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Abstract

Neuroimaging data have been widely used to understand the neural bases of human

behaviors. However, most studies were either based on a few predefined regions of

interest or only able to reveal limited vital regions, hence not providing an overarch-

ing description of the relationship between neuroimaging and behaviors. Here, we

proposed a voxel-based pattern regression that not only could investigate the overall

brain-associated variance (BAV) for a given behavioral measure but could also evalu-

ate the shared neural bases between different behaviors across multiple neuroimag-

ing data. The proposed method demonstrated consistently high reliability and

accuracy through comprehensive simulations. We further implemented this approach

on real data of adolescents (IMAGEN project, n = 2089) and adults (HCP project,

n = 808) to investigate brain-based variances of multiple behavioral measures, for

instance, cognitive behaviors, substance use, and psychiatric disorders. Notably,

intelligence-related scores showed similar high BAVs with the gray matter volume

across both datasets. Further, our approach allows us to reveal the latent brain-based

correlation across multiple behavioral measures, which are challenging to obtain oth-

erwise. For instance, we observed a shared brain architecture underlying depression

and externalizing problems in adolescents, while the symptom comorbidity may only

emerge later in adults. Overall, our approach will provide an important statistical tool

for understanding human behaviors using neuroimaging data.
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1 | INTRODUCTION

Understanding the complex relationship between neuroimaging and

human behaviors is a fundamental goal of neuroscience. For this pur-

pose, functional and structural MRI (fMRI and sMRI) as non-invasive

neuroimaging techniques with excellent spatial resolution have been

widely used to investigate potential neural risk factors (Bulik-Sullivan,

Loh, et al., 2015; Ing et al., 2019; Jia et al., 2020). While both voxel-

and cluster-level association analyses (Cheng et al., 2015; Eklund

et al., 2016; Ge et al., 2012; Gong et al., 2018) have been widely

applied to search for brain-wide neural bases of human behaviors, cur-

rent approaches only end up with a few localized brain regions after

stringent corrections for multiple testing, hence lacking a whole-brain

overview (Eklund et al., 2016; Gong et al., 2018). For complex behav-

ioral measures, the relevant brain regions may distribute throughout

the whole brain (Zhao et al., 2021), and each contributes a small frac-

tion of the overall effect. In such a circumstance, it is a pressing matter

to properly estimate the overall brain-associated variance (BAV) using

a whole-brain approach.

While a few studies have attempted to measure and compare

BAV by the neuroimaging data through the intricated brain pattern

(Sabuncu et al., 2016; Zhao et al., 2021). As far as we know, there

have not previously been reported using neuroimaging data to mea-

sure the whole-brain pattern-based correlation through neuroimaging

between different behavioral measures.

On the other hand, the linkage disequilibrium (LD) score regres-

sion (Bulik-Sullivan, Loh, et al., 2015) has become a widely applied

approach in genetic studies to estimate both the systematic con-

founding effects (such as the population stratification) and SNP heri-

tabilities (i.e., the variance explained by SNPs altogether) of complex

behavioral measures based on the summary statistics of genome-wide

association studies (GWAS) (Bulik-Sullivan, Loh, et al., 2015;

Sullivan & Geschwind, 2019). As an extension of the LD-score

regression, the genetic correlation (Bulik-Sullivan, Finucane,

et al., 2015) was then proposed to evaluate the shared genetic con-

structs between two behavioral measures out of their genetic signals

from GWAS and has been applied to investigate genetic correlations

among multiple psychiatric disorders (Anttila et al., 2018; Sullivan &

Geschwind, 2019).

Inspired by the LD-score regression (Bulik-Sullivan, Loh,

et al., 2015) and genetic correlation (Bulik-Sullivan, Finucane,

et al., 2015), we proposed a strategy to investigate the variance and

covariances of behavioral measures that could be explained by the

brain MRI based on a voxel-based brain-wide pattern (i.e., voxel

dependence index), a measurement of either co-activations in task-

fMRI or similarities in structure-MRI. To assess the performance of

the model, we conducted a series of simulations with this pattern-

based model and evaluated the accuracy and precision of the estima-

tions. We implemented this method on large real data of adolescents

(n = 2089) from the IMAGEN project (Schumann et al., 2010) and

adults (n = 808) from the human connectome project (HCP) (Van

Essen et al., 2012) to investigate multiple MRI-based variances or

covariances of cognitive and behavioral measures. This generally

applicable approach thus provided a new instrument to understand

the global picture of how brain-wide neuroimaging information could

contribute to behavioral measures.

2 | MATERIALS AND METHODS

2.1 | Voxel dependence index

Analog to the LD-score regression (Bulik-Sullivan, Loh, et al., 2015)

and genetic correlation (Bulik-Sullivan, Finucane, et al., 2015), we

developed the voxel dependence index (VDI) pattern regression

models to estimate the behavioral variance and covariance that could

be explained by the neuroimaging data. Specifically, the VDI of a given

voxel was calculated as a sum of task-fMRI's co-activation or

structure-MRI's similarity with other voxels across the brain. We

defined the VDI of a given voxel i as:

Vi ¼
X
k ≠ i

r2ik

where rik is the Pearson correlation between voxel i and k for either

task-fMRI activation or gray matter volume (GMV). Therefore, a voxel

with higher VDI would have higher similarities with other voxels and

hence are more likely to capture information represented by other

voxels across the brain.

2.2 | VDI pattern regression model

2.2.1 | Brain associated variance

Analog to the LD-score regression (Bulik-Sullivan, Loh, et al., 2015),

the expected t2 statistic of voxel i is:

E t2i jVi

� �¼Nb2

M
Viþc

The expected t2 is proportional to BAV (i.e., b2), subject to some

constant numbers (i.e., M, N, and Vi). The N is the sample size, M is the

number of voxels, and Vi is the voxel dependence index (VDI) of voxel

i, that is, Vi ¼
P
k ≠ i

r2ik . The b2 is the BAV, analog to the genetic heritabil-

ity. The intercept c can be split into two parts: c=Na+1, where a is

the contribution of confounding biases, and N is the number of indi-

viduals. Hence, a significant deviation of c from 1 would indicate the

existence of systematic biases, such as population stratification (Bulik-

Sullivan, Loh, et al., 2015). Analog to the genetic linkage disequilibrium

structure, we joined multiple MRI paradigms and modalities (i.e., the

brain activations from different functional MRI paradigms, such as the

monetary incentive delay task [MID], the stop signal task [SST] and

the emotional face task [EFT], and grey matter volume [GMV] derived

from the structural MRI) in each individual as MRIcombined= [MID,

SST, EFT, GMV]. In a similar manner, the combined VDI was estab-

lished as a joint of VDIs calculated for each of the MID, SST, EFT,

and GMV.
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The BAV (i.e., b2) could then be calculated once the regression

coefficient of the above formula, that is, β¼ Nb2

M was estimated; also

see Figure S1 for the flowchart. Particularly, we implemented a two-

stage linear regression to remove confounding factors (i.e., cryptic

relatedness and heteroskedasticity across voxels), which were not

considered in a standard generalized linear model (GLM), to improve

the precision of BAV estimation. In the first stage, we used the

constrained-intercept linear regression, where the intercept was set

to one, to estimate the conditional variance. We then applied the

weighted linear regression to estimate the β. Following suggestions

from LD-score regression (Bulik-Sullivan, Loh, et al., 2015), the regres-

sion model was weighted by the reciprocal of the conditional variance

function, as estimated in the first step to account for heteroskedasti-

city (i.e., the t2 statistics of variants with high VDI normally have

higher variance than variants' t2 statistics with low VDI), multiplying

by the reciprocal of the VDI, that is, accounting for the dependence

among voxels.

2.2.2 | Brain associated covariance

Analog to the VDI pattern regression, two linear regression steps were

implemented to get the covariance (i.e., Qb) (Bulik-Sullivan, Finucane,

et al., 2015) by the imaging data as follows:

E t1it2ijVi½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
Qb

M
Viþ QNsffiffiffiffiffiffiffiffiffiffiffiffi

N1N2
p ,

where tji denotes the t value for voxel i and symptom j, Nj is the sam-

ple size for symptom j, Qb is the neuroimage covariance, Vi is the VDI

of the voxel i, Ns is the number of individuals included in both studies

(i.e., the size of overlapping sample), and Q is the phenotypic correla-

tion among the Ns overlapping samples.

Similar to the VDI pattern regression, a two-step linear regression

was used to estimate the neuroimage covariance (i.e., the brain associ-

ated covariance [BAC] Qb) with the imaging data. In the first regres-

sion step, we employed a constrained-intercept linear regression, with

the intercept constrained by the overlapping sample size and pheno-

typic correlation acquired in advance, that is, QNsffiffiffiffiffiffiffiffiffi
N1N2

p . In the second

step, we employed the weighted linear regression to estimate the

BAC (i.e., Qb). Notably, due to the highly correlated voxel-level

t statistics, we implemented the reciprocal of the VDI as a weight to

correct for the voxel dependence. In addition, we applied the

reciprocal of the conditional variance estimated from the first step as

a second weight (multiplied by the first one) to reduce the over-

representation and inflated covariance of voxels with high VDI, that

is, accounting for heteroskedasticity. The above procedure is summa-

rized in Figure S2.

2.2.3 | Neuroimaging correlation

The brain-based correlation rbrain is defined as follows:

rbrain ¼ Qbffiffiffiffiffiffiffiffiffiffi
b21b

2
2

q ,

where bi
2 denotes the BAV from symptom i, and Qb is the BAC. The

rbrain evaluates the level of shared brain architecture underlying

the paired behaviors. The overview of the method can be found in

Figure 1.

2.3 | Participants

The adolescents (n = 2089, Table 1) at the age of 14 from the

population-based IMAGEN project, approved by local research ethics

committees (Schumann et al., 2010), were included in the present

study. Following the suggestions from previously published papers

(Anttila et al., 2018; Jia et al., 2020), we selected 19 behavioral mea-

sures from the IMAGEN database, including items covering symptoms

of attentional deficit/hyperactivity disorder (ADHD), conduct disorder

(CD), anxiety, depression, alcohol, smoking, been bully, bully, explor-

atory, impulsiveness, extravagance, disorderliness, novelty seeking,

performance intelligence quotient (PIQ), and verbal intelligence quo-

tient (VIQ) from the standard questionnaire of strength and difficulties

questionnaire (SDQ) (Goodman, 2001), development and well-being

assessment (DAWBA) (Goodman et al., 2000), European school survey

project on alcohol and drugs (ESPAD; http://espad.org/). We used a

summary score of symptoms to describe the mental disorder

(e.g., ADHD symptom) and a summary score for other behaviors

(e.g., “Bullying others” for Bully; “being bullied by others” for Been

Bully); see Table S1 for details.

The brain network is defined by using the MID-fMRI to measure

reward processing (Knutson et al., 2001), SST-fMRI to assess motor

inhibition (Bari & Robbins, 2013), EFT-fMRI to examine social–

emotional processing (Grosbras & Paus, 2006), and GMV sMRI. In

task-fMRI, we analyzed contrasts that are relevant to the behavior

and eliciting the largest BOLD-difference, namely the “large-win

vs. no-win” contrast during the reward anticipation phase in the MID,

the “successful stop” in the SST, and the “angry face vs. control” con-
trast in the EFT. For the fMRI signals, the beta values, that is, the acti-

vations, derived from the general linear model with the corresponding

contrasts were employed in the present study. The details about the

MRI data acquisition and standard preprocessing can be found in

the previous papers (Jia et al., 2020; Schumann et al., 2010).

Outliers (n = 135 for the MID; n = 132 outliers for the SST;

n = 109 outliers for the EFT; n = 112 outliers for GMV) were identi-

fied if showing negative correlations with most of the rest of the indi-

viduals in terms of the whole brain patterns and hence removed. After

imaging quality control, 1820 adolescents for MID-fMRI, 1890 adoles-

cents for SST-fMRI, 1889 adolescents for EFT-fMRI, and 1979 adoles-

cents for GMV-sMRI were employed in the present study. To

maintain consistency with functional imaging, after the completion of

image preprocessing, we resampled all structural images to a 3 mm

standard level by AFNI (Cox, 1996) for all datasets. After this
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approach, we identified the combined MRI paradigms and modalities

(i.e., MID, SST, EFT, and GMV) consisting of over 210,000 voxels.

Task fMRI of the MID task, SST, and emotional faces task, and sMRI

of GMV were used to calculate the corresponding VDIs for the IMA-

GEN study (Figure 2). The high similarities between fMRI VDI maps

are in line with our previous observations that different task-fMRIs

demonstrated similar activations (Jia et al., 2020). The moderate simi-

larity between structural MRI and functional fMRI is likely due to their

differentiated underlying biological processing, where fMRI measures

the BOLD signal that is closely related to the dynamic neuron activity,

and structural MRI measures the gray matter volume, a static mea-

surement of the neuronal cell density. Finally, the moderate similarity

between structural MRIs is likely because of age differences, where

IMAGEN participants were 14 years old, and the HCP dataset

included individuals with an average age of 29. The gender, handed-

ness, and research sites were included as control variables for the

t value in simulation settings and real data.

The adults (n = 808, Table 1) from the HCP study (Van Essen

et al., 2012) were investigated for the BAVs of the 10 behavioral mea-

sures, including psychiatric disorders, cognition behaviors, and sub-

stance use; see Table S2 for details. Gender and age were included as

F IGURE 1 Method overview. Brain-associated variance (BAV) represents brain-associated variance; brain associated covariance (BAC)
represents brain-associated covariance; b1

2 denotes the BAV of symptom A; b2
2 denotes the BAV of symptom B.

TABLE 1 Demographic characteristics.

IMAGEN study HCP study

Sample size n = 2089 n = 808

Age: mean (SD) 14.40 (0.40) 29.08 (3.58)

Sex (male/female) 1023/1065 372/436

Education / 15.12 (1.69)a

Handedness 1862/227 (right/left) 67.59 (42.28)b

PIQc: mean (SD) 106.29 (14.21);

n = 2011

/

VIQc: mean (SD) 79.91 (12.85); n = 2011 /

BMI / 26.3 (4.94); n = 807

Household

income

/ 5.41 (2.02)d;

n = 803

aYears of education completed: <11 = 11; 12; 13; 14; 15; 16; 17+ = 17.
bHandedness of participant from �100 to 100. Negative numbers indicate

that a subject is more left-handed than right-handed, while positive

numbers indicate that a subject is more right-handed than left-handed.
cThe details of performance IQ and verbal IQ can be found in Table S1.
dTotal household income: <$10,000 = 1, 10 K–19,999 = 2, 20 K–
29,999 = 3, 30 K–39,999 = 4, 40 K–49,999 = 5, 50 K–74,999 = 6,

75 K–99,999 = 7, ≥100,000 = 8.
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control variables for the t-value in the HCP analysis. To minimize eth-

nic heterogeneity and keep in line with the IMAGEN study, only

whites from the HCP were included in the following analyses. For the

GMV in the HCP, the pre-processing was also implemented by

the standard pipeline, which is in line with the IMAGEN.

2.4 | Simulations

To evaluate the performance of our proposed model for the estima-

tion of BAV, we conducted various simulations using the VDI pattern

regression model. The workflow for generating the phenotype in each

simulation is as follows: (i) we randomly select a voxel in the real MID-

task fMRI data; (ii) we use the function “zscore” from Matlab to stan-

dardize the signal vector (with length n = sample size) of the selected

voxel, that is, normalizing the signal to have mean zero and a standard

deviation of one; (iii) then, we randomly generate noise signal with

Matlab function “normrnd” with mean zero and a set of predefined

standard deviation; (iv) finally, we sum the standardized Z-score and

noise to generate the simulated phenotype as follows: simulated

phenotype = real-data signal at the selected voxel (Z-scored) + noise.

We conducted simulations 100 times, and each time, a simulated phe-

notype was generated from a randomly selected single voxel (i.e., the

100 times simulations corresponding to 100 randomly selected vox-

els). The real MID-fMRI data was employed in the BAV simulation

analyses. The expected BAV (Table S3) were set at 0%, 5%, 10%, 20%,

and 50%.

We then performed a series of neuroimaging correlation simula-

tions for overlap-sample simulation to evaluate the model's precision

and robustness. We first generated two phenotypes based on the

F IGURE 2 Voxel dependence index (VDI) patterns from the IMAGEN study. The VDI of a given voxel was calculated as a sum of task-fMRI's
co-activation or structure-MRI's similarity with other voxels across the brain.

CHEN ET AL. 5 of 12
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MID fMRI data for each of 1820 individuals, where both real-data sig-

nal and noise follow the same normal distribution with mean = 0,

std = 1. Second, we generated one phenotype from MID and the

other from SST (nMID = 1820, nSST = 1890, nintersect = 1683). In addi-

tion, we performed a series of simulations that generated two pheno-

types combining the MID task and SST task, but with different

contributions (Table S4), that is, by varied variance ratios. In each sim-

ulation setting, the average neuroimaging correlation rbrain was esti-

mated after 100 simulations. In rare occasions, negative BAVs (very

close to 0) could be observed and were hence excluded in the follow-

ing calculation for neuroimaging correlations. A similar process was

performed for sample-independent simulation in which one pheno-

type came from the male while the other came from the female to

guarantee the sample's independence. The similarity (i.e., root mean

squared error [RMSE]) between the observed and expected BAV or

neuroimaging correlation was employed to evaluate the simulation's

performance.

2.5 | Statistic inference

We recommended a “quick” p-value procedure using a pre-calculated

95% confidence interval (CI) of BAV for each type of MRI through

simulations, where we generated a random phenotype following the

normal distribution with “mean = 0, std = 1” for 1000 times and then

established a null distribution of BAV for the random phenotype. This

procedure could provide an approximate p-value that does not require

the knowledge of the exact phenotypic distribution and hence could

be used as a quick scanning for potentially significant findings. To

assess the accuracy of the quick p-value, we also compared the quick

p-values with 1000 times permutation p-values on real GMV-based

data of the IMAGEN project. The consistent result between the two

procedures indicates the high precision and reliability of the quick

p value procedure; see Table S5 for details.

Nevertheless, to give a precise p-value for the BAV, we would

recommend randomly shuffling the behavioral measures across indi-

viduals to get the permutation p-value in the VDI pattern regression.

Similarly, to get a precise p-value of the neuroimaging correlation,

1000 times standard permutation flow (i.e., shuffling the behavioral mea-

sures across individuals) was implemented to estimate the significance

level (e.g., pPerm <.05) of the neuroimaging correlation in the present study.

2.6 | The applications to real data

The VDI pattern regression was implemented to estimate the BAVs

on the selected behavioral measures from the IMAGEN project

(Schumann et al., 2010) and the HCP (Van Essen et al., 2012) dataset

in the present study. The standard false discovery rate (FDR) correc-

tion (Benjamini & Hochberg, 1995) was implemented for multiple

comparisons in each MRI type's BAV estimation. In addition, we also

implemented the approach to estimate neuroimaging correlations

among behavioral measures through the combined MRI data in the

IMAGEN study. For clarity of presentation, the eight behavioral mea-

sures were restricted to include only the behavioral measure with a

significant (i.e., PFDR <0.05) BAV value.

3 | RESULTS

3.1 | Estimation of BAV through VDI pattern
regression using real-data simulations

To assess the reliability of our method, we performed various real-data

simulations that generated hypothetical phenotypes with various sce-

narios (Table S3), levels of cryptic relatedness, and brain architecture

observed in real data, that is, the MID task fMRI from the IMAGEN

study. The corresponding BAVs were then estimated with 100 simula-

tion replicates at each of five different presettings (BAV = 0%, 5%,

10%, 20%, 50%). The observed BAVs were highly consistent with their

expected values (Figure 3a) at all five simulation settings, that is,

mean = �0.001 (std = 0.01), RMSE = 0.006 for 0%, mean = 0.043

(std = 0.03), RMSE = 0.033 for 5%, mean = 0.102 (std = 0.06),

RMSE = 0.064 for 10%, mean = 0.182 (std = 0.10), RMSE = 0.098 for

20%, mean = 0.477 (std = 0.25), RMSE = 0.248 for 50%. Further, in all

simulation settings, the regression models' mean intercepts were all

close to one, indicating that the above simulation results were free from

systematic bias, such as unknown population stratification (Figure 3b).

3.2 | Estimation of neuroimaging correlation using
real-data simulations

We next performed a series of simulations to evaluate the neuroimag-

ing correlation model's performance, as well as its robustness to

potential confounders, such as model misspecification. For overlap-

sample simulation, we respectively generated two phenotypes for

each of 1820 individuals from MID-fMRI by drawing effect sizes

for approximately 54,000 voxels for each simulation replicate. The

mean of observed neuroimaging correlations was close to one

(rmean = 0.9371, std = 0.2647) after 100 times simulation, which is

largely due to the strong co-activation across the brain in the MID

task, that is, lacking substructures with independently explained vari-

ance (i.e., analog to the linkage disequilibrium structures in the genetic

data) across the brain to form a meaningful neuroimaging correlation.

Therefore, neuroimaging correlations could only be properly esti-

mated in the presence of multiple MRI paradigms and modalities.

First, we simulated two phenotypes for each individual from the

same population (nintersect = 1683) using fMRI data of the MID task and

the SST, where the contribution ratios of both tasks were based on a

series of preset values (Table S4). Based on 100 iterations of simula-

tions, the observed inner-sample neuroimaging correlations were highly

consistent with the expectations (Figure 3c), that is, rmean = 0.00

(std = 0.27), RMSE = 0.266 for r = 0, rmean = 0.39 (std = 0.26),

RMSE = 0.263 for r = 0.38, rmean = 0.60 (std = 0.30), RMSE = 0.295

for r = 0.60; rmean = 0.91 (std = 0.18), RMSE = 0.200 for r = 1.00.
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Next, we divided the population into two groups by gender

(i.e., “male” & “female”; nmale = 799, nfemale = 884), and in each group,

we generated one phenotype using fMRI data of the MID task and

the SST, and the contribution ratios of both tasks were based on a

series of preset values. Based on 100 iterations of simulations, the

observed inter-sample neuroimaging correlations were again highly

consistent with the expectations (Figure 3d), that is, rmean = 0.00

(std = 0.28), RMSE = 0.281 for r = 0, rmean = 0.41 (std = 0.37),

RMSE = 0.364 for r = 0.38, rmean = 0.62 (std = 0.35), RMSE = 0.348

for r = 0.60, rmean = 1.02 (std = 0.33), RMSE = 0.332 for r = 1.00.

3.3 | Application of VDI pattern regression on
IMAGEN and HCP data

We first applied VDI pattern regression on multiple behavioral mea-

sures to evaluate the BAVs of GMV from 1979 adolescents of the

IMAGEN database and 808 adults of the HCP study. Notably,

the intercepts of VDI pattern regression were all close to one

(Tables S6, S7, S9–S12), hence confirming that the corresponding

results were free from systematic bias, such as unknown population

stratifications.

Intelligence scores demonstrated high BAVs of GMV in both

IMAGEN (BAV = 0.355, pFDR <.001 for performance-IQ;

BAV = 0.195, pFDR <.001 for verbal-IQ; Figure 4a, Table S6) and the

HCP (BAV = 0.318, pFDR <.001 for picture vocabulary; BAV = 0.299,

pFDR <.001 for cognition total score; Figure 4b, Table S7), which is in

line with previous observed consistent genetic heritability for IQ

throughout adolescents and adults (Bouchard, 2013).

Significant BAV of GMV was observed for externalizing behaviors

in IMAGEN (BAV = 0.069, pFDR <.001; Figure 4a, Table S6), but not for

internalizing behaviors (BAV = 0.001, pFDR = .507; Figure 4a,

Table S6). For the HCP study, we also observed significant BAVs of

GMV for externalizing behavior (BAV = 0.157, pFDR = .034; Figure 4b,

F IGURE 3 Simulations. (a) The brain-associated variance (BAV) was estimated by the voxel-based simulation from 100 simulation replicates for each
level of expected BAV; (b) The intercept of the voxel dependence index (VDI) pattern regression model from 100 times simulation replicates for each level
of expected BAV; (c) Simulations of neuroimaging correlation for overlap-sample; (d) Simulations of neuroimaging correlation for independent-sample.
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Table S7), but again not for internalizing behavior (BAV = 0.022,

pFDR = .326; Figure 4b, Table S7). These results hence indicated that

brain-wide GMV may mainly contribute to externalizing behaviors

through adolescence and adulthood, but less to internalizing behaviors.

We also performed the analyses to use the VDI obtained from

the GMV of the IMAGEN dataset (n = 1979, age = 14 for IMAGEN-

14; n = 1132, age = 19 for IMAGEN-19) to calculate the BAVs based

on the GMV of HCP dataset. We observed significant correlations of

BAVs between the HCP and both IMAGEN datasets (Spearman

r = .95, p < .001, RMSE = 0.1551 for the IMAGEN-14; Spearman

r = .90, p < .001, RMSE = 0.1373 for the IMAGEN-19; Table S8),

indicating the potential comparability of neuroimaging paradigm. The

IMAGEN-19 demonstrated better RMSE (i.e., smaller) with the HCP

(age mean = 29.08, std = 3.58) than the IMAGEN-14, which may be

attributed to the relatively smaller age difference.

Further, in the IMAGEN study, with multiple task-based func-

tional MRI data (i.e., MID, SST, and EFT), we observed significant

BAVs for intelligence scores (the MID: BAV = 0.109, pFDR <.001 for

performance-IQ, and BAV = 0.072, pFDR <.001 for verbal-IQ; the SST:

BAV = 0.016, p = .036, pFDR = .174 for performance-IQ; the EFT:

BAV = 0.027, p = .010, pFDR = .190 for verbal-IQ) and the

externalizing total score (BAV = 0.037, pFDR <.001 for the MID), but

not internalizing behaviors (Figure 4c–e, Tables S9–S11).

Finally, combining all MRI paradigms and modalities (MID, SST,

EFT, and GMV) from the IMAGEN study, we observed ten significant

BAVs (i.e., PFDR <0.05) out of 19 behavioral measures (Figure 4f,

Table S12), that is, highest for intelligence scores (BAV = 0.308,

pFDR <.001 for performance-IQ; BAV = 0.271, pFDR <.001 for verbal-

IQ), moderate for externalizing behaviors (BAV = 0.112, pFDR <.001)

and lowest in internalizing behaviors (BAV = 0.038, pFDR = .046),

which were consistent with the above findings from single MRI para-

digm. In addition, we now also observed significant BAV in behaviors

such as bully (BAV = 0.040, pFDR = .038), smoking (BAV = 0.045,

pFDR = .029), and exploratory behaviors (BAV = 0.064, pFDR = .006).

3.4 | Split-half analysis

To assess the consistency of the VDI pattern regression, we also con-

ducted a split-half analysis. Specifically, we randomly divided the IMA-

GEN individuals into two sub-sets with equal sample sizes, and

separately performed the VDI pattern regression on 23 behavioral

F IGURE 4 Brain-associated variances (BAVs) of multi-type MRI. (a) BAVs of GMV from the IMAGEN study; (b) BAVs of gray matter volume
(GMV) from the human connectome project (HCP) study; (c) BAVs of MID-task fMRI from the IMAGEN study; (d) BAVs of SST-fMRI from the
IMAGEN study; (e) BAVs of EFT-fMRI from the IMAGEN study; (f) BAVs of Combined-MRIs from the IMAGEN study. *pFDR <.05; **pFDR <.01;
***pFDR <.001.
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measures (Table S13). We then correlated the calculated BAVs of two

sub-sets to determine the reproducibility of the proposed approach.

The split-half analysis of the whole-brain VDIs exhibited a high

reproducibility across the two half-split sub-groups (r = .83, pone-

tail <.001 for MID, r = .77, pone-tail <.001 for SST, r = .75, pone-

tail <.001 for EFT, r = .97, pone-tail <.001 for GMV; Figure S3). Also, the

BAVs showed correlation with medium to large effect size

(Jacob, 1988) between two sub-groups based on the whole-sample

VDI (r = .62, pone-tail <.001, Figure S4), their respective VDIs (r = .46,

pone-tail = .014, Figure S4), and even with VDIs estimated only from

one of the two sub-groups (r = 0.47, pone-tail = .012, Figure S4). The

above results hence indicated a high level of consistency in this

approach.

3.5 | Application of neuroimaging correlation on
IMAGEN data

We implemented the neuroimaging correlation model to estimate

brain-based correlations between eight significant behavioral mea-

sures (i.e., ADHD, conduct problems, depressive symptoms, smoking,

bully behaviors, exploratory behaviors, performance-IQ, and verbal-

IQ) based on their BAV shown above, and found that correlations

derived from the behavior and brain information were largely aligned

with each other (Figure 5a,b; Tables S14–S17). For instance, consis-

tent positive relationships were observed among common behavior

problems (i.e., ADHD, conduct disorder, smoking, and bully) during

adolescence using both behavior (r > .11, p < .001) and neuroimaging

correlations (rbrain >.64, pPerm <.05), and these behavior measures

were further anticorrelated with higher IQ scores in terms of both

behavior and neuroimaging correlations.

However, with neuroimaging correlations, we also had several

exclusive findings that would have been difficult to obtain otherwise.

For instance, we observed almost perfect positive neuroimaging cor-

relations between depressive symptoms and externalizing behaviors

(e.g., rbrain = 0.99, pPerm <.001 between ADHD and depressive symp-

toms; Figure 5b, Tables S16 and S17), which cannot be obtained using

behavior information alone (Figure 5a, Tables S14 and S15). Also,

exploratory behavior was found with strong positive neuroimaging

correlations with both IQ scores (rbrain = .62, pPerm <.001 with

performance-IQ; rbrain = .64, pPerm <.001 with verbal-IQ; Figure 5b,

Tables S16 and S17), as well as strong negative neuroimaging correla-

tion with conduct problems (rbrain = �.69, pPerm = .001; Figure 5b,

Tables S16 and S17), which were either much weaker or non-

significant if using behavior information alone (Figure 5a, Tables S14

and S15).

4 | DISCUSSION

In the present study, we introduced the VDI-based regression to eval-

uate the BAV of behavioral measures. The voxel dependence index,

which measures the similarity of a particular voxel with others, could

potentially be established from independent data so long as the neu-

roimaging paradigm and age band are comparable. Further, this VDI-

based regression could be applied to a pair of behavioral measures of

interest, evaluating to what extent the neuroimaging data could simul-

taneously explain both behavioral measures, that is, the neuroimaging

correlation.

The proposed approach was implemented on 2089 adolescents

from the IMAGEN project (Schumann et al., 2010) to explore the BAV

of multiple behavioral measures and found that: Externalizing behav-

iors, that is, ADHD and conduct problems, could be significantly

explained by the MID task and GMV, and both unsurprisingly shared a

high neuroimaging correlation as expected (Figure 5b); Depressive

symptoms (BAV = 0.040, pFDR <.001), but not anxiety, showed a

F IGURE 5 Behavior correlations and neuroimaging correlations. (a) Behavior correlations. (b) Neuroimaging correlations. The absolute rbrain
value was capped at one; see Table S13 for details. * represents the r value or rbrain value is significantly different from zero at significance level
0.05 after Bonferroni correction (i.e., p < .05/28 = 0.0018).
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significant BAV with the GMV. Such a difference is significant

(BAVdiff = BAVdepress�BAVanxiety = 0.0436, ppermu = .002 based on

1000 times permutation), indicating that the GMV may serve as a bio-

marker to distinguish the two internalizing brain disorders; The bullier,

but not victims, has a small but significant BAV with the MID task,

indicating a deficit in reward processing of the adolescents with the

bully problem, which agrees with previous social-reward reports (Guy

et al., 2019); Both PIQ and VIQ showed a high total BAV value

(>27%), especially with the GMV (i.e., 36% for PIQ and 20% for VIQ),

which reconfirmed the well-known high relevance of GMV for the

intelligence quotient (Genon et al., 2022; Hidese et al., 2020; Yoon

et al., 2017), but for the first time providing a reliable estimation for

the overall explained variance.

We also implemented this approach on 808 adults in the HCP

study (Van Essen et al., 2012) to investigate GMV BAVs of psychiatric

symptoms, intelligent-related behaviors, and substance use. Analog to

the above IMAGEN results, intelligent-related behaviors demon-

strated the highest BAVs, while externalized symptoms and substance

use had moderate BAVs, which is consistent with findings in previous

studies (Chen et al., 2022; Genon et al., 2022; Jia et al., 2020; Sun

et al., 2023), where significant correlations have been observed

between these behavioral measures and brain imaging. Therefore, we

have observed consistent BAVs using two different cohorts at differ-

ent life stages (i.e., adolescents of the IMAGEN and adults of the

HCP) and hence reaffirmed the reliability of our new approach.

Further, our approach allows us to investigate neuroimaging cor-

relations using multiple MRI paradigms and modalities. For instance,

daily smoking frequency and bully behaviors showed positive neuro-

imaging correlations with multiple psychiatric illnesses, including

ADHD, conduct problems, and depressive symptoms, and is in line

with behavior correlations in the present study, as well as from previ-

ous findings (Copeland et al., 2013; Gilbody et al., 2019; Quinlan

et al., 2020). We also observed positive neuroimaging correlations

between exploratory behaviors and IQ scores, all of which further

demonstrated negative neuroimaging correlations with both external-

izing and internalizing behaviors, again consistent with our behavior

correlation, as well as previous findings (Hilger et al., 2020; Keyes

et al., 2017). However, it is noteworthy that unlike the high GMV

BAVs (≥20%) of IQ scores, exploratory behaviors were hardly

explained by GMV (BAV = 0%), suggesting that the shared neural

bases (rbrain >.60) between exploratory behaviors and IQ scores were

largely represented by context-dependent brain activations across dif-

ferent tasks, but not the context ambiguous GMV.

While multiple variable approaches (e.g., canonical correlation

analysis CCA, support vector regression, and morphometric analysis

[Sabuncu et al., 2016]) could also assess the relationship between

behavioral measures and whole brain pattern, the proposed brain-

pattern analysis could additionally adjust for confounding factors such

as relatedness between voxels and heteroskedasticity through the

weighted linear regression. Also, methods like CCA tend to overesti-

mate the explanatory variance and hence require appropriate adjust-

ment to correct for the overfitting (Jia et al., 2020), while the

proposed method is unbiased (Bulik-Sullivan, Loh, et al., 2015).

Further, it is a common issue that there are a higher number of fea-

tures than the sample size (for instance, in our case), and hence regu-

larizations (e.g., ridge or/and lasso) are required for multiple variable

approaches to avoid matrix singularities (i.e., due to insufficient degree

of freedom), which, however, will inevitably underestimate the vari-

ance explained (Jia et al., 2020). Finally, it is only through the pro-

posed brain-pattern approach that we could estimate the

neuroimaging correlation, which helps to reveal the latent neural rela-

tionships shared between different behavioral measures. For instance,

unlike behavior-based correlations (Figure 5a), we observed significant

positive neuroimaging correlations between depressive symptoms

and externalizing behaviors (including ADHD and CD) (Figure 5b),

indicating a shared brain architecture underlying externalizing and

internalizing behaviors, although the symptom-level comorbidity

might only emerge at a later time in adults.

The present study is not without limitations. We only included

white people from the IMAGEN and HCP cohorts to minimize ethnic

heterogeneity. We would need to validate our current approach and

findings in different ethnic groups in the future. We acknowledge that

as the simulated BAV increases, the precision of the BAV estimation

will reduce (i.e., with amplified variance), and the intercept

estimation could be biased. These effects become prominent when

the expected BAV reaches 50%. Unfortunately, the underlying mecha-

nism is unclear, although the amplified variance might be related to

the restricted size and sparsity of the brain network (manifested as

the VDI). Nevertheless, the highest BAV was estimated at around

30% for IQs, and therefore, the above issue is likely to have a minimal

impact in practice. Further, while our BAV findings of multiple symp-

toms are in line with previous observations (Chen et al., 2022; Jia

et al., 2020), we also acknowledge that additional MRI paradigms and

modalities would further enhance the precision of neuroimaging cor-

relation estimations.

5 | CONCLUSION

In conclusion, we introduced a robust VDI pattern regression to pro-

vide an unbiased estimation of BAV of different behavioral measures.

Further, using only summary statistics, this method could also reveal

the shared neural bases across different mental disorders and cogni-

tive behaviors that might have been difficult to obtain from symptom-

based approaches, hence providing more insights into the neural

mechanisms underlying comorbid mental disorders. Finally, we suc-

cessfully applied our method to two real population-based databases

of adolescents (IMAGEN project, n = 2089) and adults (HCP project,

n = 808). Analog to the LD-score regression and the genetic correla-

tion, we believe our approach will provide an important advance in

the field of neuroimaging studies.
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