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10. Meta-learned models of cognition make optimal predictions for the actual stimuli 

presented to participants, but investigating judgment biases by constraining neural 

networks will be unwieldy. We suggest combining them with cognitive process models, 

which are more intuitive and explain biases. Rational process models, those that can 

sequentially sample from the posterior distributions produced by meta-learned models, 

seem a natural fit. 

11. Meta-learned models of cognition offer an exciting opportunity to address a central 

weakness of current cognitive models, whether Bayesian or not: cognitive models 

generally do not “see” the experimental stimuli shown to participants. Experimenters 

instead feed models low-dimensional descriptions of the stimuli, which are often in 

terms of the psychological features imagined by the experimenter, or sometimes are the 

psychological descriptions that best fit participants’ judgments (e.g., stimulus similarity 

judgments; Nosofsky, et al., 2018).  

For example, in studies of probability judgment, participants have been asked to judge 

the probability that “Bill plays jazz for a hobby” after having been given the description, 

“Bill is 34 years old. He is intelligent, but unimaginative, compulsive, and generally 

lifeless. In school, he was strong in mathematics but weak in social studies and 

humanities” (Tversky & Kahneman, 1983). Current probability judgment models reduce 



these descriptions down to a single unknown number, and attempt to find the latent 

probability that best fits the data (e.g., Zhu, et al., 2020).  

Models trained on the underlying statistics of the environment, as meta-learned models 

are, can bypass this need to infer a latent variable, instead making predictions from the 

actual descriptions used. Indeed, even relatively simple models of semantics that locate 

phrases in a vector space produce judgments that correlate with the probabilities 

experimental participants give (Bhatia, 2017). Meta-learned models could thus explain a 

great deal of the variability in human behavior, and allow experimenters to generalize 

beyond the stimuli shown to participants.  

However, used as descriptive models, normative meta-learned models of cognition 

inherit a fundamental problem from the Bayesian approach: people’s reliable deviations 

from normative behavior. One compelling line of research shows that probability 

judgments are incoherent in a way that Bayesian models are not. Using the above 

example of Bill, Tversky and Kahneman (1983) found participants ranked the probability 

of “Bill is an accountant who plays jazz for a hobby” as higher than that of “Bill plays 

jazz for a hobby”. This violates the extension rule of probability because the set of all 

accountants who play jazz for a hobby is a subset of all people who play jazz for a 

hobby, no matter how Bill is described.  

The target article discusses constraining meta-learned models to better describe 

behavior, such as reducing the number of hidden units or restricting the representational 

fidelity of units. These manipulations have produced a surprising and interesting range 

of biases, including stochastic and incoherent probability judgments (Dasgupta, et al., 

2020). However, this is just the start to explaining human biases. Even a single bias 

such as the conjunction fallacy has intricacies, such as the higher rate of conjunction 

fallacies when choosing versus estimating (Wedell & Moro, 2008), and greater 

variability in judgments of conjunctions than those of simple events (Costello & Watts, 

2017).  

Cognitive process models aim to explain these biases in detail. For conjunction 

fallacies, a variety of well-supported models exist, based on ideas such as participants 

sampling events with noise in the retrieval process (Costello & Watts, 2014), or by 

sacrificing probabilistic coherence to improve judgment accuracy based on samples 

(Zhu, et al., 2020), or by representing conjunctions as a weighted average of simple 

events (Juslin, et al., 2009), or by using quantum probability (Busemeyer, et al., 2011). 

These kinds of models capture many details of the empirical effects, through simple and 

intuitive mechanisms like adjusting the amount of noise or number of samples, which 

helps identify experiments to distinguish between them. 



Mechanistically modifying meta-learned models to explain cognitive biases to the level 

cognitive process models do appears difficult. While changes to network structure are 

powerful ways to induce different biases that could identify implementation-level 

constraints in the brain, the effects of these kinds of changes are generally hard to intuit, 

while training constrained meta-learning models to test different manipulations will be 

slow and computationally expensive. Thus, it will be challenging to reproduce existing 

biases in detail or to design effective experiments for testing these constraints. 

Combining meta-learned models with cognitive process models is more promising. One 

possibility is to have meta-learned models act as a “front end” that takes stimuli and 

converts them to a feature-based representation, which is then operated on by a 

cognitive process model. The parameters of the cognitive process model could be fit to 

human data, or potentially the cognitive process model could be encoded into the 

network (e.g., Peterson et al., 2021), and meta-learning could be done on the front end 

and the cognitive process parameters end-to-end. 

However, as meta-learned models of cognition produce posterior predictive 

distributions, rational process models offer a straightforward connection that does not 

require retraining meta-learned models. Rational process models do not directly use a 

posterior predictive distribution, but instead assume that the posterior predictive 

distribution is approximated (i.e., using the posterior mean, posterior median, or other 

summary statistic depending on task), most often using a statistical sampling algorithm 

(Griffiths, et al., 2012). Such a model can explain details of the conjunction fallacy, and 

also a wide range of other biases, such stochastic choice, anchoring and repulsion 

effects in estimates, long-range autocorrelations in judgment, and the flaws in random 

sequence generation (Castillo, et al., 2024; Spicer, et al., 2022; Vul et al., 2014; Zhu et 

al., 2022; 2023). What these models have lacked, however, is a principled way in which 

to construct the posterior predictive distribution from environmental statistics, and here 

meta-learned models offer that exciting possibility.  

While rational process models offer what we think is a natural choice for integration, any 

sort of combination with existing cognitive models offers benefits. Being able to explain 

both the details of biases as cognitive process models do, as well as showing sensitivity 

to actual stimuli is a powerful combination that moves toward the long-standing goal of a 

general model of cognition. Overall we see meta-learned models of cognition as not 

supplanting existing cognitive models, but as a way to make them much more powerful 

and relevant to understanding and predicting behavior. 
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