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A B S T R A C T
Artificial intelligence (AI) is enabling intelligent communications where learning based signal clas-
sification simplifies optical network signal allocation and shifts signal processing pressure to each
network edge. This work proposes a non-orthogonal signal waveform framework that leverages its
unique spectral compression characteristic as a user address for efficiently forwarding messages to
target users. The primary focus of this work lies in the physical layer intelligent receiver design,
which can automatically identify different received signal formats without preamble notification in a
non-cooperative communication approach. Traditional signal classification methods, such as convo-
lutional neural network (CNN), rely on extensive training, resulting in a heavy dependency on large
training datasets. To overcome this limitation, this work designs a specific two-layer scattering neural
network that can accurately separate signals even when the training data is limited, leading to reduced
training complexity. Its performance remains robust in diverse transmission conditions. Furthermore,
the scattering neural network is interpretable because features are extracted based on deterministic
wavelet filters rather than training based filters.

1. Introduction
In optical communications, establishing cooperation be-

tween a transmitter and a receiver is the conventional setup to
achieve reliable signal transmission. As a result, the knowl-
edge of the signal format becomes crucial side information
that must be mutually shared between both ends of the com-
munication link. This side information is transmitted from
the optical transmitter to inform the receiver about the signal
format. However, this process introduces additional over-
head, which consumes valuable time, frequency, or space
resources.

In post-5G era, ultra-reliable low latency communica-
tions (URLLC) [2, 22] plays an important role since low
latency communications are needed for emerging mission-
critical applications such as autonomous driving, industry
4.0, eHealth, and financial services. To reduce latency, sig-
nal controlling overhead should be as short as possible. In
extreme scenarios, it is desirable to transmit signals with-
out any overheads. Therefore, a solution that eliminates the
need for transmitting side information, allowing the receiver
to timely extract signal format information from received
signals, becomes necessary. Signal classification is a vital
technique used in various applications, including recogniz-
ing different signal standards, modulation patterns, radio fre-
quency authentication, and radar signal identification. Tra-
ditional signal classification relies on the optimal maximum
likelihood processing [11] but at the cost of high complexity.
With the fast evolution of communication services, more de-
vices are connected resulting in complex signal communica-
tion environment. In this case, mathematical based solutions
are no longer efficient for signal classification.

ORCID(s):

Thanks to the advancement of artificial intelligence (AI)
[12, 13, 18], intelligent solutions are being used in commu-
nications. In general, AI is divided into machine learning
(ML) and deep learning (DL). Initially, due to limited com-
putation power, ML was commonly used to solve mathemat-
ically unachievable tasks. The training process in ML is sim-
ple and explainable with well-known algorithms such as sup-
port vector machine (SVM) and k-nearest neighbors (KNN).
However, these ML algorithms require efficient input fea-
tures, which should be manually extracted from the training
data. These features can range from simple statistical mea-
sures like mean and variance of a signal sequence, to more
advanced features such as two-dimensional time-frequency
grids obtained from wavelet transform [8, 15]. Notice that
extracting these optimal features often relies on expertise
and domain knowledge. Furthermore, low-complexity ML
methods struggle to handle complex problems effectively.
This limitation has led to the growing popularity of DL tech-
niques in various advanced applications such as image pro-
cessing and pattern recognition. DL offers the advantage
of automatic feature extraction through sophisticated neural
network architectures, such as convolutional neural networks
(CNN) [11]. However, this advantage comes at the expense
of large amounts of training data, making it challenging for
time-variant signal communications [26, 29, 24]. Addition-
ally, the features extracted by DL algorithms lack mathemat-
ical explainability, limiting their interpretability in certain
applications [7, 25, 6].

The stability of channel conditions in fiber transmissions,
as opposed to wireless transmissions, presents a unique op-
portunity for leveraging AI to address challenges in optical
communications. AI has shown great promise in tackling
physical layer and network layer-related challenges faced in
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optical communications such as fiber nonlinear noise mitiga-
tion and network traffic prediction [14, 17, 21, 23]. Despite
the promising potential of AI in optical communications, its
practical implementation faces certain limitations. One ma-
jor challenge is the need for a large amount of training data
to achieve optimal performance. Collecting and processing
such extensive datasets can be resource-intensive and time-
consuming. Additionally, the long training time associated
with AI models further impedes its widespread application.
To fully exploit the capabilities of AI while facilitating dy-
namic and flexible optical network designs, it is essential to
develop advanced algorithms that can effectively work with
small training datasets.

The requirement of large training datasets results in in-
creased training complexity and is a crucial challenge [24]
for future intelligent communications. To relax the over-
dependence on data for model training while ensuring high
signal identification accuracy, we aim to develop low train-
ing cost AI models that can achieve high accuracy with only
a small amount of training data. This research focuses on uti-
lizing a deterministic learning framework known as wavelet
scattering [3, 5, 16, 19], which enables faster model training
using a reduced number of training symbols. Unlike con-
ventional DL approaches that involve complex architectures
with multiple neural layers, we focus on a shallow neural net-
work architecture with fewer layers. Furthermore, different
to the black-box nature of DL, the wavelet scattering pro-
cess offers interpretability as each layer is computed based
on conventional wavelet transform principles.

The main contributions of this work are listed below:
• We propose a non-orthogonal signal wavelet scatter-

ing neural network, specifically designed to enhance
the intelligence and efficiency of optical communica-
tion networks. By employing this innovative network
architecture, the communication system becomes non-
cooperative, allowing for improved adaptability.

• The key advantage of the proposed wavelet scattering
neural network is its ability to be trained effectively
with a small training dataset, leading to a wide range
of applications, especially in scenarios where access
to abundant training data is severely limited.

• The proposed wavelet scattering neural network fa-
cilitates the extraction of multi-layer signal scattering
features. These extracted features provide valuable in-
sights into the working mechanism of the neural net-
work, resulting in a more interpretable and transparent
design.

• An additional advantage of the proposed wavelet scat-
tering neural network is its ability to preserve distin-
guishable and informative features even under the im-
pact of strong noise and non-linearity distortions. This
robustness ensures the network’s reliable and consis-
tent performance in extreme and challenging condi-
tions, making it a highly dependable and trustworthy

Figure 1: Illustrative scenario for bandwidth compression la-
belling signal distribution after fiber transmission. The param-
eter 𝛼 quantifies the level of bandwidth compression in received
signals, enabling accurate target user classification. CU: cen-
tral unit; WLAN: wireless local area network.

solution for critical communication scenarios where
noise and signal distortions are prevalent.

2. Intelligent Network Architecture and
Waveform Basics
This work considers a flexible networking system em-

powered by intelligent algorithms. An example application
scenario is illustrated in Fig. 1, where fiber cables reach the
user’s living or working space to provide high speed broad-
band service. Aligned with the growing support for fixed-
mobile convergence [4], the central unit (CU) could repre-
sent an edge node of the 5G core network. Users are con-
nected to the 5G core network via wireless local area network
(WLAN) access points (AP), such that they can obtain seam-
less service continuity regardless of their locations or access
technologies. For instance, users can seamlessly switch be-
tween 5G accesses via new radio (NR) when outdoors and
WLAN indoors.

Multiple users are connected to one WLAN AP, and the
number of active users are dynamic with users turning on/off
their devices. In traditional systems, the received signal at
the user side has to pass cyclic redundancy check (CRC) be-
cause the downlink control information (DCI) contains im-
portant information such as the UE identity and resource as-
signment information. To guarantee correct DCI message
decoding, a number of CRC unmasking attempts and CRC
checks are required. For each attempt, a user must compen-
sate signal timing, frequency, and/or phase impairments by
performing complex digital signal processing (DSP) includ-
ing channel estimation, equalization, demodulation, demap-
ping and channel decoding. These steps introduce signifi-
cant processing complexity. The best-case scenario occurs
when the first attempt of DCI decoding successfully passes
the CRC check. Conversely, the worst-case scenario hap-
pens when none of the decoding candidates can pass the
CRC check. As a result, the DCI decoding latency is a random-
like process resulting in latency fluctuations. To reduce such
processing latency, it is desired to first classify the incoming
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Figure 2: Block diagram of the proposed optical system model where signals are classified by the intelligent classifier and forwarded
to their target users, thereby easing user-side processing compared to the traditional signal allocation method. S/P: serial to
parallel; P/S: parallel to serial; DAC: digital-to-analog converter; ADC: analogue-to-digital converter; SSFM: split-step Fourier
method; EDFA: erbium-doped fiber amplifier; Optical I-Q modulator: optical in-phase and quadrature modulator; DSP: digital
signal processing; CRC: cyclic redundancy check.

signals by an edge node, e.g. the WLAN AP in Fig. 1. The
information used for classification is associated with user la-
bels that are uniquely assigned to each user and known by the
edge node. Furthermore, to minimize spectral efficiency loss
due to overhead, this information is embedded into the signal
format. Subsequently, the classified signals are forwarded to
their respective users based on their assigned labels, ensur-
ing that each user exclusively receives his intended signal.
This intelligent classification and forward strategy simpli-
fies the user side signal processing and reduces jitters. It
can also be applied in private networks where network edge
nodes have high freedom to design their own transmission
protocols.

To realize the strategy illustrated in Fig. 1, unique signal
waveform patterns have to be designed with distinguishable
features. The non-orthogonal spectrally efficient frequency
division multiplexing (SEFDM) signal has the bandwidth
compression benefit, which is also a recognizable feature
from other signals [27]. The signal waveform is flexible in
spectral bandwidth and therefore the bandwidth variations
can be used as the unique feature for user labelling. A dis-
crete SEFDM signal is defined as

𝑥𝑛 =
1√
𝑂

𝑂−1∑
𝑘=0

𝑠𝑘𝑒
𝑗2𝜋𝛼 𝑘𝑛𝑂 , (1)

for 𝑛 = 0, 1,⋯ , 𝑂 − 1, where 𝑂 = 𝜌𝑁 is the product
of the oversampling factor 𝜌 and the number of subcarri-
ers 𝑁 . 𝑠𝑘 is drawn from the the data symbol vector 𝑆, de-
fined as 𝑆 =

[
𝑠0, 𝑠1,⋯ , 𝑠𝑂−1

]. The bandwidth compres-
sion factor (BCF) 𝛼 is smaller than 1 for SEFDM, indicat-
ing that SEFDM subcarriers are non-orthogonally packed.
When 𝛼 = 1, (1) describes an orthogonal frequency division
multiplexing (OFDM) signal. The fractional Fourier trans-
form due to the presence of 𝛼 will cause high computational

complexity, and therefore an inverse fast Fourier transform
(IFFT) architecture is proposed by padding (⌊𝑂∕𝛼⌉−𝑂) ze-
ros at the end of 𝑆, where ⌊⋅⌉ is the nearest integer function.
By doing so, the fractional Fourier transform is simplified
to the conventional IFFT operation. The output of the IFFT
will be truncated back to an𝑂-length vector with the last few
samples discarded.

3. System Modelling Setup
The application scenario depicted in Fig. 1 can be sim-

plified to an optical system model. In this model, the signals
received after long-haul fiber transmission are processed by
an intelligent signal classifier and then forwarded to the tar-
get users. The setup of this system that operates in a non-
cooperative manner is illustrated in Fig. 2.

The system maps the input information bits into com-
plex symbols, which are then converted into parallel symbol
vectors to enable multicarrier transmission. Each symbol
vector is oversampled before going through the IFFT op-
eration, which is similar to adding guard band packing on
both sides of each vector. After the parallel-to-serial (P/S)
conversion, multicarrier OFDM and SEFDM symbols are
obtained. The digital signals are then converted into ana-
log signals using a digital-to-analog converter (DAC). To
up-convert the baseband electrical signal to an optical sig-
nal of 320 GHz bandwidth at a laser central wavelength of
1550 nm, an I-Q modulator comprising two Mach-Zehnder
modulators is used. To simulate a long-haul optical fiber
transmission system, multiple fiber spans are connected in
series, each span covering 80 km. The optical fiber chan-
nel is simulated using the nonlinear Schrödinger equation
[1] with the split-step Fourier method (SSFM) and a step
size of 0.05 km. Meanwhile, an erbium-doped fiber am-
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plifier (EDFA) is applied between each fiber span to am-
plify distorted optical signals. The optical system model
takes into account Kerr fiber non-linearities, such as self-
phase modulation (SPM), cross-phase modulation (XPM),
and four-wave mixing (FWM). Moreover, the fiber model is
configured with a power attenuation constant of 0.2 dB/km,
a nonlinear fiber parameter of 1.2 W·km, and a chromatic
dispersion parameter of 17 ps/(nm·km). The impaired op-
tical signals, which have undergone various distortions, are
received and down-converted to electrical signals in the co-
herent receiver after transmission through the optical fiber.
The digital signals are obtained using the analogue-to-digital
converter (ADC) module.

The key module in Fig. 2 is the intelligent classifier
which automatically identifies the signal format based on the
BCF parameter 𝛼. An allocation map is created and saved
initially, which is then used for signal distribution. It is noted
that the proposed intelligent classifier is applied directly after
the ADC module, namely that no DSP is required at the edge
node. Furthermore, end users do not need to perform mul-
tiple DSP and CRC attempts to identify target received sig-
nals. As a result, the proposed intelligent solution can sim-
plify signal processing and enhance the effective throughput
of the network. To enable accurate signal distribution, the
design of the intelligent classifier is of great importance.

4. Feature Extraction Approaches
This section introduces three categories of traditional fea-

ture extraction approaches, and their performances will be
provided in Section 7 for comparisons.
4.1. Statistical Feature Extraction

Arithmetic mean is a straightforward algorithm where it
computes the average value of a dataset as the following

𝜇 = 1
𝑁𝑑

𝑁𝑑−1∑
𝑖=0

𝑌𝑖, (2)

where 𝑌𝑖 is the 𝑖-th sample of a data stream and 𝑁𝑑 is the
length of the data stream.

Variance is used to measure the variations of a dataset.
A small number of standard deviation indicates that the data
values are closer to the mean value while a large number of
standard deviation indicates that data are spread out away
from the mean value. Its calculation is expressed below

𝑉 𝑎𝑟 = 1
𝑁𝑑

𝑁𝑑−1∑
𝑖=0

|𝑌𝑖 − 𝜇|2. (3)

Skewness [10] is a way to measure the data distribu-
tion characteristics. A negative skewness indicates that a
dataset distributes more data to the left side relative to its
mean value; a positive skewness indicates data is more dis-
tributed to the right side of the mean value. The computation

of skewness is defined as

𝜅 =
1
𝑁𝑑

∑𝑁𝑑−1
𝑖=0 (𝑌𝑖 − 𝜇)3

(
√

1
𝑁𝑑

∑𝑁𝑑−1
𝑖=0 (𝑌𝑖 − 𝜇)2)3

. (4)

The ratio between the maximum value and the minimum
value is also studied here. The MaxMin ratio tells the fluc-
tuations of a dataset, and its definition is given by

𝑃𝑚𝑚 =
𝑚𝑎𝑥(𝑌𝑖)
𝑚𝑖𝑛(𝑌𝑖)

. (5)

Interquartile is a way to measure the data dispersion, which
equals the difference between the 25th percentile and 75th
percentile. The expression of the interquartile is given as

𝑖𝑞𝑟 = 𝑄3 −𝑄1, (6)
where𝑄3 is the 75th percentile and𝑄1 is the 25th percentile.

Each aforementioned statistical operation converts an𝑁𝑑×
1 vector of samples into a scalar, which can be used by SVM
to separate different signal classes.
4.2. Time-Frequency Feature Extraction

Wavelet transform is a representative time-frequency anal-
ysis method utilizing adaptive windows. Normally, a func-
tion 𝜓 , which is the mother wavelet, is used for the win-
dowing function. The mathematical expression of a general
wavelet transform [8, 15] is defined as

𝑊 𝑇 (𝑎, 𝑏) = ∫
∞

−∞
𝑓 (𝑡) 1√

𝑎
𝜓∗( 𝑡 − 𝑏

𝑎
) 𝑑𝑡, (7)

where 𝑎 and 𝑏 are the scale and translation factors, respec-
tively, and 𝜓∗ is the complex conjugate of 𝜓 . A long win-
dow, which indicates a stretched wavelet and therefore a large
scale 𝑎, is used for slowly changing signals at low frequency
ranges. A short window, which indicates a compressed wavelet
and therefore a small scale 𝑎, is used for rapidly changing
signals at high frequency ranges. The adaptive wavelet func-
tions are crucially helpful to signals with a wide spectral
bandwidth since the signals containing information that cross
different frequency bands. The filtering operation is illus-
trated in Fig. 3, where 𝑁𝑓 waveform filters (WF) are ap-
plied on the 𝑁𝑑 time samples to extract features at different
frequencies.

Based on the configurations of the scale factor 𝑎 and the
translation factor 𝑏, wavelet transform can be divided into
continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). To have a high precision time-frequency
feature extraction, CWT is commonly used as defined in the
following

𝐶𝑊 𝑇 (2𝑚∕𝑉 , 𝑏) = ∫
∞

−∞
𝑓 (𝑡) 1√

2𝑚∕𝑉
𝜓∗( 𝑡 − 𝑏

2𝑚∕𝑉
) 𝑑𝑡. (8)
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Figure 3: One-dimensional wavelet feature generation based
on wavelet filtering (WF) and statistical feature dimensionality
reduction.

Feature extraction resolution is determined by the scale of
a wavelet, which is referred to as the value of 𝑎. For the
fine tuned CWT, the value of 𝑎 is normally defined as 2𝑚∕𝑉 ,
where 𝑚 = 1, 2, 3, ..., and 𝑉 indicates the number of voices
per octave [15]. The larger number of 𝑉 , the higher resolu-
tion can be achieved at feature extraction stage. Moreover, 𝑏
is defined with integer values.

The extracted time-frequency features from wavelet trans-
form of a signal are two dimensional, which are complicated
for the use in signal classification. Therefore, dimension-
ality reduction is of great importance to simplify the clas-
sification processing. The commonly used dimensionality
reduction method is via statistical approaches from Section
4.1, among which variance and interquartile are selected for
their satisfactory performance reported in [28]. By doing
so, the original 𝑁𝑑 × 𝑁𝑓 feature matrix is simplified into
an 1 × 𝑁𝑓 feature vector. In this paper, a multiclass error-
correcting output codes (ECOC) model [9] is utilized. To
separate different signal classes, an one-versus-one [20] cod-
ing strategy is implemented, simplifying the multiclass clas-
sification task into multiple binary class classification tasks.
Multiple binary SVM learners, using a polynomial kernel of
order two, are employed for classification.

The ML-based time-frequency wavelet transform solu-
tion would achieve faster signal processing and classifica-
tion. However, one challenge of using manual feature extrac-
tion and shallow neural network is its limit in dealing with
complicated tasks, in which features are not easy to be ex-
tracted. In addition, feature extraction demands specialized
expertise, making it difficult for individuals without domain
knowledge to determine the most efficient features for a spe-
cific task.
4.3. CNN Feature Extraction

DL is an advancement relative to ML thanks to the com-
putation power advancement in recent years. In this case,
a multi-layer neural connection, as depicted in Fig. 4, with
huge neuron connections and backward propagation is im-
plementable. The most popular DL architecture is CNN,
which integrates multiple convolutional layers for automatic

Figure 4: CNN architecture with neural network (NN) blocks
and internal neural connections.

feature extraction. It can learn and extract hidden features
from a signal without any manual tuning efforts. The math-
ematical explanations of CNN are as follows:

𝑌𝑀−1 =
⎧⎪⎨⎪⎩

𝜎(𝑌𝑀−2 ∗ 𝜔0
𝑀−1 + 𝑏

0
𝑀−1)

𝜎(𝑌𝑀−2 ∗ 𝜔1
𝑀−1 + 𝑏

1
𝑀−1)

⋮
𝜎(𝑌𝑀−2 ∗ 𝜔𝐾−1

𝑀−1 + 𝑏
𝐾−1
𝑀−1)

, (9)

where 𝑌𝑀−1 represents the feature maps after the (𝑀 − 1)-
th convolutional layer operations. For the first layer, i.e.
𝑀 = 2, the input 𝑌0 is the received signal immediately after
the ADC module. Considering𝐾 feature filters indicated by
(𝜔0

𝑀−1, 𝜔
1
𝑀−1, ..., 𝜔

𝐾−1
𝑀−1), there will be 𝐾 convolution oper-

ations performed in this layer. After the addition of the bias
given by (𝑏0𝑀−1, 𝑏

1
𝑀−1, ..., 𝑏

𝐾−1
𝑀−1) and the application of the

activation function denoted by 𝜎(⋅), 𝑌𝑀−1 includes𝐾 feature
maps. This feature extraction operations are repeated until
all convolutional layers are went through. The output of the
final convolutional layer, containing useful hidden feature
information, will be used for signal class probability com-
putation. During the training process, a backward propaga-
tion is iteratively operated to update CNN hyperparameters
until performance converges. With the automatic feature ex-
traction capability, CNN can perform better than ML-based
approaches.

5. Interpretable Wavelet Scattering Feature
Extraction
An evolution of the single-layer wavelet transform is its

multi-layer wavelet scattering framework [3]. The scattering
framework aims to extract stable features that are insensitive
to translations and deformations of input signals. This multi-
layer scattering framework is particularly useful to SEFDM
signal classification since the key feature we are interested
in is spectral bandwidth, which is reflected by signal spec-
tral edge. The internal signal variations are not helpful fea-
tures to improve signal classification accuracy and thus can
be ignored.

As mentioned in [3], traditional Fourier transform is not
stable to signal deformation since high frequency compo-

Yinglin Chen et al.: Preprint submitted to Elsevier Page 5 of 12



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Small Training Data Enabled Intelligent Optical Networks

Figure 5: Wavelet scattering neural network feature extraction.

nents are greatly distorted by small deformations. Therefore,
work in [3] proposed to use frequency averaging to remove
the deformation instability. Since frequency-domain averag-
ing is equivalent to time-domain averaging on a filter. The
first step of a wavelet scattering operation is equivalent to a
time-average operation, defined as

𝑊 𝑠0 = 𝑥 ∗ 𝜙(𝑡), (10)
where 𝜙(𝑡) is a lowpass filter defined by the translation in-
variance time period 𝑇 . By doing so, all high frequency
components are removed and the output 𝑊 𝑠0 is locally in-
variant within 𝑇 .

The use of the lowpass filter 𝜙(𝑡) causes information loss
since high frequency components are filtered out. Therefore,
a set of wavelets will be used on the original input signal 𝑥
to recover high frequency components with a set of wavelet
modulus transforms as

𝑊𝑚0 =
⎧
⎪⎨⎪⎩

|𝑥 ∗ 𝜓1,1(𝑡)||𝑥 ∗ 𝜓1,2(𝑡)|
⋮
|𝑥 ∗ 𝜓1,𝑄1

(𝑡)|
, (11)

where 𝜓𝑖,𝑗(𝑡) indicates a wavelet at the 𝑖-th scattering layer
with the 𝑗-th wavelet resolution. The equation array in (11)
shows operations at the first scattering layer, namely 𝑖 = 1.
The number of wavelets at this scattering layer is decided by
the parameter 𝑄1, which determines wavelet transform res-
olution and is named the number of voices per octave. As
investigated by [3], the commonly used value is 𝑄1 = 8.
The first-order wavelet scattering coefficients, after averag-
ing operations, is expressed as

𝑊 𝑠1 =
⎧
⎪⎨⎪⎩

|𝑥 ∗ 𝜓1,1(𝑡)| ∗ 𝜙(𝑡)|𝑥 ∗ 𝜓1,2(𝑡)| ∗ 𝜙(𝑡)
⋮
|𝑥 ∗ 𝜓1,𝑄1

(𝑡)| ∗ 𝜙(𝑡)
. (12)

Repeating the similar wavelet convolution and modulus
averaging operations, the second-order wavelet scattering co-

efficients are computed as

𝑊 𝑠2 =
⎧⎪⎨⎪⎩

||𝑥 ∗ 𝜓1,𝑗(𝑡)| ∗ 𝜓2,1(𝑡)| ∗ 𝜙(𝑡)
||𝑥 ∗ 𝜓1,𝑗(𝑡)| ∗ 𝜓2,2(𝑡)| ∗ 𝜙(𝑡)
⋮
||𝑥 ∗ 𝜓1,𝑗(𝑡)| ∗ 𝜓2,𝑄2

(𝑡)| ∗ 𝜙(𝑡)
. (13)

Since the second layer wavelet will convolve with all the
wavelet modulus coefficients from the first layer, the number
of operations will be expanded at the second layer. In (13),
the variable 𝑗 ∈ [1, 𝑄1]. For each specific value of 𝑗, a num-
ber of𝑄2 wavelet convolutions are needed. The value of𝑄2is typically smaller than𝑄1 in order to get a sparse represen-
tation. The wavelet convolution and modulus averaging will
continue to the next wavelet scattering layer until the perfor-
mance converges. The number of wavelet scattering layer
depends on applications and [3] indicates a two-layer scat-
tering architecture will be sufficient to many applications.

The scattering architecture of wavelet convolution, mod-
ulus computation, and averaging operation is regarded as a
CNN-like neural network. The benefit of the scattering net-
work is that all the filters are pre-defined by wavelets and
there is no need to learn from training. This is beneficial to
applications with limited training data. In addition, the fea-
ture extraction efficiency is partially decided by the value of
wavelet resolution𝑄. A high value of𝑄will lead to features
with high frequency resolution but at the cost of increased
computational complexity. The discovery from [3] shows
that an optimal value of 𝑄 is between 1 and 8.

6. System Setup and Model Training
This work considers four QPSK-modulated signal classes:

OFDM signals and SEFDM signals with 𝛼 = 0.9, 0.8, 0.7.
The number of subcarriers is set to 𝑁 = 256 for all sig-
nals and the oversampling factor is 𝜌 = 2 to ensure sufficient
signal resolution. Considering robustness against imperfect
timing conditions, the training dataset randomly truncates
256 samples from the original 512 samples per multicarrier
symbol, leading to a reduced input size of 𝑁𝑑 = 256. To
make the model robust especially in different noise power
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conditions, the launch power is set from -20 dBm to 24 dBm,
with a 4 dB incremental step. Symbols under different levels
of launch power are mixed for training. It is noted that our
previous work [29] has comprehensively studied the impact
of different fiber lengths. Therefore, this work focuses on
one scenario with 30 fiber spans, resulting in a total effec-
tive fiber length of 2400 km. The impact of different train-
ing data sizes is examined by varying the number of train-
ing symbols per signal class (SPSC), indicated by SPSC =
1000, 100, 10, 5, 3, 2. For the evaluation of classification per-
formance, 1000 testing symbols per signal class are gener-
ated independently from the training symbols for testing.

Statistical features are always the simplest solutions and
should be considered at the beginning. With statistical com-
putations, each multicarrier symbol results in a scalar value
as its feature following the operations outlined in Section 4.1.

For time-frequency analysis, the wavelet transform is em-
ployed to generate a two-dimensional time-frequency feature
grid. Using the Morse wavelet with a scale range of 7 oc-
taves and 𝑉 = 10 voices per octave, a total of 𝑁𝑓 = 140
frequency scales are obtained, considering both the real and
imaginary parts of the signal. Consequently, the CWT pro-
duces a two-dimensional 256×140 time-frequency analysis
matrix. The feature matrix is then simplified into a 1×140
feature vector by computing its variance and interquartile.

Regarding the CNN classification model, the architec-
ture in Fig. 4 is used. It comprises seven NN blocks, each
consisting of convolutional, normalization, ReLU activation,
and MaxPool/AveragePool layers. With each NN block defin-
ing 𝐾 = 64 feature filters, 64 independent feature maps are
generated. The dimension for the first block is 2×256×64,
taking into account the real and imaginary parts of the input
QPSK-modulated symbols. After the convolutional layer,
the output is normalized, passed through the ReLU activa-
tion function, and then downsampled using the MaxPool layer,
simplifying the dimension to 2×4×64 in the last NN block. It
is noted that the last NN block uses an AveragePool layer in-
stead of the MaxPool layer to obtain smooth features rather
than extreme features. A fully connected layer and a Soft-
Max layer are packed at the end to classify the signal. The
stochastic gradient descent with momentum (SGDM) opti-
mizer is utilized to minimize the cross-entropy loss between
the predicted and true signal classes. The optimal CNN clas-
sifier is obtained after a predefined number of training itera-
tions through backpropagation operations. The training pro-
cess consists of 30 epochs, and a mini-batch size of 128 is
employed. Moreover, a learning rate of 0.02 is chosen to
achieve slow but highly accurate learning.

In terms of wavelet scattering, this work explores a two-
layer scattering network. The first scattering layer comprises
𝑄1 = 8 Morlet wavelet filters per octave, providing high-
frequency resolution. The second layer, with𝑄2 = 1, is used
for reduced computing complexity. This design aligns with
the findings in [3]. To integrate the wavelet scattering net-
work in our system, we configure an invariance scale of 2.5
ms and a sampling frequency of 200 kHz to make the neu-
ral network robust under signal variations. For each training
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Figure 6: Classification accuracy of statistical feature-based
SVM with SPSC = 1000 and 4 dBm launch power using (a)
time-domain and (b) frequency-domain statistical features.

symbol, the input consisting of 𝑁𝑑 = 256 complex-valued
samples is initially decomposed into its real and imaginary
parts. The resulting 512 real-valued samples are fed into the
aforementioned two-layer scattering network to derive scat-
tering coefficients. Subsequently, an ECOC classifier is im-
plemented using binary SVM models with a polynomial ker-
nel of order two and the one-versus-one coding design. This
classifier is trained on the scattering coefficients and used for
the classification of four non-orthogonal signal classes.

7. Result Comparisons and Mechanism
Illustration
This section begins by examining the effects of one di-

mensional statistical features and their combinations, both in
the time-domain and frequency-domain. To explore the ca-
pability of using a small amount of training dataset, the sec-
ond part investigates wavelet scattering models using two-
dimensional time-frequency features. The performances of
traditional wavelet transform-based and CNN signal classi-
fiers are presented as benchmarks.

In the beginning, to obtain convincing results, SPSC =
1000 symbols are generated, leading to a total of 4000 train-
ing symbols with four signal classes. In Fig. 6(a), five time-
domain statistical features are extracted from the training
dataset. Joint statistics are investigated by combining each
statistical feature. In addition, the raw data without any fea-
ture extractions is evaluated. The results in Fig. 6(a) demon-
strate that all the statistical features, including the joint fea-
ture, fail to facilitate proper signal classification using SVM.
The accuracy remains limited due to the strong similarity in
signal features among different classes. Similar outcomes
are obtained with the frequency-domain dataset illustrated
by Fig. 6(b), where Fourier transform was applied to the
raw data. Therefore, it is inferred that simple statistical fea-
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Figure 7: Classification accuracy of three signal classifiers when different training symbols per signal class (SPSC) values are
considered.

tures are insufficient in assisting SVM to accurately classify
signals, necessitating the use of more sophisticated feature
extraction algorithms to achieve better performance.

Beyond the simple statistical feature extractions discussed
above, the performance comparison among wavelet trans-
form, CNN, and wavelet scattering classifiers is presented
in Fig. 7. With a sufficient number of training symbols
given by SPSC = 1000 in Fig. 7(a), three signal classi-
fiers show similar classification accuracy rates. Achieving a
highly accurate classifier normally requires a large dataset,
which complicates the training process. To address this, a
time/power-efficient solution is sought in reducing the num-
ber of training symbols while maintaining classification qual-
ity. In Fig. 7(b), the number of training symbols per signal
class is reduced to SPSC = 100. Both wavelet scattering and
wavelet transform enabled classifiers demonstrate high ac-
curacy in identifying signals when the launch power reaches
a sufficient level. However, the CNN classifier experiences
a drop in classification accuracy even at high launch power
due to the reduced training dataset. As the dataset is fur-
ther reduced, significant changes in classification accuracy
occur, as seen in Fig. 7(c) to Fig. 7(f). The traditional CNN
classifier cannot work at all, and the previously functional

wavelet transform classifier fails to provide competing ac-
curacy results, especially at low launch power. Conversely,
the proposed wavelet scattering classifier maintains a consis-
tently high level of classification accuracy even when pro-
vided with only two training symbols per signal class, as
demonstrated in Fig. 7(f).

The results presented in Fig. 7 reveal that a small number
of training symbols are insufficient to train a reliable CNN
classifier. CNN model building relies on the internal neural
connection topology, the number of layers, and the weights,
all of which must be learned and fine-tuned through iterative
training. Therefore, having an adequate number of training
symbols is crucial to ensure accurate CNN classifier training.
On the other hand, the wavelet transform network has a fixed
internal architecture once the wavelet properties and wavelet
filters are determined. Therefore, the internal structure of
a wavelet transform network is not dependent on training.
This characteristic explains why a robust wavelet transform
classifier can be trained effectively with a small number of
training symbols. Similarly, the wavelet scattering network
shares this advantage with the wavelet transform network,
as its internal architecture becomes deterministic once the
wavelet properties are established. Additionally, the wavelet
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Figure 8: Classification accuracy of three signal classifiers for individual signal classes and the average accuracy considering
training symbols per signal class (SPSC)=1000 and SPSC = 2 scenarios.

scattering network offers the further advantage of multiple
scattering layers, which enhance the quality of feature ex-
traction. This is why a robust wavelet scattering classifier
can be successfully trained even with as few as SPSC = 2
training symbols, whereas the wavelet transform network ex-
hibits reduced classification accuracy under the same train-
ing conditions.

For a comprehensive analysis of the results presented in
Fig. 7, we further investigate the classification accuracy for
each signal class, as depicted in Fig. 8. When provided with
sufficient training data (SPSC = 1000), all signal classes
are successfully distinguished by the three signal classifiers
within the optimal launch power range. Notably, the two
edge signal classes, namely OFDM and SEFDM with 𝛼 =
0.7, demonstrate higher accuracy rates, as they are limited to
one-side misclassification of signal classes. In the training
data limited scenario, a small training dataset of SPSC = 2
fails to train accurate CNN signal classifiers because the ac-
curacy rates for the four signal classes are all at low val-
ues in Fig. 8(f). Particularly, the classification accuracy
for the signal with 𝛼 = 0.9 falls below 30%, explaining
the low average accuracy rates for CNN. CNN’s reliance on

learning-based feature extraction leads to ineffective feature
learning from a small training dataset, resulting in inaccurate
classification for all signal classes. The wavelet transform-
based classifier’s performance also experiences a decline, al-
though its impact is relatively limited. Figure 8(d) shows that
the OFDM signal class is more sensitive to a small training
dataset, with its accuracy rate dropping below 85%, leading
to a minor decrease in average accuracy. It is noted that all
curves in Fig. 8 (d) and (f) are distributed in a random for-
mat and the inclusion of them only serves the purpose of
visually comparing and highlighting the compromised per-
formance when the training data is exceptionally small. Both
wavelet scattering and wavelet transform can efficiently ex-
tract signal features for signal classification. However, the
multi-layer feature extraction mechanism in wavelet scatter-
ing leads to the availability of more useful features, resulting
in higher accuracy rates compared to the wavelet transform
approach, as illustrated in Fig. 8(b).

Fig. 9 presents an evaluation of the classifiers’ perfor-
mance under three conditions: high noise, strong non-linearity,
and optimal launch power. We specifically select the per-
formance at the launch power of -12 dBm to represent the
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Figure 9: Evaluation of three signal classifiers under three
extreme conditions: (a) Noise dominate, (b) Optimal launch
power, and (c) Non-linearity dominate. The launch power level
in each condition is given in parentheses.

classifiers’ performance in noise-dominated conditions. Re-
sults show that the proposed wavelet scattering approach ex-
hibits the best performance under all investigated SPSC val-
ues except for SPSC = 1000. When it comes to the opti-
mal launch power region represented by 4 dBm, where sig-
nals are in their most favorable condition with minimal noise
and non-linearity effects, wavelet scattering outperforms the
other two methods with consistent and high accuracy. As the
launch power increases to 16 dBm, the signals experience
higher non-linearity effects. In this scenario, wavelet scatter-
ing exhibits the highest accuracy when SPSC is small, and
the accuracy results of all three classifiers converge with the
increase in SPSC. It is noted that Fig. 9(a) and (c) include
extreme channel conditions where noise and non-linearity
dominate separately. With a small training dataset, the wavelet
scattering network still outperforms others. As the train-
ing dataset increases to SPSC = 1000, CNN starts to show
minor performance gain. This is because CNN has auto-
matic feature extraction capability, allowing it to identify the
optimal features under high noise and non-linearity effects
while the other two networks are not able to achieve this.
For the wavelet transform method, when non-linearity dom-
inates, its performance surpasses both wavelet scattering and
CNN at high SPSC. This suggests that a one-layer network
may be more suitable under the impact of non-linearity. The
wavelet scattering-based signal classifier is robust against
high noise power and non-linearity effects. Its performance
gain is particularly evident when SPSC is small, as shown in
Fig. 10(b). On the other hand, the powerful CNN classifier
fails with the worst performance, as its capability cannot be
fully utilized with a small training dataset.

In Fig. 11, the mechanism of wavelet scattering classifier
in classifying non-orthogonal signal classes with SPSC = 2
is provided. The plot illustrates the feature coefficients ob-
tained after the wavelet scattering operations shown in Fig.
5. At the optimal launch power, as shown in Fig. 11(a),
distinct and separable features are observed for each signal
class, especially within the index range of 60 to 75. Notably,
the OFDM signal class shows the widest feature variations,
while the signal with 𝛼 = 0.7 shows the narrowest varia-
tions. These feature maps reflect real-world signal spectral
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Figure 10: Evaluation of three signal classifiers under two
training conditions: (a) Sufficient training dataset with
SPSC = 1000, and (b) Insufficient training dataset with
SPSC = 2.
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Figure 11: Signal feature illustration to explain the mechanism
of wavelet scattering neural networks in non-orthogonal signal
classification. (a) Features at optimal launch power. (b) Fea-
tures when noise dominates. (c) Features when non-linearity
dominates.

compression variations, where signals with 𝛼 = 0.7 occupy
a narrower bandwidth. In Fig. 11(b) and (c), the feature
coefficients are affected by noise and non-linearity effects,
respectively. It is observed that the amplitude gap between
different signal classes becomes narrower under these influ-
ences. Despite these distortions, the signal features remain
distinguishable, demonstrating the robustness of the wavelet
scattering classifier in non-orthogonal signal classification,
even under extreme conditions. This robustness sets it apart
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from black-box CNN classifiers, which lack transparency re-
garding their underlying mechanisms. Figure 11 not only
explains the functioning of the wavelet scattering classifi-
cation, but also provides insights into why such classifiers
exhibit resilience in the face of high noise power and strong
non-linearity effects. Unlike the tunable CNN architecture
with variable filters, the wavelet scattering network has a
fixed internal architecture once the wavelet properties and
wavelet filters are determined. In addition, the process of
extracting features from the training data is mathematically
transparent and easily comprehensible, as defined by (10)-
(13). The transparency and interpretability of the wavelet
scattering neural networks are critical for understanding and
trusting the models’ decisions, making them a valuable tool
for intelligent signal identification.

8. Conclusion
This work proposed a wavelet scattering neural network

that is capable of effectively classify non-orthogonal sig-
nal waveforms. By utilizing the level of spectral bandwidth
compression for user labelling, an intelligent signal distribu-
tion framework was designed where signals can be classified
and forwarded to their target receivers. This innovation elim-
inates the need for signaling control overheads and simplifies
user-side signal processing. To comprehensively evaluate
the neural network’s performance, a wide range of training
data sizes were tested, revealing its robustness and reliability
even with extremely small training datasets. In contrast, the
traditional CNN classifier heavily relying on iterative train-
ing fails to achieve satisfactory accuracy when confronted
with limited training data. The proposed wavelet scattering
neural network’s inner workings were further elucidated by
investigating the extracted features. This transparency and
interpretability provide valuable insights into the classifier’s
decision-making process. Moreover, the classifier’s perfor-
mance under different transmission conditions was studied,
demonstrating its robustness against strong noise and non-
linearity effects. This resilience makes it a suitable choice
for real-world applications where signal conditions are chal-
lenging.
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 Non-cooperative optical communication network using interpretable 
artificial intelligence is novel.

 Small training data enabled scattering network can achieve high 
accuracy in time-variant communications.

 Unlike deep learning schemes, scattering neural network is 
interpretable and transparent.
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