation energy. As a simple but

incomplete solution, the anionic PES was shifted upwards in energy to match ex-

pected excitation energies far from the surface. The non-shifted PES sets performed

far worse than the shifted versions, by overestimating vibrational inelasticity. This

shows the shifting of the surface was a sensible choice; however, it does not ad-

dress the underlying cause of the underestimation of excitation energy. Figure 7.1

compares vertical binding energy curves for the neutral and anionic diabatic state

with and without spin polarisation for CO above a top site of 2× 2 4-layer Au(111)
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slab. The diabatic states of spin polarised and non-spin polarised systems are quite

different. When spin is included, the neutral curve has a steeper repulsive wall and

the position of the anionic minimum is significantly higher in energy and further

from the surface. While shifting the anionic curve up in energy brings the non-spin

polarised system more in line with the spin polarised system, it clearly is not enough

to make the systems match. Although spin-polarised anionic calculations with CO

beyond 3 Å from the surface could not be converged, based on the partial curve

in Figure 7.1, it is reasonable to assume the curve would plateau around 6–7 eV.

This would match the expected excitation energy, based on the assumption that far

from the surface the energetic cost of removing an electron from the Fermi level and

attaching it to the molecule is the sum of the ϕsurf and Eaff : 6.34 eV. The tendency

of the non-spin polarised calculations to underestimate the excitation energy can be

explained by consideration of Janak’s theorem and the work of Perdew and Levy

[121, 122]. The energy of an orbital in DFT varies smoothly as its occupation is

increased, which is unlike a true orbital, which should be piecewise linear with re-

spect to integer occupation. In the spin-polarised model, a constraint that enforces

that a molecular charge of −1.0 corresponds to the full occupation of a resonance

orbital, and therefore a greater energy than if it were partially occupied. However,

when spatial orbitals are used, moving one electron into such an orbital would only

half occupy that orbital and it would not be as high in energy.
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Figure 7.1: Comparison of spin polarised and non-spin polarised binding energy

curves of CO above a 2 × 2 4 layer Au(111) slab, using ρle-∆SCF.

The reason that a non-spin polarised model had to be used in the construc-

tion of PESs for this thesis was the difficulty in converging the SCF process of spin

polarised ρle-∆SCF calculations. It is also the reason the use of NO as the molecular

species was abandoned. SCF convergence issues have been by far the single biggest

hindrance to the progress of the work in this thesis. Despite trialing a large range

of density mixing parameters and many modifications to the model and constraints,

it was not feasible to converge diabatic state calculations at enough different ge-

ometries to construct PESs that could be used for dynamics. Both the ρle-∆SCF

and Ψle-∆SCF formalisms suffer from difficulty in reaching convergence, although

the issue is more prevalent in Ψle-∆SCF. Chapter 4 showed the results of anionic

test calculations on a range of molecular species on an Au(111) surface, which indi-

cates that calculations involving conjugated molecules converge much more readily

than smaller, sigma bonded, species. This observation fits with previous work by

Maurer [17, 45]. While modelling charge transfer states of conjugated molecules on

metal surfaces is useful in many cases, being restricted to such systems is a huge

limitation on the applicability of le-∆SCF. Clearly, overcoming the chronic SCF
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convergence issues of le-∆SCF is something that would greatly increase the ability

of the method to be applied to not just the diatomic nonadiabtic energy transfer

systems that are the focus of this thesis but many other important charge transfer

systems in chemistry and physics.

Moving away from the density mixing method of energy minimisation and

instead implementing an ensemble DFT (EDFT) based approach is a viable route

to reducing the convergence issues [123]. Within the density mixing formalism, the

KS wavefunctions are constructed from the density of the current SCF cycle. The

density of the next SCF cycle is constructed by combing the newest density with

densities from previous steps, according to the density mixing parameters, to arrive

at a new estimate of the ground-state density. There is no guarantee that the total

energy from one SCF cycle to the next will be reduced. Typically variation of the

density mixing parameters is sufficient to achieve convergence; however, this is not

always the case. EDFT, in contrast, does not mix densities at all. Instead, the

density is always constructed directly from the current estimate of the KS wave-

functions. Each update to the KS wavefunctions can only proceed if it lowers the

total energy, and thus is a much more robust method of minimising energy com-

pared to density mixing. CASTEP (the code in which Ψle-∆SCF is implemented)

already has an EDFT minimisation implementation for DFT groundstate calcula-

tions, which makes it a sensible choice for any future work which seeks to combine

the EDFT minimisation algorithm with le-∆SCF [124].

Another area in which improvements to the le-∆SCF method can be made

relates to the molecular reference state used to construct the resonance orbital, to

which constraints are applied. In order to construct resonance orbitals, a molecu-

lar reference system calculation is required. Conceptually, this simply means the

gas phase molecular orbitals; for example, consider the case of modelling a charge

transfer state in which a molecular anion is absorbed on a metal surface: a reso-

nance orbital based on the gas phase molecular LUMO should be constrained to

have one electron in it. Additionally, a resonance orbital based on the gas phase

molecular LUMO+1 may be included and constrained to be empty, to avoid any

additional charge from the surface being transferred to the molecule. However, in

practice those gas phase molecular orbitals are free-standing molecular over-layer

(FSMO) orbitals, made by deleting the metal atoms from the full system unit cell

and running a ground-state calculation, i.e., using the same k-point sampling and

unit cell as the full molecule-metal system. The use of FSMO orbitals, apart from

not being true gas phase orbitals, create issues with unbound states. An unbound

state is one that has a positive eigenvalue, meaning it is not energetically favorable
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for an electron to occupy the state. Unbound orbitals are also highly delocalised,

meaning that applying a constraint to a resonance orbital based on an unbound

orbital does not correspond to constraining charge to the molecule. Even without

a unit cell, virtual orbitals are often poorly represented in molecular calculations

because semi-local functionals predict fewer bound states than are present in the

real system. Using a unit cell further increases the tendency of virtual orbitals to

be unbound. Which orbitals are bound and unbound is a function of the molecular

geometry. For example, a state that is strongly bound when bond lengths are set at

their equilibrium lengths may become unbound upon elongation (or compression)

of the bond, which means enforcing a set of constraints in a consistent set of states

over a large range of geometries is not always possible. There are two steps that can

be taken towards solving this issue. Firstly, implementing the le-∆SCF method in a

code that does not use basis sets that require a unit-cell, for example the numerical

atomic orbitals used in the FHI-Aims electronic structure package would reduce the

tendency for states to be unbound [125]. Secondly, moving beyond the GGA level

of XC functional, for example by using hybrid functionals, will further reduce the

prevalence of unbound states. The use of hybrid functionals would increase the cost

of calculations considerably, but with the increase in availability of machine learning

techniques to construct accurate models, far fewer data points are needed compared

to explicitly calculated PESs

Even in cases where the target orbitals are fully bound, the orbitals tend

to be very diffuse, which means the molecular orbital protrudes into a region that

has high metal electron density in the full system when the molecule is close to the

surface and a greater repulsion is seen that would be in the real system if charge

is constrained to this orbital. This effect might be reduced by introducing some

form of influence in the molecular (FSMO) system that represents the influence of

the metal slab and would modify the shape of the molecular orbital, without the

hybridisation of those orbitals that would result from the explicit inclusion of the

metal states.

Le-∆SCF is one way to model charge transfer at metal surfaces, but it is not

the only potentially viable method. There is currently no consensus regarding the

best method to produce accurate PESs of excited states at metal surfaces that can

be used for nonadiabatic dynamics simulations. One example of another potentially

very useful method is constrained DFT, as described in this thesis [107]. However,

considerable work has gone into developing modifications to the traditional CDFT

method, such as orthogonality constrained DFT and transition-based Constrained

DFT [126, 127]. Another promising area that has seen recent developments is em-

133



bedded wavefunction methods [128], in which a high level correlated wavefunction

method is used to model a cluster that is embedded into a DFT model of a metal

surface. Much more work is required to determine the best methods for modelling

nonadiabatic charge transfer at metal surfaces, and the work presented in this thesis

is step in the long journey towards being able to reliably reproduce the nonadiabatic

effects seen in nature.
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Appendix A

Running ρle-∆SCF calculations

The following section will describe a protocol for running a ρle-∆SCF calculation,

with example scripts used during the construction of PESs described in Chapter 5.

The first step is to run ordinary DFT ground state calculations in GPAW of

the full molecule metal system and the FSMO and then write the wavefunctions to

.gpw files. Listing A.1 below shows an example script that does this:

1 from gpaw import GPAW , restart

2 from gpaw.mixer import MixerSum

3 import gpaw.dscf as dscf

4 from gpaw.analyse.hirshfeld import HirshfeldPartitioning

5 from gpaw.analyse.vdwradii import vdWradii

6 from ase.calculators.vdwcorrection import vdWTkatchenko09prl

7 from ase.io import read , write

8 from ase.units import Bohr

9 import sys

10

11 def make_gas_ref(atoms_obj):

12 """ Make a FSMO Atoms object from the full system Atoms object """

13 gas_ref = atoms_obj.copy()

14 mask = [atom.index for atom in gas_ref if atom.symbol not in [’Au’

, ’Ag’, ’Pt’, ’Cu’]]

15 return gas_ref[mask]

16

17 def get_mol_indicies(atoms_obj):

18 """ make a list of the molecular indicies of the full system """

19 mol_indicies = [atom.index for atom in atoms_obj if atom.symbol

not in [’Au’, ’Ag’, ’Pt’, ’Cu’]]

20 return mol_indicies

21

22 #Make sure path to system geometry file is given as command line

argument
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23 if len(sys.argv) != 2:

24 raise ValueError(’path to input geometry should be given as a

command line argument ’)

25

26 ####### Get the full system geometry ###########

27 geom_file = sys.argv [1]

28

29 # Settings for ’gasphase ’ FSMO DFT groundstate calculation

30 gascalc = GPAW(nbands=7,

31 h=0.2,

32 mode=’fd’,

33 xc=’RPBE’,

34 kpts=(8, 8, 1),

35 spinpol=False ,

36 convergence ={’bands ’: 7},

37 poissonsolver ={’dipolelayer ’: ’xy’},

38 txt=’gasphase.txt’)

39

40 # Settings for full -system DFT groundstate calculation

41 gscalc = GPAW(h=0.2,

42 nbands =500,

43 xc=’RPBE’,

44 kpts=(8, 8, 1),

45 eigensolver=’cg’,

46 spinpol=False ,

47 # mixer=MixerSum(nmaxold=5, beta =0.05 , weight =50),

48 poissonsolver ={’dipolelayer ’: ’xy’},

49 txt=’gs.txt’)

50

51 # Make Atoms object from geometry file

52 slab = read(geom_file)

53 slab.pbc = [True , True , False]

54

55 # run molecule calculation

56 molecule = make_gas_ref(slab)

57 molecule.calc = gascalc

58 molecule.get_potential_energy ()

59

60 ## vdw correction ##

61 cc = vdWTkatchenko09prl(HirshfeldPartitioning(gascalc),vdWradii(

molecule.get_chemical_symbols (),

62 ’RPBE’), vdWDB_alphaC6 ={’Au’: [134, 15.6], ’Ag’: [122 ,15.4] , ’N’:

[7.4, 24.2], ’O’: [5.4, 15.6], ’C’: [12, 46.6], ’H’: [4.5, 6.5]})

63 molecule.calc = cc

64 molecule.get_potential_energy ()

65
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66 # write density and wavefunctions

67 mol_den = gascalc.get_all_electron_density ()

68 write(’molden.cube’, molecule , data=mol_den)

69 gascalc.write(’molecule.gpw’, mode=’all’)

70

71 ################# full system calculation #############

72 slab.calc = gscalc

73 slab.get_potential_energy ()

74

75 ## vdW correction ##

76 vdwrads = []

77 for atom in slab:

78 if atom.symbol == ’Au’:

79 vdwrads.append (2.91)

80 else:

81 vdwrads.append(vdWradii ([atom.symbol], ’RPBE’)[0])

82

83 cc = vdWTkatchenko09prl(HirshfeldPartitioning(gscalc),

84 vdWradii(slab.get_chemical_symbols (),’PBE’),

85 vdWDB_alphaC6 ={’Au’: [134, 15.6] ,

86 ’Ag’: [122, 15.4],

87 ’N’ : [7.4, 24.2],

88 ’O’ : [5.4, 15.6],

89 ’C’ : [12., 46.6],

90 ’H’ : [4.5, 6.5]}

91 )

92 slab.calc = cc

93 slab.get_potential_energy ()

94

95 ### write density and wavefunctions ####

96 den = gscalc.get_all_electron_density ()

97 write(’gs.cube’, slab , data=den * Bohr **3)

98 gscalc.write(’gs.gpw’, mode=’all’)

Listing A.1: A python script to run DFT ground-state calculations, using GPAW,

for a full CO on Au(111) system and the corrisponding CO FSMO. The script writes

the final wavefunctions to files, which are required to perform ρle-∆SCF calculations.

The second step is to use the wavefunction files to perform MODOS analysis.

An an example script is shown in Listing A.2.

1 from gpaw import GPAW , restart

2 import gpaw.dscf as dscf

3 from ase.io import read , write

4 import sys

5

6 def get_mol_indicies(atoms_obj):
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7 """ make a list of the molecular indicies of the full system """

8 mol_indicies = [atom.index for atom in atoms_obj if atom.symbol

not in [’Au’, ’Ag’, ’Pt’, ’Cu’]]

9 return mol_indicies

10

11 #read in wavefunctions from completed calculations

12 slab , gscalc = restart(’gs.gpw’, txt=None)

13 molecule , gascalc = restart(’molecule.gpw’, txt=None)

14

15 ##### perform MODOS analysis ######

16

17 # full system density of States

18 fullsys_e , fullsys_dos = gscalc.get_dos(spin=0, npts =3001, width =0.1)

19 # Shift energies so that Fermi energy sits a zero

20 e_f = gscalc.get_fermi_level ()

21 fullsys_e = fullsys_e - e_f

22

23 #Write the total DOS

24 with open(’TotalDOS_gs.dat’, ’w’) as f:

25 for i,j in zip(fullsys_e ,fullsys_dos):

26 f.write(’{},{} \n’.format(i,j))

27

28 ## MO projected dos

29 mol = get_mol_indicies(slab)

30 # Calculate MODOS for selected states and write to files

31 for n in range(3, 8):

32 # PDOS on the band n and spin s

33 wf_k = [kpt.psit_nG[n] for kpt in gascalc.wfs.kpt_u]

34 P_aui = [[kpt.P_ani[a][n] for kpt in gascalc.wfs.kpt_u]

35 for a in range(len(molecule))]

36 e, dos = gscalc.get_all_electron_ldos(mol=mol , spin=0, npts =3001,

37 width =0.1, wf_k=wf_k , P_aui=

P_aui)

38 corr_e = e - e_f

39 with open(’MODOS_CO_gs_ {}_{}. dat’.format(n,0), ’w’) as f:

40 for i,j in zip(corr_e , dos):

41 f.write(’{},{} \n’.format(i,j))

Listing A.2: Example script to perform MODOS analysis for FSMO states 3–8,

using wavefunctions output by Listing A.1

The MODOS data should be integrated up to the Fermi level to obtain the

MODOS occupations for each FSMO state, and the difference between the MODOS

occupations and the ideal occupations of the neutral and anionic systems then used

to define constraints. The script shown in Listing A.3 does this and writes input
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files for the ρle-∆SCF calculations.

1 import numpy as np

2

3 def intergrate_MODOS(modos_file):

4 # Read in MODOS file for a given state and integrate up to the

Fermi level

5 occ = 0.0

6 modos = np.genfromtxt(modos_file , delimiter=’,’)

7 de = modos [0][0] - modos [1][0]

8 for i in modos:

9 if i[0] < 0:

10 occ += de * i[1]

11 else:

12 pass

13

14 return(occ * -1)

15

16 def prep_excited_states(directory , states =[4 ,5,6]):

17 """ This function takes a path to a diectory , which should contain

18 MODOS files , and creates inputs for neutral and anionic charge

states """

19

20 #Idialised state charges for neutral and anion.

21 charge_states = [’neutral ’, ’anion’]

22 if len(states) == 3:

23 ideal_neu_occs = (1.0, 0.0, 0.0)

24 ideal_an_occs = (1.0, 0.25, 0.25)

25 elif len(states) == 2:

26 ideal_neu_occs = (0.0, 0.0)

27 ideal_an_occs = (0.25 , 0.25)

28

29 #Container for MODOS ocupations , fill by inntegrating MODOS

30 modos_occs = {}

31

32 for state in states:

33 modos_occs = [intergrate_MODOS(’{}/ MODOS_CO_gs_ {}_0.dat’.

format(directory , state)) for state in states]

34

35 # use occupations to define neutral charge constraints

36 neu_cons = []

37 for ideal_occ , real_occ in zip(ideal_neu_occs , modos_occs):

38 neu_cons.append(ideal_occ - real_occ)

39 rounded_neu_cons = [’{:.2f}’.format(con) for con in neu_cons]

40 neu_subspace = []

41 for con in neu_cons:
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42 if con < 0.0:

43 neu_subspace.append(’occ_res ’)

44 elif con >= 0.0:

45 neu_subspace.append(’unocc_res ’)

46

47 if len(states) == 3:

48 neu_con_string = ’dscf.dscf_calculation(neucalc , [[{}, {}4,

0],[{}, {}5, 0],[{}, {}6,0]], slab)\n’.format(

49 rounded_neu_cons [0], neu_subspace [0], rounded_neu_cons [1],

neu_subspace [1], rounded_neu_cons [2], neu_subspace [2])

50

51 elif len(states) == 2:

52 neu_con_string = ’dscf.dscf_calculation(neucalc , [[{}, {}5,

0],[{}, {}6,0]], slab)\n’.format(

53 rounded_neu_cons [0], neu_subspace [0], rounded_neu_cons [1],

neu_subspace [1])

54

55 # read in a default excited state python script with blank

constraints

56 with open(’/storage/chem/msrtzm/main_project/PBE+vdW_surf/GPAW/CO/

Ag/defaults/COneutral.py’, ’r’) as f:

57 neu_lines = f.readlines ()

58 # Write new xcited state python script including constraints

59 with open(’{}/ COneutral.py’.format(directory), ’w’) as g:

60 for line in neu_lines:

61 if ’dscf.dscf_calculation ’ in line:

62 g.write(neu_con_string)

63 else:

64 g.write(line)

65

66 # use occupations to define anion charge constraints

67 an_cons = []

68 for ideal_occ , real_occ in zip(ideal_an_occs , modos_occs):

69 an_cons.append(ideal_occ - real_occ)

70 rounded_an_cons = [’{:.2f}’.format(con) for con in an_cons]

71

72 # select appropriate subspace for construction of resonance orbial

(occ vs unocc)

73 an_subspace = []

74 for con in an_cons:

75 if con < 0.0:

76 an_subspace.append(’occ_res ’)

77 elif con >= 0.0:

78 an_subspace.append(’unocc_res ’)

79

80 # defonce constraints for anion calcuation
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81 if len(states) == 3:

82 an_con_string = ’dscf.dscf_calculation(ancalc , [[{}, {}4,

0],[{}, {}5, 0],[{}, {}6,0]], slab)\n’.format(

83 rounded_an_cons [0], an_subspace [0], rounded_an_cons [1],

an_subspace [1], rounded_an_cons [2], an_subspace [2])

84

85 elif len(states) == 2:

86 an_con_string = ’dscf.dscf_calculation(ancalc , [[{}, {}5,

0],[{}, {}6,0]], slab)\n’.format(

87 rounded_an_cons [0], an_subspace [0], rounded_an_cons [1],

an_subspace [1])

88

89 # read in a default annion excited state python script with blank

constraints

90 with open(’/storage/chem/msrtzm/main_project/PBE+vdW_surf/GPAW/CO/

Ag/defaults/COanion.py’, ’r’) as f:

91 an_lines = f.readlines ()

92

93 # Write new xcited state python script including constraints

94 with open(’{}/ COanion.py’.format(directory), ’w’) as g:

95 for line in an_lines:

96 if ’dscf.dscf_calculation ’ in line:

97 g.write(an_con_string)

98 else:

99 g.write(line)

100

101 prep_excited_states(’./’, states =[4 ,5,6])

Listing A.3: A script that integrates MODOS data and uses it to define constraints

for neutral and anionic ρle-∆SCF calculations. The script then writes two

python files: COanion.py and COneutral.py, which run will run the exciited state

calculatioins when executed.

An example of an script that will perform a anionic ρle-∆SCF calculation

and that was prepared using the script in Listing A.3 is shown in Listing A.4.

1 from numpy import reshape , dot

2 from gpaw import GPAW , restart , Davidson

3 from gpaw.mixer import MixerSum

4 import gpaw.dscf as dscf

5 from gpaw.analyse.hirshfeld import HirshfeldPartitioning

6 from gpaw.analyse.vdwradii import vdWradii

7 from ase.calculators.vdwcorrection import vdWTkatchenko09prl

8 from ase.io import read , write

9 from ase.units import Bohr

10 import sys
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11

12 def make_gas_ref(atoms_obj):

13 """ Make a FSMO Atoms object from the full system Atoms object """

14 gas_ref = atoms_obj.copy()

15 mask = [atom.index for atom in gas_ref if atom.symbol not in [’Au’

, ’Ag’, ’Pt’, ’Cu’]]

16 return gas_ref[mask]

17

18 def get_mol_indicies(atoms_obj):

19 """ make a list of the molecular indicies of the full system """

20 mol_indicies = [atom.index for atom in atoms_obj if atom.symbol

not in [’Au’, ’Ag’, ’Pt’, ’Cu’]]

21 return mol_indicies

22

23 #Make sure path to system geometry file is given as command line

argument

24 if len(sys.argv) != 2:

25 raise ValueError(’path to input geometry should be given as a

command line argument ’)

26

27 # Get the full system geometry

28 geom_file = sys.argv [1]

29

30 # settings and parameters for GPAW calculations

31 ancalc = GPAW(h=0.2,

32 nbands =500,

33 xc=’RPBE’,

34 kpts=(8, 8, 1),

35 eigensolver=Davidson (5),

36 spinpol=False ,

37 poissonsolver ={’dipolelayer ’: ’xy’},

38 txt=’anion.txt’)

39

40 slab = read(geom_file)

41 slab.pbc = [True , True , False]

42 slab.calc = ancalc

43

44 # read molecule data

45 molecule , gascalc = restart(’molecule.gpw’, txt=None)

46

47 ############# Setting up the for le -deltascf ################

48

49 # collect pseudowavefunctions and projector overlaps.

50 # required for all electron wavefunctions

51

52 mol = get_mol_indicies(slab)
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53

54 wf_u_4 = [kpt.psit_nG [4] for kpt in gascalc.wfs.kpt_u]

55 p_uai_4 = [dict ([( mol[a], P_ni [4]) for a, P_ni in kpt.P_ani.items ()])

56 for kpt in gascalc.wfs.kpt_u]

57

58 wf_u_5 = [kpt.psit_nG [5] for kpt in gascalc.wfs.kpt_u]

59 p_uai_5 = [dict ([( mol[a], P_ni [5]) for a, P_ni in kpt.P_ani.items ()])

60 for kpt in gascalc.wfs.kpt_u]

61

62 wf_u_6 = [kpt.psit_nG [6] for kpt in gascalc.wfs.kpt_u]

63 p_uai_6 = [dict ([( mol[a], P_ni [6]) for a, P_ni in kpt.P_ani.items ()])

64 for kpt in gascalc.wfs.kpt_u]

65

66 wf_u_7 = [kpt.psit_nG [7] for kpt in gascalc.wfs.kpt_u]

67 p_uai_7 = [dict ([( mol[a], P_ni [7]) for a, P_ni in kpt.P_ani.items ()])

68 for kpt in gascalc.wfs.kpt_u]

69

70 # Making the resonance orbitals using occupied states

71 occ_res4 = dscf.AEOrbital(ancalc , wf_u_4 , p_uai_4 , Estart =-100.0, Eend

=0.0)

72 occ_res5 = dscf.AEOrbital(ancalc , wf_u_5 , p_uai_5 , Estart =-100.0, Eend

=0.0)

73 occ_res6 = dscf.AEOrbital(ancalc , wf_u_6 , p_uai_6 , Estart =-100.0, Eend

=0.0)

74 occ_res7 = dscf.AEOrbital(ancalc , wf_u_7 , p_uai_7 , Estart =-100.0, Eend

=0.0)

75

76 # Making the resonance orbitals using unnoccupied states

77 unocc_res4 = dscf.AEOrbital(ancalc , wf_u_4 , p_uai_4 , Estart =0.0, Eend

=100)

78 unocc_res5 = dscf.AEOrbital(ancalc , wf_u_5 , p_uai_5 , Estart =0.0, Eend

=100)

79 unocc_res6 = dscf.AEOrbital(ancalc , wf_u_6 , p_uai_6 , Estart =0.0, Eend

=100)

80 unocc_res7 = dscf.AEOrbital(ancalc , wf_u_7 , p_uai_7 , Estart =0.0, Eend

=100)

81

82 #Run le -DSCF excited state calculation

83 dscf.dscf_calculation(ancalc , [[0.05 , unocc_res4 , 0],[-0.10, occ_res5 ,

0],[-0.10, occ_res6 ,0]], slab)

84 slab.calc = ancalc

85 slab.get_potential_energy ()

86

87 ### write density and wavefunctions ####

88 den = ancalc.get_all_electron_density ()

89 write(’anion.cube’, slab , data=den * Bohr **3)
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90 #ancalc.write(’anion.gpw ’, mode=’all ’)

91

92 ## vdW correction ##

93 vdwrads = []

94 for atom in slab:

95 if atom.symbol == ’Ag’:

96 vdwrads.append (2.57)

97 elif atom.symbol == ’Au’:

98 vdwrads.append (2.91)

99 else:

100 vdwrads.append(vdWradii ([atom.symbol], ’RPBE’)[0])

101

102 cc = vdWTkatchenko09prl(HirshfeldPartitioning(ancalc),

103 #vdWradii(slab.get_chemical_symbols (),’RPBE ’),

104 vdwrads ,

105 vdWDB_alphaC6 ={’Au’: [15.6 , 134],

106 ’Ag’: [15.4, 122],

107 ’N’ : [7.4, 24.2],

108 ’O’ : [5.4, 15.6],

109 ’C’ : [12., 46.6],

110 ’H’ : [4.5, 6.5]}

111 )

112 slab.calc = cc

113 slab.get_potential_energy ()

Listing A.4: A python script, output by Listing A.3, that will perform an anionic

ρle-∆SCF calculation
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Appendix B

Final vibrational state

distributions

In Chapter 6, an illustrative selection of final vibrational state (νf) distributions

were shown. However, νf distributions were calculated for all PES sets using both

adiabatic (AIMD) and IESH dynamics. All νf distributions are shown below.
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B.1 ρle-∆SCF CO-Au(111)

B.1.1 IESH dynamics using Non-shifted PES

Figure B.1: IESH final state distributions for the non-shifted ρle-∆SCF CO-Au PES

set where νi = 0. The value of Ei is indicated at the top of each subplot
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Figure B.2: IESH final state distributions for the non-shifted ρle-∆SCF CO-Au PES

set where νi = 2. The value of Ei is indicated at the top of each subplot

Figure B.3: IESH final state distributions for the non-shifted ρle-∆SCF CO-Au PES

set where νi = 8. The value of Ei is indicated at the top of each subplot
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Figure B.4: IESH final state distributions for the non-shifted ρle-∆SCF CO-Au PES

set where νi = 12. The value of Ei is indicated at the top of each subplot

Figure B.5: IESH final state distributions for the non-shifted ρle-∆SCF CO-Au PES

set where νi = 17. The value of Ei is indicated at the top of each subplot
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B.1.2 Shifted PES IESH dynamics

Figure B.6: IESH final state distributions for the shifted ρle-∆SCF CO-Au PES set

where νi = 0. The value of Ei is indicated at the top of each subplot

Figure B.7: IESH final state distributions for the shifted ρle-∆SCF CO-Au PES set

where νi = 2. The value of Ei is indicated at the top of each subplot
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Figure B.8: IESH final state distributions for the shifted ρle-∆SCF CO-Au PES set

where νi = 8. The value of Ei is indicated at the top of each subplot

Figure B.9: IESH final state distributions for the shifted ρle-∆SCF CO-Au PES set

where νi = 12. The value of Ei is indicated at the top of each subplot
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Figure B.10: IESH final state distributions for the shifted ρle-∆SCF CO-Au PES

set where νi = 17. The value of Ei is indicated at the top of each subplot

151



B.1.3 Adiabatic dynamics

Figure B.11: Adiabatic dynamics final state distributions for the ground-state CO-

Au PES associated with the ρle-∆SCF PES set where νi = 0. The value of Ei is

indicated at the top of each subplot.
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Figure B.12: Adiabatic dynamics final state distributions for the ground-state CO-

Au PES associated with the ρle-∆SCF PES set where νi = 2. The value of Ei is

indicated at the top of each subplot.

Figure B.13: Adiabatic dynamics final state distributions for the ground-state CO-

Au PES associated with the ρle-∆SCF PES set where νi = 8. The value of Ei is

indicated at the top of each subplot.
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Figure B.14: Adiabatic dynamics final state distributions for the ground-state CO-

Au PES associated with the ρle-∆SCF PES set where νi = 12. The value of Ei is

indicated at the top of each subplot.

Figure B.15: Adiabatic dynamics final state distributions for the ground-state CO-

Au PES associated with the ρle-∆SCF PES set where νi = 17. The value of Ei is

indicated at the top of each subplot.
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B.2 ρle-∆SCF CO-Ag(111)

B.2.1 Non-shifted PES IESH dynamics

Figure B.16: IESH final state distributions for the non-shifted ρle-∆SCF CO-Ag

PES set where νi = 0. The value of Ei is indicated at the top of each subplot
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Figure B.17: IESH final state distributions for the non-shifted ρle-∆SCF CO-Ag

PES set where νi = 2. The value of Ei is indicated at the top of each subplot

Figure B.18: IESH final state distributions for the non-shifted ρle-∆SCF CO-Ag

PES set where νi = 8. The value of Ei is indicated at the top of each subplot
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Figure B.19: IESH final state distributions for the non-shifted ρle-∆SCF CO-Ag

PES set where νi = 12. The value of Ei is indicated at the top of each subplot

Figure B.20: IESH final state distributions for the non-shifted ρle-∆SCF CO-Ag

PES set where νi = 17. The value of Ei is indicated at the top of each subplot
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B.2.2 Shifted PES IESH dynamics

Figure B.21: IESH final state distributions for the shifted ρle-∆SCF CO-Ag PES

set where νi = 0. The value of Ei is indicated at the top of each subplot

Figure B.22: IESH final state distributions for the shifted ρle-∆SCF CO-Ag PES

set where νi = 2. The value of Ei is indicated at the top of each subplot
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Figure B.23: IESH final state distributions for the shifted ρle-∆SCF CO-Ag PES

set where νi = 8. The value of Ei is indicated at the top of each subplot

Figure B.24: IESH final state distributions for the shifted ρle-∆SCF CO-Ag PES

set where νi = 12. The value of Ei is indicated at the top of each subplot
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Figure B.25: IESH final state distributions for the shifted ρle-∆SCF CO-Ag PES

set where νi = 17. The value of Ei is indicated at the top of each subplot
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B.2.3 Adiabatic dynamics

Figure B.26: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ρle-∆SCF PES set where νi = 0. The value of Ei is

indicated at the top of each subplot.
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Figure B.27: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ρle-∆SCF PES set where νi = 2. The value of Ei is

indicated at the top of each subplot.

Figure B.28: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ρle-∆SCF PES set where νi = 8. The value of Ei is

indicated at the top of each subplot.
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Figure B.29: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ρle-∆SCF PES set where νi = 12. The value of Ei is

indicated at the top of each subplot.

Figure B.30: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ρle-∆SCF PES set where νi = 17. The value of Ei is

indicated at the top of each subplot.
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B.3 ML-CDFT CO-Au(111)

B.3.1 IESH dynamics

Figure B.31: IESH final state distributions for the ML-CDFT CO-Au PES set where

νi = 0. The value of Ei is indicated at the top of each subplot
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Figure B.32: IESH final state distributions for the ML-CDFT CO-Au PES set where

νi = 2. The value of Ei is indicated at the top of each subplot

Figure B.33: IESH final state distributions for the ML-CDFT CO-Au PES set where

νi = 8. The value of Ei is indicated at the top of each subplot
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Figure B.34: IESH final state distributions for the ML-CDFT CO-Au PES set where

νi = 12. The value of Ei is indicated at the top of each subplot

Figure B.35: IESH final state distributions for the ML-CDFT CO-Au PES set where

νi = 17. The value of Ei is indicated at the top of each subplot
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B.3.2 Adiabatic dynamics

Figure B.36: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ML-CDFT PES set where νi = 0. The value of Ei is

indicated at the top of each subplot.
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Figure B.37: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ML-CDFT PES set where νi = 2. The value of Ei is

indicated at the top of each subplot.

Figure B.38: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ML-CDFT PES set where νi = 8. The value of Ei is

indicated at the top of each subplot.
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Figure B.39: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ML-CDFT PES set where νi = 12. The value of Ei is

indicated at the top of each subplot.

Figure B.40: Adiabatic dynamics final state distributions for the ground-state CO-

Ag PES associated with the ML-CDFT PES set where νi = 17. The value of Ei is

indicated at the top of each subplot.
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