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We present a theory describing the single-ion anisotropy of rare-earth (RE) magnets in the presence of
point defects. Taking the RE-lean 1∶12 magnet class as a prototype, we use first-principles calculations to
show how the introduction of Ti substitutions into SmFe12 perturbs the crystal field, generating new
coefficients due to the lower symmetry of the RE environment. We then demonstrate that these
perturbations can be described extremely efficiently using a screened point charge model. We provide
analytical expressions for the anisotropy energy that can be straightforwardly implemented in atomistic
spin dynamics simulations, meaning that such simulations can be carried out for an arbitrary arrangement
of point defects. The significant crystal field perturbations calculated here demonstrate that a sample that is
single phase from a structural point of view can nonetheless have a dramatically varying anisotropy profile
at the atomistic level if there is compositional disorder, which may influence localized magnetic objects like
domain walls or skyrmions.
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The unique magnetic properties of lanthanide elements
originate from their partially filled 4f shells [1]. Their
aspherical charge distribution can yield a highly anisotropic
dependence of the total energy on the magnetic moment
direction, i.e., a gigantic magnetocrystalline anisotropy
(MCA), which has been exploited with huge commercial
success in rare-earth transition-metal (RE-TM) permanent
magnets [2]. RE atoms also lie at the center of recent
fundamental research into single molecule magnets [3],
skyrmionics [4,5], and other forms of topological magnet-
ism [6]. A quantitative description of RE MCA is provided
by crystal field (CF) theory [7], where the environment of
each RE atom is described using a set of CF coefficients.
These are inserted via Stevens operators [8] into quantum or
classical Hamiltonians acting on the 4f electrons [9], from
which one can extract equilibrium properties through
statistical mechanics [10], or carry out time-evolving sim-
ulations within the framework of atomistic spin dynamics
(ASD) [11]. Further coarse-graining the atomistic results
yields expressions for theMCA energy for use in continuum
micromagnetics [12].
A key target in permanent magnet development is a high

maximum energy product ðBHÞmax, which in turn requires

a high coercivity (resistance to demagnetization by external
fields). Although a large MCA is a prerequisite for a large,
shape-independent coercivity [13], RE magnets typically
only achieve 5%–35% of their theoretical limit [14].
According to an influential analysis by Kronmüller [15],
this performance gap is due to inhomogeneities in the
sample (e.g., misaligned or nonmagnetic grains) creating
magnetically soft regions susceptible to the nucleation of
domains with reversed magnetization. These grow through
domain wall motion and eventually lead to destruction of
the original magnetic order.
Kronmüller’s analysis is a top-down approach, which

posits that an inhomogeneity induces a variation in the
anisotropy according to an assumed analytical profile.
However, computational magnetics is now focused on
bottom-up simulations, whereby magnetization reversal
and domain wall motion are treated as phenomena emerging
from atomistic properties [16]. ASD simulations of homo-
geneous materials are able to reproduce intrinsic quantities
in impressive agreement with experiment [17,18]. However,
to better understand the performance gap, it is essential to
develop a method of incorporating inhomogeneities into
these simulations [19].
As an example, we consider how an ASD simulation

based on a classical spin Hamiltonian should be modified to
include a point defect, the smallest possible inhomogeneity.
In ASD, each magnetic atom contributes to the total
energy based on the orientation of its magnetic moment
ê ¼ ðsinΘ cosϕ; sinΘ sinϕ; cosΘÞ [11]. If a point defect
is placed at a position RJ with respect to an RE atom, we
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derive the following additional contribution to the energy
from the perturbed crystal field:

ΔECFðê;RJÞ ¼
X
lm

Ald0ml ðΘÞeimϕΔBlmðRJÞ: ð1Þ

Both d0ml ðΘÞ and Al are known quantities: d0ml ðΘÞ
is a function related to the associated Legendre polynomials
[20,21], and Al is an RE-dependent prefactor formed
from Stevens coefficients and the total angular momentum
J [8,22]. l and m are the usual angular quantum numbers.
Therefore, the only unknowns in Eq. (1) are the ΔBlm
quantities, describing the defect-induced change in each
CF coefficient. It is the calculation of these quantities,
which are also required in a quantum treatment of the RE
magnetism, which is the subject of this Letter. Specifically,
we initially obtain ΔBlm using first-principles density
functional theory (DFT), and then use the calculations to
parametrize a highly efficient model suitable for deploy-
ment in large-scale ASD simulations.
Point defects, and their effects on the MCA, are

particularly important in the “1:12” class of RE-TM
alloys [23]. These compounds are under intense inves-
tigation as ‘RE-lean”magnets, with their RE:TM atom ratio
of 1∶12 being more economical than 1∶7 or 1∶8.5 as
required by Nd2Fe14B or Sm2Co17. They are, however,
fundamentally different to these established magnets
because they have compositional disorder; the host com-
pound REFe12 is not stable in bulk, so it is necessary
to introduce a transition metal M, like Ti, to form
REFe12−xMx, where x ∼ 1 [24]. Although the M atoms
prefer to sit at particular sites in the unit cell, the
substitution is probabilistic, so they can be viewed as
substitutional point defects embedded in an REFe12 host.
Despite promising intrinsic properties, sufficiently high
coercivities have not yet been achieved, leading naturally to
the question of how this intrinsic disorder affects 1∶12
performance.
We have therefore focused on SmFe12−xTix, an exemplar

1∶12 alloy for which high-quality single crystal data
exists [25]. This and closely related materials have been
subject to numerous first-principles studies, examining
different TM substitutions [26–36], the effects of N
doping [37,38], or RE replacement [39]. Recent studies
have also carefully calculated particular materials proper-
ties, comparing directly to experiment [10,40,41]. Our
study emphasizes the local influence of the substitutional
atoms and resulting implications across all RE magnets.
We now describe our approach. In CF theory, the

potential VðrÞ experienced by the RE-4f electrons is
expanded in terms of atom-centered functions, which here
are the complex spherical harmonics Ylm, i.e.,
VðrÞ ¼ P

lm VlmðrÞYlmðr̂Þ. The radial functions VlmðrÞ
are then combined with the 4f electron charge density
n4fðrÞ and integrated to construct the CF coefficients

Blm [42]. The anisotropy energy of the 4f electrons is
affected only by CF coefficients with l equal to 2, 4, or 6.
Furthermore, CF coefficients will be nonzero only if
they are compatible with the symmetry of the RE site.
SmFe12−xTix crystallizes in the ThMn12-type structure
shown in the inset of Fig. 1. The conventional unit cell
is tetragonal and contains two formula units, with Sm
atoms at the corner and center positions (Wyckoff label 2a)
and transition metals occupying three distinct sublattices:
8i, 8j, and 8f. In the pristine SmFe12 host, these sublattices
are all occupied by Fe atoms. This results in the 2a sites
having D4h symmetry, whereby the RE-4f crystal field is
specified completely by the ðl; mÞ coefficients (2, 0), (4, 0),
ð4;�4Þ, (6, 0), and ð6;�4Þ [9,43]. We have calculated
these within DFT using the Y-analog model [42], which we
have previously developed and applied to RE-Co, Nd-Fe-B,
and REFe2-type magnets [44–46]. Computational details
are provided in the Appendix.
Now we substitute one Fe atom with Ti at an 8i site,

yielding SmFe11.5Ti0.5. As shown in the inset of Fig. 1, this
substitution breaks the equivalence of the 2a sites, with the
Sm atoms at the cell corners lying further away from the Ti
compared to the Sm atom located at the center position.
Both 2a sites have their symmetry lowered to C2v. Figure 1
shows the effect on the crystal field at the two different
sites, plotting the change in each coefficient ΔBlm. We see
that the Ti substitution changes the values of existing
nonzero CF coefficients like B20, but also generates new
coefficients like B22 due to the reduced symmetry. The
perturbations show two features: first, that the largest
changes occur at the 2a site closest to the substituted Ti,
and second, that the largest changes are in the l ¼ 2
coefficients. The same behavior occurs when Ti is sub-
stituted at an 8j or 8f site [21].
The strong l and interatomic distance dependence of the

CF perturbation brings to mind the Laplace expansion of
the Coulomb potential and suggests that the Ti substitution

FIG. 1. Calculated perturbations to the CF coefficients when a
single Ti atom (blue) is introduced at an 8i site. The Sm atoms at
the 2a sites are shown in purple and pink. See Fig. 2 for
identification of the individual 8i, 8j, 8f sites. All CF coefficients
are real, and ΔBlm ¼ ΔBl−m.
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might be efficiently modeled as a screened point charge [7].
We use this idea to derive an expression (in Hartree atomic
units) for the change in CF coefficient when a dopant is
introduced at site J:

ΔBlm ¼ −hrli
�

4π

2lþ 1

�1
2 ΔZJ

Rlþ1
J

Y�
lmðR̂JÞ: ð2Þ

We have previously calculated hrli ¼ R
rlþ2n4fðrÞdr with

self-interaction-corrected DFT [42,47] and found it to be
largely independent of the RE environment; for Sm, hrli is
1.02, 2.46, and 10.25 for l ¼ 2, 4, and 6 [21]. ΔZJ is the
point charge associated with the dopant, which depends on
whether site J is 8i, 8j, or 8f. To account for the short-
ranged behavior shown in Fig. 1, we impose a cutoff radius
Rc such that only defects with RJ < Rc contribute to ΔBlm.
Therefore, our model has four parameters, which we
determine from a least-squares fit to the DFT calculations
of ΔBlm, (Fig. 2): we find ΔZ8i ¼ 0.238, ΔZ8j ¼ 0.251,
ΔZ8f ¼ 0.046, and Rc ¼ 4 Å. The model captures the
most significant changes in CF coefficients, with errors
in smaller ΔBlm values of order 50 K.

We note that the use of analytical models is hardly a new
idea in CF theory [7], with Li and Cadogan’s bonding
charge model applied specifically to 1∶12 compounds [48].
However, our current approach carries two particular
advantages. First, we are parametrizing the model using
direct DFT calculations of CF coefficients, rather than
having to extract them indirectly from experimental mea-
surements [25,49]. Second, we are only using the analytical
model to describe the perturbation to the crystal field. This
both reduces the number of parameters in the model and
also increases the number of data points that can be used in
the fitting process, since the lower symmetry produces
more nonzero CF coefficients.
Having established the model, we now consider its

predictions. Since Eq. (2) is an electrostatic model, the
principle of superposition applies, such that introducing
multiple substitutions has an additive effect on the CF
coefficients. At SmFe11Ti stoichiometry, two of the 24 TM
sites in the conventional cell are occupied by Ti atoms, on
average. It is a simple matter to generate the 276 possible
configurations (many of which are not unique), and use
Eq. (2) to evaluate the perturbation to the CF. The predicted
effect on the (2,0) coefficient is shown in Fig. 3 as blue
crosses. Here, the CF is quantified using the conventional
A20hr2i coefficient, which is equal to half of B20 [7,42]. The
largest changes are predicted to occur when both Ti atoms
are located either on 8i or on 8j sites, close (within Rc) to
the RE atom. Furthermore, due to opposing signs of ΔB20

for 8i or 8j, there is a cancellation effect for mixed 8i-8j
substitution.
To verify these predictions, we took a subset of the

276 configurations and calculated the CF coefficients
using DFT. The resulting ΔA20hr2i values are shown as
stars in Fig. 3, and emphasize the excellent qualitative and
quantitative agreement between the two methods. Similarly
good agreement is found for other coefficients, e.g.
ΔA22hr2i [21]. We stress the independence of the training
set in Fig. 2 and the test set in Fig. 3, i.e., the data in Fig. 3
were not used to refine the parameters.
Figure 3 shows how the A20hr2iCF coefficient is affected

by several hundreds of K when one or two Ti atoms are

FIG. 2. Perturbation to CF coefficients ΔBlm calculated within
DFT or using Eq. (2), when one Ti atom is placed in the
conventional cell at an 8i, 8j or 8f site. All ðl; mÞ coefficients are
shown for both 2a sites.þ symbols are imaginary parts. The inset
shows the different sites in pristine SmFe12.

FIG. 3. Perturbation to the A20hr2iCF coefficient when two Ti defects are introduced into the conventional unit cell at the indicated
crystal sites, demonstrating excellent agreement between point charge (blue cross) or DFT (stars) calculations.
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substituted close to the RE site. The three DFT-calculated
values of ΔA20hr2i shown in Fig. 3 for two 8i substitutions
areþ155,þ83, and −23 K, corresponding to two, one, and
zero Ti atoms lying close to the RE site, respectively. To
place these numbers into context, calculations of A20hr2i
for the REFe12 host find values between −50 and −200 K
[38,50,51], with our own calculations giving −88 K or
−136 K depending on whether experimental or DFT-
optimized internal coordinates are used. Meanwhile, the
latest experimental analysis of magnetization curves
deduced a value of A20hr2i of −110 K for SmFe11Ti [25].
This agrees very well with the value obtained by combining
A20hr2i for SmFe12 from a detailed dynamical mean field
theory treatment of on-site correlation (−198 K) [38] with
our calculated off-site electrostatic effect of Ti doping,
averaged over configurations (þ72 K).
According to our calculations, if two Ti atoms occupy 8i

sites close to Sm, the perturbation to the CF will be so large
that it will almost destroy the single-ion anisotropy.
Therefore, it is crucial to know how the dopants are
distributed. We calculated the energies of all possible
arrangements of Ti atoms within the conventional cell of
the analogous material YFe11Ti, and like previous calcu-
lations and experiments on 1∶12 systems [27,29,52,53],
found that the Ti atoms overwhelmingly prefer 8i sites.
Importantly, we also found the most stable configuration
has one Ti atom per (001) plane, which corresponds to both
Sm sites having the same þ83 K shift in A20hr2i shown in
Fig. 3. However, there are configurations that are higher in
energy by only 6 meV=FU where alternate (001) planes
contain two or zero Ti atoms respectively [21]. Such a
structure would have an intrinsically textured anisotropy,
where Sm sites in adjacent (001) planes have alternating
A20hr2i shifts of þ155 and −23 K. Given the closeness in
energy of these configurations, it is highly likely that
synthesized SmFe11Ti samples will have Sm atoms with
a distribution of anisotropies, with A20hr2i values ranging
from ∼ − 200 to −50 K. Furthermore, any Ti-rich meso-
scopic regions would have a significantly weakened (pos-
sibly even planar) anisotropy.
Although we have focused on the (2, 0) coefficient,

Fig. 1 clearly shows how the ð2;�2Þ coefficient is also
substantial. It is important to realize that, assuming that the
Ti dopants are uniformly distributed across a set of Wyckoff
sites, the value of ΔBlm averaged over all Sm sites will be
zero unlessm ¼ 0 or�4. Physically, this averaging process
is equivalent to treating all of the Sm atoms as a single
entity—a magnetic sublattice—with a single, common
magnetization direction, and is valid when comparing to
measurements of macroscopic phenomena of bulk crystals,
e.g., measurements of magnetization like in Ref. [25],
which see an averaged value of ∼ − 100 K for A20hr2i.
However, any noncollinear and/or localized magnetic
texture, such as a domain wall or a skyrmion [4,5], will
probe the anisotropy of only a subset of the RE atoms,

leading to an incomplete averaging. Therefore, in simulat-
ing these phenomena, it is essential to consider these
additional CF coefficients, even if they average to zero
in the macroscopic limit. We believe that there may be an
interesting link between our work and experiments carried
out in the 1970s investigating an “intrinsic coercive force”
in ternary RETM5 alloys like SmCo5−xNix [54,55].
Intriguingly, it was found that even in samples containing
only a single phase, there existed a coercive field whose
magnitude depended on the concentration of the substituted
element. It was pointed out that the Bloch walls separating
domains should only be a few atomic layers thick [56,57],
and it was argued that the dopants affected these through
modification of the exchange interaction. However, the CF
perturbation due to dopants was not considered, and it is
important to revisit this phenomenon using our new
approach.
We have focused our discussion on magnetocrystalline

anisotropy. However, it has been established for many years
that Ti and other dopants modify the Curie temperature of
bcc Fe [58], and therefore it is important also to quantify the
effect of Ti substitutions on the RE-TM exchange. Using
the DFT formulation of the disordered local moment
picture (DFT-DLM [59–63]), we calculated that the
exchange fields at either of the two Sm sites in
SmFe11.5Ti0.5 are within 3% or 7% of those in SmFe12,
at 300 K. We found a similarly small variation for
SmFe11Ti, even with the Ti defects clustered around only
one Sm site [21]. Based on these calculations, we conclude
that the Ti dopants do not appreciably modify the RE-TM
coupling to Sm.
We have applied the point charge model to another

atomistic defect: the RECo5 “dumbbell” whereby an RE
atom is substituted with a Co2 pair [64]. Carrying out the
same procedure as for SmFe12−xTix, we find a negative
value of ΔZCo2 , −0.465, and that the only RE sites affected
by the presence of the Co2 pair are the nearest neighbors
lying directly above or below it. The negative value of
ΔZCo2 has a detrimental effect on the anisotropy; pristine
SmCo5 has very strong uniaxial anisotropy, with the prolate
electron cloud pointing along the c axis [44]. Introducing
the negative point charge along the same direction reduces
the magnitude of A20hr2i. This microscopic behavior is
reflected in the bulk properties of Sm2Co17, which can be
viewed as an ordered array of Co2 defects implanted in
SmCo5 [64], and has a substantially reduced A20hr2i (50%)
compared to SmCo5 [42].
As a summary, we set out our proposed scheme to carry

out ASD simulations of localized magnetic phenomena in
the presence of point defects. First, the Hamiltonian of the
host material is constructed, taking advantage of the
widening literature of CF coefficients and exchange con-
stants for pristine systems. Next, distributions of point
defects are generated, which may be totally disordered,
partially or fully ordered; the defect distributions might be
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built based on atom probe tomography data, particularly
when such measurements correlate with substantial varia-
tions in coercivity [65]. Equation (2) is then used to
calculate the CF perturbations at each RE atom, which
are then fed into Eq. (1) to produce the Hamiltonian;
an example of this step is provided as Supplemental
Material [21]. Our DLM calculations indicate it is not
necessary to modify the exchange part of the Hamiltonian,
and we also suggest that only the l ¼ 2 terms need to be
included in the CF perturbation. Ideally, the ΔZ parameters
should be obtained by fitting to DFT calculations, but we
stress their physical meaning as being the effective charge
of the defect. Therefore, an order of magnitude estimate
for ΔZ could be obtained from a relatively simple
DFT calculation on the defective system, obtaining the
charge, e.g., through a Bader analysis [66]. From here, all
of the sophisticated techniques developed for perfect
systems [17,18] may be applied. The framework presented
here thus opens a new avenue in computational magnetics
research, enabling the atomistic study of domain wall
propagation and other localized magnetic phenomena in
systems with inhomogeneous anisotropy.
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discussions. This work was supported in part by a Royal
Society Research Grant No. RGS\R1\201151 and by the
U.S. Department of Energy, Office of Basic Energy
Sciences under Award No. DE SC0022168. Y. H. acknow-
ledges funding from the Ironmongers’ Foundation. We
acknowledge the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work [67].
Figures were rendered using VMD [68].

Appendix: Computational details.—CF coefficients
were calculated within DFT using the Y-analog
formalism as described in Ref. [42], using the GPAW

code [69]. A plane-wave basis with cutoff energy of
800 eV and 6 × 6 × 6 reciprocal space sampling were
used, and exchange and correlation effects were treated
within the local-spin-density approximation [70]. The
structural parameters of the SmFe12 cell (a, c ¼ 8.497,
4.687 Å, x8i ¼ 0.359, x8j ¼ 0.270) were taken from
previous DFT (generalized-gradient approximation)
calculations [50] and were used throughout the study,
except for the total energy comparison and indicated CF
calculations, where the internal coordinates were allowed
to relax. The DFT CF coefficients were averaged over
spin directions before fitting to the point charge model.
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