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Abstract: This study investigates the optimal and safe operation of pumping stations in water dis-

tribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance 

processes. We introduced the nonlinear chaotic honey badger algorithm (NCHBA), a novel and ro-

bust optimization method. The proposed method utilizes chaotic maps to enhance exploration and 

convergence speed, incorporating a nonlinear control parameter to effectively balance local and 

global search dynamics. Single-objective optimization results on a WDS show that NCHBA outper-

forms other algorithms in solution accuracy and convergence speed. The application of the pro-

posed approach on a water network with two variable-speed pumps demonstrated a significant 27% 

reduction in energy consumption. Expanding our focus to the multi-objective optimization of pump 

scheduling programs in large-scale water distribution systems (WDSs), we employ the non-domi-

nated sorting nonlinear chaotic honey badger algorithm (MONCHBA). The findings reveal that the 

use of variable-speed pumps not only enhances energy efficiency but also bolsters WDS reliability 

compared to the use of single-speed pumps. The results showcase the potential and robustness of 

the proposed multi-objective NCHBA in achieving an optimal Pareto front that effectively balances 

energy consumption, pressure levels, and water quality risk, facilitating carbon footprint reduction 

and sustainable management of WDSs. 

Keywords: water distribution systems; water–energy nexus; multi-objective optimization; honey 

badger algorithm; metaheuristic algorithms; NCHBA 

 

1. Introduction 

One of the main essential infrastructures of every urban area is the water distribution 

system (WDS), which delivers water of sufficient quality and quantity to consumers [1]. 

Pumping stations (PSs) are one of the most expensive parts of a WDS and have the most 

crucial role in supplying water with the proper pressure in the network, so their proper 

design and use are critical. Pumping an excess amount of water into the network increases 

energy consumption by raising the nodal pressure beyond the necessary pressure in the 

nodes, causing leaks, broken pipes, and, as a result, increasing the maintenance costs of 

the water distribution system [2]. On the other hand, if the pumping stations do not sup-

ply enough water to the consumers during the peak hours of the day and night, the net-

work’s reliability will decrease [3]. One of the ways to increase the reliability and flexibil-

ity of the water supply network is by using more than one pump in the pumping stations. 

The number of pumps can be determined by a simple economic analysis. Based on the 

financial reports of England and Wales between 1998 and 1999, the cost of electricity used 

by pumping stations was estimated to be more than GBP 120 million [4]. Therefore, in 
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addition to adequately designing pumping stations, it is necessary to use them properly. 

The problem of optimal operation of pumping stations is an important issue influenced 

by several factors, such as the following: B. the performance of the pump and the time of 

pumping. In the last decades, much research has been conducted on optimizing the per-

formance of pumps, using various optimization approaches such as linear programming 

(LP), nonlinear programming (NLP), and dynamic programming (DP) [5–9]. The above 

computational approaches are time-consuming and unsuitable for estimating the optimal 

operation of pumping stations due to many decision variables impacting the optimization 

of pumping stations [10]. Therefore, in recent years, researchers have focused on meta-

heuristics approaches to optimize these systems [11–19]. Among the existing studies, Ref. 

[20] introduced a new simulation–optimization model for optimizing the pump schedul-

ing program by using an Ant Colony Optimization (ACO). In this study, an explicit 

method is presented to reduce the decision variables and to satisfy the constraint of pump 

switching. More recently, Ref. [21] developed a new simulation–optimization model 

based on an improved Dragonfly Algorithm (DA) to optimize the scheduling of pumping 

stations and minimize energy consumption in WDSs. Comparing the performance of the 

proposed model with previous models in a famous case study, the result illustrated that 

the DA-based model was more efficient and more reliable than others. 

In recent years, the problem of optimizing the operation of pumping stations has 

been extensively studied to simulate it as a multi-purpose problem because it involves 

various conflicting objectives [22–24]. The most noteworthy studies in the last few years 

include Ref. [25], who proposed a self-adaptive multi-objective optimization algorithm 

based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimizing the 

pump scheduling program with the objective functions of 1—energy consumption cost 

and 2—the maintenance cost. Ref. [26] introduced a new framework using the NSGA-II 

for determining the best program of pumping in order to reduce the energy and leakage 

in WDSs. As such, in operating pumping stations, many objectives, such as minimizing 

leakage, energy costs, and water age, are to be considered. This is performed through 

multi-objective optimization models [27–30] and is the main motivation for this study. 

The multi-objective optimization problem of the operation of pumping stations in 

WDSs is one of the most challenging problems in the field of water engineering. Typically, 

this problem includes nonlinear objective functions with a large number of decision vari-

ables and constraints. Water managers and planners explore to find proper optimization 

techniques for the optimal operation of pumping stations. Therefore, finding robust and 

efficient optimization methods is essential. Meta-heuristic algorithms are proposed as the 

most frequently implemented methods for optimizing pump scheduling programs in 

WDSs regarding their proven powerful ability to find non-dominated optimal solution 

sets and convergence speed [25]. Simple design and implementation, high performance, 

and robustness are the superior characteristics of these techniques [30–33]. 

Therefore, this study aims to develop an effective and new optimization algorithm 

for the operation of pumping stations, taking into consideration multiple objectives. To 

achieve this, we enhanced the performance of a meta-heuristic optimization algorithm 

known as the honey badger algorithm (HBA) [34] by improving its search capabilities in 

the solution space and facilitating suitable convergence. The proposed algorithm’s perfor-

mance is evaluated on both small-scale WDSs with variable-speed pumps and large-scale 

WDSs. Two scenarios, including variable-speed and fixed-speed pumps, are considered, 

with the overall objective of ensuring optimal and safe operation of pumping stations. The 

key novel contributions of this study are summarized as follows: 

• A nonlinear chaotic honey badger algorithm, i.e., NCHBA, incorporating a nonlinear 

control parameter and a chaotic map to strike a balance between exploration and ex-

ploitation, is proposed. The efficiency of NCHBA is validated by solving a high-di-

mensional pump scheduling problem. 

• A new multi-objective variant of NCHBA is proposed, and its performance is as-

sessed using four ZDT benchmark functions. 
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• The proposed multi-objective algorithm is utilized to optimize the pump scheduling 

program of a large WDS to minimize the energy consumption and footprint of pump-

ing stations, quality risk, and nodal pressure. The optimal compromise solution is 

determined through the TOPSIS method. 

The structure of the rest of this paper is as follows: Section 2 provides a detailed de-

scription of the model development. Section 3 showcases the results of the proposed al-

gorithm for optimizing the pump scheduling program. Section 4 discusses the key con-

clusions of the study and directions for future research. 

2. Materials and Methods 

This section provides an overview of the necessary materials and methods for devel-

oping the proposed multi-objective framework aimed at achieving sustainable and opti-

mized operation of WDSs. It includes a description of the fundamental HBA and its frame-

work, as well as an explanation of the key concepts related to the caostica map and non-

linear approach. Additionally, the information on the case studies and objective functions 

utilized in this study are presented in this section. 

To find the best operating program for pumps in WDSs, a simulation optimization 

model was developed. To this end, the EPANET hydraulic simulation model [35] was cou-

pled with the new proposed multi-objective optimization algorithm, i.e., MONCHBA, to 

achieve an enhanced and optimized operational model. Figure 1 illustrates the step-wise 

simulation–optimization processes of the proposed framework. 

 

Figure 1. The proposed simulation–optimization framework. 

As depicted in Figure 1, the optimizer generates a vector of decision variables such 

as a scheduling program or operating cycle of pumps. Subsequently, the EPANET simu-

lator model is executed, and the network’s response, including objective functions and 

constraints, is determined based on the input vector. This iterative process continues until 

the termination condition is met. 
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2.1. Optimization Process and Problem Formulation 

This paper presents a new approach for optimized operation of pumps in water dis-

tribution systems. The proposed approach involves an explicit control optimization prob-

lem that considers the pumps’ operating times and relative speed as decision variables. 

This research explores pump energy efficiency across two scenarios with fixed and varia-

ble-speed pumps. Therefore, a multi-objective optimization approach is considered, 

where the purpose is to reduce the energy costs, pressure level, and water quality risk 

associated with the network operation. In this section, the formulation of the optimization 

problem is presented. 

2.1.1. Objective Functions 

The first objective function is the pumping energy cost (CE), which includes two parts: 

demand charge (CD) and consumption charge (Cc). Cc is the cost of electrical energy con-

sumed during a time period. CD denotes the demand charge, which is the total cost asso-

ciated with the maximum amount of power consumed (i.e., peak energy). Therefore, the 

total pumping energy cost is computed by Equation (1) as follows [36]: 

𝑓1 = 𝐶𝐸 = 𝛾𝑤∑∑(
𝑄(𝑛,𝑡). 𝐻(𝑛,𝑡)

𝜂(𝑛,𝑡)
× ∆𝑡𝑡 × 𝑏(𝑛,𝑡) × 𝐸𝐶(𝑛,𝑡)) 

𝑇

𝑡=1

𝑁𝑃

𝑛=1

⏞                              
𝐶𝑐

+∑(𝐷𝐶𝑛 × 𝛼𝑛) 

𝑁𝑃

𝑛=1

⏞          
𝐶𝐷

 
(1) 

where 𝑁𝑃  is the number of pumps, T is the number of time periods, 𝛾𝑤  is the specific 

weight of water, 𝑄(𝑛,𝑡) and 𝐻(𝑛,𝑡)  are the flow through the pump and the total dynamic 

head during each time step t in pump n, 𝐸𝐶(𝑛,𝑡) is the price per energy unit defined for 

each pump n according to the tariff value for the time step t, 𝑏𝑛,𝑡 is the status of pump n 

as being off or on at time t, ∆𝑡𝑡 is the length of a time interval t, and 𝜂(𝑛,𝑡) is the efficiency 

of pump n during each time step t. To calculate the CD, the model first finds the highest 

power required for each pump (𝑃𝑚𝑎𝑥) throughout the simulation and counts how often it 

happens. Then, it multiplies this number by a user-defined demand charge (𝐷𝐶𝑛) for each 

pump. Therefore, 𝛼𝑛 is the product of the maximum power for a pump 𝑛, 𝑃𝑚𝑎𝑥, and the 

frequency of this power, 𝑛𝑃𝑚𝑎𝑥, i.e., 

𝛼𝑛 = 𝑃𝑚𝑎𝑥 × 𝑛𝑃𝑚𝑎𝑥 (2) 

The goal of minimizing energy consumption is to increase an approximate efficiency 

value. This is due to the fact that energy consumption depends on the scheduling pro-

gram, the operating point, and the pump speed. 

Operating a WDS with high pressure may lead to more leakages, pipe damage, and 

excessive consumption. In fact, a WDS is designed for a peak demand state; therefore, for 

long periods, it may tolerate excessive pressure, especially when the water consumption 

is low. Therefore, pressure management is an efficient way to improve the reliability of 

WDSs. Thus, we will consider the minimization of total excessive pressure of all nodes as 

our second objective function for optimal operation of the WDSs. The mathematical for-

mulation of the second objective function can be defined as: 

𝑓2 = ∑∑(𝑃𝑖,𝑡 − 𝑃𝑖
𝑚𝑖𝑛)2 

𝑇

𝑡 = 1

𝑁

𝑖 = 1

 (3) 

where  𝑃𝑖,𝑡 is the pressure at node i in time t, and 𝑃𝑖
𝑚𝑖𝑛 is the minimum required pressure 

at node i. 

The third objective function of the problem is to minimize the water quality risk in 

WDSs. It is clear that water quality deteriorates with increasing the water age. Applying 

some actions to increase the water quality in a network may lead to an increase in opera-

tional costs. Therefore, it is necessary for a sustainable WDS to acquire a reliable level of 

water age at which the water quality reliability is satisfied at the minimum operational 
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costs. The mathematical formulation of water quality risk based on water age can be de-

fined as Equation (4) [37]: 

𝑓3 = 𝑅𝑖𝑠𝑘𝑞 = 1 − 𝑅𝑒𝑞 (4) 

In Equation (5), 𝑅𝑒𝑞 denotes the total water quality reliability of WDSs based on wa-

ter age, determined as follows: 

𝑅𝑒𝑞 =
∑ ∑ 𝑏𝑖,𝑡𝑄𝑖,𝑡

𝑎𝑣𝑙𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑄𝑖,𝑡
𝑟𝑒𝑞𝑇

𝑡=1
𝑁
𝑖=1

 (5) 

where 𝑏𝑖,𝑡 is a coefficient for node i at time t based on water age and is calculated from 

Equation (6), and 𝑄𝑖,𝑡
𝑟𝑒𝑞 and 𝑄𝑖,𝑡

𝑎𝑣𝑙 are the required demand and the available discharge for 

node i at time t, respectively. 

𝑏 = {

1                                               𝑖𝑓 𝑤𝑎𝑡𝑒𝑟 𝑎𝑔𝑒 ≤ 6

                −0.125 × (𝑊𝐴 − 6) + 1       𝑖𝑓  6 h < 𝑤𝑎𝑡𝑒𝑟 𝑎𝑔𝑒 < 10 h
     0                                                𝑖𝑓  10 h ≤ 𝑤𝑎𝑡𝑒𝑟 𝑎𝑔𝑒

 (6) 

where 𝑊𝐴 is the water age (hour), and b is the performance index. According to Equation 

(6), if the water age is less than 6 h, the performance of the network is good. If the water 

age is higher than 10 h, the performance of the network is poor. 

It is worth noting that the available discharge at nodes is calculated here through the 

pressure-driven simulation method (PDSM). In this method, the discharge at each node 

depends on the nodal pressure. Many studies have suggested equations to simulate the 

relationship between the pressure and available discharge at the node [2]. The equation 

suggested by Wanger et al. (1988) for simulating the PDSM approach is used here [38]: 

𝑄𝑖,𝑡
𝑎𝑣𝑙(𝑃𝑖,𝑡) =

{
 
 

 
 𝑄𝑖,𝑡

𝑟𝑒𝑞
                                               𝑃𝑖,𝑡 ≥ 𝑃𝑖

𝑟𝑒𝑓

                𝑄𝑖,𝑡
𝑟𝑒𝑞
× (

𝑃𝑖,𝑡 − 𝑃𝑖
𝑚𝑖𝑛

𝑃𝑖
𝑟𝑒𝑓
− 𝑃𝑖

𝑚𝑖𝑛
)

0.5

    𝑃𝑖
𝑚𝑖𝑛 < 𝑃𝑖,𝑡 < 𝑃𝑖

𝑟𝑒𝑓

     0                                                𝑃𝑖,𝑡 ≤ 𝑃𝑖
𝑚𝑖𝑛

 (7) 

where 𝑃𝑖
𝑟𝑒𝑓

 is the service pressure necessary for supplying the demand at nod i, 𝑄𝑖,𝑡
𝑟𝑒𝑞 is 

the demand required at node i, and 𝑃𝑖
𝑚𝑖𝑛 is the minimum pressure (which indicates no 

water is available at the node). 

2.1.2. Constraints 

Typically, several important constraints are applied to the operation optimization 

problem of WDSs to maintain the performance of the system. A constraint is implemented 

to maintain the balance between the water level of each tank at the beginning and at the 

end of the simulation duration, as demonstrated in Equation (8) [36]: 

g1,𝑖 = 𝐿𝑖,𝑓𝑖𝑛𝑎𝑙 − 𝐿𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 0,      𝑖 = 1,… , 𝑛𝑡𝑎𝑛𝑘𝑠 (8) 

where 𝐿𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝐿𝑖,𝑓𝑖𝑛𝑎𝑙 are the initial and final water levels of tank i, and 𝑛𝑡𝑎𝑛𝑘𝑠 is the 

number of existing tanks in a WDS. There are also two constraints that should be satisfied 

to control the water level variation in tanks between minimum and maximum allowable 

limits. These constraints are given as follows: 

g2,𝑖 = 𝐿𝑖 − 𝐿𝑖,𝑚𝑎𝑥 ≤ 0,      𝑖 = 1,… , 𝑛𝑡𝑎𝑛𝑘𝑠 (9) 

g3,𝑖 = 𝐿𝑖,𝑚𝑖𝑛 − 𝐿𝑖 ≤ 0,      𝑖 = 1, … , 𝑛𝑡𝑎𝑛𝑘𝑠 (10) 

where 𝐿𝑖 is the water level in tank i, and 𝐿𝑖,𝑚𝑎𝑥 and 𝐿𝑖,𝑚𝑖𝑛 are the maximum and minimum 

limits in tank i, respectively. 
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To supply the required discharge at nodes, it is necessary that the pressure at the 

demand nodes should be higher than the minimum required pressure. Thus, another con-

straint is applied to the problem as follows: 

g4,𝑖 = 𝑃𝑖
𝑟𝑒𝑓
− 𝑃𝑖 ≤ 0,      𝑖 = 1,… , 𝑛𝑛𝑜𝑑𝑒𝑠 (11) 

The fifth constraint relates to the deliverable flow by pumps that is a function of the 

pump characteristics, as shown in Equation (12): 

g5,𝑖 = 𝑄(𝑖,𝑡) − 𝑄𝑖
𝑚𝑎𝑥 ≤ 0,      𝑖 = 1,… , 𝑛𝑝𝑢𝑚𝑝𝑠 (12) 

where 𝑄𝑖
𝑚𝑎𝑥 is the maximum flowrate from the performance curve of pump i. 

The last type of constraint includes the hydraulic compatibility equations of continu-

ity and energy conservation, which are automatically satisfied in the EPANET hydraulic 

simulation model. More information on the compatibility restrictions is provided in Ap-

pendix A. 

In brief, the multi-objective optimization model developed in this work can be math-

ematically expressed by Equation (13): 

𝑀𝑖𝑛 𝐹1 = 𝐶𝐸(𝑿) = 𝛾𝑤∑∑(
𝑄(𝑛,𝑡)(𝑿).𝐻(𝑛,𝑡)(𝑿)

𝜂(𝑛,𝑡)(𝑿)
× ∆𝑡𝑡 × 𝑏(𝑛,𝑡) × 𝐸𝐶(𝑛,𝑡)) 

𝑇

𝑡=1

𝑁𝑃

𝑛=1

⏞                                    
𝐶𝑐

+∑(𝐷𝐶𝑛 × 𝛼𝑛(𝑿)) 

𝑁𝑃

𝑛=1

⏞            
𝐶𝐷

 

𝑀𝑖𝑛 𝐹2 =∑∑(𝑃𝑖,𝑡(𝑿) − 𝑃𝑖
𝑟𝑒𝑓
)2 

𝑇

𝑡=1

𝑁

𝑖=1

 

𝑀𝑖𝑛 𝐹3 = 𝑅𝑖𝑠𝑘𝑞 = 1 −
∑ ∑ 𝑏𝑖,𝑡(𝑿). 𝑄𝑖,𝑡

𝑎𝑣𝑙(𝑿)𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ 𝑄𝑖,𝑡
𝑟𝑒𝑞𝑇

𝑡=1
𝑁
𝑖=1

 

Subjected to         :g1,𝑖(𝑿) = 𝐿𝑖,𝑓𝑖𝑛𝑎𝑙(𝑿)− 𝐿𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑿) ≤ 0,      𝑖 = 1,… , 𝑛𝑡𝑎𝑛𝑘𝑠 

                               g2,𝑖(𝑿) = 𝐿𝑖(𝑿)− 𝐿𝑖,𝑚𝑎𝑥 ≤ 0,                        𝑖 = 1,… , 𝑛𝑡𝑎𝑛𝑘𝑠 

                                  g3,𝑖(𝑿) = 𝐿𝑖,𝑚𝑖𝑛 − 𝐿𝑖(𝑿) ≤ 0,                        𝑖 = 1, … , 𝑛𝑡𝑎𝑛𝑘𝑠 

                                g4,𝑖(𝑿) = 𝑃𝑖
𝑟𝑒𝑓 − 𝑃𝑖(𝑿) ≤ 0,                          𝑖 = 1,… , 𝑛𝑛𝑜𝑑𝑒𝑠 

                       g5,𝑖(𝑿) = 𝑄
(𝑖,𝑡)
(𝑿)− 𝑄

𝑖
𝑚𝑎𝑥 ≤ 0,                   𝑖 = 1,… , 𝑛𝑝𝑢𝑚𝑝𝑠 

 

(13) 

where 𝑿 = [
𝑥𝑡
𝑃𝑢𝑚𝑝 1

⋮

𝑥𝑡
𝑃𝑢𝑚𝑝 𝑛

 

…
⋮
…
 
𝑥𝑇
𝑃𝑢𝑚𝑝 1

⋮

𝑥𝑇
𝑃𝑢𝑚𝑝 𝑛

 ]  represents a vector of decision variables. The relative 

pump speed or the pump on/off status during the simulation period can be considered as 

the decision variables of the problem. 

As previously mentioned, a new multi-objective optimization algorithm is proposed 

based on the nonlinearity and complexity of the problem. Honey badger algorithm (HBA) 

was improved and applied to optimize the objective functions. In the following subsec-

tions, a summary description of the proposed algorithm in this study is provided. 

2.2. Optimization Model 

2.2.1. Honey Badger Algorithm 

The honey badger algorithm (HBA) is a newly nature-inspired algorithm proposed 

by Hashim et al. [34]. The HBA was mimicked from the honey badgers’ social behavior in 

exploring the food. The honey badger uses two ways to find food sources: smelling and 

digging or pursuing the honeyguide bird. Therefore, the basis of the HBA algorithm is 

these two modes. This algorithm consists of five main steps as follows: 

Step 1: Initialization phase: Generate the randomly initial solutions (honey badgers’ 

positions) as follows: 
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𝑥𝑖 = 𝐿𝐵𝑖 + 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑖 − 𝐿𝐵𝑖)  (14) 

where 𝑥𝑖 explains the position of honey badger i, rand is a random number in [0, 1], and 

𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower and upper boundaries of the search space, respectively. 

The initial random population of solutions is represented as: 

𝑿 = [
𝑥1,1
1 ⋯ 𝑥1,𝐷

1

⋮ ⋱ ⋮
𝑥𝑁,1
1 ⋯ 𝑥𝑁,𝐷

1
]

𝑁×𝐷

 (15) 

𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷] (16) 

where D and N are the number of decision variables and the number of honey badgers, 

respectively. 

Step 2: Specifying intensity (I): To simulate the concentration strength of the prey and 

spacing between it and the ith hunter (honey badger), the intensity parameter (I) is de-

fined. In fact, Iit explains the intensity of the smell of the prey; if the smell is heavy, the 

action will be quick and contrariwise. Iit is calculated by Equation (17) based on Inverse 

Square Law [34]. 

𝐼𝑖𝑡 = 𝑟𝑎𝑛𝑑 ×
𝑆

4𝜋𝑑𝑖
2 

𝑆 = (𝑥𝑖 − 𝑥𝑖+1)
2 

𝑥𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖 

(17) 

where 𝑆 indicates the position of prey and 𝑑𝑖 is the spacing between the honey badger i 

and the prey. 

Step 3: Update density factor: The HBA algorithm uses a linear parameter (density 

factor) to create a smooth transition from the exploration step to the exploitation step. This 

parameter is a decreasing factor that reduces with each iteration to reduce randomization 

with time. 

𝛼 = 𝐶 × exp (
−𝑡

𝑡𝑚𝑎𝑥
) (18) 

where C is a constant number, and 𝑡 and 𝑡𝑚𝑎𝑥 are the current and maximum iteration, re-

spectively.  

Step 4: Escaping from local optimum: The HBD algorithm uses a flag F to escape from 

local optimum domains, changing search direction to benefit good opportunities for 

honey badgers to scan the search domain robustly. 

Step 5: Updating the honey badgers’ positions: The position updating process of the 

HBA algorithm is divided into two phases, which are the digging and honey phases. In 

the digging phase, the search agent’s behavior can be simulated by Equation (19): 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟𝑎𝑛𝑑 × 𝛼 × 𝑑𝑖 × | cos(2𝜋 × 𝑟𝑎𝑛𝑑) × [1 − cos(2𝜋 × 𝑟𝑎𝑛𝑑)]| (19) 

where 𝑥𝑝𝑟𝑒𝑦 indicates the best position found so far, 𝛽 is a constant parameter to increase 

the ability of the search agent (𝛽 ≥ 1), and 𝑑𝑖 explains the distance between food and the 

ith search agent. HBA uses the flag F to change the search direction (see Equation (20)). 

𝐹 = {
1      𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5
−1   𝑒𝑙𝑠𝑒                     

 (20) 

In the second phase, the search agents (honey badgers) follow the honeyguide bird 

to find the food source; this phase is simulated by Equation (21): 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟𝑎𝑛𝑑 × 𝛼 × 𝑑𝑖 (21) 

In the honey phase, the performance of obtained solutions depends on the parameter 

𝛼. 
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2.2.2. Improved Honey Badger Algorithm 

The search process in metaheuristic algorithms is divided into two phases, including 

exploration and exploitation. The exploration phase refers to the algorithm’s attempt to 

find the best candidate solutions in the search space. In fact, in this phase, the first candi-

date solutions are randomly generated and improved over time until a stopping condition 

is met. However, in the exploitation phase, the algorithm concentrates on searching 

nearby areas of superior-quality answers within the problem search space. A robust algo-

rithm should consider creating a good balance between these two phases, considering the 

complexity structure of the algorithms [34]. HBA has been shown to have a significant 

superiority in solving mathematical optimization problems compared with other well-

known metaheuristic algorithms. However, HBA has a simple operator that traps local 

optima and an immature balance between the exploitation and exploration phases in solv-

ing real-world complex engineering problems. In this study, the HBA is further devel-

oped, and its performance is enhanced by incorporating the following strategies:  

• Utilizing the chaotic maps instead of random numbers. 

• Utilizing a nonlinear parameter to create a good balance between the exploitation 

and exploration phases. 

Nine chaotic maps were examined to identify the most efficient one for enhancing 

the exploration behavior of the HBA. More details about the chaotic maps utilized (i.e., 

equations and behaviors) are available in [39]. 

Chaotic mapping has unique features such as being ergodic (i.e., no two similar val-

ues), pseudo-random, sensitive to initial conditions, and deterministic. These attributes 

make it an efficient method for maintaining population dispersion in optimization algo-

rithms. Accordingly, the new position of the honey badgers is updated based on Equa-

tions (19) and (21). The primary objective of incorporating chaos theory into HBA is to 

replace random numbers in Equations (22) and (23) with chaotic values. This modification 

enhances the algorithm’s speed and accuracy compared to its original version. Therefore, 

Equations (23) and (24) can be rewritten as follows: 

𝑥𝑛𝑒𝑤 = 𝑤×𝑥𝑝𝑟𝑒𝑦+𝐹×𝛽× 𝐼× 𝑥𝑝𝑟𝑒𝑦
+𝐹× 𝑐𝑚1 ×𝛼×𝑑𝑖 × |cos(2𝜋× 𝑐𝑚2)× [1
− cos(2𝜋× 𝑐𝑚3)]| 

(22) 

𝑥𝑛𝑒𝑤 = 𝑤×𝑥𝑝𝑟𝑒𝑦+𝐹× 𝑐𝑚4 ×𝛼×𝑑𝑖 (23) 

where cm is a chaotic number based on the selected chaotic map produced in each itera-

tion. 

To enhance the convergence speed and facilitate escape from optimal local traps, 

chaos theory is employed to establish a nonlinear relationship that ensures a balanced 

trade-off between exploitation and exploration steps in the algorithm. 

𝑤 = 2𝑒−(
8×𝑖𝑡𝑒𝑟
𝑀𝑎𝑥𝐼𝑡𝑒𝑟)

2

 (24) 

where iter is the current iteration, and MaxIter is the maximum number of iterations. 

Equation (28) was first introduced in reference [40] and then used in many studies in 

the same form or modified to optimize the performance of meta-heuristic algorithms. The 

optimization process algorithm developed for the NCHBA is shown in Appendix B. 

2.2.3. Multi-Objective NCHBA 

We converted the NCHBA to solve the multi-objective operation of the WDSs prob-

lem. The main idea of MO-NCHBA is based on NSGA-II, which uses the elitist non-dom-

inated sorting (NDS) and the crowding distance (CD) operator in the optimization pro-

cess. In this algorithm, the NDS technique is used to find non-dominated solutions. Then, 

the selected solutions are stored in an “archive”, and those are updated at each iteration 
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by comparing the newly obtained solutions with previous non-dominated solutions. 

Overall, in the first step, the MO-NCHBA creates random solutions and evaluates the fit-

ness of each solution. In the second step, the NDS technique is applied to sort the non-

dominate solutions based on elitism non-domination. Then, MO-NCHBA applies a mu-

tate strategy to diversify the dominated Pareto front and avoid falling into local minimum 

domains. The implemented mutate strategy can be explained as Equation (25) [41]: 

𝐶(𝑚) = 𝐶𝑟1+𝑟𝑑(𝐶𝑟2−𝐶𝑟3) (25) 

where 𝐶(𝑚) is the mutated solution; 𝐶𝑟1, 𝐶𝑟2 and 𝐶𝑟3 are three solutions randomly chosen 

among the first three ranked Pareto front solutions; and 𝑟𝑑 is a constant number ∈ [0,1]. 

𝐶𝑛𝑤 = {
𝐶(𝑚)         𝑖𝑓 (𝑐𝑟 ≥ 𝑟𝑎𝑛𝑑 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝐶𝑒𝑞(𝑖,𝑗)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
 (26) 

where 𝐶𝑛𝑤  is the updated solution, 𝐶𝑒𝑞(𝑖,𝑗)  indicates the ith portion jth solution to be 

muted, 𝑐𝑟 is the crossover operator, and 𝑗𝑟𝑎𝑛𝑑 is a random discrete value between 1 and 

N. 

The mentioned process is repeated until the maximum iteration is terminated. 

3. Results and Implementation 

3.1. Model Validation 

In order to evaluate the performance of the proposed algorithm in solving the energy, 

pressure, and water quality management problem in WDSs, the effect of different types 

of chaotic maps [39] on the performance of HBA is investigated. Therefore, the nine map-

pings introduced in Ref. [39] and the nonlinear Equation (24) are coupled with HBA, and 

each mapping’s impact on the benchmark functions is evaluated.  We selected these bench-

mark functions because they encompass a variety of types, including unimodal, multi-

modal, hybrid, and composition functions. The characteristics of these functions are avail-

able in [39]. 

The most appropriate selection mapping and NCHBA performance in solving the 

problem of energy management in WDSs are evaluated as a single objective optimization 

problem and compared with Slim Mould Algorithm (SMA) [42], Aquila Optimizer (AO) 

[43], Hunger Games search (HGA) [44], Runge Kutta Optimizer (RUN) [45], and the orig-

inal version of HBA. Then, according to the explanations provided in Section 2.2.3, 

NCHBA is converted into a multi-objective optimization algorithm. Its performance is 

first evaluated by solving five benchmark problems and then by solving the energy multi-

objective problem in WDSs on a large-scale water network. 

Table 1 provides the best values obtained for HBA according to the types of maps. 

To achieve a stable result in solving the problem of each of the mappings, thirty HBAs 

were performed. The mean of the solutions was reported as the final value.  The table 

shows that HBA using sinusoidal mapping provided the best result with five optimal per-

formances. It was selected as the best mapping for HBA and used for comparison with 

other algorithms. Notably, the initial value of CM was considered equal to 0.7 in all map-

pings, based on previous studies [39,40]. 

Table 1. The influence of different types of chaotic maps on the NCHBA . 

 Chebyshev Circle 
Gauss-

mouse 
Iterative Logistic Sine Singer Sinusoidal Tent HBA 

F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F2 4.02 × 10−298 9.50 × 10−271 
1.48 × 

10−322 
4.70 × 10−290 

1.20 × 

10−291 

1.62 × 

10−300 

1.40 × 

10275 
1.17 × 10−247 

3.70 × 

10−273 
4.18 × 10−169 

F3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.30 × 10−250 
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F4 4.55 × 10−295 2.12 × 10−271 
2.09 × 

10−320 
3.49 × 10−291 

3.35 × 

10−296 

1.50 × 

10−299 

3.80 × 

10−276 
2.89 × 10−244 

7.26 × 

10−265 
5.32 × 10−143 

F5 −3.10 −3.32 −3.17 −3.20 −3.32 −3.32 −3.20 −3.32 −2.91 −3.13 

F6 −1.02 × 10 −1.02 × 10 −4.82 × 10 −1.02 × 10 −1.02 × 10 
−1.01 × 

10 
−1.02 × 10 −1.02 × 10 −8.75 −1.02 × 10 

F7 8.75 × 10−5 1.04 × 10−5 6.12 × 10−6 1.48 × 10−4 3.63 × 10−5 
8.62 × 

10−5 
7.72 × 10−5 3.07 × 10−5 1.44 × 10−5 6.47 × 10−5 

F8 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 
3.90 × 

10−1 
3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 3.90 × 10−1 

F9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F10 8.88 × 10−16 8.88 × 10−16 
8.88 × 

10−16 
8.88 × 10−16 

8.88 × 

10−16 

8.88 × 

10−16 

8.88 × 

10−16 
8.88 × 10−16 

8.88 × 

10−16 
8.88 × 10−16 

F11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F12 −1.04 × 10 −1.04 × 10 −1.73 −1.04 × 10 −1.04 × 10 
−1.04 × 

10 
−1.04 × 10 −1.04 × 10 −1.02 × 10 −1.04 × 10 

F13 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 
−1.05 × 

10 
−1.05 × 10 −1.05 × 10 −1.05 × 10 −1.05 × 10 

Best 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The performance evaluation of NCHBA in solving the optimization problem of the 

optimal setting of variable-speed pumps in WDSs is explained subsequently.  The suitable 

schedule of utilization includes determining the optimal configuration of the pumps dur-

ing the day and night. In this case, the limitation of the number of switching pumps to the 

objective function was not performed, and the optimizer itself was favorable to choose an 

optimal speed or on/off the pump in a different period. In such a way, in addition to min-

imizing the cost of energy consumption of pumping stations, the network water needs 

and the problem’s constraints are satisfied.  

As mentioned before, the above problem was solved using AO, SMA, HGA, RUN, 

and the original version  of HBA, showing the capability of the novel chaotic honey badger 

algorithm (NCHBA). The values of the adjustment parameters of the algorithms were also 

chosen according to the findings of reference papers (Table 2). 

Table 2. Input parameters of the algorithms used in this study. 

Algorithm Parameter  

AO 𝛼 = 0.1, 𝛿 = 0.1 

HGA 𝑙 = 0.08, 𝐿𝐻 = 100 

Run 𝑎 = 20, b = 12 

SMA 𝑣𝑏 𝑎𝑛𝑑 𝑣𝑐 = [2 0] 

HBA 𝛽 = 6, 𝐶 = 2 

NCHBA 
C (Nonlinear control parameter)  

w = [2 0], 𝛽 = 6, 𝐶 = 2 

3.2. Single Objective NCHBA for Energy Optimization 

The proposed NCHBA-EPANET model was first applied to a benchmark WDS al-

ready used in the literature by Ref. [4]. This WDS consists of three pumps, two tanks, one 

reservoir with a constant water level equal to 56 m, two demand nodes, and 19 pipes, and 

is solved hourly over a day (Figure 2). Pumps 1A and 2B are working in parallel to convey 

water from the reservoir to the network. Pump 3B transfers water from tank A to tank B. 

The pumps’ scheduling period is 24 h with different time tariffs, and the demands during 

the operating period vary according to a typical residential demand pattern with a peak 

factor of 1.7 at 7:00 and a secondary peak factor of 1.5 at 18:00. The more details of this 

case study are available in Ref. [4]. 
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Figure 2. Schematic of case study I. 

For a fair comparison between algorithms, each algorithm was executed ten times, 

with a population of 50 and a maximum repetition of 1000. The results of the algorithms’ 

implementations to find the optimal pump speed are shown in Table 3, highlighting that 

the NCHBA was profoundly more efficient than the other tested algorithms in solving the 

complex optimization problem of WDS pumps. The average value of the objective func-

tion (energy consumption) for ten times of execution was 260.68$, and the lowest solution 

was 249.79$. According to the mentioned findings in Table 3, the NCHBA was more stable 

than other algorithms, and the proposed approach to improve the algorithm was practical. 

The bold values in Table 3 represent the lowest results obtained by the algorithms. 

Table 3. Results and comparison of metaheuristic algorithms for the case study I. 

No. Run AO HGA Run SMA HBA NCHBA 

1 360.627 310.873 299.894 300.080 281.745 261.891 

2 361.164 303.752 300.279 300.087 301.290 249.798 

3 360.191 301.465 301.207 299.416 284.834 266.977 

5 350.543 306.884 291.234 297.725 300.661 259.558 

6 359.868 298.520 295.697 299.458 316.968 260.232 

7 359.938 302.123 290.906 284.270 295.006 259.945 

8 380.171 308.970 304.920 299.252 308.427 263.015 

9 358.250 299.807 290.167 299.743 300.812 260.346 

10 361.700 310.898 308.929 300.279 324.785 264.362 

Average 361.384 304.810 298.137 297.812 301.614 260.680 

Min 350.543 298.52 290.167 284.27 281.745 249.798 

Max 380.171 310.898 308.929 300.279 324.785 266.977 

Std 7.801 4.737 6.605 5.134 13.878 4.752 

Figure 3 shows that the convergence of SMA and AO was faster than other algo-

rithms, and they are trapped in the local optimum.  Considering the complexity of the in-

vestigated problem and the multiplicity of decision variables in it and, per theory, no free 
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lunch (NFL), most of the best algorithms effective in solving other problems may not be 

able to solve the energy optimization problem in WDSs. The results highlight the en-

hanced performance of NCHBA with the addition of chaotic mapping and nonlinear re-

lationships. This improvement is evidenced by early convergence and reduced likelihood 

of getting trapped in local optima.  

 

Figure 3. Convergence curve of NCHBA and other algorithms for case study I. 

The details of the most favorable solution for NCHBA, including the optimal speed 

of the pumps and the changes in the water level of the reservoirs during the operation 

period, are listed in Figures 4 and 5.  As expected, the optimal speed of the pump was 

balanced without sudden rise and fall, and it had only two switching times during the 

operation period. 

 

Figure 4. Pumps operation program for case study I. 
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Figure 5. Tanks operation level for case study I. 

A variety of optimization algorithms have been used for modeling the Vanzyl net-

work in several studies. Based on Table 4, the EA-based model (evolutionary algorithm) 

proposed by [46] and the optimized DA algorithm developed by [21] are compared with 

other approaches to optimize the energy consumption of this network. It has worked more 

effectively. In Ref. [21], to optimize the schedule of network pumps by improving BDA 

performance, they presented a model that reduced the cost of energy consumption from 

345 to 325 ($/day). In the present study, the energy consumption cost decreased by 27% 

using variable-speed pumps instead of fixed-speed pumps and the NCHBA approach. 

Frequent and sudden turning off/on due to premature depreciation of pumps and 

the creation of transient conditions in the system are other factors that impose additional 

costs due to the wrong operation of WDS pumps.  For this reason, according to Table 4, 

using variable-speed pumps has reduced other costs and energy costs. The highest num-

ber of switching in pumps was less than three times a day, while limiting the number of 

switching of door-to-door pumps in pumping stations is associated with a significant in-

crease in energy costs. Based on this analysis, it can be concluded that the utilization of 

variable-speed pumps not only reduces energy costs in pumping stations but also de-

creases additional expenses such as maintenance. Therefore, it is advisable to replace 

fixed-speed pumps. Another significant conclusion is that the integration of chaos maps 

and a nonlinear parameter approach in HBA has resulted in the development of a suitable 

algorithm for optimizing energy consumption in pumping stations. This algorithm can 

serve as an effective tool in this regard. The bold value in Table 4 represent the best results 

obtained by the studies. 

Table 4. Comparison of the results of the present study with the literature. 

Algorithm  Variables Reference Optimal Cost ($/day) 

GA 
Tank level controls  

(on/off) 
[4] 

344.19 

Hybrid GA 
344.19 

EA Tank level controls [47] 337.2 

ABC 

Tank level controls [46] 

363.85 

FF 361.72 

PSO 363.44 
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ACO 
Pump on/off 

[48] 
388.04 

Pump speed 349.43 

BDA Pump on/off [21] 325.23 

NCHBA Pump speed Current study 249.79 

3.3. Multi-Objective NCHBA for Benchmark Problems 

To address the optimization challenge in energy management for water distribution 

stations, the performance of MONCHBA was evaluated against two algorithms, MOSMA 

and NSGA-II, using five benchmark problems from the ZDT benchmark series [49]. These 

problems were chosen due to the highly nonlinear nature of these functions and their nu-

merous decision variables, which pose a significant challenge for multi-objective optimi-

zation algorithms. Also, each algorithm was executed 30 times with 100 initial populations 

and 500 iterations to ensure the fairness of the comparison of algorithms.  

Two well-known criteria, inverted generation distance (IGD) and spacing (SP), are 

used to evaluate the overall performance of the algorithm. The IGD is used to measure the 

convergence and distribution performance, and the SP is used to show the uniformity of 

obtained solutions by algorithms. The smallest value of the mentioned parameters shows 

the superiority of the algorithm compared to other algorithms [49]. 

𝐼𝐺𝐷 =
∑ 𝑑𝑖
𝑛
𝑖=1

𝑛
 (27) 

𝑆𝑃 = √
∑ (𝑑̅ − 𝑑𝑖)

2𝑛
𝑖=1

𝑛 − 1
 (28) 

where 𝑑𝑖 is the Euclidian distance between the 𝑖th Pareto optimal solution obtained by the 

algorithm and the nearest true Pareto optimal solution in the reference set, 𝑑̅ is the mean 

value of 𝑑𝑖, and 𝑛 shows the total number of achieved Pareto optimal solutions. 

Table 5 displays the amounts of IGD and SP statistical indices for algorithms in solv-

ing ZDT functions. As it is clear, MONCHBA has solved ZDT problems well. Based on 

IGD, a criterion of convergence of algorithms, it is clear that MONCHBA had better con-

vergence compared to the other two algorithms for solving ZDT functions. Also, consid-

ering that the SP criterion shows the uniformity of the solutions obtained, MONCHBA 

can produce solutions with a suitable and uniform distribution. 

Table 5. The SP and IGD statistics on ZDT benchmark problems. 

  IGD SP 

  Average St.d Best Worst Average St.d Best Worst 

Z
D

T
1 MONCHBA 4.63 × 10−3 1.95 × 10−4 4.43 × 10−3 4.93 × 10−3 5.85 × 10−3 3.51 × 10−3 5.50 × 10−3 6.39 × 10−3 

NSGA-II 6.23 × 10−2 7.39 × 10−2 2.97 × 10−1 1.97 × 10 6.23 × 10−2 4.51 × 10−2 9.47 × 10−3 1.09 × 10−1 

MOSMA 1.21 × 10−2 7.52 × 10−2 1.48 × 10−2 3.33 × 10−2 1.21 × 10−2 4.75 × 10−2 8.96 × 10−3 1.62 × 10−2 

Z
D

T
2 MONCHBA 4.54 × 10−3 2.58 × 10−4 4.32 × 10−3 4.96 × 10−3 5.23 × 10−3 3.95 × 10−4 4.92 × 10−3 5.98 × 10−3 

NSGA-II 1.05 6.33 × 10−1 8.45 × 10−3 1.61 2.46 × 10−2 1.49 × 10−2 4.65 × 10−2 1.23 × 10−2 

MOSMA 2.98 × 10−1 2.90 × 10−1 2.46 × 10−2 7.72 × 10−1 1.21 × 10−2 4.75 × 10−2 8.96 × 10−3 1.62 × 10−2 

Z
D

T
3 MONCHBA 6.12 × 10−3 1.24 × 10−3 4.68 × 10−3 7.11 × 10−3 6.28 × 10−3 8.63 × 10−4 5.60 × 10−3 7.31 × 10−3 

NSGA-II 7.68 × 10−2 1.18 × 10−1 8.72 × 10−3 2.86 × 10−1 1.21 × 10−1 1.75 × 10−1 2.34 × 10−2 4.32 × 10−1 

MOSMA 6.05 × 10−2 1.72 × 10−2 8.76 × 10−2 4.13 × 10−2 3.35 × 10−2 4.25 × 10−2 1.91 × 10−2 4.65 × 10−2 

Z
D

T
4 MONCHBA 4.80 × 10−3 2.70 × 10−4 4.47 × 10−3 5.22 × 10−3 5.87 × 10−3 5.49 × 10−3 5.18 × 10−3 6.36 × 10−3 

NSGA-II 3.71 2.33 7.77 × 10−1 6.45 6.50 × 10−1 3.73 × 10−1 1.90 × 10−1 1.08 

MOSMA 4.75 × 10 2.43 × 10 1.94 × 10 7.45 × 10 2.64 1.12 × 10−2 1.23 × 10−1 5.15 

Z
D

T
6 MONCHBA 3.33 × 10−3 4.37 × 10−4 2.69 × 10−3 3.82 × 10−3 5.05 × 10−3 4.34 × 10−4 4.60 × 10−3 5.73 × 10−3 

NSGA-II 5.69 × 10−2 2.02 × 10−2 3.55 × 10−2 8.47 × 10−2 5.99 × 10−2 4.75 × 10−2 1.34 × 10−1 2.28 × 10−2 

MOSMA 5.16 × 10−1 1.14 3.89 × 10−3 2.55 8.72 × 10−2 3.33 × 10−1 1.86 × 10−2 2.22 × 10−1 
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Figure 6 represents the optimal Pareto fronts obtained by three algorithms, 

MONCHBA, MOSMA, and NSGA-II, for problems of ZDT1 to ZDT4 and ZDT6. The opti-

mal solution set of all three algorithms is uniformly converged to the actual Pareto front. 

By enlarging a part of the Pareto front, the uniformity of the solutions of the MONCHBA 

algorithm was much higher than the other two algorithms. At the same time, MOSMA has 

not been able to adapt effectively to the actual Pareto. The convergence of three algorithms 

for the ZDT2 problem in Figure 6 shows the reasonable accuracy of MONCHBA compared 

to the other two algorithms. Hence, the solutions found by NSGA-II were far better than 

those found by MOSMA. However, the number of solutions obtained is less than the other 

two algorithms. This figure shows that the convergence of the proposed algorithm in solv-

ing the ZDT3 function is also acceptable. The set of solutions provided by it is uniformly 

converged to the true  Pareto front in the interaction diagram of the ZDT4 and ZDT6 exam-

ples presented in Figure 6, and it is the same as the algorithm MONCGWO has good ac-

curacy and convergence. However, the noteworthy point is the poor performance of the 

MOSMA algorithm compared to the other two algorithms, which failed to converge accu-

rately with the true solution. The optimal solutions were placed far from the true Pareto 

in almost all examples, meaning the weakness of this algorithm in escaping local optima 

and premature convergence. 

Examining the results of modeling the benchmark functions using the proposed 

multi-objective algorithm reveals that the performance of the initial version of the HBA 

algorithm has been improved through the utilization of the chaotic approach. This im-

provement is evident in the algorithm’s ability to produce accurate answers in accordance 

with the real answers when solving the benchmark problems. This success can be at-

tributed to the proper interaction between the search and exploration phases. 
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Figure 6. Pareto fronts of three algorithms on ZDT functions. 

3.4. Multi-Objective NCHBA for Energy Optimization 

The problem of exploiting WDSs was examined as a multi-objective optimization 

problem in this section. The first, second, and third objectives were to minimize the cost 

of energy consumption, the network pressure level, and the quality risk of the network, 

respectively. For this purpose, the objective functions and constraints introduced in Sec-

tion 2.2 were used in the optimization process. The WDS used in this section is the C-

Town network (Figure 7), a large-scale WDS with 399 consumption nodes, 443 pipes, 

seven storage tanks, 11 pumps, five valves, and the main water supply reservoir. The C-

Town network was divided into five district metered areas (DMAs) for easy management 

and operation, each with a different hourly consumption pattern. The C-Town network 

distributed water from the main reservoir to the two storage tanks, T1 and T2, by pumping 

station S1. Notably, the transfer flow to tank T2 was controlled by valve V2 based on the 

water level in the tank. Pumping stations S2 and S3 transferred water from the T2 tank to 

the tanks located at a higher altitude. Pumping stations S4 and S5 were responsible for 

transferring water from tank T1 to tanks T5, T6, and T7. Figure 7 shows the schematic of 

this network. 
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Figure 7. Schematic of C-Town network. 

The operation details of C-Town are available at: https://www.exeter.ac.uk/me-

dia/universityofexeter/emps/research/cws/downloads/d-town.inpl, accessed on 13 March 

2024 (Expansion|Engineering|University of Exeter). 

Two scenarios were proposed and evaluated according to the study’s objectives to 

determine an operation plan for the WSD pumps. Firstly, the pumps in the network were 

considered variable-speed pumps, and the multi-purpose operation of the pumping sta-

tions was discussed. Then, the modeling was conducted by considering the constant-

speed pump in the stations. Notably, the number of decision variables in the simulation–

optimization model developed using the MONCHBA multi-objective algorithm and the 

EPANET simulator was equal to 264. For the first scenario, it was required to obtain the 

optimal speed of the pumps. In addition to complying with the constraints of the problem, 

including the permissible range of changes in the water level of the storage tanks and the 

minimum operating pressure, it provided a satisfying interaction between the goals of 

minimizing pumping energy costs, the network pressure level, and reducing water age-

based risk. The first modeling results were presented as a three-dimensional Pareto dia-

gram in Figure 8. As it is known, the model has provided various solutions with different 

kinds of quality-based risk levels, pressure levels, and the cost of energy consumed in the 

network. 
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Figure 8. The optimal Pareto front obtained using MONCHBO for Scenario 1. 

A favorable distribution of the points found on the Pareto front indicates the preci-

sion of MONCHBA. Accordingly, the lowest and highest value of network quality risk 

ranged between 14.5% and 19%. With the increase in the second objective function, the 

value of quality risks declined, and vice versa, which can be due to the increase in leakage, 

consumption, and, as a result, the decline of water age in the network. It can also be said 

that the water quality risk also decreased with the increase in energy costs and increased 

network consumption. Based on this, the conflict between quality risk, pumping costs, 

and network pressure level was apparent. According to the graph of the interaction be-

tween two energy and pressure functions, with the increase in pumping costs, the pres-

sure level in the network increased, which was an obvious issue. 

In multi-objective optimization problems, none of the solutions on the Pareto front is 

preferable to the other, and the employer can choose any of the solutions based on the 

available budget. The fuzzy decision-making method was used to comment more on the 

impact of variable-speed pumps on water quality and network pressure. An optimal an-

swer establishes a suitable interaction between all three objectives. The fuzzy decision-

making method is implemented as follows [50]: 
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𝜇𝑖
𝑗
=

{
 
 

 
 1,                  𝑖𝑓 𝑓𝑖

𝑗
< 𝑓𝑚𝑖𝑛

𝑗

𝑓𝑚𝑎𝑥
𝑗

− 𝑓𝑖
𝑗

𝑓𝑚𝑎𝑥
𝑗

− 𝑓𝑚𝑖𝑛
𝑗
, 𝑖𝑓𝑓𝑚𝑖𝑛

𝑗
≤ 𝑓𝑖

𝑗
≤ 𝑓𝑚𝑎𝑥

𝑗
 

0,                 𝑖𝑓 𝑓𝑖
𝑗
> 𝑓𝑚𝑎𝑥

𝑗

  (29) 

After calculating 𝜇𝑖
𝑗
 for each point obtained on the Pareto front, the fuzzy member-

ship function (𝜇𝑖) is computed using Equation (30). The value of 𝜇𝑖 ranges between 0 and 

1 and is estimated as a vector for each series of answers (i.e., f1, f2, and f3). The answer series 

with the highest 𝜇𝑖 value is chosen as the final answer, indicating a consensus among all 

objectives. 

𝜇𝑖(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) =
∑ 𝜇𝑖𝑗
𝑁𝑜𝑏𝑗
𝑗=1

∑ ∑ 𝜇𝑖𝑗
𝑁𝑜𝑏𝑗
𝑗=1

𝑀
𝑖=1

 (30) 

where M is the number of solutions, 𝑁𝑜𝑏𝑗 indicates the number of objective functions, and 

𝑓𝑚𝑖𝑛
𝑗

 and 𝑓𝑚𝑎𝑥
𝑗

 are the minimum and maximum values of the objective function, respec-

tively. 𝜇𝑖 is the membership function. 

Based on the solution presented in the above approach, indicated by a different color 

in the Pareto front, the values of the objective functions of energy, pressure level, and 

quality risk of the network were obtained as 1189.14$, 415,958 m, and 16%, respectively. 

In the second model, by using the transfer function approach, the MONCHBA search 

space was converted into a binary space, and the simulation–optimization model was im-

plemented assuming constant-speed pumps. The results of running the developed model 

with binary space on the C-Town water distribution network are presented in Figure 9, 

similar to the previous scenario. 

The Pareto model (1) has a more appropriate distribution than the Pareto model (2), 

which can be caused by the complexity of the problem space in binary mode and the high 

number of decision variables. According to the researcher’s experience, achieving better 

results by using variable-speed pumps was not unexpected. The continuous and slow ro-

tation speed change in variable-speed pumps compared to the sudden turning off/on of 

fixed-speed pumps makes it difficult to achieve proper interaction in the large-scale prob-

lem. 
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Figure 9. The optimal Pareto front obtained using MONCHBO for Scenario 2. 

According to the Pareto front, the lowest and highest values of quality-based risk in 

the network were 17.5% and 22.5%, respectively, meaning an increase compared to sce-

nario number (1). The energy consumption costs in the ranges of USD 1180–1280 and USD 

1100–1500 for the fixed and variable-speed pumps, respectively, were considerable. The 

flexibility of the network resulted from using variable-speed pumps, which give the em-

ployer multiple options. To achieve a better comparison, one of the responses on the Pa-

reto front in Figures 8 and 9 was selected and analyzed using the fuzzy decision-making 

method. 

The values of the objective functions of the problem in the case of fixed-speed pumps 

for the optimal response obtained for the first, second, and third objective functions were 

1215.24$ and 415,131.2 m, 19%, respectively. Hence, using variable-speed pumps instead 

of fixed-speed pumps is also effective and highly efficient in multi-purpose operating con-

ditions. To better compare responses, pressure level, and network quality in 24:00 h, 10:00, 

and 18:00, a day of operation is presented in Figures 10–12. 
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Figure 10. Situation of C-Town WDS in terms of pressure and water age at 24:00: (a) Scenario 2; (b) 

Scenario 1. 

 

Figure 11. Situation of C-Town WDS in terms of pressure and water age at 10:00: (a) Scenario 2; (b) 

Scenario 1. 
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Figure 12. Situation of C-Town WDS in terms of pressure and water age at 18:00: (a) Scenario 2; (b) 

Scenario 1. 

Accordingly, by using a multi-criteria optimization approach in the operation of 

pumping stations and reducing energy costs, a WDS with high reliability from a qualita-

tive and hydraulic point of view can be achieved. In general, the use of variable-speed 

pumps compared to fixed-speed pumps reduces the quality risk of the network and in-

creases its reliability during operation. 

It should be noted that the pressure level in the network in the presence of variable-

speed pumps is higher than fixed-speed pumps in most cases, which can increase the rate 

of pipe failure and leakage. Therefore, it is possible to prevent the occurrence of higher 

pressures in different water networks based on the final tolerable pressure of the pipes by 

defining the maximum pressure range. In case study number (2), the maximum pressure 

requirement is not taken into account, and only compliance with the minimum desired 

pressure requirement of 20 m is considered. The schedule of C-Town water distribution 

network pumps is presented in Figure 13 for two scenarios. As can be seen in this figure, 

variable-speed pumps operate at an appropriate speed ratio for most of the day. For this 

reason, reducing the number of additional switching operations resulted in a full supply 

of node pressure and reduced operating costs. 
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Figure 13. The pump scheduling program of C-Town for scenarios 1 and 2. 

As can be seen, using an efficient optimizer to find the optimal scheduling program 

of pumping stations can significantly reduce the cost of energy consumption in WDSs. 

The cost reductions due to using variable-speed pumps instead of single-speed pumps in 

the first and second case studies are caused by the proper scheduling obtained by 

NCHBA, which resulted in less use of the power electricity. 

4. Discussion 

The results presented in this study demonstrated that the proposed NCHBA outper-

formed other search methods, including AO, HGA, SMA, GA, EA, ABC, FA, BDA, ACO, 

Run, NSGA-II, and MOSMA, as well as the original version of HBA, in two phases: (1) 

mathematical benchmark functions and* (2) pump scheduling program optimization. The 

key factor behind these improvements lies in the modification of the HBA operators, no-

tably the inclusion of a chaotic map and a nonlinear mechanism, along with the addition 

of a crossover operator to the multi-objective version of the algorithm. These additional 

mechanisms effectively enhanced the algorithm’s ability to perform both global and local 

searches. The crossover operator plays a vital role in diversifying the population, thereby 

aiding the proposed algorithm in discovering more promising solutions. The implemen-

tation of the NCHBA further improves the search for the optimal solutions, enabling the 

identification of a greater number of favorable solutions. The results demonstrate the ef-

ficiency of the proposed algorithm in effectively solving intricate mathematical test func-

tions. Furthermore, the outcomes of both single and multi-objective pump scheduling pro-

grams validate the remarkable capability of NCHBA in optimizing pump speeds, thereby 

effectively reducing the water conveyance footprint.  

It is important to acknowledge and address the potential limitations of this study. 

Despite the fact that incorporating new mechanisms into any optimization algorithm en-

hances both the convergence speed and accuracy, this improvement comes at the expense 

of increased computational costs, particularly for complex water distribution systems 

(WDSs) with numerous variables, such as pressure-reducing valves and pump statuses. 

To overcome this drawback, the implementation of parallel computing technology can be 

effective. Furthermore, it is important to note that despite the excellent performance of the 
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proposed algorithm, it is essential to acknowledge the limitations outlined in the “no free 

lunch (NFL)” theorem. This theorem emphasizes that there is no universal optimizer ca-

pable of efficiently solving all complex problems related to WDSs. 

5. Conclusions 

Sustainable operation and management of water distribution systems (WDSs) is a 

complex, multi-faceted, and challenging optimization problem characterized by numer-

ous decision variables, complicated constraints, and multiple objective functions. This 

study focuses on addressing the optimization problem of pump scheduling in WDSs. To 

tackle this challenge, a novel and enhanced optimization algorithm, namely NCHBA, was 

introduced. The NCHBA incorporates a chaotic map and a nonlinear mechanism to fur-

ther improve its performance. The proposed algorithm was coupled with the EPANET 

model to estimate the response of the WDSs according to the optimal schedule. The pro-

posed model was utilized to optimize the energy consumption in variable-speed pumps 

in a benchmark network. The performance of the proposed NCHBA is compared with five 

meta-heuristic algorithms (i.e., AO, HGA, RUN, SMA, and HBA). The results confirm that 

the proposed NCHB outperforms the original HBA for the single objective pump sched-

uling problem and also reduces energy consumption more than any other algorithm. The 

implementation of the proposed NCHB resulted in significant energy cost savings, reach-

ing up to 27% for the case study pumping station. Hence, the proposed approach can 

facilitate a significant reduction in a WDS footprint.  

The proposed algorithm was converted into a multi-objective algorithm using the 

crossover approach, and it was utilized to reduce the water conveyance footprint in WDSs. 

ZDT series test functions were used to evaluate the performance of the algorithm. The 

efficiency of the proposed method for a large-scale water network was successfully inves-

tigated by considering the minimization of energy consumption, water quality risk, and 

pressure deficit as objective functions. The optimization-simulation model developed 

based on the new algorithm was implemented to assess two scenarios with variable-speed 

and fixed-speed network pumps. The results showed that the variable-speed pumps have 

a high potential to reduce water conveyance footprint in WDSs. The appropriateness and 

robustness of the proposed NCHBS approach should be further validated for different 

objectives of WDS management. For example, future studies can assess the performance 

of NCHBA to optimize the location of pumps as turbines or PRVs in WDSs. Further re-

search is needed to investigate the accuracy and reliability of EPANET for estimating the 

energy consumption of variable-speed pumps. 
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Notation and List of Acronyms 

𝑄𝑖𝑗 Flow rate between nodes i and j DMA District mater area 

𝑁𝑃(𝑗) Number of pipes meeting at node j FSP Fixed-speed pump 

𝑞𝑗 Nodal demand at node j VSP Variable-speed pump 

  GA Genetic Algorithm 

𝐻𝑃𝑖𝑗 Head added by pumps in pipe j LP Linear programming 
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𝑛𝑝(𝑖) Number of pipes included in loop i NLP Nonlinear programming 

ℎ𝑖𝑗 Head loss between node i and j DP Dynamic programming  

𝐿 Pipe length ACO  Ant Colony Optimization 

𝐷 Pipe diameter DA Dragonfly Algorithm 

C Hazen–Williams coefficient NSGA-II Non-Dominated Sorting Genetic Algorithm 

𝑄(𝑛,𝑡) Flow through pump during each time step t in 

pump n 

HBA Honey badger algorithm 

 𝐻(𝑛,𝑡)  Total dynamic head during each time step t in 

pump n 

WDS Water distribution system 

𝐸𝐶𝑡 Electricity tariff at time t (USD/kWh) PDSM Pressure-driven simulation method 

𝑏𝑛𝑡 Status of pump n as being off or on at time t RUN Runge–Kutta Optimization Algorithm 

∆𝑡𝑡 Length of a time interval t NDS Non-dominated sorting 

𝜂(𝑛,𝑡) Efficiency of pump n during each time step t CD Crowding distance 

𝑄(𝑛)
𝑀𝑎𝑥 Peak discharge through the pump n SMA  Slim Mould Algorithm 

ED Demand charge (USD/kW) AO Aquila Optimizer 

𝑃𝑖,𝑡 Pressure at node i in time t HGA Hunger Games search 

𝑃𝑖
𝑚𝑖𝑛 Minimum required pressure at node i EA Evolutionary algorithm 

𝑄𝑖,𝑡
𝑟𝑒𝑞

 Required demand for node i at time t IGD 

NCHBA 

Inverted generation distance 

Nonlinear chaotic honey badger algorithm 

𝑄𝑖,𝑡
𝑎𝑣𝑙 Available discharge node i at time t   

FA Firefly algorithm   

Appendix A 

Appendix A.1. EPANET Hydraulic Simulation Model 

The hydraulic and quality behavior of WDS was simulated using EPANET2.2 soft-

ware. The EPANET software takes the information from the WDS elements (e.g., pipes, 

nodes, tanks, valves, and pumps) and calculates the pipe flows and heads using energy 

and continuity conservation equations [35,36]. The conservation equations for a WDS are 

expressed as follows: 

• Continuity at node j (𝑗 = 1 𝑡𝑜 𝑁 − 1): 

∑ 𝑄𝑖𝑗

𝑁𝑃 (𝑗)

𝑖=1

− 𝑞𝑗 = 0 (A1) 

• Conservation of energy for loop i (i = 1 to NL) 

∑ ℎ𝑖𝑗

𝑛𝑝(𝑖)

𝑗=1

− ∑ 𝐻𝑃𝑖𝑗

𝑛𝑝(𝑖)

𝑗=1

= 0 (A2) 

where 𝑄𝑖𝑗 is the flow rate between nodes I and j, 𝑁𝑃(𝑗) is the number of pipes meeting 

at node j, 𝑞𝑗 represents the nodal demand at node j, N is the number of nodes in the 

WDS, 𝐻𝑃𝑖𝑗 is the head added by pumps in pipe j, 𝑛𝑝(𝑖) indicates the number of pipes 

included in loop i, and ℎ𝑖𝑗 is the head loss between node i and j. These equations are 

related to each other using a proper formula for estimating the friction losses in pipes. 

According to the Hazen–Williams equation, the head loss between two nodes is estimated 

as (SI units): 

ℎ𝑖𝑗 =
10.67𝐿𝑖𝑗𝑄𝑖𝑗

1.85

𝐶𝑖𝑗
1.85𝐷𝑖𝑗

4.87  (A3) 
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where 𝐿𝑖𝑗 is pipe length, 𝐷𝑖𝑗 is the pipe diameter, 𝐶𝑖𝑗 is the Hazen–Williams coefficient, 

and 𝑄𝑖𝑗 is the flow rate in pipe ij linking node i to j. 
The EPANET software uses a dynamic implicit method for quality analysis. The de-

rived flow from the hydraulic simulation process is used to solve a mass conservation 

equation for the substance within each pipe linking nodes i and j as follows: 

𝜕𝑐𝑖𝑗

𝜕𝑡
= −(

𝑄𝑖𝑗

𝐴𝑖𝑗
)(
𝜕𝑐𝑖𝑗

𝜕𝐿𝑖𝑗
) + 𝜃(𝑐𝑖𝑗) (A4) 

where 𝑐𝑖𝑗  is the concentration of substance in pipe linking nodes i, j (
𝑚𝑎𝑠𝑠

𝑚3 ) ; 𝐴𝑖𝑗  is the 

cross-sectional area of pipe linking nodes i, j (m2); and 𝜃 is the rate of a constituent within 

pipe linking nodes i, j (
𝑚𝑎𝑠𝑠

𝑚3/𝑑𝑎𝑦
). 

𝜕𝑐𝑖𝑗

𝜕𝑡
= −(

𝑄𝑖𝑗

𝐴𝑖𝑗
)(
𝜕𝑐𝑖𝑗

𝜕𝐿𝑖𝑗
) + 𝜃(𝑐𝑖𝑗) (A5) 

Equation (A5) must be solved considering two conditions at node i, including a 

known initial condition at t = 0, and assuming Equation (A6) as the boundary condition at 

𝐿𝑖𝑗 = 0: 

𝑐𝑖𝑗 =
∑ 𝑞𝑘𝑖 𝑐𝑘𝑖(𝐿𝑘,𝑖 , 𝑡) + 𝑀𝑖𝑘

∑ 𝑞𝑘𝑖 + 𝑄𝑠𝑖𝑘
 (A6) 

where 𝐿𝑘,𝑖  is the length of pipe K connecting node i, and 𝑀𝑖 and 𝑄𝑠𝑖 are the substance 

mass injected by the external source at node i and the source flow rate, respectively. It is 

worth noting that the boundary conditions in the pipe linking node i to j depend on the 

end node concentrations of all pipes k, i that deliver flow to pipe i, j. 
To estimate the water age in WDSs, the variable c in Equation (A5) is interpreted as 

the age of water and is replaced by the term 𝜃(𝑐𝑖𝑗) to a constant value of 1.0. 

Appendix A.2. Modeling Variable-Speed Pumps 

To model the variable-speed pumps, Equation (A7) needs to be adjusted based on 

the affinity laws for flow and head, shown in Equations (A8). By changing the pump speed 

from N1 to N2, the new characteristic curve can be derived by substituting H1 and Q1 

(head and flow at speed N1) with the formulas from the affinity laws, resulting in [36]: 

𝐻 = ℎ0 − 𝑟𝑄
𝑛 (A7) 

In Equation (16), the pump shut-off head is denoted by ℎ0, while 𝑟 and 𝑛 are the co-

efficients of the curve. 

(𝑎)
𝑄1

𝑄2
=
𝑁1

𝑁2
,  and (𝑏)

𝐻1

𝐻2
= (

𝑁1

𝑁2
)
2

, (A8) 

N1 and N2 are two different pump speeds (N is the rotational speed in rpm, calculated 

by N = (ω/2π) × 60). The laws assume that the pump efficiency at the best efficiency point 

(BEP) does not change with the speed variation. The efficiency curve shifts to the left when 

the pump speed decreases or to the right when it increases. 

𝐻2 = ℎ0 (
𝑁1
𝑁2
)
2

− 𝑟 (
𝑁1
𝑁2
)
2

 [
𝑄2

(
𝑁1
𝑁2
)
]

𝑛

, (A9) 

which is equivalent to the equation used by EPANET for the headloss and flow relation-

ship for the pump. 
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Appendix B 

Developed Algorithm 

Algorithm A1. The pseudo code of NCHBA 

Step 1: Initialize parameters (i.e., N, 𝑡𝑚𝑎𝑥, 𝛽, C) 

Step 2: Generate random solutions 

Step 3: Evaluate the fitness of each search agent using objective function and save best 

solution (𝑥𝑝𝑟𝑒𝑦& 𝑓𝑝𝑟𝑒𝑦)  

while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do  

Update the decreasing factor 𝛼 using (18). 

Generate Chaotic number. 

Calculate 𝑤 using Eq. (24).  

for 𝑖 =  1 to 𝑁 do 

Calculate the intensity 𝐼𝑖 using Eq. (17). 

if 𝑟𝑎𝑛𝑑 <  0.5 then 

Update the position 𝑥𝑛𝑒𝑤 using Eq. (22). 

Else 

Update the position 𝑥𝑛𝑒𝑤 using Eq. (23). 

end if 

Evaluate new position and assign to 𝑓𝑛𝑒𝑤. 

if 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖 then 

Set 𝑥𝑖  =  𝑥𝑛𝑒𝑤 and 𝑓𝑖  =  𝑓𝑛𝑒𝑤. 

end if 

if 𝑓𝑛𝑒𝑤  =  𝑓𝑝𝑟𝑒𝑦 then 

Set 𝑥𝑝𝑟𝑒𝑦  = 𝑥𝑛𝑒𝑤 and 𝑓𝑝𝑟𝑒𝑦 = 𝑓𝑛𝑒𝑤. 

end if 

end for 

end while 

Stop criteria satisfied. 

Return 𝑥𝑝𝑟𝑒𝑦. 

Source codes of the proposed hybrid NCHBA are publicly available at: 

https://github.com/Jafariasl/water-2791968-NCHBA, accessed on 13 March 2024. 
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