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A B S T R A C T   

Proton exchange membrane fuel cell (PEMFC) is a promising hydrogen technique with various application 
prospects. However, all the PEMFCs are subject to degradation resulting from mechanical and chemical aging. To 
tackle this challenge, accurately predicting fuel cell degradation is essential for its durability optimization. In this 
study, an enhanced data-driven prognostic framework is developed to accurately predict short-term and medium- 
term degradation using only fuel cell voltage as the input feature. Firstly, a local outlier factor (LOF) algorithm is 
adopted for automatic detection of outliers in raw data collected from actual sensing environments. Then, an 
advanced deep learning model, residual–CNN–LSTM-random attention, is proposed to optimize voltage pre-
diction to better indicate future PEMFC degradation trend. The proposed work is validated by the IEEE PHM 
2014 Data Challenge. Compared to state-of-the-art methods, the proposed framework provides superior pre-
diction accuracies with high stability. For instance, the framework improves short-term prediction, achieving a 
root mean square error (RMSE) of 0.0021 and a mean absolute percentage error (MAPE) of 0.0323 at steady state 
when training stops at 600 h. For medium-term prediction, our method also attains better results with an RMSE 
of 0.0085 and a MAPE of 0.4237 under same working conditions. Additionally, the comparative analyses 
demonstrate a lower computational burden and higher suitability of proposed work for practical applications.   

1. Introduction 

1.1. Background and literature review 

Renewable energy sources, including hydrogen, are considered as 
ideal alternatives to alleviate carbon emissions and meet the growing 
global energy demand [1–3]. The fuel cell is a technique that converts 
hydrogen and oxygen into electricity with exhaust water as the only 
by-product [4]. Among various fuel cell types, proton exchange mem-
brane fuel cell (PEMFC) is the most promising one, with applications in 
transportation and stationary power generation [5,6]. In addition, the 
demands for PEMFC are increasing annually [6,7]. PEMFC offers various 
advantages [8,9], such as low operating temperature, high energy effi-
ciency, minimal noise level, etc. However, the unsatisfactory perfor-
mance and high cost still hinder its wider commercialization. For 
instance, the current durability of PEMFCs for automotive driving cycles 
is around 5000 h and aims to reach 7000 h within the next 16 years. This 
falls significantly short of the target value of 8000 h [10,11]. Durability 
is the most important criterion for evaluating the performance of 
PEMFCs and is strongly affected by the degradation. Due to material 

worn out and improper operations, fuel cells are unavoidably subjected 
to degradations. However, the PEMFC degradation is a complex process 
[12], which involves various components. Therefore, the full under-
standing of the degradation is still an open challenge and further efforts 
are needed to enhance the PEMFC performance. Hence, it is necessary to 
develop an effective degradation prognostic method to assess the aging 
state of the entire PEMFC and capture its degradation trend, which could 
facilitate service maintenance and operational optimization to effi-
ciently maximize the durability of PEMFC. 

PEMFC prognostics are generally categorized into model-based and 
data-driven methods. The model-based one relies on semi-empirical, 
empirical, or physical models to predict the degradation trend. An 
equivalent circuit model (ECM) is presented in Ref. [13] to estimate the 
degradation state of a single cell. In Ref. [14], the electrochemical 
impedance spectroscopy (EIS) technique is utilized to build an ECM for 
estimating fuel cell degradation. In addition, EIS is employed along with 
physical models or Kalman filters in Refs. [15–20] to capture the 
degradation behaviors. Although the EIS technique has proved its effi-
cacy in extracting degradation features, its application is limited due to 
its high cost and time-consuming nature [21]. Empirical models, Kalman 
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filters and particle filters are proposed in Refs. [22–26] for PEMFC 
degradation estimations. These methods have achieved sufficient accu-
racies in tracking degradation. However, they require vehicle data or 
prior knowledge of fuel cells to fit critical parameters. Besides, these 
parameters may not be universally applicable in all cases. A physical 
model based entirely on the working principles of PEMFC is applied for 
the degradation prediction in Ref. [27]. In addition, the work in 
Ref. [28] develops a dual numerical physical model to map complex 
operating conditions to fuel cell degradations. Moreover, a hybrid model 
is built in Ref. [29] to forecast PEMFC aging trend by integrating various 
physical principles. Overall, the model based prognostic methods are 
limited by the difficulty of developing an effective mathematical model 
considering all aspects of fuel cell degradation [21]. Therefore, precisely 
predicting degradation using model-based approaches is still a 
challenge. 

Nowadays, data-driven methods have gained significant attentions 
in degradation prognostics. It is considered as a “black box” model that 
does not rely upon analytical models and expertise on the PEMFC 
degradation process. A wide range of data-driven techniques have been 
developed for fuel cell prognostics. An adaptive neuro-fuzzy inference 
system (ANFIS) [30] and a machine learning method [31] are presented 
to predict long-term degradation, i.e., the prediction interval exceeds 
168 h. Likewise, the work of [32] adopts the wavelet decomposition 
method to assist a data-driven model to achieve the same objective. 
Nonetheless, these two studies only emphasized long-term prognostics 
and did not address the short-term degradation prediction with pre-
diction intervals less than 24 h. A high-precise short-term prediction is 
useful, as the predicted values can be adopted to compare with the 
reference values to identify instantaneous faults at an early stage [33]. 
To enhance the short-term prognostics capabilities of ANFIS, fuzzy 
c-means and particle swarm optimization algorithms are integrated in 
Ref. [34] to assist in degradation predictions. Other conventional ma-
chine learning techniques, such as relevance vector machine [35], group 
method of data handling [36], and wavelet-extreme learning machine 
[37], are applied to address short-term prognostic challenges as well. 

Deep learning methods, which have demonstrated superior predic-
tive capabilities compared to conventional methods, have also been 
utilized in fuel cell prognostics. The backpropagation neural network 
(BPNN) [38] and sparse autoencoder neural network (SAE-NN) [39] 
have proven their capabilities in predicting PEMFC voltage one-time 
step ahead. In contrast, the recurrent neural network (RNN) [40] has 
shown better performance in processing time series data. Ensemble echo 
state network (E-ESN) [41], hybrid model [42] and stacked ESN [43] are 
then applied to fuel cell to solve the potential gradient explosion and 
vanishing issue of RNN. However, they require either prior projection of 
raw data or knowledge of load file. To solve these problems, several 
algorithms such as long short-term memory (LSTM) [44], ESN with 
moving weight matrix [45], support vector LSTM [46], deep belief 
network [47] and variable input length LSTM [48] are applied and 
performs well in PEMFC degradation prognostics. Nevertheless, they 
only focus on steady-state operating conditions and their performances 
for dynamic or quasi-dynamic conditions are not addressed. 

To this end, more research works have been conducted on the topic 
of degradation prognostic using deep learning methods. The stacked- 
LSTM (S-LSTM) [49], Grey NN [50], Resevior-ESN [51] and LSTM 
with Gaussian process regression [52] are applied to enhance short-term 
prediction under the quasi-dynamic condition. Although these works 
properly capture the overall fuel cell degradation trend, their perfor-
mance at the late stage of voltage degradation remains untested. The 
Grid-LSTM [53] and bi-directional LSTM [54] are then introduced to 
further strengthen the prediction capabilities under both steady-state 
and quasi-dynamic operating conditions. In addition, nonlinear autor-
egressive exogenous NN [55], mind evolutionary BPNN [56] and gated 
recurrent unit [57] are also utilized for the same purpose. These 
methods all require multiple features as input, where measuring multi-
ple fuel cell parameters in some applications can be costly or even 

inaccessible. To achieve the degradation prognostic task using only fuel 
cell output voltage, a hybrid LSTM method [58] and cycle reservoir 
jump ESN [59] are applied. Unfortunately, these works have not yet 
tackled the medium-term prediction. The longer term predictions have 
been achieved by using the hybrid models RCLMA in Ref. [60], 
Bi-LSTM-ESN in Ref. [61] and transfer transformer in Ref. [62]. All 
literature based on data driven methods is summarized in Table 1. 

1.2. Need for research 

According to the comparative Table 1 and literature review, further 
research is needed to address the following research gaps:  

1) Several studies [44–52] fall short of providing robust short-term 
predictions under different working conditions.  

2) Multiple features are applied for degradation prognostic in works 
[44–57]. Using multiple features would increase the prediction 
complexity and limit multi-step ahead medium-term prediction, 
since multiple prediction targets are required for each time step. 
Therefore, degradation prognostics using a single feature is 
preferred.  

3) The medium-term prediction is not addressed in works [34–59]. 
However, medium-term prediction is important for PEMFC, as it 
could generate future voltages between 24 and 168 h to guide 
maintenance and energy management for PEMFC [16]. 

4) It is worth noting that the outliers arising from the recovery phe-
nomenon following each characterization of the experiment are pre- 
processed in the literature [38–62]. Nonetheless, outliers are 
manually selected rather than automatically detected, which limits 
the potential online applications of these methods. 

Overall, the previous works [38–62] has fallen short in providing 
reliable short or medium-term predictions under both steady-state and 
quasi-dynamic conditions relying solely on a single voltage feature. The 
accuracy of both predictions is paramount for the effective health 
management of PEMFC systems. 

1.3. Contributions 

To tackle the above issues, a structurally enhanced data-driven 
framework is proposed in this paper to improve the prognostic capa-
bility without knowing the working mechanism of PEMFC. The frame-
work is capable of automatically detecting outliers, and handling both 
short-term and medium-term prognostics with a high precision using 
only the voltage as the input. The overall prognostic framework is 
divided into two steps. Firstly, a local outlier factor (LOF) algorithm is 
adopted herein to identify outliers and remove noise for raw PEMFC 
voltage data. The corresponding data completion and pre-processing 
techniques are then applied. Secondly, an innovative hybrid deep 
learning model is proposed to optimize the future voltage prediction of 
the fuel cell and reduce computational burden to better indicate its 
degradation trend. The efficacy of the proposed framework is validated 
on two fuel cell datasets of the IEEE Data Challenge [63]. The main 
advantages and contributions are summarized as follows. 

1) Based on the LOF algorithm, the proposed framework can automat-
ically and accurately detect outliers without any artificial manipu-
lation, unlike other state-of-the-art frameworks [38–62]. The LOF is 
applied to the automatic outlier detection in fuel cell for the first 
time, which reduces the impact of noisy input and aids in the correct 
online fine-tuning of the data-driven framework.  

2) A structurally enhanced hybrid deep learning model, residual- 
convolutional neural network-long short term memory with 
random self-attention (residual–CNN–LSTM-random attention), is 
proposed herein to improve the fuel cell degradation prognostic 
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capability. It demonstrates high stability when utilizing the voltage 
as only input feature.  

3) The proposed work illustrates its superior performance under steady- 
state and quasi-dynamic operating conditions through the practical 
aging data. The comparative results demonstrate the proposed model 
outperforms other state-of-the-art works [38–59,64] in both 
short-term and medium-term prediction accuracies. For instance, the 
proposed work improves the performance and achieves the root 
mean square error and mean absolute percentage error at 0.0021 and 
0.0323, respectively, in short-term prediction. 

4) In contrast with other methods [54,64], the proposed method ach-
ieves a lower time complexity along with better prediction accuracy, 
which demonstrates it stronger suitability for field applications. 

The rest of the paper is organized as follows. Section II presents the 
datasets of two aging stacks. Section III describes the details of the 
prognostic framework. The experiment results, comparisons, and dis-
cussions are included in Section IV. Section V concludes the results and 
findings of this paper. 

2. Fuel cell degradation data 

In the IEEE PHM 2014 Data Challenge [63], two fuel cell stacks were 
selected for degradation tests, namely FC1 and FC2. Both stacks consist 
of five cells, producing a maximum total power of 1 kW. Each monolithic 
cell within these two stacks has a uniform active cross-sectional area of 
100 cm2, of which the nominal and maximal current densities are 0.7 
A/cm2 and 1 A/cm2, respectively. 

The aging experiments of FC1 and FC2 were conducted under two 
different load conditions. FC1 was operated under a steady current of 70 
A, while FC2 was tested under a quasi-dynamic current of 70 A with a 
sinusoidal high-frequency ripple at a magnitude of 7 A and a frequency 
of 5 kHz. The FC1 was operated for 1154 h and a total of 143862 
consecutive sets of data were recorded. In terms of FC2, a total of 
127730 sets of data were recorded during its 1020 h operating period. 
This paper selects output voltage as the degradation indicator due to its 
consistency with the degeneration behaviors [49], and up samples it to 
an hourly frequency. The output voltages range from 3.19 V to 3.31 V 
and from 3.15 V to 3.32 V for FC1 and FC2, respectively. 

Table 1 
Comparisons of recent research works.  

References Prediction 
Accuracy 

Consider quasi-dynamic/ 
dynamic state 

Prior projection of 
raw data 

Single 
feature 

Consider Medium-term 
prediction 

Automatic outlier 
detection 

Applicability 

[34–37] Moderate Yes No Yes No No High 
[38–43] Moderate No Yes Yes No No High 
[44–48] Medium No No No No No High 
[49–52] Medium Yes No No No No High 
[53–57] Medium Yes No No No No High 
[58,59] Medium Yes No Yes No No High 
[60–62] High Yes No Yes Yes No Moderate 
Proposed 

model 
High Yes No Yes Yes Yes High  

Fig. 1. Flow chart of the proposed data-driven prognostic framework.  
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3. Prognostic framework 

This section reveals the working principles of the proposed prog-
nostic framework. As shown in Fig. 1, the framework consists of the data 
pre-processing step, the proposed hybrid deep learning model, and the 
model optimization process. In the first stage of the framework, an 
outlier detection algorithm and a data completion method are applied to 
process the raw input data. Then, the pre-processed dataset is fed into 
the hybrid deep learning model, generating future voltage values to 
reveal the degradation trend. At the same time, the deep learning model 
is continuously optimized until it satisfies the training requirements. 

3.1. Outlier detection and data completion 

In practice, the raw data recorded by sensors is inevitably contami-
nated by outliers caused by the noises of the measuring devices or 
sudden changes in the operating conditions. In the aging experiments of 
FC1 and FC2, the outliers were caused by the recovery phenomenon 
after each characterization of polarization and EIS. Therefore, the raw 
voltage data exhibits sharp spikes followed by rapid declines, deviating 
from the normal operating values. As a result, feeding contaminated raw 
data into a data-driven model would affect its training process and lead 
to inaccurate predictions. 

To tackle impacts brought by outliers, this paper proposes the use of 
the LOF algorithm [65] to pre-process the raw data of fuel cells. The 
working principle of LOF is illustrated in Fig. 2 and the Euclidean dis-
tance is defined as 

dE
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

c=1

(
xic − xjc

)2n

√

(1)  

where dE is the Euclidean distance introduced to measure distances 
between different voltage sampling points, and n represents the total 
dimension of each selected point. For example, the Euclidean distance 
between points xi and xj is calculated based on the voltage magnitude v 
and time step t. The same calculation principle applies to all other 
sampling points. Based on the Euclidean distance, the k-distance dk of 
the point xi is defined as 

dk(xi)= dE
(
xi, xj

)
(2)  

where k is the hyperparameter of the algorithm. Eq. (2) is applicable 
when two prerequisites are met. Firstly, the voltage sample space must 
contain at least k points xj

’ satisfying the condition dE(xi,xj) ≥ dE(xi,xj
’), 

where xj
’ represents the unified symbol of all possible points. Secondly, it 

is necessary to ensure that the number of data points in the voltage 

sample 
space for which dE(xi,xj) > dE(xi,xj

’) is less than k. As illustrated in the 
blue area of Fig. 2, when k is equal to 7, 7 points meet the criteria of 
dE(xi,xj) ≥ dE(xi,xj

’) and 6 points meet the criteria of dE(xi,xj) > dE(xi,xj
’), 

respectively. After obtaining valid dk(xi), the k-distance domain can be 
written as 

Dk(xi)=
{

points x′
j

⃒
⃒
⃒dk(xi)≥ dE

(
xi, x′

j

)}
(3)  

where Dk(xi) denotes the k-distance domain of voltage point xi, 
encompassing all possible points xj

’ fulfilling the requisite condition of 
Eq. (3). As shown in example Fig. 2, the points within the blue area form 
Dk(xi), while other k-distance domains within the voltage sample space 
are denoted by the remaining colorful areas. 

In addition, the reachable k-distance is calculated as 

rk

(
xi, x′

j

)
=max

(
dk

(
x′

j

)
, dE

(
xi, x′

j

))
(4)  

where rk(xi,xj
’) is the reachable k-distance from point xj

’ to point xi, which 
is determined by the maximum value between the Euclidean distance 
dE(xi,xj

’) and the k-distance of xj
’. For instance, the rk(xi,xj

’) in Fig. 2 is 
represented by the dE(xi,xj

’). Similarly, the reachable k-distance from 
other points xj

’ in Dk(xi) to xi are also calculated. Subsequently, they are 
combined with Dk(xi) to evaluate the local reachable density (LRD) for 
point xi, written as 

ρ(xi)=
|Dk(xi)|

∑
x′

j∈Dk(xi)
rk
(
xi, x′

j
) (5)  

where ρ(xi) represents the reciprocal of the average reachable k-distance 
from each point in Dk(xi) to xi. The high density indicates a greater 
likelihood that xi and its adjacent points belong to the same cluster. 
Finally, the LOF is quantified through the density ρ(xi) as 

F(xi)=

∑
x′

j∈Dk(xi)
ρ
(

x′
j

)

|Dk(xi)|•ρ(xi)
(6) 

The LOF F(xi) stands for the density of xi relative to its adjacent 
points. The LOFs of other sampling points are obtained in the same way. 
If the value of LOF is significantly greater than 1, it indicates that the 
corresponding point is likely to be an outlier. In contrast, points with 
LOF values less than 1 and close to 1 are considered as density points and 
normal points relative to their adjacent points, respectively. 

Subsequently, the identified outliers are replaced using local mean 
values. By considering the magnitude and trend of adjacent points, the 
local mean values rectify abnormal voltage values to reasonable levels. 
As a result, a complete and outlier-free voltage time series dataset is 
obtained. 

Furthermore, this dataset requires data standardization before being 
fed into the prediction model. Since the model is applied to fuel cells 
under two different operating conditions, voltages with different nu-
merical ranges are used for model training. To avoid the gradient 
saturation caused by such variations during training and ensure the 
weight factors perform equally for different inputs, it is crucial to 
standardize inputs and outputs. The mathematical illustration is sum-
marized as 

x′ =
x − μ

σ (7)  

where μ, σ, x, and x’ stand for the mean value, standard deviation, pre- 
processed data and standardized data of the voltage, respectively. 
Meanwhile, the minute noises are filtered out through the standardiza-
tion process. In the following sections, to evaluate the effectiveness of 
the model, the predicted voltage values are reversely standardized. 

Fig. 2. Working principle of LOF algorithm.  
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3.2. The proposed hybrid deep learning model 

The workflow of the proposed hybrid deep learning model for 
voltage prediction is depicted in Fig.1. The hybrid model consists of one- 
dimensional convolutional neural network (1D-CNN), residual LSTM, 
self-random attention, and fully connected blocks. The working princi-
ples of each block and hybrid model are presented as follows. 

3.2.1. CNN block 
The CNN block [66] has shown remarkable performances in 

numerous fields, especially in image classification and object detection. 
In this paper, the 1D-CNN block is employed in the initial stage to extract 
features and capture dynamic patterns from the voltage series. It is 
shown in Fig. 3, the 1D-CNN block is a multilayer perceptron comprising 
a convolutional layer, a max pooling layer, and a flatten layer. 

Firstly, the convolutional layer is responsible for identifying changes 
and extracting features from each local input slice. To retain the size of 
the input after convolution remains unchanged, a zero-padding mech-
anism is applied at both ends of the input. Then, the kernel in the con-
volutional layer functions as a sliding window, successively extracting 
local representative features from each time series slice. These extracted 
features are combined to form the new global time series feature, which 
contains less redundant information. By convolving inputs from 
different perspectives using kernels of varying weights, a global feature 
set is ultimately constructed. 

In the second step, the max pooling layer is applied to down sample 
each global feature into a representative form, reducing the computa-
tional complexity of the subsequent structures. Finally, the flatten layer 
is utilized to reshape the output generated by the max pooling layer. This 
step ensures that the output of 1D-CNN is properly aligned with the 
input dimension of the subsequent block. 

3.2.2. Vanilla LSTM block 
The LSTM [67] is a type of RNN architecture specifically designed to 

handle time series data with long-term and short-term dependencies. 
This paper employs an LSTM block, as shown in Fig. 4, to develop the 
residual LSTM in hybrid model. 

LSTM operates on a multi-gated memory mechanism, which can 
efficiently capture and integrate temporal information from past and 
current time steps. The working principles of these gates are explained 
as 

It = σ(wI [ht− 1, xt] + bI) (8)  

Ft = σ(wF [ht− 1, xt] + bF) (9)  

Ot = σ(wO[ht− 1, xt] + bO) (10)  

where the input gate, forget gate and output gate are denoted as It, Ft and 
Qt, respectively. Moreover, ht-1, xt, w, and b indicate the preceding 
hidden state, temporal information of current step, weight, and noise 
matrices for relevant gates, respectively. The sigmoid function σ is 
responsible for activating each nonlinear transformation in three gates. 
As depicted in Fig. 4, each gate performs a unique function. Their 
detailed functions are explained as follows. 

M̃t = tanh(wM [ht− 1, xt] + bM) (11)  

Mt =FtMt− 1 + ItM̃t (12)  

ht =Ot tanh(Mt) (13)  

where M̃t refers to the transient memory state that nonlinearly stores the 
merged information from ht-1 and xt. As stated in Eq. (12), the input gate 
selects essential information from M̃t , while the forget gate discards 
insignificant information from the preceding memory state Mt-1. As a 
result, these two gates are used to form the current memory state Mt. 
Then, the output gate collaborates with the tanh function to choose the 
preserved hidden state ht for the next time step, as demonstrated in Eq. 
(13). Finally, multiple LSTM blocks are connected sequentially to 
improve their capability in capturing the underlying information flow 
over time series. 

3.2.3. Self-random attention block 
The attention mechanism is a weight assignment method, ranking 

each element within the input sequence according to its intrinsic rele-
vance. The subsequent blocks then prioritize the elements with higher 
importance. As a result, it improves the overall performance of the 
prediction model. However, calculating the weight factors for each 
element of a long sequence introduces a computational burden, 
impacting the prediction accuracy and real-time applications of the 
model. To reduce the computational complexity and enhance the per-
formance of the self-attention block [68], a self-random attention block 
is proposed in this study, as illustrated in Fig. 5. The following equations 

Fig. 3. Flow chart of 1D-CNN.  
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illustrate the working principles of self-random attention. 

Q=wQh + bQ (14)  

K = IKh (15)  

V = IV h (16) 

Firstly, the query vector Q is obtained by linearly transforming the 
hidden state h using the weight matrix wQ and the bias matrix bQ. It is 
noteworthy that the weight matrix wQ is designed to be shared at each 
step, effectively reducing the time complexity of the block. Meanwhile, 
the key vector K and the value vector V are intentionally set to be the 
same as the hidden state to simplify the calculation. These processes are 
shown in Eqs. (15) and (16), where I indicates the identity matrix. The 
subsequent explanations will take Qt, i.e., Q at time step t, as an example. 

s(Qt,K1)=KT
1 Qt (17)  

et =
[
KT

1 Qt ⋯ KT
mQt
]

subject to m < L
(18) 

Secondly, the inner product method is chosen, as described in Eq. 
(17), to compute the similarity score s(Qt,K1) between Qt and the first 
key element K1. Similarly, the remaining similarity scores are obtained 

using the same method. Afterward, the random selection method is 
applied in selecting the components in Eq. (18), and its workflow is 
illustrated in Fig. 5. m and L denote the selecting length and input 
length, respectively. The random selection process 

reduces the computational cost by excluding non-essential details 
since most similarity scores are close to 0. Thus, et contains only the 
scores between Qt and the randomly selected m key elements. 

αt = softmax(et) (19)  

at =
∑m

i=1
αt

iVi + (L − m)V (20)  

Then, a softmax function is utilized to compute the attention score set αt. 
By using normalization, the valuable information in et is further 
enhanced. Thereafter, we calculate the attention value αt for Qt. As 
explained in Eq. (20), αt is designed to include two parts. The first part is 
the product sum of randomly selected elements, whereas the second part 
is the mean of the value vector V. As illustrated in Fig.6, replacing un-
selected elements with the mean value can enrich the information di-
versity, such as the information interaction between Qt and V. 

s̃t = tanh (ws[at,Qt] + bs) (21)  

where, the ̃st is the output of the attention block. Finally, ̃st is calculated 
based on attention value, query vector, weight matrix ̃st and bias bs. 

3.2.4. Proposed residual–CNN–LSTM-random attention model 
To improve the accuracy of fuel cell voltage prediction, the hybrid 

deep learning model is proposed. As shown in Fig. 6, the model is 
designed by fusing 1D-CNN, residual LSTM, random self-attention, and 
fully connected blocks. 

Firstly, the 1D-CNN is employed to extract features from the input 
voltage sequence. Within the input aging voltage, short-term consecu-
tive steps exhibit strong temporal correlations and repetitive patterns, 
introducing noises to the prediction model. To eliminate adverse effects 
of the input, the 1D-CNN operates on local time slices to extract repre-
sentative features and filter out unnecessary variations. As a result, the 
extracted local features enhance the dynamic trend of the input without 
modifying its original pattern, which helps the model to accurately learn 
the fuel cell degradation. 

Then, the residual LSTM is utilized to process these features from a 
time-series perspective, where it discovers internal long and short-term 
correlations between features extracted at different time steps and 
generates deep-level features. Simultaneously, the residual structure 
enables the concurrent transmission of initial features extracted by the 
1D-CNN to interact with other features within the deep-layered block, 
thereby enhancing the representativeness of the fused features. It also 

Fig. 4. Flow chart of vanilla LSTM.  

Fig. 5. Flow chart of self-random attention.  
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mitigates the risks associated with potential preliminary information 
loss and performance degradation that may arise during the deep-level 
feature extraction process of LSTM. However, simultaneous inputs 
from two sources, especially the flattened output of 1D-CNN, increase 
the computational complexity of the subsequent block. In addition, 
there may be an overlap between certain parts of the two data sources, 
which may impede the accurate training of the prediction model [69]. 

To address these issues, self-random attention is then proposed to 
assign weights to different elements in the integrated CNN and LSTM 
sequence. Consequently, the two blocks strive to extract representative 
information and compete to dominate the predicted results. Therefore, 
the information overlaps and less important features are eliminated. 
Moreover, the overall computational burden is reduced by simplifying 
matrix similarity calculations between query and key vectors, as illus-
trated in Fig. 5. By discarding some possible repetitive features during the 
random selection process, the impact of noise interference is also mini-
mized. As a result, the combination of residual LSTM and self-random 
attention enhances the prediction capability of the hybrid model. 

Subsequently, the fully connected block integrates all the received 
information. Each block of the hybrid model is updated continuously 
until the training requirements are met. Finally, the optimized hybrid 
deep learning model generates the predictive voltage. To sum up, the 
combination of these blocks would improve the prediction accuracy of 
the model. 

4. Results and discussions 

The prognostic framework proposed in this study is implemented 
using Python 3.69, where the TensorFlow 1.14 package is used to build 
the hybrid deep learning model. To verify the effectiveness of the 
prognostic framework in detecting outliers and predicting voltage, the 
IEEE PHM 2014 Data Challenge dataset is utilized. Firstly, the hybrid 
deep learning model is trained using historical data with different 
training stopping points (TSPs). For instance, the first 500 h of data are 
set as training set when TSP is 500. Then, the remaining data is used to 
validate the short-term and medium-term prediction accuracy of the 
model. The impact of different TSPs on prediction capability is also 
analyzed. Furthermore, stability and comparative analyses are con-
ducted. The corresponding results prove the superior predicting accu-
racy and the high stability of the proposed prognostic framework. 

4.1. Performance evaluation criteria 

Three quantitative criteria have been selected to evaluate the per-
formance of the proposed framework, including the accuracy (AC), the 
root mean square error (RMSE), and the mean absolute percentage error 
(MAPE). 

AC=
Nd

No
(22)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

t=1
(xt − x̂t)

2

√
√
√
√ (23)  

MAPE=
1
N

(
∑N

t=1

|xt − x̂t|

|xt|

)

(24)  

where No, Nd, and N represent the total number of outliers, the number 
of outliers correctly identified by the LOF algorithm, and the total 
number of predicted voltage points, respectively. Besides, xt denotes the 
actual voltage, while x̂t stands for the predicted voltage. Firstly, AC is 
used to quantify the effectiveness of the outlier detection algorithm in 
the proposed framework. The high value of AC indicates the strong 
ability of the detection algorithm. Secondly, the performance of the 
framework in predicting voltages is evaluated using RMSE and MAPE, 
where the lower values reflect higher prediction accuracy. 

4.2. Performance of data pre-processing 

The characterization of polarization and EIS was conducted weekly. 
These processes may cause the recovery phenomena of voltage degra-
dation due to sudden stops and changes in operating conditions. As a 
result, the voltages in the vicinity of the event points exhibit abrupt 
ripples, deviating from adjacent voltage points and being identified as 
outliers. 

The events occurred at 48, 185, 348, 515, 658, 823, 991 h and 35, 
182, 343, 515, 666, 830, 1016 h for FC1 and FC2 respectively. In FC1, 
the voltage and its trend are relatively smooth, and thus the recovery 
phenomenon has a minor impact. Only the outliers with large fluctua-
tions should be adjusted, as they have higher impacts on the predictions. 
Hence, the first task of data pre-processing is to automatically detect 
outliers near these events for FC2. Under the quasi-dynamic working 
condition, the presented LOF algorithm locates voltage outliers at 36, 
182, 343, 506, 667 and 831 h. Compared with the experimental data, 
these identified points match all the actual recovery event timings, 
resulting in an AC of 1. Then, a data completion is applied to complete 
the dataset. Fig. 7 displays the raw and pre-processed data of FC2 as well 
as the raw data of FC1. Afterward, the pre-processed dataset is used to 
train and validate the performance of the proposed hybrid deep learning 
model. 

Fig. 6. Flow chart of the proposed deep learning method.  
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4.3. Short-term degradation prediction results 

The objective of short-term degradation prediction is to accurately 
predict short-term voltages. Meanwhile, the prediction model needs to 
maintain stable performances across different TSPs. Furthermore, the 
proposed model utilizes a look-back time step of 10 h. To evaluate the 
short-term prediction performances of the proposed deep learning 
method, it is compared with other state-of-the-art prognostic models, 
including LSTM, S-LSTM, BILSTM-Attention, and CNN-LSTM-Attention. 
The relevant results are analyzed in this section. 

Firstly, FC1 of the IEEE PHM 2014 Data Challenge dataset is utilized 
to train and test prediction models. As shown in Fig. 8(a), all models 
except for the LSTM method capture the overall degradation trend of 
voltage under steady operating conditions with TSP equaling 500. With 
the increase in TSP, the LSTM and other methods all fit the degradation 
curves well, as illustrated in Fig. 8(b)–(c). The results reveal the influ-
ence of different TSPs on the prediction stability of the LSTM. Further-
more, Table 2 summarizes all relevant errors and comparison results 
obtained under steady operating conditions. It is worth noting that most 
methods perform the best in the case of TSP equals to 600, and the 
proposed hybrid deep learning model outperforms others in all TSP 
cases. For instance, under the condition where TSP equals 600, the 
RMSE and MAPE values of the proposed model are 0.0021 and 0.0323, 
respectively. Moreover, the proposed deep learning model achieves 

high-precision prediction without overfitting, as demonstrated by the 
training and test curves in Fig. 8(d). 

To evaluate the short-term prediction performances of the proposed 
model under the quasi-dynamic operating condition, a quantitative 
analysis is conducted. FC2 of the IEEE PHM 2014 Data Challenge dataset 
is employed to fit and verify different prediction models. As depicted in 
Fig. 9(a)-(c), although the overall performances of LSTM and S-LSTM 
models are satisfactory, they cannot accurately capture the late dynamic 
changes, i.e., behaviors after 900 h. In contrast, other models all fit the 
overall degradation curve of FC2 well. Amongst them, the proposed 
model exhibits the best predictive performance without overfitting, as 
demonstrated by Fig. 9(d). The performances of BILSTM-Attention, 
CNN-LSTM-Attention, and the proposed methods are attributed to the 
presence of the attention block. The attention block selectively focuses 
on elements in the sequence, providing the model with a strong ability to 
capture dynamic variations. Moreover, Table 2 also presents the 
comparative results under the quasi-dynamic operating condition. Most 
models exhibit their strongest performances at TSP equaling 600 and 
their weakest performances at TSP equaling 500. For instance, the 
proposed model performs the best under the condition where TSP equals 
600, with RMSE and MAPE values of 0.0023 and 0.0361, respectively. 

Several conclusions can be drawn from the results under two oper-
ating conditions. Firstly, LSTM and S-LSTM show similar performance in 
both operating cases. This suggests that merely stacking LSTM blocks to 
increase the model depth does not effectively improve predictive ability. 
Secondly, the results of CNN-LSTM-Attention and BILSTM-Attention 
indicate that combining the CNN block leads to better performance 
than stacking the LSTM block. Thirdly, the proposed method out-
performs CNN-LSTM-Attention under both operating cases. The 
comparative results prove that the residual structure and self-random 
attention mechanism are effective in enhancing the prediction accuracy. 

To verify the stability of the proposed method, relevant quantitative 
analyses are conducted. The proposed method provides similar perfor-
mances under different TSPs. To further illustrate its stability, we take 
the example of TSP equaling 600. Initially, the percentage error curves 
of the proposed model under both operating conditions are plotted. As 
depicted in Fig. 10(a)-(b), the errors of test data remain stable within a 
small range without any abrupt fluctuations, which demonstrates the 
high stability of the model. Additionally, the prediction confidence 

Fig. 7. FC1 and FC2 of the IEEE PHM 2014 data challenge.  

Fig. 8. Performances of different methods on FC1 (a) TSP = 500 (b) TSP = 600 (c) TSP = 700 (d) Training and test curves when TSP = 600.  
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Table 2 
Comparison results of short-term prediction for various methods under different conditions.  

Models Steady (FC1) Quasi-dynamic (FC2) 

TSP = 500 TSP = 600 TSP = 700 TSP = 500 TSP = 600 TSP = 700 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

LSTM 0.0085 0.1688 0.0057 0.1034 0.0071 0.1217 0.0143 0.2421 0.0079 0.1514 0.0118 0.2282 
S-LSTM 0.0078 0.1758 0.0071 0.1237 0.0063 0.1211 0.0074 0.1537 0.0070 0.1400 0.0079 0.1713 
BILSTM-Attention 0.0064 0.1525 0.0049 0.0934 0.0066 0.1136 0.0048 0.0927 0.0044 0.0875 0.0049 0.0995 
CNN-LSTM-Attention 0.0046 0.0991 0.0058 0.0880 0.0053 0.0873 0.0038 0.0807 0.0034 0.0625 0.0033 0.0543 
Proposed model 0.0025 0.0356 0.0021 0.0323 0.0027 0.0329 0.0025 0.0395 0.0023 0.0361 0.0026 0.0437  

Fig. 9. Performances of different methods on FC2 (a) TSP = 500 (b) TSP = 600 (c) TSP = 700. (d) Training and test curves when TSP = 600.  

Fig. 10. Short-term prediction stability analysis when TSP = 600 (a) Estimation percentage error of FC1 (b) Estimation percentage error of FC2 (c) Prediction 
interval of FC1 (d) Prediction interval of FC2. 
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intervals of the proposed method are illustrated in Fig. 10(c)–(d). The 
prediction confidence interval is generated by adjusting the model’s 
hyperparameters and fusing its lowest and highest performance limits. 
The small prediction confidence intervals for both operating conditions, 
as depicted in Fig. 10(c)–(d), provide further evidence supporting the 
high stability of the proposed method. To sum up, the proposed model 
demonstrates superior short-term prediction capability with a high level 
of stability. 

4.4. Medium-term degradation prediction results 

This section evaluates the performance of the proposed deep learning 
method on medium-term prediction. In this study, the medium-term 
prediction is realized by applying iterative short-term predictions. 
Therefore, accurate short-term prediction is a prerequisite for a satis-
factory medium-term prediction. As a result, we only compare BILSTM- 
Attention, CNN-LSTM-Attention, and the proposed method, which 
perform the best in short-term predictions. For medium-term prediction, 
the look-back timestep is also set at 10 h. 

Fig. 11(a) shows the prediction curves of different methods under 
steady operating conditions with TSP equaling 600. As illustrated in the 
figure, the proposed method outperforms the others in capturing the 
trend of the degradation curve. As demonstrated in Fig. 11(b), BILSTM- 
Attention and CNN-LSTM-Attention models cannot accurately capture 
the variations in the degradation curve and exhibit certain oscillations 
under the quasi-dynamic case. In contrast, the proposed method out-
performs other methods. Despite some differences between the actual 
and predicted values, the proposed model fits the overall trend well. 

Furthermore, Table 3 presents the comparison results of medium- 
term predictions. It is worth noting that an increase in TSP leads to a 
decrease in both the RMSE and MAPE values in FC1, while only MAPE 
values decrease in FC2. The results also indicate that all models perform 
better under the steady operating condition compared to the results 
under the quasi-dynamic operating condition. Additionally, the pro-
posed model shows the best performance with the minimum RMSE and 
MAPE values in all cases. This further emphasizes the importance of the 
residual structure and the self-random attention mechanism in 

enhancing prediction precisions. 
Moreover, the low prediction confidence intervals presented in 

Fig. 11(c)–(d) verify the high stability of the proposed model in medium- 
term prediction. In conclusion, the proposed model demonstrates higher 
medium-term prediction accuracies than others, while simultaneously 
maintaining a high level of stability. 

4.5. Working zone 

The study [70] defines the working zone of a PEMFC as the zone 
where the proposed method can provide reliable performance under 
certain working conditions. Identifying the working zone is crucial, as it 
can be used to evaluate the robustness of the proposed method for 
different application scenarios. In our research, the combinations of 
prediction intervals and operating states are applied. Besides, the RMSE 
is the criteria that used to select the working zone. 

In terms of the short-term prediction [21], prediction with a RMSE 
lower than 0.012 is preferable. As illustrated in Table 4, all the RMSMs 
are lower than 0.012 for both working conditions, where the RMSEs for 
quasi-dynamic state are slightly higher than those for steady state. 
Therefore, the proposed work performs well for all the combinations 
within the working zone. 

For medium-term prediction [21], it is important to have a robust 
model with an RMSE lower than 0.04. Table 4 shows that all predictive 
performances under steady state fulfil the criteria. In contrast, only the 
predictive performances under quasi-dynamic state with a prediction 
interval less than 80 h meet the requirement. To sum up, all short-term 
and medium-term predictions that meet the accuracy criteria form the 
working zone, which can be used to guide the proposed work for various 
applications. 

4.6. Time complexity analysis 

Fine-tuning is necessary for the degradation prognostic applications, 
which require high prediction accuracy. Previous results demonstrate 
that models with the attention block, particularly the proposed method, 
outperform other models in prediction accuracy. In addition, the time 

Fig. 11. Medium-term prediction performances of different methods when TSP = 600 (a) Estimation curve of FC1 (b) Estimation curve of FC2 (c) Prediction interval 
of FC1 (d) Prediction interval of FC2. 
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complexity is another crucial factor for field applications. This section 
compares the time complexity of the proposed method with BILSTM- 
Attention and CNN-LSTM-Attention models. 

As illustrated in Table 5, the time complexity of each layer of the 
three models is analyzed. Then, a comparative experiment is conducted 
to analyze the time complexity of the entire models in the application. 
The models are tested on FC1 and FC2 using the hardware environment 
of the i7-6500U CPU. The results clearly show that the training time per 
epoch of BILSTM-Attention, CNN-LSTM-Attention, and the proposed 
model are 1 s, less than 1 s, and less than 1 s, respectively. Besides, the 
proposed method requires a minimum number of epochs to achieve 
convergence. As a result, the proposed model outperforms others in 
terms of time complexity. Therefore, our model with higher prediction 
accuracy and lower time complexity is the preferred option for field 
applications. 

5. Conclusion 

This paper proposes a data-driven prognostic framework for fuel cell 
degradation prediction, which consists of a data pre-processing step and 
a hybrid deep learning model. Firstly, the data pre-processing step is 
responsible for detecting and handling the outliers. Then, the hybrid 
deep learning model is proposed based on 1D-CNN, residual LSTM, self- 
random attention, and fully connected blocks. It extracts representative 
information, processes features, evaluates the importance of received 

elements as well as predicts voltages. The experimental results demon-
strate the improved short-term and medium-term predicting accuracies 
achieved by this prognostic method. Meanwhile, the method has a high 
level of stability and low time complexity, illustrating its suitability for 
field implementation. The results indicate the benefits of the method for 
the development of PEMFC health management system. 

In future research, certain aspects require further improvements 
before applying in the field. Firstly, the performance of the proposed 
framework has not been tested under more dynamic working conditions. 
In such cases, the degradation mechanism becomes more complex, 
leading to a less stable prediction of the degradation trend. To this end, 
we plan to conduct more degradation experiments and enhance the 
structure of the proposed framework to improve its predictive capabil-
ities under various working conditions. In addition, the online learning 
of the prognostic framework will be explored to enhance its real-time 
application. The quick training response of the framework enables the 
implementation. Finally, the proposed work is planned to be integrated 
into health management system to optimize the durability of PEMFC for 
future research. 
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Table 3 
Comparison results of medium-term prediction for various methods under different conditions.  

Models Steady (FC1) Quasi-dynamic (FC2) 

TSP = 600 TSP = 700 TSP = 600 TSP = 700 

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

BILSTM-Attention 0.0127 0.5285 0.0123 0.4119 0.0189 0.9255 0.0229 0.8188 
CNN-LSTM-Attention 0.0139 0.5647 0.0126 0.4133 0.0199 0.9567 0.0227 0.7993 
Proposed model 0.0085 0.4237 0.0082 0.3410 0.0123 0.7957 0.0147 0.7319  

Table 4 
Comparison results of different prediction intervals.  

Prediction performance (TSP = 600) Steady (FC1) Quasi-dynamic (FC2)  

Prediction interval (hour) Prediction interval (hour)  
1 2 4 8 16 24 1 2 4 8 16 24 

RMSE of short-term prediction 0.0021 0.0032 0.0039 0.0043 0.0071 0.0079 0.0023 0.0028 0.0049 0.0071 0.0095 0.0113  
Prediction interval (hour) Prediction interval (hour)  
30 40 50 80 120 160 30 40 50 80 120 160 

RMSE of medium-term prediction 0.0081 0.0085 0.0093 0.0097 0.0103 0.0122 0.0119 0.0123 0.0149 0.0397 0.0851 0.0951  

Table 5 
Time complexity comparison results of various methods.  

Models BILSTM-Attention CNN-LSTM-Attention Proposed model 

Structure: 
First layer LSTM: Process elements sequentially with 

medium time complexity [71]. 
1D-CNN: Process elements parallelly with 
low time complexity [71]. 

1D-CNN: Process elements parallelly with low time 
complexity. 

Second layer LSTM: Process elements sequentially with 
medium time complexity. 

LSTM: Process elements sequentially with 
medium time complexity. 

LSTM: Process elements sequentially with medium 
time complexity. 

Third layer Self-attention: High time complexity. Self-attention: High time complexity. Self-random attention: Simplify similarity calculation 
with medium time complexity. 

Experiment: 
Time Complexity per 

epoch 
1 s Less than 1 s Less than 1 s 

Number of epochs Around 100 Around 100 Around 70 
Overall time 

complexity 
Moderate Medium Low 

Accuracy Moderately Limited Medium High 
Application Limited applicability Medium applicability High applicability  
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