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Abstract

Recent studies have established that the circadian clock influences onset, progression and

therapeutic outcomes in a number of diseases including cancer and heart diseases. There-

fore, there is a need for tools to measure the functional state of the molecular circadian clock

and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic

oscillator and there are few tools for analysing it as a noisy multigene dynamical system. In

this paper we consider the methodology behind TimeTeller, a machine learning tool that

analyses the clock as a noisy multigene dynamical system and aims to estimate circadian

clock function from a single transcriptome by modelling the multi-dimensional state of the

clock. We demonstrate its potential for clock systems assessment by applying it to mouse,

baboon and human microarray and RNA-seq data and show how to visualise and quantify

the global structure of the clock, quantitatively stratify individual transcriptomic samples by

clock dysfunction and globally compare clocks across individuals, conditions and tissues

thus highlighting its potential relevance for advancing circadian medicine.

Author summary

The cellular circadian clock consists of an interacting set of genes that through their inter-

actions oscillate throughout the day. This oscillator also responds to external cues so that

the genes oscillate in phase with external environmental rhythms. A cell therefore uses its

circadian clock to provide its genes with information about the external time. In this way

it can coordinate many of the processes taking place in the cell and allocate some of these
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processes to specific times of the day. It is becoming increasingly clear that the quality of

this timing information influences onset progression and outcome in a number of chronic

diseases such as cancer. Our aim is therefore to develop a machine-learning tool that can

assess how well the clock is working. We want to use this with patients and therefore, for

clinical utility, it needs to work with only a single clinical sample and to produce repro-

ducible results that can be clearly interpreted and easily compared.

Introduction

The mammalian cell-endogenous circadian clock temporally regulates tissue-specific gene

expression driving rhythmic daily variation in metabolic, endocrine, and behavioural func-

tions. Indeed, up to half of all mammalian genes are expressed with a circadian rhythm in at

least one tissue [1, 2] and approximately 50% of all current drugs target the product of a circa-

dian gene [1]. Moreover, recent studies demonstrated that the circadian clock influences thera-

peutic outcomes in a number of diseases including heart disease and cancer [3–9], and that

disruption of the normal circadian rhythm and sleep (e.g., through shift work) is associated

with a higher risk of obesity, hypertension, diabetes, chronic heart disease, stroke and cancer

[10–13]. There is therefore a rapidly growing interest in developing circadian medicine tools

that aid the incorporation of time in order to provide safer and more efficacious therapeutics.

As a result a number of phase-estimation algorithms have been designed to estimate the

molecular clock phase of the circadian clock, i.e., its “internal time”, from the measured levels

of rhythmic gene expression [14–22]. If the sample collection time (SCT) is known, then diver-

gence between the estimated timing T and the SCT indicate the possible presence of clock dys-

function and, indeed, this internal phase T has been proposed as a clinically actionable

biomarker [23]. There are problems with such an approach, the most obvious of which is that

this internal time may well depend substantially upon genotype or environment (as we show

below) and the consequent deviations are unlikely to be related to dysfunction. A different

attempt at a systemic approach to define molecular clock disruption has used pair-wise corre-

lations between clock genes across large transcriptomic datasets [24]. At the population level,

this showed greater dysfunction in solid tumours compared to healthy tissue. However, this

approach compared datasets of cohorts with each other and, as the authors pointed out, does

not lend itself to assessing clock function in single samples. A similar approach using clock

correlation matrices together with CYCLOPS ordering [18] and a measure called nCV [25]

that correlates positively with clock amplitude was used to address clock dysfunction in pan-

creatic cancer cells [26].

The core mammalian circadian clock involves more than a dozen genes [27] and therefore

the regulatory system is a high dimensional stochastic dynamical system. Since emergent sys-

tems properties such as oscillation, synchronisation, entrainment, phase-locking, robustness,

flexibility and temperature compensation are critical for the functioning of the clock, tools that

enable the analysis of the circadian clock’s systems properties are very much needed. More-

over, a substantial amount of data is becoming available including whole transcriptome time-

series that should facilitate such systems analysis using mathematical modelling, statistics and

machine learning. However, probing the global behaviour of such a system is a highly non-

trivial task and almost all analysis of clock data focuses on individual components and connec-

tions. This is not the case for the phase estimation algorithms mentioned above but they adopt

a model-blind machine-learning approach. While such approaches can be effective it is diffi-

cult to see how to quantify clock functionality independently in individual samples without
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taking advantage of the clock’s structure as a stochastic dynamical system because it is this that

determines the well-defined probabilistic structure describing the relationship between time

and multidimensional gene state that, via statistical theory, can be linked to functionality.

To effectively quantify functionality in individual transcriptomic samples such as those

from patients requires reproducibility, comparability and interpretability. Therefore, the

results on a given test sample should be independent of those on other test samples and should

not depend upon the particular test dataset being considered. Even for timing estimation

alone this does not seem possible with the phase-estimation algorithms mentioned above apart

from TimeSignature [19] which requires two samples. However, the key point differentiating

TimeTeller from TimeSignature and the other algorithms is that, apart from identifying timing

deviations, these do not provide any other assessments of clock functionality or other quality

controls on the individual timing assessments. This is essentially also true for ZeitZeiger [15]

but with the caveat that it, like TimeTeller, uses a likelihood curve that it might be considered

could be used in a similar way to TimeTeller’s to assess functionality. However, although dif-

ferences in ZeitZeiger’s likelihood between WT/control and perturbed clocks in controlled

experimental situations has been discussed [15], it has not been proposed or statistically ana-

lysed as a measure of dysfunction and has not been used as such when ZeitZeiger has been

employed to analyse timing variation in populations [23, 28, 29]. Moreover, analysis by Zeit-

Zeiger of new data as described in [15] involves renormalizing and batch-correcting this data

with the training data and then retraining, resulting in a different predictive model every time

and therefore potentially sacrificing the reproducibility, comparability and interpretability dis-

cussed above.

Our aim is to develop a tool that (i) provides a multidimensional picture of the clock’s

dynamics and structure that integrates the behaviour of multiple genes, (ii) provides a quanti-

tative analysis at the systems level of clock data, (iii) enables a quantitative comparison of dif-

ferent clocks and (iv) enables a quantitative assessment of clock dysfunction both in the core

clock and in downstream target genes. We are aiming for a tool that can determine the pres-

ence of a dysfunction causing perturbation from just one sample and that can stratify individu-

als based on clock functionality, and, thus, might be useful to develop as a clinically actionable

biomarker. For example, we show that such a stratification can enable the identification of dif-

ferentially expressed genes between samples that have better and worse clocks. Finally, we con-

sider new methods for comparing clocks across different individuals, tissues and conditions,

identifying a “molecular chronotype” associated with these, and uncovering the effect of clock

perturbations on downstream genes.

It is important to understand the limits on what we regard as dysfunction in our discussion.

TimeTeller’s view of functionality is based on statistical analysis of gene expression and not on

timing of physiological processes. The probability structure of the dynamical system behind a

circadian clock is primarily described by the joint probability distribution P(t, g) of the external

time t and the expression state g of the core clock genes or some representative function or

subset of them. This distribution determines the conditional distributions P(t|g) and P(g|t).
These distributions tell us respectively the distribution of g when the time is t and the probabil-

ity distribution of times t that are found when the gene expression state of the clock is g. The

distribution P(t|g) is a critical quantity because the cell has to use some function of the state of

the gene products as a surrogate for t and the variance of P(t|g) tells us how well cells can tell

the time by just seeing the clock gene state. If g comes from a test sample taken from a well

aligned clock with internal time T (possibly distant from the SCT) then we would expect that

P(g|T) would be relatively large and, as a function of time t, P(t|g) would be sharply peaked at

t = T. From the point of view of TimeTeller if either of these breaks down then the sample’s

clock is regarded as dysfunctional to some extent. We quantify this breakdown by a measure
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ML of the probability that g is drawn from the training clock and another that combines a mea-

sure of the variance of the clock’s estimate of the time and a quantity related to the existence of

multiple peaks in P(t|g).
It is also important to stress here that with the currently available data we will have to make

and justify some assumptions on the cross-validity of data from different tissues in order to

combine the data. For example, in order to estimate the probability model for a particular tis-

sue we would ideally like to use training data that is only from that tissue. In particular, this is

not possible for the mouse and baboon datasets as adequate amounts are not currently avail-

able and we therefore have to pool data from several tissues. To do this we choose an appropri-

ate rhythmic gene panel based on good cross-tissue synchronicity and, after validation of this,

use normalisation to overcome tissue differences in the way explained below and in Fig A in

S1 Appendix. For our human datasets we pool across individuals rather than tissues. Another

potential limitation comes from the fact that our current RNA-seq training data is only avail-

able at a few training time points around the day. Nevertheless, even with these handicaps we

obtain very informative results and provide plenty of evidence that the approaches adopted

work well. As more data becomes available this situation can only improve.

Results

Training with genetically homogeneous and heterogeneous data

The broad range of transcriptomes from microarray and RNA-seq data that we use is detailed

in Note A in S1 Appendix as are the methods used to prepare the data for use with TimeTeller.

The data that is used to prepare TimeTeller’s probability model is referred to as the training
data. The data that is then analysed using this probability model is called test data. In this

paper we use four different training datasets and more details about these are in Note A in S1

Appendix.

Choice of a clock representative gene panel. For a given training dataset we firstly choose

the panel of G rhythmic genes that TimeTeller will use. This is called the rhythmic expression
profile (REP). For a given transcriptomics sample the expression levels gk, k = 1, . . ., G, of these

genes are collected into a vector g = (g1, . . ., gG) which we will call the rhythmic expression vec-
tor (REV). The user is free to choose the genes in the REP and may have a particular reason to

include or leave out a particular gene. However, in this study we first carry out an analysis of

both the rhythmicity and synchronicity across tissues or individuals in our datasets to guide

our choice. This analysis, which is detailed in Fig B in S1 Appendix, is important to choose a

panel of genes with good circadian rhythmicity combined with minimal variation across the

relevant tissues or individuals and to try to ensure it provides a faithful representation (Note B

in S1 Appendix) of the clock state even though it might not contain all core clock genes.

Timecourse and intergene normalisation. When combining training data from multiple

tissues, for each gene in the REP we study the variation across the tissues in that gene’s expres-

sion time-series. This analysis (Fig B in S1 Appendix) shows that for RNA-seq data this varia-

tion is significantly greater than that found, for example, in the Affymetrix MoGene 1.0 ST

and GeneChip Human Genome U133 Plus 2.0 microarray platforms that we have analysed.

Therefore, for the RNA-seq training data, it is usually necessary if we are combining data from

multiple tissues to carry out what we call timecourse normalisation.

Each of our training data sets is organised into time series for each gene in the REP with

times tk, k = 1, . . ., K, that are usually independent of the particular gene. We can normalise

the data by replacing each of these time series by a normalised version which has mean expres-

sion zero and standard deviation 1. We call this approach timecourse normalisation. Following

such normalisation of a training dataset, if we wish to test an independent test sample REV
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from a given tissue and gene we will have to normalise the REV using the offsets and scalings

that were used in the timecourse normalisation of the training data for this tissue and gene.

Such normalisation of test data is called timecourse-matched.

There is, however, a cost in using timecourse-matched normalisation because the test data

from a particular tissue has to be normalised using the adjustments calculated for that tissue in

the training data. This means that one can only use test data for tissues where we have a train-

ing time-series. Moreover, when using timecourse-matched normalisation on test data it is

crucial that the training data are produced by the same transcriptomics platform.

Intergene normalisation avoids this. When timecourse normalisation is unnecessary or

impossible because we do not have a training data set for the test data tissue, the data is nor-

malised using intergene normalisation where, if g = (gi) is a REV, the normalised levels are

given by ĝ i ¼ ðgi � mÞ=s where μ and σ2 are the mean and variance of the entries gi. Essen-

tially, this maps the REV onto its shape as a vector. It is also possible to usefully combine time-

course and intergene normalisation (see Table 1). Though the use of timecourse normalisation

typically improves timing performance, we will show that intergene normalisation can also be

remarkably effective (e.g., see Table 1).

Table 1. Mean and median absolute timing errors for the training datasets. Column 1 shows the normalisation used. Columns 2 and 3 show respectively the mean and

median absolute timing error. Columns 5 and 6 show the mean and median absolute timing error after a correction is made using the timing displacement for the tissues

or individuals as relevant. A-E. The apparent timing errors for the training datasets when a leave-one-out cross-validation approach was used. For the Zhang et al. microar-

ray data [1] we compare using all the data (2h resolution) to only a subset giving 6h resolution. F. Timing results for Zhang et al. RNA-seq test data [1] when Zhang et al.
microarray [1] is used as training data. G. As F. but with datasets swapped.

A. Zhang et al. 2014 Microarray, mouse [1]

normalisation mean median corr. mean corr. median

intergene 1.39h 0.93h 1.35h 0.94h

timecourse (2h) 0.89h 0.70h 0.77h 0.52h

timecourse (6h) 0.78h 0.63h 0.61h 0.53h

both 0.90h 0.60h 0.84h 0.59h

B. Zhang et al. 2014 RNA-seq mouse [1]

intergene 1.60h 0.80h 1.51h 0.82h

timecourse 0.68h 0.46h 0.58h 0.59h

both 0.64h 0.27h 0.66h 0.56h

C. Bjarnason et al. human ([30] and Note A in S1 Appendix)

intergene 1.52h 0.73h 0.95h 0.75h

timecourse 1.14h 0.86h 0.70h 0.62h

both 1.06h 0.48h 0.67h 0.48h

D. Mure et al. [2] trained on central 18 tissues, baboon

intergene 2.43h 1.87h 2.27h 1.51h

timecourse 1.49h 1.11h 1.21h 0.90h

both 1.49h 0.90h 1.23h 0.86h

E. Mure et al. trained on all 33 tissues, baboon [2]

intergene 2.53h 1.84h 2.36h 1.65h

timecourse 1.53h 1.13h 1.24h 0.88h

both 1.53h 0.94h 1.27h 0.92h

F. Test: Zhang et al. RNA-seq [1]. Training: Zhang et al. microarray [1]

timecourse 0.83h 0.51h – –

G. Test: Zhang et al. microarray [1]. Training: Zhang et al. RNA-seq [1]

timecourse 0.86h 0.67h – –

https://doi.org/10.1371/journal.pcbi.1011779.t001
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We can also apply such timecourse normalisation to test data when this contains a time

series; as several experimental model datasets do. However, any difference in amplitude

between the training and test dataseries is then removed. On the other hand analysis using

timecourse-matched normalisation for the test data maintains such a change in amplitude.

Similar considerations to the above apply when combining data across individuals instead

of tissues as we do with the Bjarnason et al. human data ([30] and Note A in S1 Appendix).

Timecourse normalisation can also be very useful when analysing microarray data and we

have found it necessary when the training and test data come from different microarray plat-

forms (e.g., as in Figs C and D in S1 Appendix). Table A in S1 Appendix. summarises the nor-

malisations that were used for all the analyses shown in the Figs 1–5.

Estimating the clock statistical structure of the training data. We mentioned above that

the joint distribution P(t, g) of time t and clock gene state g or some representative of it charac-

terises the statistical structure of a clock. This distribution is always associated with the training

data and test data is analysed using it. In fact, rather than P(t, g) we will mainly be interested in

the two conditional distributions P(g|t) and P(t|g) associated with it. TimeTeller aims to use

the training data to estimate P(g|t) for all times t across the day as explained in Methods, and

Fig E and Note C in S1 Appendix. Moreover, P(g|t) and P(t|g) are related by Bayes’ law (Note

D in S1 Appendix) and in the case of clocks this boils down to the fact (since times t are equally

probable) that, as functions of time t, P(t|g) is approximately proportional to P(g|t). Therefore,

for any clock gene state g from training or test data, we can use knowledge of P(g|t) to deter-

mine the temporal shape of P(t|g). Furthermore, as we explain in Note D in S1 Appendix, the

variance of P(t|g) depends crucially on the covariance structure of the clock genes, i.e. the

covariance matrix of P(g|t). Our tool is constructed to use this understanding. Finally, we note

that the stochastic dynamics of the system around its periodic attractor modified by measure-

ment noise sets the nontrivial structure of this covariance matrix. From theoretical consider-

ations [31], if the measurement noise is not too large, we can expect that the covariance matrix

has rapidly decaying eigenvalues, an observation that will justify our dimension reduction

from G to less dimensions that is discussed below (also see Fig F in S1 Appendix).

Fig 1. The color of data points etc (when not black) corresponds to the time when the data was sampled. This coloring is used in a consistent way

across all figures. A-C. Using local PCA projection to visualise data. The identity of each data point can be read from the legends to the right of each

example. Only one projection for each example is shown but the differently timed projections have a similar quality. Examples showing all of the

projections are in Figs E & G in S1 Appendix. A. The CT18 local PCs of the Zhang et al. microarray data [1] but using timecourse normalisation. B. A

detail from a projection of the the Fang et al. test data [32] together with the Zhang et al. training data [1] as in A showing coherence of the Fang et al.
WT data [32] and the gap between this and the KO data. Intergene normalisation is used. C. The Kinouchi et al. RNA-seq skeletal muscle test data for

FED and FAST mice [34] plotted against the Zhang et al. RNA-seq training data [1]. Timecourse and timecourse matched normalisation is used. The

ellipsoids shown are of the form (x − μ)TS−1(x − μ) = ε where μ is the mean of the estimated P(g|t) and S is its estimated covariance with ε chosen so

that the ellipsoid should contain 97.3% of the training data (i.e. 3 standard deviations). This enables visualisation of the variation and covariation in the

data.

https://doi.org/10.1371/journal.pcbi.1011779.g001

PLOS COMPUTATIONAL BIOLOGY TimeTeller

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011779 February 29, 2024 6 / 29

https://doi.org/10.1371/journal.pcbi.1011779.g001
https://doi.org/10.1371/journal.pcbi.1011779


Fig 2. A. The centred LRFs for the Zhang et al. mouse microarray data [1] using a leave-one-out analysis. They are centred in that the maximum of the

curve is moved to noon. This makes the shapes of the curves clearer and more comparable. The black curve is the curve C(t|T) for T = 12 (Methods)

that is used in the calculation of Θ. B,C. A Leave-one-out analysis of the Bjarnason et al. oral mucosa data [30]. B. Examples of the likelihood curves.

C. Boxplots showing the apparent timing errors found for each individual ordered by their means. This shows the substantial timing displacements of

some individuals. D. Showing how Θ is calculated using the LRF and the curve C(t|T). Θ is the proportion of time the LRF spends above C(t|T) i.e. the

proportion of the time in the horizontal red curves. This is contributed to by the LRF around the highest peak, and by any secondary peaks or flat

regions that go above C(t|T). E-H. Analysis of the Fang et al. Rev-erb-α KO data [32]. Uses lthresh = −5. E. Plots of the Θ value against the estimated

time T. The vertical lines show the true time with colours indicating the sampling time. WT timings are close to the true sample times and the KO times
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Multidimensional visualisation provides important information about

phenotype

When constructing the probability model, the TimeTeller algorithm projects the G-dimension

REVs into fewer dimensions using a local version of principal component analysis (Methods,

and Note E and Figs E and F in S1 Appendix). This gives a different projection for each time in

the dataset and the algorithm extends this to all times around the day. If for the G-dimensional

data the distributions P(g|t) are approximately multivariate normal (MVN) then the corre-

sponding distributions of the projected data optimise the capture of the dominant gene-gene

correlations after projection (see Methods). We find that for our datasets d = 3 is sufficient for

this (e.g., see Fig F in S1 Appendix) and the resulting 3-dimensional model of the clock pro-

vides a very informative visualisation.

Fig 1A shows such a visualisation for the mouse multi-organ microarray training data from

Zhang et al. [1] when timecourse normalisation has been applied. TimeTeller actually pro-

duces such a local projection visualisation for each time in the training dataset as shown in

Figs E and G in S1 Appendix but normally inspection of just one of these is adequate and we

only show one in Fig 1. With each such visualisation we also show the curve given by the

means of the estimated distributions P(g|t) as t varies over the day. Also in such plots we often

provide for a sample of times t an ellipsoid showing the covariance structure of the estimated

distribution P(g|t) (see caption of Fig 1). We color the training data points and mean curve by

time with a color coding as given in the legend of Fig 1 using the sample time for the data

points. The same color coding is used throughout the paper.

Fig 1B plots microarray test data from Fang et al. [32] comparing it with the Zhang et al.
microarray training data [1] in Fig 1A. This test data compares liver samples of Nr1d1 (Rev-erb
α) knock-out (KO) and wild-type (WT) mice entrained to light-dark (LD)12:12 cycles. The

gene Nr1d1 is a core clock gene of the mammalian circadian clock important in one of the

interlocked feedback loops and a key link to metabolism [33]. Knocking it out leaves a func-

tional but perturbed clock when compared to WT mice [32]. Since Nr1d1 is a member of the

default REP it would not be surprising that TimeTeller could distinguish Nr1d1 KO mice from

WT mice, and indeed this is the case. Therefore, for this validation, we exclude Nr1d1 from the

REP genes. The visualisation shows that while the WT data appears to fit well with the training

data, the KO data has a consistent substantial difference. TimeTeller is able to detect this

apparent difference in each of the four KO samples and shows a coherent difference from WT.

This suggests that the Nr1d1 KO mice have a significantly perturbed clock when compared to

WT mice (Fig 1B). However, it is still somewhat functional as it gives approximately correct

timing and the level of sample variation between WT and KO is similar. We investigate this

further below.

The other test data we visualise (Fig 1C) in this figure is from Kinouchi et al. [34]. This con-

tains samples analysed by RNA-seq from mouse skeletal muscle taken around the clock in LD

12:12 [34], and compares mice that had been fed ad libitum (FED) with mice that had been

starved for exactly 24 hrs prior to point of sampling (FAST). On the one hand, while FED

deviate from them. F and G. Boxplots of the maximum likelihood and Θ values showing significant differences between the WT and KO groups with p-

values from the Wilcoxon rank sum test calculated using the Matlab ranksum function. Note that the smallest MLs are around e−4 which is why lthresh

was taken to be -5. Taking lthresh = −4 gives entirely similar results. H. The centred LRFs for the WT and KO samples. I-L Analysis of the Kinouchi

et al. FED/FAST skeletal muscle data [34]. This analysis used a logthresh of −12. The plots J-L are as for F-H but for the Kinouchi et al. data [34]. M-P

Analysis of the Koronowski et al. data [39]. comparing WT, Arntl KO and Liver-RE data using lthresh = −12. M The signed error boxplots show the

timing dysfunction in the KO data as well as good recovery in the reconstituted Liver-RE clock but with a clear phase advance. N,O,P Boxplots of ML

and Θ values, and centred LRFs for the three genotypes.

https://doi.org/10.1371/journal.pcbi.1011779.g002
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Fig 3. A-C. Analysis of the Boyle et al. data [43]. A. Boxplots of the Θ values for the smoker and never smoker individuals showing a statistically

significant difference in the distributions. There is no statistically significant (Wilcoxon test) difference for the maximum likelihoods (Fig L(B) in S1

Appendix). B. The centred likelihood curves for the smokers and never smokers. C. The black, orange and light blue curves are estimates of the

probability prand for random choices of the bad clock group of different sizes as in the legend. The red curve is for pΘ(m). There were 5000 iterations for

each curve shown. which gave a similar result to 10,000. The number of DE genes was decided using the BH adjustment method with p< 0.05 without

any restriction on the minimum log fold change. The inset shows a blow up of these curves form� 10. From the blue curve (pΘ(m) for 30�m� 40)

we see that for this range ofm (unlike 8�m� 20) it is very likely that only a very small number of DEGs are found. For the 66% of cases where a DEG

is found there is a 99% chance that PER3 is among them and a 68% chance of NR1D2 being present. D-I. Analysis of the Feng et al. data [50]. D.

Boxplots of the Θ values for the samples from individuals in the normal, cancer and dysplasia subgroups. These show a statistically significant

(Wilcoxon test) difference in the distributions between the normal and cancer groups and the cancer and combined normal and dysplasia subgroups. E.

Boxplots showing the predicted timing of the samples. F. Boxplots showing the predicted timing when all samples timed as before 7am and with a

second peak are given the timing of the second peak. Of the 108 such samples 93 have moved. This suggests that the mistimed samples are primarily so
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samples align with the RNA-seq training data, the FAST samples are substantially perturbed

(Fig 1E). On the other hand, the FAST samples show consistency in that for a given sample

time they tend to cluster together. A similar visualisation for the liver samples from [34] is

given in Fig H in S1 Appendix. It should be noted that the test samples from Kinouchi et al.
[34] have been collected in LD whereas the training dataset was collected on the first three

days in constant conditions. Interestingly, there is little difference between FED (control) and

training dataset mice, which might be due to the fact that the free-running period of these WT

C57Bl/6 mice is around 23.8 hours.

Other examples demonstrating the utility of such visualisation are discussed below.

Analysis of single test samples

TimeTeller’s estimate of P(t|g) from the training data is used to analyse test data. For a normal-

ised test data REV g our estimate Lg(t) of P(t|g), which we regard as a function of t, is referred

to as the likelihood curve (LC) for the corresponding transcriptomics sample. The quantities

for functionality assessment are associated with this LC. For example, we define the internal
phase T of a test REV g as the time at which the estimated likelihood function Lg(t)� P(t|g) is

maximal i.e., the maximum likelihood estimate. Given T, we define the likelihood ratio func-
tion (LRF) as Rg(t) = Lg(t)/Lg(T), i.e. it is the LC but normalised so that the value at the maxi-

mum is 1. The internal phase can be compared with the SCT but, as noted above, there may be

consistent phenotypic deviations of T from the SCT in genetically heterogeneous populations.

It is important to emphasise that when we analyse test data the results for any test data sam-

ple are independent of the results for any other test data sample. This is because the calculation

because the wrong peak has a higher likelihood. G. Centred LRFs for the three subgroups. H. A study of differential effects between between those n
individuals with the worse clocks according to the Θ stratification and those with better clocks. The black, orange and light blue curves are estimates of

the probability prand as in C above but for the Feng et al. data [50]. The red curve is for pΘ(m). I. Scatter plot of the projection ~g of each REV in the Feng

et al. data [50] with 12< T< 16 (after using the second peaks if the first gives T< 7) against timing T. The red curve is a kernel smoothed estimate of

the mean of PðTj~gÞ. J. Distribution of the deviations in H. For each data point this is the horizontal difference between the data point and the red curve.

A simple analysis shows that this is largely independent of ~g and hence its standard deviation can be used as an upper bound for that of P(T|g).

https://doi.org/10.1371/journal.pcbi.1011779.g003

Fig 4. Examples of PCP plots for the Bjarnason et al. data [30]. These (full set in Fig M in S1 Appendix) show the strong linear relationship between

the REP gene phases and the timing deviations in this data. Each point corresponds to an individual. The regression was carried out using Matlab’s fit

function and Cosinor [52] was used to estimate the gene phases from the time series of each individual. The p-values test the hypothesis that the slope of

the line is non-zero and are given by the F-test using the Matlab functions coefTest and fitlm.

https://doi.org/10.1371/journal.pcbi.1011779.g004
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Fig 5. A-E. Analysis of the Acosta-Rodrı́guez et al. data [37]. This data is analysed as test data using timecourse-

matched normalisation and timecourse normalised Zhang et al. RNA-seq data [1] for training. We use lthresh = −8. The

timing, Θ and ML for each sample point shown is a suitably averaged value for the two replicates with the same feeding

condition and age. A. Box plots of the apparent timing error for the different conditions and ages. The mean value of

each box plot gives the timing displacement for the condition and age. Only 12 of the 66 comparisions are not

significant at the p = 0.05 level using the Wilcoxon test. B. Box plots of the ML for the different conditions and ages. C.

Box plots of the Θ value for each condition and age. See Table D in S1 Appendix for statistical analysis of the

differences. D. Centred LRFs for each condition and age. E. Legend. F. PDP plots for the genes in the REP, some cell
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of the likelihood curve of a test data sample only involves the probability model and the test

data sample and has nothing to do with the other test samples. Therefore, the result for any

test sample will be exactly the same as if it were the only sample in the test dataset.

Fig 2A shows the estimated LRFs for the Zhang et al. microarray data [1]. Each LRF’s high-

est peak is centered at 12noon to enable visual comparison of many LRFs, a plotting technique

used throughout the figures. Many examples of estimated LCs and LRFs can be seen in Figs 1–

5 and the S1 Appendix. The resulting predicted timing plotted against the sample time is

shown in Fig 2A together with the times corrected to allow for the chronotype explained in the

section below on timing. LCs for the Bjarnason et al. human training data [30] are shown in

Fig 2C and Fig I in S1 Appendix.

These show the general form of the LCs and demonstrate that one can clearly observe quali-

tative differences between one individual’s LC and those of the others.

Apparent timing errors and timing deviations in the training data. For each training

dataset we used an appropriate leave-one-out cross-validation approach to compare the sam-

ple collection time Ta with the estimated time T and evaluated the apparent timing errors T −
Ta for each sample. The mean and median absolute timing errors (MAEs) for the training

datasets are shown in Table 1.

We then analysed how the mean timing error varies with tissue, individual or condition to

see if there is a consistent timing deviation for any of these. When these deviations are clear

and statistically significant we call the mean of them the timing displacement of the tissue, indi-

vidual or condition. We show below that for the mouse and human training datasets the

observed timing displacement is associated with coherent phase changes in the genes. There-

fore, in assessing the performance of TimeTeller the apparent timing errors should be cor-

rected to take account of this. The timing displacements of the different mouse tissue in the

Zhang et al. data [1] are relatively small (Fig G(G) in S1 Appendix) but, for the more geneti-

cally heterogeneous human population of the Bjarnason et al. data [30], we found significant

and consistent timing displacements on the individual level (Fig 2E and Fig I in S1 Appendix).

When the apparent errors are adjusted for this they are often substantially reduced (Fig 2D

and Table 1). For this data this reduction is of the order of 50%. Table 1 shows that timecourse

and timecourse then intergene (both) normalisations are performing significantly better than

intergene alone.

It is difficult to compare performance with that of the published algorithms mentioned

above as they have been used on different datasets collected under different conditions and

there has been relatively little work on time-stamped genetically heterogeneous data. The

Zhang et al. microarray dataset [1] was also analysed by ZeitZeiger and the mean absolute

errors on cross-validation were between 0.6h and 1.1h [15]. On these tissues the results for

timecourse normalisation with TimeTeller are very similar to those of ZeitZeiger (Table B in

S1 Appendix). Moreover, TimeTeller’s apparent timing errors for the genetically

cycle genes and some of the genes highlighted in [37]. See Fig N in S1 Appendix for more information. The gene

phases were measured by Cosinor [52]. G-K. Analysis of the Mure et al. data [2]. In each plot the color corresponds

to the tissue as shown in I. The data from the central tissues is used for training. G. TimeTeller predicted time T vs the

sample time using leave-one-out analysis for each sample from the 33 tissues. H. Box plots of the signed apparent

errors for the samples for each of the 33 tissues in order of increasing timing displacement. Each of the 7 leftmost

boxplots is significantly different from each of the 7 rightmost boxplots at the p = 0.005 level. I. Legend for G-K. J.

Timing displacements for each tissue. K. Some examples showing PDP plots of the gene phases and the TimeTeller

timing displacement for all 33 tissues from Mure et al. [2]. The p-value and r2 values for the other genes are in Table C

in S1 Appendix. Note that the r2s (Fig 4) for core clock genes are much smaller than those for the Bjarnason et al.
human data [30] and the Acosta-Rodrı́guez et al. data [37] in F.

https://doi.org/10.1371/journal.pcbi.1011779.g005
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heterogeneous human data compare well with those found in other studies which typically

have a median absolute error (MdAE) greater than 1.4h. For example, in the study [23] the

1-sample method had a MdAE of 1.6h and the 2-sample method had a MdAE of 1.4h-1.7h and

when CYCLOPS was validated against pre-frontal cortex biopsies with annotated time in [18]

the MdAE was 1.69h. In an impressive application to data from four distinct human studies

TimeSignature [19] reported MdAEs between 1.21h and 1.49h although this requires two sam-

ples for each individual. While TimeTeller’s timecourse normalised results for the genetically

heterogeneous Bjarnason et al. [30] and Mure et al. data [2] (Table 1) compare favourably with

these results we do not wish to claim timing superiority as there is great heterogeneity in the

studies giving rise to the data that was analysed and in the transcriptomics platforms

employed.

Maximum likelihood ML. Given a test sample REV g, the value of ML = Lg(T) (i.e. the

maximum likelihood of g) is a key diagnostic as, ifM denotes the maximum value of the distri-

bution P(�|T), we can regard λ = log(ML/M) as a likelihood ratio test statistic for a pure signifi-

cance test of the hypothesis that g is drawn from the training clock. Thus, a low value of ML

relative to the values obtained by training or control data is indicative of the fact that g comes

from a clock that is substantially different. We refer to dysfunction of this kind as low ML
(lowML). An initial evaluations of the ML values for both training and test data is a key first

step of an analysis using TimeTeller.

Dysfunction metric Θ. Statistical theory tells us how to estimate the confidence interval

for the maximum likelihood estimator T of internal timing for any given degree of confidence

using the LRF (Methods and Note D in S1 Appendix). The variance of T arises because g is a

random sample from the clock at time t and we want to know how T will vary with other such

samples because high variance implies imprecise timing. We call such dysfunction high vari-
ance timing (highTvar). The Cramér-Rao Theorem [35] gives a lower bound for variance in

terms that can be related to the LRF (Note D in S1 Appendix). Our metric Θ is the proportion

of time in the day that the LRF spends above the curve C(t|T) defined in Methods and is associ-

ated with the length of such a confidence interval (Note D in S1 Appendix) and therefore Θ
gives an assessment of this sort of dysfunction and higher Θ is associated with higher

dysfunction.

However, our likelihood curves often contain structures that are relevant to assessing dys-

function but which are not covered by this aspect of statistical theory. One important case is

where when g has significant dysfunction of type lowML and the other is where the LC and

LRF contain significant secondary peaks that have a lower likelihood than that at T. Complex

data sets from diseases such as cancer can contain all of these dysfunction signatures with

some samples displaying a single type and others a mixture of more than one. As well as seek-

ing to characterise the type of dysfunction, we attempt to construct a statistic that integrates

the different types into a single measure. This is our dysfunction metric Θ. As defined by us

(see Methods) this metric will contain a contribution from all of these aspects that are present

and thereforeML and Θ are not independent. We discuss this further in the following sections

after discussing the values of Θ and ML in training data.

Θ and ML for training data. To continue the evaluation of TimeTeller’s LCs, and the cor-

responding dysfunction metrics Θ and ML we first tested it on the Zhang et al. [1] and Bjarna-

son et al. [30] training datasets using the appropriate leave-one-out cross-validation approach.

The results showed consistently low Θ values and relatively high maximum likelihoods across

tissues for the genetically homogeneous mouse datasets and genetically inhomogeneous indi-

viduals for the human data (Figs G, I and J in S1 Appendix).
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Multiple tools for assessing functionality in test data

Importantly, this consistency of good apparent timing errors, high ML and low Θ was also

observed in the analysis of the various WT/control components of the test data sets considered.

For example, using the Zhang et al. microarray data [1] for training and intergene normalisa-

tion our analysis of the microarray timecourse control dataset created by LeMartelot et al.
([36] and Note A in S1 Appendix) produced a mean absolute error for time estimation of less

than one hour and Θ values similar to those found in the training data. Similar results were

found for the Acosta-Rodrı́guez et al. data [37] for ad libitum fed mice using the Zhang et al.
RNA-seq data [1] for training and timecourse-matched normalisation, and for liver microar-

ray test data from Hughes et al. [38] after training with the Zhang et al. microarray data [1]

(Fig C in S1 Appendix). For the latter we used timecourse normalisation for the training and

test data as the microarray platforms are different, demonstrating good results across different

platforms.

To further test the use of TimeTeller across different transcriptomics platforms we carried

out a cross-validation experiment where we trained TimeTeller on the Zhang et al. microarray

data [1] and used this to test the Zhang et al. RNA-seq data [1] and vice-versa (Fig 1A and Fig

D in S1 Appendix). This not only tests the robustness of our approach but also examines the

effectiveness of timecourse normalisation in allowing us to work across different transcrip-

tomics technologies. The timing results are given in lines F and G in Table 1 with small mean

and median errors of a size compatible with the within-dataset leave-one-out analysis. As well

as the relatively small timing errors we observe informative visualisation and consistent Θ
values.

Across the various datasets we consider, this good timing, high ML and low Θ for WT/con-

trol test data almost always differed from that found for the perturbed test data. For example,

in Fig 2H–2O we consider the timing, ML and Θ diagnostics for the Fang et al. [32] and

Kinouchi et al. test data [34] discussed above and use them to illustrate how to gain more

insight into dysfunction. In such an analysis one should start with an assessment of the MLs

and an inspection of the LRFs for training, control and test data.

From this one can choose an initial value for the important parameter lthresh using the

approach described in Methods and Note C in S1 Appendix. This parameter truncates the like-

lihood curves so they do not go below exp(lthresh) and this plays an important role in ensuring

that the incorporation of the local likelihoods into a global one (see Methods) is not wrecked

by inaccurate and uninformative exceptionally low local likelihoods.

For the Fang et al. data [32] and the Kinouchi et al. skeletal muscle test data [34] we see that

the ML values for the perturbed test data are significantly lower than those for the control test

data (Fig 2J and 2N) suggesting that dysfunction of the lowML type is present in the perturbed

systems. For the test data from Fang et al. [32] we also observe significant differences between

the WT and Nr1d1KO samples for the timing and Θ diagnostics (Fig 2H–2K). The timing T of

the KO observations is significantly further from the true timing (Fig 2H). Analysis as in Meth-

ods and Note C in S1 Appendix suggests setting lthresh around -5 but the results are very similar

for any value between -4 and -7. However, the centred LRCs also indicate that there is a signifi-

cant amount of highTvar dysfunction in the KO sample because of the second peaks and

increased width of the LRCs near the maximum.

For the Kinouchi et al. skeletal muscle data [34] the FED samples show uniformly small

errors in timing T (MAE 0.44h) and uniformly low Θ values (Fig 2L and 2M). In contrast, the

timings T of the FAST samples are clustered around ZT 18–24 reflecting the tight clustering

seen in the visualisation (Fig 1E) and the MAE is significantly greater at 4.04h. So far as dys-

function is concerned, the situation is somewhat different from the Fang et al. data [32] since,
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although there are also significant differences in ML and Θ values between FED and FAST

(Fig 2I–2L), there are no second peaks in the centred LRFs contributing to Θ (Fig 2L). Conse-

quently, the primary difference between the FED and FAST samples is due to the significant

difference in the MLs. Thus, only substantial lowML type dysfunction is present. The stratifica-

tion by Θ in Fig 2K reflects this.

The Kinouchi et al. data [34] provides a very informative example of how the choice of the

parameter lthresh works because the maximum likelihoods ML for both the FED and FAST

liver data are significantly higher than that for the skeletal muscle data discussed above and

this means that different values of lthresh are appropriate. The discussion in Note C and Fig H

in S1 Appendix shows that the value for the liver data should be substantially larger at -6 or -7

rather than -12. When this value is chosen the results for the Kinouchi et al. liver data [34] are

similar to those above for the skeletal muscle data (Fig 2I–2L).

In order to understand the effect of fasting on the amplitude of core clock components

Kinouchi et al. [34] needed to treat the data as though the FAST samples belonged to a contin-

uous time series even though each timepoint was proceeded by 24 hours of starvation. This

underlines a significant extra advantage of TimeTeller because the FAST test samples can be

considered independently from one another.

Koronowski et al. [39] compared the liver transcriptomes of wild-type (WT) with whole

body Arntl deficient mice (KO) or Arntl KO mice with liver-specific Arntl reconstitution

(Liver-RE). Their data enables us to test TimeTeller’s sensitivity to not only the substantial KO

perturbation but also the much subtler one of the Liver-RE. Our analysis shows statistically sig-

nificant differences in timing between WT, KO and Liver-RE including the phase advance-

ment noted in [39] of the Liver-RE clock relative to WT (Fig 2M–2P). The MLs (resp. Θs) for

the KO data are significantly smaller (resp. larger) than for both the WT and Liver-RE data

with no significant difference between WT and Liver-RE (Fig 2N and 2O). However, the LRFs

(Fig 2P) suggest a clear difference between WT and Liver-RE data in that, unlike WT, about

half of the Liver-RE samples have a significant extra peak suggesting a contribution of high-

Tvar type disruption and a hypothesis that this is causing the observed timing change in the

Liver-RE data. Significant second peaks are also observed in about a half of the the KO data

suggesting a combination of some highTvar dysfunction combined with the significant lowML

dysfunction.

Analysing stopped clocks. In the Fig K in S1 Appendix we discuss an analysis of two stud-

ies (Weger et al. [40] and Yeung et al. [41]) where the clock is disrupted by either Arntl
(Bmal1) or Cr1/Cry2 deletion. As well as confirming the observation in Hughey et al. [15] that

the resulting data show clustering to a narrow range of apparent times for the KO samples, the

TimeTeller Θ and maximum likelihood values provide quantitative evidence about the dys-

function caused. This is similar for the two Arntl KO datasets but different to that of the Cry1/
Cry2 KO dataset. The two Arntl datasets the KO samples have significantly reduced ML values

and significantly increased Θ values and inspection of the centred LRFs show that almost all

the contribution to Θ in the KO samples comes from flat regions in the LRFs. It follows that

the dysfunction is primarily of lowML type with the KO data having moved away from the

training clock in a way that gives consistently wrong times. In contrast, the Cry1/Cry2 KO

samples though having similar radically wrong timing, had similar high ML and low Θ values

to the control data (Fig K(I,L,O) in S1 Appendix). This confirms the visualisation showing that

the KO data sits remarkably close to the mean trajectory of the training clock in a way that

indicates that its dysfunction is just in the timing. We therefore hypothesise that the Cry1/Cry2
KO clock is “frozen” in a particular state very close to a wild-type clock state because it has

undergone a SNIC bifurcation (see below). This is an extreme example of where there is signif-

icant timing dysfunction where the clock reliably gives the same wrong time but no
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dysfunction of the lowML or highTvar types. We call this dysfunction type reliable wrong tim-
ing (relTwrong). We will see other examples of this below where the clock is not stopped.

In a deterministic dynamical system, when a parameter is changed slowly there are only

two generic ways that oscillations are killed: the Hopf bifurcation where the amplitude declines

to zero, and the saddle-node SNIC bifurcation where, until the bifurcation occurs, the ampli-

tude of the oscillation is maintained but at the bifurcation the system stops at a point on the

system’s limit cycle [42]. This insight and the quantification results from TimeTeller suggest

our hypothesis that mice deficient in Cr1/Cry2 have undergone a SNIC bifurcation in the liver

clock.

The potential for the use of the Θ stratification to identify differential

effects in patients

It is particularly interesting and important to apply TimeTeller to genetically heterogeneous

human data because it allows us to test the idea that it can uncover corresponding heterogene-

ity in the “clock” phenotype or effects on individuals such as patients.

We firstly consider data from a study of the effects of cigarette smoke on the human oral

mucosal transcriptome, In this study (Boyle et al. [43]) transcriptomes from buccal biopsies of

39 current smokers (� 15 pack-year exposure) and 40 age- and sex-matched never smokers

(< 100 cigarettes per lifetime) were analysed and compared. The authors found that smoking

altered the expression of numerous genes but none of those found were core clock genes nor

did they consider the effect of smoking on the circadian clock. They found smokers had

increased expression of genes involved in xenobiotic metabolism, oxidant stress, eicosanoid

synthesis, nicotine signalling and cell adhesion and decreases were observed in the genes

CCL18, SOX9, IGF2BP3 and LEPR. It has been reported elsewhere that smoking has an impact

on multiple sleep parameters and significantly lowers sleep quality [44–46] and this was con-

firmed in an experimental study which also correlates poor sleep to inflammation [47] while

inflammation has been linked to clock disruption. Moreover, CS exposure has been shown to

cause circadian disruption in the lungs of WT mice and this is exaggerated in the Nr1d1
knockouts [48] and has a connection to Arntl [49].

Interestingly, when analysed by TimeTeller (Fig 3A–3C) we see a clear and statistically sig-

nificant difference between the Θ values of the never smoked and smoking individuals (Fig

3A) which is reflected in the 3D visualisation (Fig L(A) in S1 Appendix). Inspection of the

LRFs show that the variations in Θ come mainly from second peaks rather than low ML (Fig

3B). Indeed, the ML values for smokers and non-smokers were not significantly different

although the smokers had more observations with a very small ML (Fig L(A-C) in S1 Appen-

dix). The lowest values were around e−11 suggesting that a lthresh of about -12 would be

appropriate.

A significant proportion of the smokers had Θ values similar to those of the never-smokers

but many had much higher values (Fig 3A). Therefore, we asked if we could identify differen-

tially expressed genes (DEGs) between the individuals with high Θ versus those with lower Θ.

To do this we tested for differential gene expression between the n worst clocks (defined as the

bad clock group (BCG)) and the others (good clock group (GCG)) adjusting the p-value appro-

priately to allow for the multiple testing. For a fixed lthresh in the range from 11 to 13 with n
between 8 and 20 we found many differentially expressed genes (DEGs) at the appropriately

adjusted p = 0.05 level including some clock genes (Fig L(D,E) in S1 Appendix). However, the

particular genes found were sensitive to changing the value of lthresh among the suggested val-

ues of -11, -12 or -13 and changing the group size n.
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We calculated that the probability of finding such numbers of DEGs by chance is extremely

low (Fig L(H) in S1 Appendix) and we noticed significant differences between the behaviour

when the BCG size was in the range 8 to 20 from that when it was 30 to 40. Therefore, we esti-

mated by simulation the probability prand(m) of findingm or more DEGs by chance when we

choose a random group of n individuals for our BCG and compared this to the probability

pΘ(m) of findingm or more DEGs when the stratification by Θ is used to choose the BCG and

lthresh and n are chosen randomly in the ranges -11 to -13 and 8 to 20. We find that uniformly

inm, pΘ(m)/prand(m) > 100 (Fig 3C). We get an interestingly different result if we instead let

the group size n range between 30 and 40. The probability prand(m) behaves in approximately

the same way but pΘ(m) does not (Fig 3C(inset)). Form very small pΘ(m) is high but asm
increases pΘ(m) rapidly decreases to values much smaller than those for prand(m). There is a

34.26% chance of getting no DEGs but when this is not the case there is a more than 99%

chance of getting the gene PER3 and a 68% chance of getting NR1D2. Thus, this analysis iden-

tifies two interesting groups of individuals with a nontrivial transcriptional phenotype that dis-

tinguishes them from the individuals with good clocks. One of these groups appears to be

associated with differential expression of PER3 and NR1D2, genes not identified in the original

paper where all non-smokers and smokers were compared.

In conclusion, any link between smoking and clock dysfunction is likely to be complex, but

these results suggest that in a genetically heterogeneous population where the effects of a per-

turbation such as smoking are likely to be diverse, TimeTeller’s Θ stratification can help iden-

tify individuals or groups where the smoking effect is significant.

As a final example of this section we consider the distribution of Θ values by disease state

for the transcriptomic data of healthy or dysplastic oral mucosa and oral squamous cell carci-

noma (OSCC) from Feng et al. [50]. Since the lowest ML values were around e−11 a lthresh of

-12 was used. The ML values for normals and cancer were not significantly different although

the cancer group had more observations with a very small ML (Fig L(F) in S1 Appendix).

However, there is a highly significant difference in median Θ values between the cancer group

(167 individuals) and the the normal mucosa group (45 individuals) (p< 0.002) (Fig 3D).

Moreover, there appears to be significant dysfunction in terms of timing estimation (Fig 3E)

that can be significantly ameliorated if the second peaks in the LRF is used for timing when the

first peak is clearly misleading (Fig 3F, details below). Inspection of the LRCs (Fig 3G) shows

that, as for the Boyle et al. data [43], the variations in Θ come mainly from second peaks rather

than low ML.

As for the Boyle et al. data [43] we asked if there are DEGs between the worst clocks in the

cancer group (high Θ) and the best clocks within the same group and carried out a similar

analysis. For genes in general and BCG sizes n between 12 and 40 we find similar results with

pΘ(m)/prand(m) > 100 for the numberm of DEGs between 2 and 1200 (Fig 3H). Many of these

DEGs are associated with gene signatures such as DNA repair, E2F targets, G2M checkpoint

and the mitotic spindle. However, we do not find any groups like that for the Boyle et al. data

[43] (with n between 30 and 40) that have very low numbers of specific DEGs.

A study of the estimated timing T for this data (Fig 3E) was very informative. The estimates

for the normal data are generally between 7 am and 3 pm. A large number of cancer samples

have unlikely times well outside the normal working day and the median is clearly much too

early. Interestingly, it appears that the mistimed samples are primarily so because the likeli-

hood curve has a second peak (Fig 3G) and the peak giving an unreasonable timing estimate is

slightly higher than one giving the best estimate. In fact, there are 109 samples whose timing T
is before 7am and 93 of these have a second peak. if we replace the timing by that given by the

second highest peak, the great majority moved to a time firmly in the early afternoon between

12noon and 4pm (Fig 3F). As a result 74% of all samples then fall in this time slot and only 7%
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remain before 7am. The analysis in the next section indicates that this corrected timing is likely

to be the correct time of sampling to within approximately 0.4h.

TimeTeller’s precision on non time-stamped cancer data

The only method currently utilised to estimate the precision of timing/phase algorithms is to

use time-stamped data and compare the algorithm’s predicted times T with the SCT time

stamps t. However, such a measure of precision is problematic when the individuals, tissues or

conditions have a nontrivial molecular chronotype as is the case with the human data consid-

ered here and cannot be done if the data is not time-stamped. A related test which avoids these

problems is instead to determine the variance or standard deviation of the distribution P(T|g)
where T is the predicted time and g is the relevant REV (Note F in S1 Appendix). This

addresses the question of how well the estimated timing T is determined by the REV g. Inter-

estingly, we can calculate this precision measure even in some cases where we have no timing

data and where there is dysfunction and the Feng et al. data [50] gives a very informative

example of this.

To illustrate this we study the 77% (176 samples) of that data for which the estimated timing

T after adjustment by second peaks is between 12 noon and 4pm (Fig 3F). We ask if within

this data we can see coherent timing structure or not. We can estimate the required standard

deviation by carrying out a principal component (PC) analysis of the expression data (see Note

F in S1 Appendix) and plotting the projection of these data onto the first PC against the pre-

dicted time T (Fig 3I). An upper bound for the standard deviation of P(T|g) can be estimated

from this (Note F in S1 Appendix) and we obtain an estimate of less than 0.4 hours. If we con-

sider all the deviations from the mean for the timings T (given by the horizontal deviation of

the relevant data point from the red curve in Fig 3I) across all of the REVs in this data we

obtain the distribution shown in Fig 3J. Remarkably, although the data is not timestamped and

has significant dysfunction giving rise to significant second peaks, TimeTeller is able to accu-

rately measure the internal phase T of the clock as a function of the REV g.
We carried out a similar analysis (see Note F in S1 Appendix) and found similar results but

a bigger standard deviation of 0.83h for the large breast cancer dataset analysed by Cadenas

et al. in [51]. In this case there is no need for adjustment for second peaks as 86% of the data

has its predicted time T between 10am and 8pm (Note F in S1 Appendix). We believe this

approach gives a new simple method to assess timing performance.

Comparing clocks across individuals, conditions and tissues

Current analyses comparing the circadian clock across individuals, tissues and conditions

such as the three studies we consider below proceed by analysing the behaviour of the individ-

ual interesting genes separately. Such analyses tend to focus on the level of expression and do

not take into account correlations between related genes. We asked whether using TimeTeller

such an analysis could be done in a more integrated way treating the clock as a noisy multigene

dynamical system (and hence using correlations) and whether such an approach uncovers

some aspects that are hard to see when done gene by gene. The key results here are that it

enables us to identify coherent differences in timing across individuals, conditions and tissues

and that using these we can determine in a quantifiable way if the timing differences come

from a more or less coordinated change in gene phases.

Using TimeTeller to identify a molecular chronotype. The human training data that we

consider (Bjarnason et al. [30]) involves genetically heterogeneous individuals and therefore

we also asked to what extent in this analysis of time-series data we could differentiate
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systematic variation of timing in an individual or tissue due, for example, to genetic and/or

environmental factors, i.e., amolecular chronotype.
We observed above that while the Θ and maximum likelihood values are reasonably consis-

tent across individuals, the apparent timing error was not. For some individuals there were

substantial timing displacements arising from intra-individually consistent deviations of the

estimated time from the sampling time (Fig 2D). For example, the individuals labelled as 1 and

6 in Fig 2D have substantial statistically significant (p< 0.003) timing displacements in oppo-

site directions. To further understand this, we hypothesised that the timing displacement of an

individual might be largely a result of well-coordinated phase changes in the core clock genes.

If this is the case there should be a definite relation between TimeTeller’s timing deviations

and the phase of the genes. Moreover, since this relationship is local in that the timing dis-

placements are small compared to 24 hours, it is reasonable to suspect that it might be approxi-

mately linear. Therefore, we tested for a linear relation between the phase variation of the

genes in our panel and timing displacement.

In this analysis, we regressed the timing displacement against the phase of each of the genes

in the REP (Fig 4) using Cosinor [52] to measure gene expression phase. For all the probes

used we observed an approximately linear relationship between timing displacement and the

variation in the gene phase with a positive slope (Fig 4 and Fig M in S1 Appendix). For all

genes the non-zero slope is statistically significant and the r2 value is greater than 0.7, and for

many genes it is greater than 0.9. The latter measures the proportion of the variation in the

gene phase that is predictable from the TimeTeller displacement using the linear relationship.

Thus TimeTeller is able to clearly identify coherent and substantial phase variation in the clock

genes for each individual across all genes in the rhythmic expression profile. It identifies a

clear “chronotype” for each individual and a quantifiable phase difference. Moreover, the

strong coherence between the time estimations and the gene phases are further validation of

TimeTeller’s time estimation. These results suggest that if the sample collection time is known,

by combining the observation of a Θ suggesting good clock function with an advanced or

retarded time prediction, TimeTeller can help identify substantial coherent phase variation in

an individual’s clock genes from a single sample.

We will utilise such regression plots in the analyses below where we attempt to characterise

the nature of the change in the clock caused by different conditions or in different tissues. We

call such plots phase displacement plots (PDPs).

Timing divergences and clock comparisons for time-restricted feeding in ageing mice.

Recently, Acosta-Rodrı́guez et al. [37] studied the synergistic effects of various time-restricted

feeding protocols with caloric restriction (CR) on the prolongation of life span in mice, focus-

ing on the liver which is a major metabolic target of the circadian clock. After 6 weeks of base-

line ab libitum (AL) food access, C57BL/6J male mice were subjected to 30% CR. Mice were

fed nine to ten 300mg food pellets containing 9.72 to 10.8 kcal every 24 h starting at the begin-

ning of the day (CR-day-2h) or night (CR-night-2h) constrained to consume their food within

2h.

Two additional CR groups were fed a single 300mg pellet delivered every 90 min to distrib-

ute the food intake over a 12-h window either during the day (CR-day-12h) or during the

night (CR-night-12h). A fifth CR group was fed a single 300mg pellet every 160 min continu-

ously spread out over 24 h (CR-spread). Liver gene expression was profiled using RNA-seq in

all six feeding conditions at 6 and 19 months of age. Livers were collected in constant darkness

at 12 time points every 4 hours for 48 hours across two circadian cycles. We treat the data

from time t and t + 24 as replicates of a 24h cycle.

Together with a young and old group where feeding was ad libitum (AL) this results in 12

feeding conditions. We used TimeTeller to analyse this data asking if it could identify the
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nature of systemic changes in the core clock between the different feeding×age conditions. We

used the Zhang et al. RNA-seq data [1] as training data. Thus, all feeding conditions of [37] are

regarded as test data. We analysed this using both time-course and timecourse-matched nor-

malisation for the test data. The results are very similar and we give the timecourse-matched

results here.

Visualisation showed that the test data fell nicely within the trained distribution close to the

mean cycle. Analysis as in Note C in S1 Appendix points to using a lthresh of -8. The results on

the predicted times T showed a substantial timing displacement (Fig 5A) for eight of the condi-

tions with CR-day-2h being the most extreme. Only 12 of the possible 66 comparisons have

p� 0.05. Moreover, there is a striking apparent age-related difference for the CR-day-2h feed-

ing conditions in that the timing displacements of the 6 month and 19 month mice differ by

over 4 hours (p< 0.0001).

There are some statistically significant differences between the Θ and ML values found for

the different conditions (Fig 5B and 5C). This is also noticeable from the centred LRFs (Fig

5D). For example CR-spread-19m has significantly higher ML values than all other conditions

and lower Θ values than most, and CR-night-2h-6m has significantly lower ML values and

higher Θ values than all but CR-night-2h-19m (Fig 5). However, overall the ML values are rela-

tively high and therefore confirm the observation that, although the timing can be displaced,

the test data is close in data space to the training clock. This is compatible with the hypothesis

that the different feeding condition induce a simple phase change in the clock.

Given these timing displacements, we carried out a comparison of the clocks under the dif-

ferent conditions by analysis using PDP plots where we regressed the phases of the genes

against the timing displacements of the various conditions to try and quantify the extent to

which the observed timing differences are the result of a coherent phase adjustment of each

gene (Fig 5F). For the feeding×age conditions the situation is very clear for the core clock

genes considered because the r2 values for them (Fig 5F) are typically close to 1 implying the

linear model almost completely explains the data. From this analysis, we conclude that it is

likely that the different feeding×age conditions cause a change in the core clock that is primar-

ily a simple phase change and that for some of the conditions such as CR-day-2h this is

substantial.

In summary, for this data, TimeTeller has enabled the discovery of substantial and coherent

differences of the core clock systems state associated to the feeding conditions and provided

quantified evidence that the core clocks corresponding to the different conditions differ by a

simple phase change. This benefitted from a systems approach. Finally, note that although

there is time series data in this instance, since our results on the test data samples are indepen-

dent of each other having a time series is not necessary and also one could reduce the number

of mice involved. This opens the possibility to use TimeTeller as a tool to determine a clock

parameter in available QTL studies for longevity and other parameters [53].

Timing divergences and clock comparisons for the Mure et al. baboon data [2]. We

found a different result when we compared the clocks in the different tissues studied in Mure

et al. [2]. In this paper, the transcriptomes of 64 tissues of the diurnal primate Papio anubis
(baboon) were analysed from one animal every 2 hours for 24 hours. The results of [2] demon-

strate that many ubiquitously expressed genes that participate in essential cellular functions

show a tissue-specific rhythmic pattern, and confirmed a shifted temporal organization of cen-

tral and peripheral tissues between diurnal and nocturnal mammals. Since this RNA-seq data-

set involves a genetically heterogeneous population and multiple transcriptionally

heterogeneous tissues, we were keen to assess how well TimeTeller was able to analyse it.

We studied 33 of the tissues leaving out those from the brain and some others with missing

data. An initial leave-one-tissue-out analysis gave reasonably accurate timing (MdAE around
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1.23h, Fig 5G and Table 1) and indicated that many tissues had a substantial timing displace-

ment (Fig 5H and 5J) ranging from approximately -3.5h to +2.5h compared to the time the

samples were taken. The standard deviation of the individual sample apparent timing errors

around the timing displacement from a given tissue was generally much smaller than the 6h

range of the timing displacements (Fig 5H). Moreover, the null hypothesis that themth most

advanced tissue has the same timing displacement as themth most retarded is rejected at the

p = 0.01 level for allm< 7 (Wilcoxon-Mann-Whitney test).

Given many tissues had large absolute timing displacements, we then used only the 18 tis-

sues with the smallest for the training data. This gives slightly better timing results than using

all 33 tissues as can be seen in Table 1. Correcting the TimeTeller time predictions by adjusting

them using the phase displacements of the tissues resulted in a substantial improvement of

about half an hour in the timing accuracy (Fig 5G and Table 1). Given the heterogeneities in

the data this results in a very reasonable performance with a mean absolute error of just over

one hour.

The analysis of the variation of the core clock across the 64 tissues in Mure et al. [2] is

mainly concerned with the overall transcript abundance and rhythmicity of expression of the

individual core clock genes. The authors note that the heterogeneity of this implies different

composition of core activators, repressors, and modulators in different tissues. They do not

mention the timing divergences we find in the data using TimeTeller. Using these timing

divergences, for the limited set of 33 tissues, we can study this in a different and more inte-

grated way.

As above, we considered a comparison of the clocks in the different tissues by using a PDP

plot (Fig 5K). For this dataset we see that the observed differences between them are not due to

a simple coherent phase adjustment in the genes but involves a more complex interaction.

This is because the r2 values, which measure of the proportion of total variation of outcomes

explained by the linear model, are very low and much lower than those for the Bjarnason et al.
[30] and Acosta-Rodrı́guez et al. data [37]. This suggests that the adjustment of the clock from

tissue to tissue is more complex than a simple phase shift in the core clock genes. On the other

hand, the relatively low p-values suggest that there is a definite correlation between gene phase

and timing displacement suggesting that an appreciable component of the changes in the

genes is a phase change.

Again this analysis benefitted from a systems approach which enables us to identify coher-

ent differences between tissues and relate this to changes in the core clock.

Probing the effect of changes in the core clock on downstream genes

Changes in the core clock will affect the regulation of rhythmic genes that are downstream of

it. Current methods allow one to check whether these genes remain rhythmic when the clock

is perturbed in some way but TimeTeller also allows examination of the extent to which they

maintain their relationship with the clock in a coherent fashion. The way in which the different

conditions of the Acosta-Rodrı́guez et al. mouse data [37] changed the phase of the core clock

provides a very interesting example where we can demonstrate such an analysis.

Firstly, we noted that for the genes in the REP, all clock genes displayed approximately lin-

ear phase changes while for the other genes (Hlf,Wee1 and Cys1) this was not the case for

Cys1. We then used this analysis to look at the effect of the clock phase changes upon some

other genes that are rhythmic in the liver of AL fed mice. In particular, we inspected the plots

for some cell cycle genes and also a number of the genes identified in Acosta-Rodrı́guez et al.
[37] as affected by the CR conditions or ageing. We find that inspection of the PDP plot for
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these genes gives clear and significant insight into the level of this coherence which we quantify

by the p-value and r2 of the PDP plot.

Of the cell cycle genesWee1, p21, P53, Timeless, CyclinA, CHK2, CyclinB1, CyclinE2 and

ATM, it appears that onlyWee1, p21 and CyclinE2 are rhythmic in the liver in the AL condi-

tions. These three genes maintain coherence with the clock under the other conditions with

Wee1 doing so strongly (r2 = 0.96) followed closely by p21 (r2 = 0.92). The coherence of

CyclinE2 seemed somewhat weaker (r2 = 0.59). All of the other genes had r2 < 0.4 and

appeared incoherent. There is a very strong correlation between the maintenance or absence

of coherence and rhythmicity or non-rhythmicity.

In Acosta-Rodrı́guez et al. [37] a number of genes that were affected by ageing or the CR

conditions were highlighted and sorted these into four categories: those susceptible to ageing-

related changes under any condition tested, those related to fasting conditions, timing related

genes and genes associated with effects on circadian cycling such as rhythmic damping. Our

analysis using PDP plots for these genes clearly identifies which of them move coherently with

the core clock under the different feeding conditions. None of the timing related genes stayed

coherent and, amongst the fasting genes, onlyHal1 (r2 = 0.66) was. Several ageing genes show

some level of coherence (Fig N in S1 Appendix) Serpine1 (r2 = 0.66) Adora1 (r2 = 0.68) Got1
(r2 = 0.65) Lepr (r2 = 0.68) Pfkfb5 (r2 = 0.88). For the genes affecting circadian cycling. while

Gys1 (r2 = 0.15) and Per1 were incoherent, the rest were coherent: Arntl (r2 = 0.99), Nr1d1 (r2

= 0.70), Per1 (r2 = 0.69), Per2 (r2 = 0.97) and Pck1 (r2 = 0.60). For a significant number of the

genes affected by ageing or the CR conditions, while the gene is not coherent under all condi-

tions it is coherent under a significant number of the conditions with the less extreme timing

deviations. This can be seen from the PCPs and was the case for Per1 which seems coherent

under all conditions except the four CR-day conditions.

These results demonstrate that such an analysis can give a novel overview of gene response

and whether a given gene maintains coherence with the clock when the clock timing changes.

Such coherence is associated with genes that show good linearity with a significant slope in the

PDP plots. Consequently, TimeTeller can be used to investigate function and dysfunction in

genes controlled by the circadian clock when the clock is perturbed.

Methods

Ethics statement

The study associated with the Bjarnason et al. human data [30] was approved by the Sunny-

brook Health Sciences Centre Research Ethics Board. Project identification number 396–2004.

Written informed consent was obtained from each subject as requested by the Research Ethics

Board.

Probability model constructed from training data

The training data will have been collected at sample times ti, i = 1, . . ., Nt. In the training data

used here the number Ns of samples at each time point is the same. Therefore, if the samples

are indexed by j, the G-dimensional REVs with sample time ti can be labelled by i and j and

denoted �g ij.
In three of the training datasets the instances j correspond to different tissues (with repli-

cates in one case) and in the other (Bjarnason et al. [30]) to different individuals. Each gij is
then normalised using timecourse and/or intergene normalisation as described above resulting

in vectors gnormij that will be used to train TimeTeller. The issue of batch effects is considered in

Note A in S1 Appendix.
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To construct the probability model we firstly construct one for each timepoint ti in the

training data by using the local statistical structure of the data at that timepoint and then we

combine these. Associated with this time ti is the set Di of NsG-dimensional vectors gnormij , j = 1,

. . ., Ns. We calculate the principal components Ui,k of this dataset and then use the first d of

these to define a projection Pi of the normalised training data into Rd (Note F in S1 Appendix)

i.e. PiðgÞ ¼ UT
d � g where Ud is the matrix made up from the column vectors Ui,k for k = 1, . . .,

d. We then fit a multivariate normal distribution (MVN) Pi;j to the points PiðDjÞ. The

dimensionality d is chosen so that there are enough vectors in PiðDjÞ to fit a d-dimensional

multivariate Gaussian (using the MATLAB function fitgmdist) while ensuring that most of the

variance in the data is captured by the d-dimensional projection (e.g. see Fig F in S1 Appen-

dix). In our case we take d = 3.

Now we fix a time ti and consider the means μj and covariance matrices Sj of the distribu-

tions Pi;j. We fit a periodic piecewise cubic hermite interpolating polynomial spline through

the μj and each of the d(d + 1)/2 entries that determine Sj so as to extend μj and Sj to all times t
between the time points checking that the Sj are positive definite and moving them to the

nearest positive definite matrix if this is not the case. We thus obtain μi(t) and Si(t) and thus

the associated family of d-dimensional MVN distributions Pi;t for all times t between the first

and last data times. For these splines we use the MATLAB function perpchip as this respects

the periodicity in t. Our implementation offers some alternatives to perpchip but these are not

used here. This family of MVN distributions indexed by time is what we refer to as the proba-
bility model.

The likelihood curve Lg(t) and the log threshold lthresh

Now we define the likelihood curve Lg(t) where g is a REV from either training or test data.

Having calculated the probability model, for a given REV g, for each of the time indices i we

define the likelihood curve associated with the ith timepoint using the probability given by the

MVNs Pi;t i.e. Lg;iðtÞ ¼ Pi;tðgnormÞ where gnorm is the vector obtained after normalising g with

the relevant normalisation.

The idea is to obtain log Lg(t) by averaging these individual log likelihoods log Lg,i, i = 1, . . .,

Nt but some modification is needed. We will need to fix a lower threshold lthresh < 0 and

replace each log Lg,i by max{log Lg,i, lthresh} in the sum so that Lg(t) is defined by

log LgðtÞ ¼ N � 1
t

PNt
i¼1

maxflog Lg;i; lthreshg.
This truncation is necessary to ensure that this sum is not wrecked by inaccurate exception-

ally low values of one Lg,i affecting robust high values of another at the same t. A curve Lg,i may

take on very low values away from its maximum and the exact values of these very low proba-

bilities may well be unreliable and inaccurate. If this happens at a t value for which another

such curve Lg,j has a high accurate value then this may badly affect the estimate of Lg(t). The

way to choose the value of lthresh is discussed in Note C in S1 Appendix.

Definition of Θ
The clock dysfunction metricΘ is defined to be the proportion of time t where the LRF is

greater than C(t|T) = η(1 + � + cos 2π(t − T)/24) which is a scaled cosine function phase shifted

so that the maximum is at T (Fig 2D). The parameters must satisfy 0< η� < η(2 + �)< 1.

Although we have experimented with changes, the effect on Θ of changing η and ε is clear (see

Fig 2D) and we have seen no reason for changing them from the values we have used here.
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Choice of parameter lthresh

The key considerations underlying the choice of lthresh are that it should be as large as possible

subject to the conditions that (i) very few training and control samples have flat regions that

significantly intersect C(t|T) so that they contribute significantly to Θ, and (ii) as many as pos-

sible of the test data samples should have MLs above exp(lthresh).

There are two reasons we do not want lthresh to be decreased further than necessary. Firstly,

the considerations above about the need to protect against inaccurate exceptionally low values

of some Lg,i and, secondly, because if lthresh is reduced too far structure in the LRF at times that

are away from the time T is likely to be removed. This happens because, if the Lg,i have their

maxima not too far from T then decreasing lthresh causes a much bigger decrease in the likeli-

hood Lg(t) for t away from T than near to T and therefore decreases the LRF away from T while

maintaining the peak structure near T. If the dysfunction is mainly manifested by low ML then

decreasing lthresh by too much moves all the flat regions in the LRFs down below C(t|T) while if

it manifested by structures such as second peaks then these are also decreased below C(t|T). In

both cases this results in a decrease in Θ. These phenomena are illustrated in Note C and Fig H

in S1 Appendix.

If the maximum value log ML of log Lg(t) is only just above lthresh, then it and the corre-

sponding likelihood ratio curve will have intervals on which they are flat. If this is the case then

the length of these flat intervals above the minimum of the curve C(t|T) can contribute to Θ.

This contribution has interesting information in it because it is related to how low the maxi-

mum value ML of Lg(t) is.

If the criterion (ii) results in too small a value so that too much structure has been removed,

it is then generally acceptable to set lthresh at a higher value provided that the number of train-

ing samples violating (i) does not get too large. It so also desirable that the the number of test

samples violating (ii) is not too large as otherwise many samples have Θ = 1 meaning that

these samples do not have a non-trivial stratification even though they will be distinguished as

having higher dysfunction than other samples.

Discussion

What we hope stands out is the way TimeTeller can be used to study single samples of external

test data in ways that reach beyond the information provided by current algorithms. The main

aim of this study was to indicate the different ways that TimeTeller can be used to visualise

and probe the circadian clock as a system.

Understanding internal timing T is important because, for example, a patient’s phase shift

is critical for guiding personalised timing of chronotherapy but our fundamental assertion is

that the TimeTeller likelihood curve contains more information about clock dysfunction than

just timing. We believe that the examples we discuss bring this out. The algorithm’s output is

not just limited to the timing estimate alone but also comes with an estimate of Θ, ML and the

likelihood curve. Thus, one has much more information with which to assess both dysfunction

and the assessment’s quality.

We give many examples where the dysfunction metrics Θ and ML that we introduce take

statistically significant different values in perturbed conditions compared to WT/control. An

important aspect of this analytical approach is that Θ can provide a stratification of individual

transcriptomes by measured dysfunction. This is important because it enables the possibility

of associating clock dysfunction with other aspects of disease on the level of the individual.

This is illustrated most clearly by our analysis of the Boyle et al. data [43] on the effects of

smoking on the transcriptome of the human oral mucosa and that of Feng et al. data [50] on

oral squamous cell carcinoma. This analysis showed significant differences between the
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smokers and non-smokers in the Boyle et al. data [43] and between normal and cancer for the

Feng et al. data [50] and in both cases enabled the identification of a “bad clock” group with a

significant number of differentially expressed genes compared to other individuals of the same

cohort (smoker or cancerous tissue).

When analysing the cancer data samples from Feng et al. [50] and Cadenas et al. [51] we

were able to validate the quality of timing estimates without using any time stamps. This

means that we were able to identify a large number of patients with significant dysfunction in

the clock but still identify the sample time which for the Feng et al. data [50] often involved the

second peak in the LRF. Moreover, this method of analysis gives a new way to estimate the pre-

cision of timing/phase algorithms on large data sets even if they are not time-stamped and

even if they contain significant dysfunction as is the case with the Feng et al. data [50]. In a

future paper we expect to apply TimeTeller to study other cancer datasets.

TimeTeller offers other new possibilities for the analysis of timeseries data as shown by the

analysis of the Bjarnason et al. [30], Acosta-Rodrı́guez et al. [37] and Mure et al. data [2].

Firstly, TimeTeller allowed us to identify significant timing displacements for the individuals,

conditions or tissues that had not been observed and it was not necessary for these data to be

in time-series. Secondly, when these are in time series, by identifying the timing displacements

and then regressing the gene phases against them, we were able to compare the clock in differ-

ent individuals, conditions or tissues and attempt to assess whether the difference is largely a

phase shift or a more complex adjustment. Moreover, we show how to analyse genes down-

stream of the clock in a similar way. For example, using the Acosta-Rodrı́guez et al. mouse

data [37] we were able to see which genes maintained their rhythmicity and coherence with

the clock in all the temporally restricted feeding conditions and which did not.

Because TimeTeller’s results on test data samples are independent of each other having a

test time series is not necessary and this suggests that use of TimeTeller might facilitate a

reduction in the number of animals involved.

An important insight of the study of Wittenbrink et al. [23] is the need to develop optimised

high-quality data that is cheap to collect. This will also be important for the use of TimeTeller.

While it is clear that the sort of data we discuss in this paper will become increasingly abundant

and much cheaper to generate, other data types such as Nanostring’s nCounter platform [54]

might be more suitable to clinical workflows and may be used to provide cheaper purpose-

designed datasets that can be used with TimeTeller. This will also bring the opportunity to

improve TimeTeller because timecourse normalisation will be less necessary and the training

will be improved by having more training data at more time points around the day.

The algorithm is very customisable and flexible and relatively fast. For example, on a Mac-

book Pro (2021) with an 8-core M1 chip and 16Gb of memory, calculation of the probability

models takes between 3 and 5 seconds and the leave-one-out analysis of the training datasets

take an average of between 0.71 and 0.76 seconds for test data analysis of a sample. The user is

free to choose the genes employed by TimeTeller and experiment with the parameters lthresh, η
and ε. Although we have experimented with changes, the effect of changing η and ε is clear

from Fig 2A and 2D and we have seen no reason for changing them from the values we have

used here. Keeping them constant means that Θ values can be compared across datasets.

On the other hand, lthresh needs to be chosen using the data for the reasons explained in

Methods and Note C in S1 Appendix. While the value of lthresh will vary with different tran-

scriptomic platforms and experimental protocols in a situation where new test data is arriving

in multiple batches it should not be the case that lthresh is constantly being reassessed. A con-

sensus value should quickly be arrived at. we believe that in its use, for example, with individu-

als in a clinical context it will be possible to settle on a platform and protocol and value of

lthresh that can be used across all test data.
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