Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/184034

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/184034
mailto:wrap@warwick.ac.uk

Parallel Derandomization for Coloring™

Sam Coy
Department of Computer Science
University of Warwick
Coventry, United Kingdom
S.Coy@warwick.ac.uk

Peter Davies-Peck
Department of Computer Science
Durham University
Durham, United Kingdom
Peter.W.Davies @durham.ac.uk

Abstract—Graph coloring problems are among the most
fundamental problems in parallel and distributed computing,
and have been studied extensively in both settings. In this context,
designing efficient deterministic algorithms for these problems has
been found particularly challenging.

In this work we consider this challenge, and design a novel
framework for derandomizing algorithms for coloring-type
problems in the Massively Parallel Computation (MPC) model
with sublinear space. We give an application of this framework
by showing that a recent (degree + 1)-list coloring algorithm by
Halldorsson et al. (STOC’22) in the LOCAL model of distributed
computation can be translated to the MPC model and efficiently
derandomized. Our algorithm runs in O(logloglogn) rounds,
which matches the complexity of the state of the art algorithm
for the (A + 1)-coloring problem.

Index Terms—Parallel algorithms, Graph coloring, Derandom-
ization

I. INTRODUCTION

The Massively Parallel Computation (MPC) model, intro-
duced over a decade ago by Karloff et al. [1]], is a contemporary
standard theoretical model for parallel algorithms. The model
has evolved through the successful emulation of parallel and
distributed frameworks, including but not limited to MapReduce
[2]], Hadoop [3], Dryad [4], and Spark [5]. Drawing inspiration
from classical models of parallel computation (e.g., PRAM) and
distributed models (e.g., CongestedClique), MPC incorporates
numerous shared attributes with these established paradigms.

“The research of Sam Coy is supported in part by the Centre for Discrete
Mathematics and its Applications (DIMAP), by an EPSRC studentship, and
by the Simons Foundation Award No. 663281 granted to the Institute of
Mathematics of the Polish Academy of Sciences for the years 2021-2023.

The research of Artur Czumaj is supported in part by the Centre for Discrete
Mathematics and its Applications, by EPSRC award EP/V01305X/1, by a
Weizmann-UK Making Connections Grant, by an IBM Award, and by the
Simons Foundation Award No. 663281 granted to the Institute of Mathematics
of the Polish Academy of Sciences for the years 2021-2023.

The work was done when Gopinath Mishra was a Post Doctoral Fellow at
the University of Warwick. The research was supported in part by the Centre
for Discrete Mathematics and its Applications (DIMAP), by EPSRC award
EP/V01305X/1, and by the Simons Foundation Award No. 663281 granted to
the Institute of Mathematics of the Polish Academy of Sciences for the years
2021-2023.

Artur Czumaj
Department of Computer Science
University of Warwick
Coventry, United Kingdom
A.Czumaj@warwick.ac.uk

Gopinath Mishra
Department of Computer Science
National University of Singapore

Singapore
Gopinath@nus.edu.sg

We focus on the sublinear local space MPC regime, where
machines have local space s = O(n?) for any arbitrary fixed
constant ¢ € (0,1), where n is the number of nodes in the
graph. Note that ¢ is a parameter of the model. This model
has attracted a lot of attention recently, see, e.g., [6]—[22].
Recent works have provided algorithms for fundamental graph
problems such as connectivity, approximate matching, maximal
matching, maximal independent set, and (A + 1) coloring.

While the main focus on MPC algorithms has been typically
concentrating on the design of randomized algorithms, an
area which has seen a recent surge in interest in the MPC
model is the design of deterministic algorithms which are as
efficient as their randomized counterparts. In related models
of distributed computation this task is sometimes impossible:
there are lower bounds in the LOCAL model which separate
the randomized complexity from the deterministic complexity
of several fundamental algorithmic problems (see, e.g., [23]).
However, a combination of the global co-ordination and of the
computational power of individual machines within the MPC
model allows for a broader selection of tools for derandomizing
MPC algorithms. For example, a particularly effective tool in
this context is the method of conditional expectations, which
has been recently used to derandomize several algorithms for
fundamental problems in the MPC model [8], [13]], [15]], [24].

In this paper we develop a general derandomization frame-
work, providing a useful tool for translating some class of
randomized LOCAL algorithms to deterministic MPC in a
black-box manner. Previous works have either been heavily
tailored to specific algorithms [8]], [[13[], [15[], [24] or have had
severe limitations on graph degree [25]]. Our approach allows
generic derandomization of a large class of algorithms over a
much larger degree range.

As an application of our derandomization framework, we
consider the task of designing fast deterministic MPC algo-
rithms for graph coloring — one of the most fundamental
algorithmic primitives, extensively studied in various settings
for several decades. Graph coloring problems have been playing
a prominent role in distributed and parallel computing, not

only because of their numerous applications, but also since
some variants of coloring problems naturally model typical
symmetry breaking problems, as frequently encountered in
decentralized systems (see, e.g., [26] for an overview of early
advances). Parallel graph coloring has been studied since the
1980s [26], [27], and nowadays (A4 1)-coloring and (2A —1)-
edge-coloring’| are considered among the most fundamental
graph problems — benchmark problems in the area (throughout
the paper, A refers to the maximum degree of the input graph).

In particular, we study the parallel complexity of a natural
generalization of the (A + 1)-coloring problem, the problem
of (degree+1)-list coloring (D1LC). In the D1LC problem,
for a given graph G = (V,E), each node has an input
palette of acceptable colors of size one more than its degree,
and the objective is to find a proper coloring using these
palettes. The recent increasing interest in D1LC has been largely
caused by the generality and applicability of D1LC, since,
for example, given a partial solution to a (A + 1)-coloring
problem, the remaining coloring problem on the uncolored
nodes is an instance of D1LC. It also appears as a subproblem
in more constrained coloring problems, e.g., as a subroutine
in distributed A-coloring algorithms (see, e.g., [28]) and in
edge-coloring algorithms (see, e.g., [29]).

A. Our contribution

In this paper, we develop a framework for generic derandom-
ization of LOCAL algorithms in the deterministic low-space
MPC model. This framework uses pseudorandom generators
and the method of conditional expectations, which are known
techniques, but significantly extends prior work in generality
and applicability.

Our main derandomization theorem is Theorem [I0} Since
this theorem involves some technical definitions, we leave
the statement to Section However, informally, the
result shows that any randomized LOCAL algorithm that can
be decomposed into short subprocedures with some natural
properties can be efficiently derandomized in MPC.

As an application of our framework, we show that D1LC
can be solved efficiently deterministically in the Massively
Parallel Computation (MPC) model with sublinear local space,
matching the complexity of the state-of-the-art MPC algorithms
for the simpler (A + 1)-coloring and (A + 1)-list coloring
problems. We first show how to combine the D1LC framework
for the LOCAL model due to Halld6rsson et al. [30] with the
techniques developed in earlier works on the MPC model,
to obtain a randomized MPC algorithm for D1LC working
in O(logloglogn) rounds, w.h.p. Then we apply our novel
derandomization framework to derandomize this algorithm.

Theorem 1 (D1LC). Ler ¢ € (0,1) be an arbitrary constant.
There exists a deterministic algorithm that, for every n-
node graph G = (V,E), solves the D1LC problem using
O(logloglogn) rounds, in the sublinear local space MPC

L(A + 1)-coloring problem is to color a graph of maximum degree A using
A + 1 colors; (2A — 1)-edge-coloring problem is to color the edges of a
graph of maximum degree A using 2A — 1 colors.

model with local space s =
O(m +n'*?).

O(n?) and global space

Observe that the bound in Theorem [I] matches the state-of-
the-art bound for the complexity of the simpler (A+1)-coloring
problem in the (sublinear local space) MPC model (see [[12] for
the randomized bound and [[15]] for the deterministic bound).
Furthermore, the recently developed framework connecting
the complexity of LOCAL and sublinear local space MPC
algorithms (see [[19], [25]]), provides some evidence that our
upper bound cannot be asymptotically improved, unless the
complexity of the (A + 1)-coloring problem is (loglogn)°™)
in the LOCAL model. This is because [19], [25] show that
for a class of component stable algorithms and conditioned
on the so-called 1-vs-2-cycles conjecture, no sublinear local
space MPC algorithm can run faster than the logarithm of the
complexity of LOCAL algorithms. (Still, even conditioned on
the 1-vs-2-cycles conjecture, it might be conceivable that a
non-component stable randomized MPC sublinear local space
algorithm can solve (A+1)-coloring in o(logloglog n) rounds,
and further, we do not have any good enough LOCAL lower
bounds for coloring, and so maybe an (loglogn)°(")-rounds
LOCAL algorithm is possible.) Finally, notice that Roughgarden
et al. [31] showed that proving any super-constant lower bound
in the sublinear local space MPC for any problem in P would
separate NC' from P, making any unconditional super-constant
(strongly sublinear local space) MPC lower bound unlikely.

1) Technical contribution: A natural approach to design
efficient MPC algorithms is to simulate a LOCAL algorithm
using the so-called graph exponentiation approach (see, e.g., [[7]],
[201, [32]], [33]): in the first round each node learns its 2-hop
neighborhood, then its 4-hop neighborhood, and so on. In some
cases we can even obtain deterministic algorithms in low-space
MPC which are exponentially faster than the corresponding
randomized complexity in LOCAL [25]]. However, doing so
is often not easy, and faces two main challenges: the first is
how to efficiently derandomize algorithms, and the second is
that large neighborhoods may not fit onto machines for high-
degree instances, which renders challenging many common
subroutines in LOCAL algorithms (e.g., in the coloring setting,
computing an almost-clique decomposition).

We address the first problem, of derandomization, by devel-
oping a general derandomization framework for transferring
some class of randomized LOCAL algorithms to deterministic
low-space MPC ones. Our framework relies on the use of
pseudorandom generators (PRGs) combined with the method
of conditional expectations. The approach of using PRGs in
derandomization has been used in the past (see, e.g., [15], [25]]),
but faces a major difficulty in general application. This difficulty
is that the stringent constraint of the local space requirement of
sublinear local space MPC causes PRGs to fail on a non-trivial
proportion of nodes, even if the base randomized procedure
succeeds with high probability. Furthermore, attempts to defer
or change the outputs of these failed nodes can cause a chain
reaction of nodes failing to meet the success requirements of
the randomized procedure. To derandomize (A + 1)-coloring,

[15] addressed this issue by painstakingly analyzing the effects
of PRG failures throughout the course of the (highly complex)
base randomized algorithm, but this was highly tailored to the
specific algorithm and not easily generalizable. [25] did provide
a form of general framework, but this required collecting
the neighborhoods needed for entire LOCAL algorithms onto
machines, and therefore only worked for low values of A. These
low-A examples sufficed for [25] since the aim was to show
that component-stable lower bounds could be surpassed in some
cases, but did not aid derandomization of general algorithms.

We overcome these difficulties by providing a suitable
framework that formalizes (see Definition [3)) a collection of
properties that allow us to fully derandomize randomized
algorithm using the PRGs. The main technical difference from
[25] is that rather than derandomizing full algorithms in one
go, we instead decompose them into short subprocedures with
certain useful properties. We then have the space necessary
to derandomize these subprocedures on individual machines,
allowing us to tackle much higher-degree instances.

The framework and its analysis summarized in Theorem
form the main technical contribution of our work. We hope that
our framework, and in particular, the key lemma (Theorem [EI),
will prove useful as a powerful black-box derandomization
technique in MPC.

We apply this framework to D1LC as our main application.
However, for instances with very high degree, we must still
reduce the degree before we can fit even 1-hop neighborhoods
onto machines. To do so, we employ a deterministic recursive
sparsification approach similar to [|I5], [[16], where we repeat-
edly partition an instance of D1LC with maximum degree A
into n° DILC instances, each with maximum degree A/n’.
Here § with 0 < 6 < ¢ is to be fixed later, and ¢ is our
local space parameter, i.e., s = O(n?). All but one of these
instances are valid D1LC instances and so can be solved using
this recursive sparsification if the degree is still too high, and
the final instance can only be solved when it is determined
which colors are unused in the other instances. In this way, we
can reduce the maximum degree of the D1LC instances which
we have to solve to an arbitrarily small polynomial in n, which
is small enough to apply the derandomization framework.

B. Related work

Parallel derandomization.: Our work relies on some sparsi-
fication and derandomization techniques developed for par-
allel and distributed coloring algorithms. Derandomization
techniques such as the method of conditional expectations
are long-studied and well-understood in classical sequential
computation, and were first employed in linear-space MPC
(actually, in the mostly equivalent CongestedClique model) by
[34]. This was followed by a work extending the techniques to
low-space MPC [14]]. These works both applied the method of
conditional expectations to families of bounded-independence
hash functions, a technique for reducing the length of random
seeds required for randomized algorithms. However, they are
only applicable to algorithms that do not heavily exploit the
independence of random choices.

Many algorithms (including all known sublogarithmic
LOCAL coloring algorithms) do not appear to have this
property, and their analyses effectively use A-wise inde-
pendence or higher, which is too high to efficiently apply
families of bounded-independence hash functions. So, some
subsequent works on parallel derandomization instead employ
pseudorandom generators (PRGs) to reduce the seed space.
PRGs are again a well-studied topic in classical computing
(see, e.g., [35] for an introduction), and do not have the
restriction on independence. The drawback is that PRGs
achieving optimal parameters are only known existentially,
and computing them requires exponential-time computation
— but this is generally permitted in MPC, and even if not,
the PRG can be pre-computed sequentially and hard-coded
onto MPC machines. [[15] used PRG-based derandomization to
give an O(log loglogn)-round deterministic low-space MPC
algorithm for A + 1-coloring, and [25] used it for general
derandomization, in order to demonstrate that the method of
conditional expectations could be exploited to surpass the
component-stable lower bounds of [[19]]. However, as mentioned,
the derandomization results therein were only for low-degree
instances.

Implementations of the method of conditional expectations
have also recently been used for derandomization in related
distributed models, see e.g., [8], [29], [36].

Parallel and distributed coloring.: Our application to D1LC
continues a long line of research studying the parallel and
distributed complexity of graph coloring problems. For the
references to earlier work on distributed coloring algorithms
we refer to the monograph by Barenboim and Elkin [26]
(see also the influential papers by Linial [37]], [38]). We will
discuss here only more recent advances (and final results) for
the four most relevant coloring problems, (A + 1)-coloring,
(A + 1)-list-coloring, D1LC, and A-coloring. After extensive
research in the field of distributed computing concerning the
(A + 1)-coloring problem, we understand its complexity for
the LOCAL, CongestedClique, and also for the MPC model.
For CongestedClique (and also for MPC with linear memory,
s = O(n)), we now know how to solve (A + 1)-coloring in
a constant number of rounds, see [16]], [39]]. For the LOCAL
model, after a very long line of research, the current state of
the art upper bound for randomized algorithm is O(log2 logn)
[139], [40]. E]E] The best know deterministic algorithm is of
O(log® n) rounds [41] in the LOCAL model.

For the sublinear local space MPC, it is known that the
(A + 1)-coloring algorithm due to Chang et al. [[12] can be
combined with the network decomposition result of [40]] to
obtain a randomized O(logloglogn)-round MPC algorithm,
which is currently the state-of-the-art for the problem; this
result was derandomized by Czumaj et al. [[15]. Furthermore,
all algorithms mentioned above for (A + 1)-coloring can be
extended to solve also (A 4+ 1)-list-coloring.

20(f) hides a polynomial term in log f.
3Through out this paper, log® = denotes (log z)¥.

For the D1LC problem, which is a generalization of
(A 4 1)-coloring and (A + 1)-list-coloring, there have not
been many comparable bounds until the very recent work of
Halldérsson et al. [30]. In particular, D1LC admits a randomized
O(log? log n)-round distributed algorithm in the LOCAL model
[30], [41] matching the state-of-the-art complexity for the
(A + 1)-coloring problem [39], [41]. In [30], the authors
significantly extended the approaches for (A + 1)-coloring (in
particular, to allow efficient management of nodes of various
degrees). As a byproduct, the framework of Halldérsson et al.
[30] can be incorporated into a constant-round MPC algorithm
assuming the local MPC space is slightly superlinear, i.c.,
O(nlog®n) [30, Corollary 2]. We make extensive use of the
framework laid out by Halldérsson et al. [30]] in their algorithm
for LOCAL in the design of our D1LC algorithm. A similar
approach has been applied recently for the CONGEST model in
[42], [43], solving D1LC in O(log3 logn) CONGEST rounds,
w.h.p. Very recently, a deterministic constant-round algorithm
for D1LC has been obtained for the CongestedClique model
[44], settling the complexity of D1LC for CongestedClique.

Any omitted content in the current version is presented in
the full version [45]].

II. PRELIMINARIES

For k € N, [k] denotes the set {1,...,k}. Fora,b € N, [a, b]
denotes the set of integers in {a,a + 1,...,b}. We consider a
graph G = (V, E) with V as the node set and E as the edge
set with |[V| = n and |E| = m. The set of neighbors of a node
v is denoted by N(v) and the degree of a node v is denoted
by d(v). For a node v, ¥(v) denotes the list of colors in the
color palette of node v and p(v) denotes the size of U (v). The
maximum degree of any node in G is denoted by A. As we go
on coloring the nodes of the graph G, the graph will change
and the color palettes of the nodes will also change. Often, we
denote the current (rather than the input) graph by G. For all
graphs we consider, we have p(v) > d(v) 4+ 1. For a subset
X CV, G[X] denotes the subgraph induced by X and m(X)
denotes the number of edges in G[X].

Degree+1 list coloring (DILC).: The degree+1 list coloring
(DILC) problem is for a given graph G = (V, F) and given
color palettes W(u) assigned to each node u € V, such that
| (u)| > d(u) + 1, the objective to find a proper coloring of
nodes in G such that each node is assigned to a color from its
color palette and no edge in G is monochromatic.

Massively Parallel Computation model.: We consider the
Massively Parallel Computation (MPC) model, which is a
parallel system with some number of machines, each of them
having some local space s. At the beginning of computation,
each machine receives some part of the input, with the
constraint that it must fit within its local space. In our case, for
the D1LC problem, the input is a set of n nodes, m edges, and
n color palettes of total size O(n+m). Hence we will require
that the number of machines is Q(2£™), for otherwise the input
would not fit the system. The computation on an MPC proceeds
in synchronous rounds. In each round, each machine processes
its local data and performs an arbitrary local computation on

its data without communicating with other machines. At the
end of each round, machines can exchange messages. Each
message is sent only to a single machine specified by the
machine that is sending the message. All messages sent and
received by each machine in each round have to fit into the
machine’s local space. Hence, the total number of messages
sent by any machine and received by any machine is bounded
by s, and the total amount of communication across the whole
MPC is bounded by s times the number of machines. At the
beginning of the next round, each machine can process all
messages received in the previous round. When the algorithm
terminates, machines collectively output the solution.
Observe that if a single machine can store the entire input,
then any problem (like, e.g., D1LC) can be solved in a single
round, since no communication is required. In order for our
algorithms to be as scalable as possible, normally one wants to
consider graph problems in the sublinear local space regime,
where local space s = n? for any given constant ¢ € (0,1).
(There has been some research considering also the case when
s = O(n), or even when s = n'T% (in which case one wants
to study the case that s < m) but we will not consider such
setting in the current paper.) We will require that the number
of machines is not significantly more than required, specifically
that it is O(n +) (note that the optimal amount would be
(3("+Tm), but our algorithm requires the ability to assign a
machine to each node). A major challenge in the design of
MPC algorithms in the sublinear local space regime is that the
local space of each machine is (possibly) not sufficient to store
all the edges incident to a single node. This constraint naturally
requires an MPC algorithm to rely on extensive communication
between machines, and most of the techniques known are based
on some graph sparsification. It is important to note here that
even in the sublinear local space regime, the MPC model is
known [21]] to be stronger than the PRAM model, e.g., it is
known that sortingz_f] (and in fact, many related tasks, like prefix
sum computation) can be performed in a constant number of
rounds, even deterministically, see [21]]. Observe that with this
tool, we can gather nodes’ neighborhoods to contiguous blocks
of machines, and learn their degrees, in O(1) rounds, and that
we can assume, without loss of generality, that the input can
be distributed arbitrarily on the first ©(2£™) MPC machines.

III. RANDOMIZED D1LC ALGORITHM IN MPC

In this section we begin with an overview of the LOCAL
algorithm for D1LC due to Halldérsson et al. [30]; a more
detailed presentation of this algorithm is deferred to the full
version [45]. Next, we argue that if the maximum degree of
the input instance is not too large, then, when combined with
a result of Czumaj et al. [|15]], this LOCAL algorithm can be
efficiently implemented in exponentially fewer rounds in the
MPC model. Since this randomized implementation is rather
straightforward, we will only sketch it here and defer for more
details to the Appendix. However, it is not at all clear that

4Here we consider sorting of N objects on an MPC with local space N
and on N1~7 machines, for any constant v > 0.

the algorithm of Halldérsson et al. [30] can be efficiently
derandomized in MPC. The main contribution of this paper is
a derandomization framework and its use for a deterministic
MPC algorithm for D1LC.

A. Overview of LOCAL D1LC algorithm of Hallddrsson et al.

The LOCAL algorithm for D1LC due to Halldérsson et al.
[30] handles the input graph in “ranges” of degree. It begins by
coloring vertices with degrees in the range [log7 n, n}, followed
by vertices with degrees in the range [log”logn,log” n]
vertices in the range [log” loglogn,log” logn], and so on,
giving O(log" n) ranges overall. The coloring algorithm runs in
O(log" n) rounds for each range. However, for ranges after the
first the algorithm does not color all nodes with high probability,
leaving a set of “bad” nodes. Some standard “shattering”
arguments are used (showing that these bad vertices form small
components), and then these bad vertices can be colored using
a deterministic D1LC algorithm. The post-shattering coloring
step on the second degree range ([1og7 log n, log” n]) is the
bottleneck in the algorithm, and gives the overall complexity
of O(log?logn) LOCAL rounds.

The algorithm for a single degree range uses an Almost-
Clique Decomposition approach. First, the algorithm decom-
poses the vertices into almost-cliques (each almost clique is
dense internally, with few external neighbors) along with a set
of sparse vertices, whose 2-hop neighborhoods are missing
more than some constant fraction of vertices. The sparse
vertices and the dense vertices (vertices in almost-cliques)
require different techniques to be colored efficiently. The key
in general is to generate slack for all vertices, where the slack
of a vertex is the number of colors available to a vertex minus
its degree. This can be achieved in a number of ways, the most
common of which being for neighbors of a vertex to color
themselves with the same color, or for neighbors of a vertex
to delay coloring themselves until later in the algorithm.

For sparse vertices, slack can usually be generated by
performing color trials: each vertex nominates itself with
constant probability; nominated vertices select a color from
their palette uniformly at random; and vertices color themselves
with their selected color if none of their neighbors have also
selected it. For dense vertices, each almost-clique performs
some co-ordination, selecting a “leader” whose palette is similar
to many other nodes in the almost-clique. Nodes which are
least similar to the leader of their almost-clique are colored
first, followed by the nodes which are more similar to the
leader of their almost-clique.

B. Randomized MPC implementation for low-degree graphs

We consider the implementation of the (randomized) algo-
rithm of [30] on a single range of degrees in the low-space
MPC model. We will only sketch the approach here (since
this is not our main result): we give this partial result to
build intuition for which aspects of Theorem [I] are challenging

5The actual bound obtained by [30] is O(log®logn), and when this
is combined with the result in [41], one gets the round complexity to be
O(log? log n).

to obtain. Formal explanations as to how we implement the
subroutines which are already deterministic in [30]] is available
in the full version [45], and these arguments are necessary for
Theorem [I1

Inspecting the algorithm presented in [30] unveils that, in
the worst case, each of its steps either require a node v to
send messages to all its neighbors (of size O(deg(v))), or to
calculate some value or send some messages based on the full
content of the 2-hop neighborhood of v. This requires s > A?
(or equivalently, for a fixed s we need to have A < 4/s), since
a single machine has to be able to store deg(v) messages of
size O(deg(v)), and the 2-hop neighborhood of any vertex.
Note also that the global space required is O(m + n'*?). (For
implementation details, see the full version [45].

If we have this amount of space relative to our maximum
degree, then we can implement 1 round of the LOCAL
algorithm of [30] in O(1) rounds of low-space MPC (see
the full version [45]]) for arguments to this effect). Like the
LOCAL algorithm, our MPC implementation would succeed
with high probability for all nodes with degrees in [1og;7 n, /sl

Also, as mentioned earlier, there is already an algorithm in
low-space MPC (see, e.g., Czumaj et al. [15]]) which colors
D1LC instances with polylogarithmic maximum degree in
O(logloglog n) rounds deterministically. Combining these two
observations yields the following:

Lemma 2. Let ¢ € (0, 1) be an arbitrary constant. There exists
an algorithm that, for every n-node graph G = (V, E) with
maximum degree A = O(W) solves the D1LC problem
using O(logloglogn) rounds with high probability, in the
sublinear local space MPC model with local space O(n?) and
global space O(m + n1+?).

Two enhancements are required to get from Lemma [2] to
our main result, Theorem E} In Section we give our
framework for derandomizing coloring algorithms in MPC,
and in Section [V] we show that we can derandomize the
implementation of the algorithm of [30]] for the degree range
[log” n, s¢] for some suitable constant ¢ € (0,1/2). Finally, in
Section we show that we can, deterministically, reduce any
input instance to a collection of instances with lower degree.
We ensure that the palettes of these instances are mostly distinct,
so that only a constant number of instances need to be colored
sequentially.

IV. FRAMEWORK TO DERANDOMIZE MPC ALGORITHMS

In this section we present our black-box derandomization
technique for coloring problems in MPC. Our framework
relies on a collection of suitable properties (normal distributed
procedures, see Definition [3) that allow us to fully derandomize
randomized algorithm using a combination of pseudorandom
generators (PRGs) and the method of conditional expectations.

A. Normal distributed procedures

Our framework relies on the notion of normal (7, A)-round
randomized distributed procedure. This notion is introduced to
combat the issue that a PRG that fits on a machine in low-space

MPC causes more nodes to fail than the underlying random
process it is applied to. We wish to defer these failed nodes to
deal with them later, but in some procedures this could cause a
chain reaction of failures and result in an unsolvable instance.
So, Definition [3] captures those procedures for which we will
show we can safely defer failed nodes.

Definition |3| is quite technical, but is conceptually fairly
simple, so we first explain its meaning before giving the formal
notation. In general, the randomized distributed procedures we
are interested in are algorithms that run for some number of
rounds in a distributed model (in our case, LOCAL), and for
which it is shown that upon termination, a particular desirable
property (which we call the “strong success property’””) holds
for all nodes with high probability. In coloring problems, this
property could be, for example, that all nodes have sufficient
slack (difference between remaining palette size and number
of uncolored neighbors). More generally, this could include
properties such as having low remaining degree (i.e. few
neighbors that have not yet terminated and given their final
output for the graph problem of interest).

The defining property of a normal distributed procedure
is that we are able to define a “weak success property” that
is still sufficient for the overall algorithm to proceed, and is
implied by the strong success property even if an arbitrary
subset of nodes are deferred, changing their outputs from the
procedure to the special DEFER marker. That is, if we were
to run the procedure, causing all nodes to satisfy the strong
success property (which will happen with high probability),
and then an adversary were able to defer any subset of nodes,
effectively nullifying their outputs, we would still be sure to
satisfy the weak success property at all nodes. In this case,
deferring does not substantially disrupt the overall algorithm,
since if we continue to repeat the procedure on the deferred
nodes, we will eventually reach a state in which all nodes have
the required property to proceed to the next step.

This may seem like a very strong requirement for a
randomized distributed procedure: indeed, it can be seen as a
special case of the distributed Lovasz Local Lemma, and much
research has been devoted to the more general case where
deferring nodes can cause their neighbors to no longer satisfy
any success property (see e.g. [36], [46]]). However, as we
will see, it applies to many useful procedures, and particularly
those for coloring problems, where deferring nodes is almost
always helpful and provides slack to neighbors.

Definition 3. A normal (7, A)-round distributed procedure
running on a graph G, of maximum degree at most A, is
a procedure in the randomized LOCAL model satisfying the
following criteria:

o The procedure takes T rounds of LOCAL.

o At the beginning of the procedure, nodes v have O(AT)-
word sets of input information IN,, associated with them.

e During the procedure, nodes only use information from
their T-hop neighborhood (i.e., from INUUUueN,(v) IN, }
and O(A®7) random bits, and perform O(A8T) compu-

tation. [l

o The output of the procedure is a new O(A™)-word output
information OUT,, for each node, from a set of possible
outputs OUT.

o The procedure has a “strong success property” (com-
putable with O(A®T) computation) that determines
whether it has been successful for a particular node,
based on the output information of that node’s T-hop
neighborhood (formally, SSP, : out™ (") — {T, F}).

o At the end of the procedure, for any node v,

H OuT,

u€ENT (v)

1
>1—-—— .

Pr |SSP,
r 2n

o The procedure also has a “weak success property” (also
computable with O(A®™) computation) that extends the
output domain of each node to include a special DEFER
marker (not to be conferred by the procedure itself)
indicating that that node will be deferred until the end
of the derandomization (formally, WSP, : {OuT U
DEFER}Y V) — (T, F}).

e Denote the set of nodes that do not satisfy the strong
success property as SSP. The success properties are

such that if a node v satisfies SSP,,, and nodes in SSP
are deferred, v still satisfies the weak success property.

Formally:

ssp, | [our.| =
ueENT (v)

WSP, H ouTt, X H DEFER
u€NT(v)\SSP uENT(v)NSSP

Let us now discuss how Definition [3| can be applied. The in-
tuition behind Definition [3]is that it captures procedures whose
output properties are not damaged too much by unsuccessful
nodes deferring. As an example, consider Luby’s randomized
algorithm for maximal independent set [47]]. Luby’s algorithm,
in O(logn) rounds of LOCAL, produces an output set that is
certainly independent, and is maximal with high probability.
We can define both success properties (strong and weak) for
a node v, to be that v has a node within distance 1 in the
resulting output set. Note that this only captures maximality,
not independence, but that is sufficient since independence is
guaranteed by the process, and a “failed” run only violates max-
imality. A standard analysis of Luby’s algorithm would give, as
required, that Pr {SSPU gHuENT(v) OUTu> >1- 5 e,
that a node v is successful with high probability. Notice also
that only nodes that are not in the output independent set can
fail to satisfy SSP, by definition. Therefore, deferring such
nodes does not remove any nodes from the output independent
set, and so all nodes satisfying SSP,, also satisty WSP,,.

ONT(v) denotes the set of vertices that are with in 7-hop neighborhood of
.

The arguments above imply that Luby’s algorithm is a normal
(O(logn), A)-round distributed procedure (the other necessary
properties are trivial to check). In fact, we had something
stronger: we used essentially the same condition for the strong
and weak success property (with the only formal difference
being that the weak success property has a domain extended to
include DEFER tags). This indicates that, in this case, deferring
unsuccessful nodes does not hurt us at all. This is something we
will also see in our main application to D1LC. Definition [3] is
more general, though, and allows WSP to be weaker than SSP
in addition to incorporating DEFER tags, which can provide
some leeway in derandomization.

We will argue (in Section that we can only efficiently
derandomize normal (7, A)-round distributed procedures in
MPC when 7 is low (ideally constant). This means that, in most
applications, it will not suffice to show that entire algorithms
for a problem are normal distributed procedures; we must
instead consider those algorithms as series of short subroutines,
and then show that each of those subroutines is a normal
(7, A)-round distributed procedure. This means defining success
properties that capture an appropriate level of progress after
each subroutine, not just correctness of the final output. Indeed,
the ability to capture subroutines in this way is one of the
main generalizations of our approach over that of [25].

Coloring algorithms are particularly amenable to this type
of analysis, since they often consist mostly of subroutines to
generate slack. That is, some short subroutine is performed,
after which analysis shows that nodes’ remaining palette sizes
will be larger than their remaining degrees by some amount.
This measure of slack is then the success property for the
subroutine. Importantly, deferring nodes (until the end of the
entire coloring process) can only ever increase slack, since those
deferred nodes are removed from neighbors’ neighborhoods,
but do not block any colors from neighbors’ palettes. So,
we can again define both SSP,, and WSP, to be essentially
the same property: that node v has at least some amount
of slack at the end of a subroutine. As in the example of
Luby’s algorithm, deferring unsuccessful nodes (in fact, in
this case, even successful nodes) cannot hurt v at all, and
SSP, =— WSP, under any subset of deferrals.

Next, we discuss some known results on pseudorandom
generators that we use in our derandomization framework.

B. PRGs and derandomization

A Pseudorandom Generator (PRG) is a function that takes
a short random seed and produces a longer string of pseudo-
random bits, which are computationally indistinguishable from
truly random bits. We use the following definition from [35]]
for indistinguishability:

Definition 4 (Definition 7.1 in [35])). Random variables X and
Y taking values in {0,1}™ are (t,¢) indistinguishable if for
every non-uniform algorithm T : {0,1}™ — {0, 1} running in
time at most t, we have |Pr[T(X) =1]-Pr[T(Y) =1]| <e.

Let Uj, denote a random variable generated uniformly at
random from {0,1}*. Then pseudorandom generators are

defined as follows:

Definition 5 (PRG, Definition 7.3 in [35]]). A deterministic
function G : {0,1}¢ — {0,1}™ is an (t,c) pseudorandom
generator (PRG) if (1) d < m, and (2) G(Uy) and U, are
(t,€) indistinguishable.

A simple application of the probabilistic method can show
the existence of PRGs with optimal parameters:

Proposition 6 (Proposition 7.8 in [35]])). For all t € N
and ¢ > 0, there exists a (non-explicit) (t,e) pseudoran-
dom generator G : {0,1} — {0,1}* with seed length
d = O(logt+ log(1/e)).

As shown in [25]], such a PRG can be computed using
relatively low space (but exponential computation).

Lemma 7 (Lemma 35 of [25]], arXiv version). For all t €
N and € > 0, there exists an algorithm for computing the
(t,e) PRG of Proposition [6] in time exp(poly(t/e)) and space
poly(t/e).

Next, we show how to use PRGs to derandomize normal
distributed procedures.

C. Derandomizing normal distributed procedures

In this section, we will sometimes be working on graphs G
which are smaller induced subgraphs of the original graph. So,
we use ng to denote the number of nodes in G, as opposed
to n which will denote the original number of nodes. This
distinction is primarily because the space bounds of the MPC
machines are still in terms of n even when working on a
smaller graph G. Similarly, for a node v, Ng(v) denotes the
set of neighbors of v in G and dg(v) denotes the degree of v
in G.

For any integer £ € N, let G* be the (-power of G, that is,
G* is the graph having the same node set as G' and any pair
of nodes at a distance at most £ in G’ form an edge in G*.

We begin with the following lemma.

Lemma 8. There is a constant C' such that, given an
O(A®)-coloring of G*", any normal (1, A)-round distributed
procedure on a graph G can be derandomized in O(T) rounds
of MPC, using s = O(ATC) local space per machine and
global space O(ngA™C), with the following properties:

o At most (3 + A7)ng nodes are deferred.

o All non-deferred nodes v satisfy the weak success property.

Proof. First, for each node v we collect the input infor-
mation of its 87-hop neighborhood (IN, U |J,c NE) IN,)
to a dedicated machine. This takes 7 rounds, and requires
O(A® . AT) = O(A'7) space per machine and O(ngA7)
global space. Our aim is then to simulate the procedure using
randomness produced by the (A7, A=!17) PRG implied by
Proposition [This PRG has seed length d = ©(log A) and
requires poly(A''™) space to construct and store. We choose
C so that this poly(A%27) term is O(ATY).

The PRG, when evaluated on a seed, produces a string
of AT pseudorandom bits. We use the provided O(A87)-

coloring of G*7 to split this string into the input randomness for
each node. By definition of a normal (7, A)-round distributed
procedure, each node requires O(A27) random bits, and we
provide a node colored i in the O(A37)-coloring with the ‘"
chunk of O(A?7) bits from the PRG’s output. This means that
any pair of nodes within distance 47 receive disjoint chunks
of pseudorandom bits.

The output of the PRG under a random seed is
(A7 A~17) indistinguishable from a uniform distribution.
Consider the process of simulating the procedure for all nodes
within distance 7 of a node v, and then evaluating the strong
success property SSP, (U, NZ) OuTy,). By definition of
a normal (7, A)-round distributed procedure, this combined
process requires O(A%7) computation, and depends on the
input information and randomness of nodes up to distance
27 from v (and note that all nodes within this radius receive
different chunks of the PRG’s output as their pseudorandom
bits). This combined process can therefore be run on one MPC
machine. Furthermore, it can be considered a non-uniform
algorithm using at most A" computation, and so is ‘fooled’
by the PRG. This means that the output (7" or F', indicating
whether the success property is satisfied) at v differs with
probability at most A~117 from what it would be under full
randomness. That is, the output will be F' with probability at
most 51— 4 AT,

The expected number of nodes that do not satisfy the strong
success property, when simulating the procedure using the PRG
with a random seed, is therefore at most % +neAHT] As this
value is an aggregate of functions computable by individual
machines, using the method of conditional expectations (as
implemented for low-space MPC in [14], [16]) we can
deterministically select a seed for the PRG for which the
number of nodes which do not satisfy the success property is
at most its expectation (i.e., 3 +ngA~7), in O(1) rounds.

Then, we simply mark the nodes which do not satisfy the
strong success property as deferred. By Definition (3| all non-
deferred nodes still satisfy the weak success property. We
therefore meet the conditions of the lemma. O

We can now iterate Lemma [§| in such a way that we can
derandomize full algorithms for problems. To do so, we need
these problems to satisfy a self-reducibility property, which
informally means that partial solutions to the problem should
be extendable to full solutions. As discussed, D1LC has this
property, which is the reason why it emerges naturally in
algorithms for (A + 1)-coloring or (A + 1)-list coloring, which
themselves are not self-reducible.

Definition 9. Consider a graph problem P in which each
graph node v takes some input information IN, and must
produce some output labelling. We call P self-reducible if it
has the following property:

o For any graph G, any subset S C V(G), and any valid
output labelling on G, nodes v € S can compute in O(1)
rounds of LOCAL new input information IN,, such that:

— the graph induced on S, with new inputs IN, forms a
valid instance of P, and

— replacing the output labelling of nodes in S with any
valid output labelling for this induced problem still
forms a valid output of the original problem on G.

Now, we can now state our main derandomization theorem.

Theorem 10. Consider a randomized algorithm A for a self-
reducible problem P which consists of a series of k (k = n°("))
normal (1, A)-round distributed procedures (i.e., the final weak
success property implies a valid output for P). Then, there is a
constant C' such that for any 6 € (0,1), on any graph G with
A < n A can be derandomized in O(kT +log* ng) rounds
of MPC, using s = O(n"°7C) space per machine and global
space O(ng -n"°7), with all nodes giving a valid output for
P. A may also contain up to O(kT + log" ng) deterministic
steps of LOCAL or MPC adhering to the same space bounds.

Proof. We first note that any deterministic LOCAL or MPC
steps contained in A can simply be run as they are, and do
not need any derandomization. For derandomization of the
randomized procedure, we begin by computing an O(A87)-
coloring of G*™ in O(7 +log™® n) rounds, by simulating round-
by-round the O(A?)-coloring algorithm of Linial [38] on the
graph G*7. Constructing this graph requires collecting 47-
radius balls around each node onto machines, which can be
done since we allow O(n77¢) space per machine.

Then, we apply Lemma [§| to derandomize each of the &
normal (7, A)-round distributed procedures forming A in order,
in each case using A = n"? as an upper bound on the maximum
degree (even though the actual maximum degree may be
significantly lower). The result is that at most k(% +ngA=17)
nodes are deferred, and the other nodes satisfy the weak success
property of the final procedure (have a valid output labelling).
This takes O(k7) rounds of MPC, and uses s = O(n"7¢)
space per machine and global space O(ng - n"°7%).

Next, since the problem is self-reducible, the deferred nodes
can compute, in O(1) rounds, new inputs such that it suffices
to solve the problem on the induced graph of deferred nodes
with these new inputs. To do so, we recursively apply the
above process, again using A = n’® as an upper bound on
the maximum degree. After r of these recursive applications,
the number of remaining deferred nodes is at most g +n(k" -
n~ 117779 Taking r = 1/§ (which is O(1)) and 7 to be at
least a suitable large constant, we then have ne) remaining
deferred nodes. We can greedily find valid output labels for
them in O(1) further rounds collecting their induced graph onto
a single machine, which greedily assigns them valid output
labels in any order. Due to the self-reducibility of the problem,
we now have a valid output for all nodes for the original
problem on G.

The total number of rounds used is O(7 + log* n + kr7) =
O(k7 + log* n), and the space used is s = O(n™"Y) per
machine and O(ng - n77¢) global space. O

V. D1LC ALGORITHM WHEN DEGREE IS AT MOST n?

In this section we show that our framework from Section
when combined with the D1LC algorithm of Halldérsson et al.
[30], leads to efficient deterministic MPC algorithm for D1LC
when the maximum degree is n7°. Note that § € (0,1) is a
constant set suitably low relative to the local space parameter
¢ and is to be fixed later when we finally prove Theorem
in Section Specifically, we show that in O(log™ n) rounds,
with s = O(n?) and O(n'*?) global space, a subset of the
vertices are colored deterministically and the graph induced on
the nodes left uncolored will have maximum degree O(log” n)
(and will be a D1LC instance, due to the self-reducibility of
DI1LC). Due to a result of Czumaj et al. [[15]], this graph can
be colored in O(logloglogn) rounds.

We presented a brief overview of the D1LC algorithm of
Halldérsson et al. in Section A more detailed overview
(along with pseudocode of the subroutines which we will
derandomize here) is in the full version [45]. As well as deran-
domizing the randomized components of their algorithm using
our framework, it is necessary to argue that the deterministic
subroutines which their algorithm uses can be implemented
in sublinear MPC in exponentially fewer rounds, provided the
maximum degree is low enough. As outlined in Section
this largely follows from arguing that it suffices for the 2-hop
neighborhood of each node to be collected: we defer a full
explanation to the full version [45]].

In this section, graph G is often not clear from the context.
So, we use ng to denote the number of nodes in GG. For a node
v, Ng(v) denote the set of neighbors of v in G and dg(v)
denotes the degree of v in G. We denote the maximum degree
of any node in G by Ag. For a node v and 7 € N, N (v)
denotes the nodes in the 7-hop neighborhood of v.

A. Derandomization of key randomized subroutines of [30]

In this section, we consider the randomized subroutines
of [30]. Note that all the subroutines succeeds with high
probability when the degree of each node is at least log” n.
Here, we discuss the derandomization of the subroutines by
proving that all of them are (O(1), A)-round normal distributed
procedures in Lemma [T1] and arguing that such procedures can
be efficiently derandomized by using the framework outlined
in the previous section.

Lemma 11. The pre-shattering part of the algorithm of [30]
is a series of O(log™ A) normal (O(1), Ag)-round distributed
procedures, such that the final weak success property is that
all nodes v with degree dg(v) > 10g7 n are properly colored.

Proof. The randomized subroutines used in the pre-shattering
part of the algorithm are TRYRANDOMCOLOR, GENERATES-
LACK, PUTASIDE, SYNCHCOLORTRIAL, and SLACKCOLOR.
The pseudocode for all of the above subroutines are in the full
version [45[]. In the current lemma, our objective is to show
that TRYRANDOMCOLOR, GENERATESLACK, PUTASIDE,
and SYNCHCOLORTRIAL are all normal (O(1), Ag)-round
distributed procedures, and SLACKCOLOR consists of a series
of O(log™ A) normal (O(1), Ag)-round distributed procedures.

Algorithm 1: TRYRANDOMCOLOR(node v) from [30]

1 Pick ¢, v.ar. from ¥(v).

2 Send v, to each u € N(v), receive the set
T = {1y :u € Nt (v)}, where N*(v) is the set of
neighbours whose colors “conflict” with v.

3 If ¥, € T then permanently color v with 1),,.

4 Send and receive permanent colors, and remove the
received one from U(v)

Algorithm 2: GENERATESLACK from [30]

1 S < each node v is sampled into S independently with
probability .
2 For all v € S in parallel TRYRANDOMCOLOR(v).

For each of the sub-procedures, we must define strong and
weak success properties satisfying the conditions of Defini-
tion [3] that capture the notion of success for the subroutine.
In each case, our weak success properties will be identical
to the corresponding strong success property, other than the
extension to deferred nodes. All of our success properties
will also deem nodes of degree less then n7° to always be
successful, regardless of what happens during the randomized
process. This means that in this section we will not show any
constraints on these low-degree nodes - they will be dealt with
afterwards using Lemma

Here, for brevity, we only discuss the pseudocode of
TRYRANDOMCOLOR and GENERATESLACK here in Algo-
rithm [T] and Algorithm [2] respectively. We show that both of
them are normal (O(1), Ag)-round distributed procedures. In
the full proof of Lemma @ discussed in the full version [45],
we show the same property for the remaining sub-procedures;
this is shown in a very similar fashion.

TRYRANDOMCOLOR: The procedure takes O(1) rounds of
LOCAL. Nodes need no other words of input information.
Nodes only use information from their neighbors, and each node
uses O(log Ag) random bits to select a color from its palette.
Note that the computation is O(A¢). The output information
is either a color with which v has permanently colored itself, or
FAIL if it does not color itself: this is clearly O(Ag) words of
information. We set the success properties SSP,, and WSP,, to
be that either the slack of v increases from ¢ - dg(v) for some
constant ¢ to 2 - dg(v) [30, Lemma 26], or de(v) < log” n.
Here, for the purposes of WSP,, deferred neighbors are
discounted from v’s degree and therefore contribute to its
slack. So, deferring neighbors only increases v’s slack, and
therefore the last condition of Definition [] is satisfied. This
properties are computable in time linear in the degree of a node
and based only on the output of the immediate neighbors of a
node. The property succeeds for each node with probability
p = exp(Q(s(v))) for nodes with log” n and 1 otherwise, so
this is with high probability in n. So, all necessary conditions
are satisfied and TRYRANDOMCOLOR meets Definition 31

GENERATESLACK: This takes O(1) rounds of LOCAL and
nodes need no other information at the beginning of the
procedure. During the procedure, nodes only use information
from their neighbors and O(A¢) random bits (to determine

whether the node is sampled and if so, what color is attempted).

The output is either the color with which v permanently colored
itself, or FAIL. The success properties SSP,, and WSP,, are

that either that v generates sufficient slack, or dg(v) < log” n.

By sufficient here we mean as described in the appropriate
statements [[30, Lemmas 10, 11, 13, 15, 17, 18]. These slack
expressions are quite complicated: depending on the type of
node, a different guarantee on the eventual slack is required.
We note, however, that these guarantees all succeed with high
probability for nodes with d¢ (v) > log7 n (and again, for lower
degree nodes we have defined SSP, and WSP, to always be
satisfied) and are computable using only information in the
immediate neighborhood of v. Deferring nodes again creates
slack and so only helps nodes, so the success properties satisfy
the necessary conditions of Definition

O

We have shown that the pre-shattering algorithm of [30]
consists of a series of (O(1), A)-round distributed procedures
as required. However, our success properties do not constrain
nodes v with dg(v) < log”n, so to reach a full D1LC we
must deal with these nodes afterwards. We can do so using
the following lemma from [[15]:

Lemma 12 (Lemma 14 of [15]). For any n-node graph
G with maximum degree A = logo(l) n, there exists an
O(log loglog n)-round deterministic algorithm for computing
DILC, using O(n®) space per machine and O(n**<) global
space, for any positive constant o € (0, 1).

Now, we can apply the pre-shattering algorithm of [30],
followed by the low-degree algorithm of [15]]. This fits into the
framework of Theorem [L0] and can therefore be derandomized:

Lemma 13. There are constants c,C such that, for any
constant § > 0, Algorithm 3| performs D1LC deterministically
in O(logloglogn) rounds of MPC on any graph G with
A < n", using s = O(n7¢C) space per machine and global
space O(ng - n70¢).

Proof. We have shown that the pre-shattering algorithm of
(30] consists of a series of kK = O(log" n) = O(logloglogn)
(¢, Ag)-round distributed procedures (for some sufficiently
large constant ¢), and some deterministic procedures which
we can implement efficiently in MPC (see [48]). We follow
this with the O(logloglogn)-round deterministic low-space
MPC procedure of Lemma [I2] Setting « (in Lemma [I2))
sufficiently lower than §, by Theorem this algorithm
can be derandomized in O(logloglogn) rounds of MPC
using O(n79°%) space per machine and O(ng - n7¢“) global
space. O

Algorithm 3: DERANDOMIZEDMIDDEGREE-

COLOR(G)

1 Let A consist of the pre-shattering randomized LOCAL
of [30] followed by the O(logloglogn)-round
deterministic low-space MPC algorithm of [[15]].

2 Derandomize A, using the success properties from the
proof of Lemma [IT] by Theorem [I0]

VI. OVERALL DETERMINISTIC D1LC ALGORITHM

In this section we extend our (now derandomized) algorithm
for D1LC to handle instances with maximum degree A > n’s.
The idea is to reduce our D1LC instance to a collection of in-
stances with lower degree so that constant-radius neighborhoods
of any node fit onto a single machine. Instead of guaranteeing
that there are not too many instances, we ensure that the
sequential dependency between instances is not too long. That
is, many of the instances resulting from our decomposition can
be colored in parallel; there are only O(1) sets of base-case
instances which must be solved sequentially.

We use a recursive structure LOWSPACECOLORREDUCE
(Algorithm E]) similar to [15]], [16]. The recursive structure in
Algorithm [4] relies on a partitioning procedure (Algorithm [5)
to divide the nodes and colors in the input instance into bins.
We can follow the analysis of [|16] to analyze the partitioning
process, since it is the base case that changed. Lemma
provides the important properties of the partitioning.

Algorithm 4: LowSPACECOLORREDUCE(G)

1 Guid, G1 .. .,G,s < LOWSPACEPARTITION(G).

2 For each i = 1,...,n° — 1 in parallel: call
LowSPACECOLORREDUCE(G)).

3 Update color palettes of G5, call
LOWSPACECOLORREDUCE(G),s).

4 Update color palettes of Gpg.

5 Color Gpg using
DERANDOMIZEDMIDDEGREECOLOR (G pig)-

Algorithm 5: LOWSPACEPARTITION(G)

1 Let Gpig be the graph induced by the set of nodes v
with d(v) < n",

2 Let hash function hy : [n] — [n
bin hy(v) € [n?].

3 Let hash function hy : [n?] — [n% — 1] map colors 7 to
a bin hy(y) € [n° —1].

4 Let G1,...,G,s be the graphs induced by bins
1,...,n° respectively, minus the nodes in Gpg.

5 Restrict palettes of nodes in Gy, ...,G,s_1 to colors
assigned by hs to corresponding bins.

6 Return Gy, G1,...,Gs.

%] map each node v to a

Lemma 14 (Lemma 4.6 of [16]]). Assume that, at the beginning
of a call to LOWSPACEPARTITION, we have d(v) < p(v) for all
nodes v. Then, in O(1) MPC rounds with O(n"®) local space
per machine and O(n + m) global space (over all parallel
instances), one can deterministically select hash functions hq,
ho such that after the call,

o for any node v ¢ Gg, d'(v) < 2d(v)n=0, and

e for any node v, d'(v) < p'(v).

Here d'(v) denotes the degree of v in the subgraph induced
by the nodes present in the same bucket as v and p'(v) denotes
the number of v’s palette colors that are in the same bucket
as v.

Now, we are ready to prove our main result (Theorem |I|):

Proof of Theorem[l] As in [15]], calling LOWSPACECOL-
ORREDUCE on our input graph creates a recursion tree of O(1)
depth (since each recursive call reduces the maximum degree by
an~? factor). It therefore creates O(1) sequential sets of base-
case instances to solve concurrently, which in Algorithm [4] are
solved by DERANDOMIZEDMIDDEGREECOLOR. Furthermore,
each set of concurrent instances has at most n nodes in total,
since all nodes are only partitioned into one instance, and each
instance has maximum degree n"°.

By Lemma [I3] each such instance G is colored in
O(logloglogn) rounds using O(n"°C) space per machine
and O(ng - n7°¢C) global space. The global space used

by all concurrent instances is therefore O(n!T79¢%). Setting
§ < =2, this is O(n?) space per machine and O(n'*?)

global space. Since receiving the input and the first call to
LOWSPACEPARTITION also requires O(m) global space, the
overall space bound is O(m + n'*?). O

REFERENCES

[1] H. J. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation
for MapReduce,” in Proceedings of the 21st ACM-SIAM Symposium on
Discrete Algorithms (SODA’10), 2010, pp. 938-948.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[3] T. White, Hadoop: The Definitive Guide: Storage and Analysis at Internet
Scale, 4th ed. Sebastopol, CA: O’Reilly Media, 2015.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59-72, March
2007.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2nd
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’10),
2010.

[6] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, ‘“Parallel
algorithms for geometric graph problems,” in Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC’14), 2014, pp.
574-583.

[71 A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong, “Parallel graph

connectivity in log diameter rounds,” in Proceedings of the 59th IEEE

Symposium on Foundations of Computer Science (FOCS’18), 2018, pp.

674-685.

P. Bamberger, F. Kuhn, and Y. Maus, “Efficient deterministic distributed

coloring with small bandwidth,” in Proceedings of the 39th ACM

Symposium on Principles of Distributed Computing (PODC’20), 2020,

pp. 243-252.

[9] P. Beame, P. Koutris, and D. Suciu, “Communication steps for parallel
query processing,” J. ACM, vol. 64, no. 6, pp. 40:1-40:58, 2017.

[8

[t}

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

S. Behnezhad, S. Brandt, M. Derakhshan, M. Fischer, M. Hajiaghayi,
R. M. Karp, and J. Uitto, “Massively parallel computation of matching
and MIS in sparse graphs,” in Proceedings of the 38th ACM Symposium
on Principles of Distributed Computing (PODC’19), 2019, pp. 481-490.
S. Behnezhad, M. Hajiaghayi, and D. G. Harris, “Exponentially faster
massively parallel maximal matching,” in Proceedings of the 60th IEEE
Symposium on Foundations of Computer Science (FOCS’19), 2019, pp.
1637-1649.

Y.-J. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng, “The
complexity of (A 4 1) coloring in congested clique, massively parallel
computation, and centralized local computation,” in Proceedings of
the 38th ACM Symposium on Principles of Distributed Computing
(PODC’19), 2019, pp. 471-480.

S. Coy and A. Czumaj, “Deterministic massively parallel connectivity,” in
Proceedings of the 52th Annual ACM Symposium on Theory of Computing
(STOC’22), 2022, pp. 162-175.

A. Czumaj, P. Davies, and M. Parter, “Graph sparsification for derandom-
izing massively parallel computation with low space,” ACM Transactions
on Algorithms, vol. 17, no. 2, May 2021.

——, “Improved deterministic (A + 1) coloring in low-space MPC,” in
Proceedings of the 40th ACM Symposium on Principles of Distributed
Computing (PODC’21), 2021, pp. 469-479.

——, “Simple, deterministic, constant-round coloring in congested clique
and MPC,” SIAM J. Comput., vol. 50, no. 5, pp. 1603-1626, 2021.

A. Czumaj, J. Lacki, A. Madry, S. Mitrovi¢, K. Onak, and P. Sankowski,
“Round compression for parallel matching algorithms,” in Proceedings of
the 50th Annual ACM Symposium on Theory of Computing (STOC’18),
2018, pp. 471-484.

M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrovi¢, and R. Rubinfeld,
“Improved massively parallel computation algorithms for MIS, matching,
and vertex cover,” in Proceedings of the 37th ACM Symposium on
Principles of Distributed Computing (PODC’18), 2018, pp. 129-138.
M. Ghaffari, F. Kuhn, and J. Uitto, “Conditional hardness results
for massively parallel computation from distributed lower bounds,” in
Proceedings of the 60th IEEE Symposium on Foundations of Computer
Science (FOCS’19), 2019, pp. 1650-1663.

M. Ghaffari and J. Uitto, “Sparsifying distributed algorithms with
ramifications in massively parallel computation and centralized local
computation,” in Proceedings of the 30th ACM-SIAM Symposium on
Discrete Algorithms (SODA’19), 2019, pp. 1636-1653.

M. T. Goodrich, N. Sitchinava, and Q. Zhang, “Sorting, searching, and
simulation in the MapReduce framework,” in Proceedings of the 22nd
International Symposium on Algorithms and Computation (ISAAC’11),
2011, pp. 374-383.

J. Eacki, S. Mitrovi¢, K. Onak, and P. Sankowski, “Walking randomly,
massively, and efficiently,” in Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC’20), 2020, pp. 364-377.
Y. Chang, T. Kopelowitz, and S. Pettie, “An exponential separation
between randomized and deterministic complexity in the LOCAL model,”
SIAM J. Comput., vol. 48, no. 1, pp. 122-143, 2019.

M. Fischer, J. Giliberti, and C. Grunau, “Improved deterministic
connectivity in massively parallel computation,” in Proceedings of the
36th International Symposium on Distributed Computing (DISC’22),
2022, pp. 22:1-22:17.

A. Czumaj, P. Davies, and M. Parter, “Component stability in low-
space massively parallel computation,” in Proceedings of the 40th ACM
Symposium on Principles of Distributed Computing (PODC’21), 2021,
pp. 481-491.

L. Barenboim and M. Elkin, Distributed Graph Coloring: Fundamentals
and Recent Developments. Morgan & Claypool Publishers, 2013.

H. J. Karloff, Fast Parallel Algorithms for Graph-theoretic Problems,
Matching, Coloring and Partitioning. University of California, Berkeley,
1985, phD thesis.

M. Fischer, M. M. Halldé6rsson, and Y. Maus, “Fast distributed Brooks’
theorem,” in Proceedings of the 34th ACM-SIAM Symposium on Discrete
Algorithms (SODA’23), 2023, pp. 2567-2588.

F. Kuhn, “Faster deterministic distributed coloring through recursive list
coloring,” in Proceedings of the 31st ACM-SIAM Symposium on Discrete
Algorithms (SODA’20), 2020, pp. 1244-1259.

M. M. Halldérsson, F. Kuhn, A. Nolin, and T. Tonoyan, “Near-optimal
distributed degree+1 coloring,” in Proceedings of the 54th Annual ACM
Symposium on Theory of Computing (STOC’22), 2022, pp. 450—463.

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

T. Roughgarden, S. Vassilvitski, and J. R. Wang, “Shuffles and circuits
(on lower bounds for modern parallel computation),” vol. 65, no. 6, pp.
41:1-41:24, Nov. 2018.

M. Ghaftfari, “An improved distributed algorithm for maximal independent
set,” in Proceedings of the 27th ACM-SIAM Symposium on Discrete
Algorithms (SODA’16), 2016, pp. 270-2717.

C. Lenzen and R. Wattenhofer, “Brief announcement: Exponential speed-
up of local algorithms using non-local communication,” in Proceedings
of the 29th ACM Symposium on Principles of Distributed Computing
(PODC’10), 2010, pp. 295-296.

K. Censor-Hillel, M. Parter, and G. Schwartzman, “Derandomizing
local distributed algorithms under bandwidth restrictions,” Distributed
Computing, vol. 33, no. 3, pp. 349-366, 2020.

S. P. Vadhan, “Pseudorandomness,” Foundations and Trends in Theoreti-
cal Computer Science, vol. 7, no. 1-3, pp. 1-336, 2012.

M. Ghaffari, D. G. Harris, and F. Kuhn, “On derandomizing local
distributed algorithms,” in 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), 2018, pp. 662-673.

N. Linial, “Distributive graph algorithms — global solutions from local
data,” in Proceedings of the 28th IEEE Symposium on Foundations of
Computer Science (FOCS’87), 1987, pp. 331-335.

——, “Locality in distributed graph algorithms,” SIAM J. Comput.,
vol. 21, no. 1, pp. 193-201, 1992.

Y.-J. Chang, W. Li, and S. Pettie, “An optimal distributed (A + 1)-
coloring algorithm?” in Proceedings of the 50th Annual ACM Symposium
on Theory of Computing (STOC’18), 2018, pp. 445-456.

V. Rozhoti and M. Ghaffari, “Polylogarithmic-time deterministic network
decomposition and distributed derandomization,” in Proceedings of the
52nd Annual ACM Symposium on Theory of Computing (STOC’20),
2020, pp. 350-363.

M. Ghaffari and C. Grunau, “Faster deterministic distributed MIS
and approximate matching,” in Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, B. Saha and R. A. Servedio, Eds. ACM, 2023, pp.
1777-1790.

M. M. Halldérsson, A. Nolin, and T. Tonoyan, “Overcoming congestion
in distributed coloring,” in Proceedings of the 41st ACM Symposium on
Principles of Distributed Computing (PODC’22), 2022, pp. 26-36.

M. Ghaffari and F. Kuhn, “Deterministic distributed vertex coloring:
Simpler, faster, and without network decomposition,” in Proceedings
of the 62nd IEEE Symposium on Foundations of Computer Science
(FOCS’21), 2021, pp. 1009-1020.

S. Coy, A. Czumaj, P. Davies, and G. Mishra, “Optimal (degree + 1)-
coloring in Congested Clique,” in Proceedings of the 50th International
Colloquium on Automata, Languages and Programming (ICALP’23), to
appear, 2023.

——, “Fast parallel degree+1 list coloring,” CoRR, vol. abs/2302.04378,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.04378

P. Davies, “Improved distributed algorithms for the Lovdsz local lemma
and edge coloring,” in Proceedings of the 34th ACM-SIAM Symposium
on Discrete Algorithms (SODA’23), 2023, pp. 4273-4295.

M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM J. Comput., vol. 15, no. 4, pp. 1036-1053, 1986.

S. Coy, A. Czumaj, P. Davies, and G. Mishra, “Fast parallel degree+1
list coloring,” 2023.

https://doi.org/10.48550/arXiv.2302.04378

	Introduction
	Our contribution
	Technical contribution

	Related work

	Preliminaries
	Randomized D1LC Algorithm in MPC
	Overview of LOCALD1LC algorithm of Halldórsson et al.
	Randomized MPC implementation for low-degree graphs

	Framework to Derandomize MPC Algorithms
	Normal distributed procedures
	PRGs and derandomization
	Derandomizing normal distributed procedures

	D1LC algorithm when degree is at most n7
	Derandomization of key randomized subroutines of hkntlocald1lc

	Overall Deterministic D1LC Algorithm
	References

