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Abstract

Quantifying finger kinematics can improve the authors’ understanding of finger function
and facilitate the design of efficient prosthetic devices while also identifying movement dis-
orders and assessing the impact of rehabilitation interventions. Here, the authors present
a study that quantifies grasps depicted in taxonomies during selected Activities of Daily
Living (ADL). A single participant held a series of standard objects using specific grasps
which were used to train Convolutional Neural Networks (CNN) for each of the four fin-
gers individually. The experiment also recorded hand manipulation of objects during ADL.
Each set of ADL finger kinematic data was tested using the trained CNN, which identified
and quantified the grasps required to accomplish each task. Certain grasps appeared more
often depending on the finger studied, meaning that even though there are physiological
interdependencies, fingers have a certain degree of autonomy in performing dexterity tasks.
The identified and most frequent grasps agreed with the previously reported findings, but
also highlighted that an individual might have specific dexterity needs which may vary with
profession and age. The proposed method can be used to identify and quantify key grasps
for finger/hand prostheses, to provide a more efficient solution that is practical in their
day-to-day tasks.

1 INTRODUCTION

Finger and fingertip injuries commonly occur due to work-
related incidents [1], particularly due to machinery and tool
exposure during labour [2], and can result in digit or partial
hand amputation. Approximately 68% to 78% of amputations
in trauma cases occur in the upper limb, with finger ampu-
tations accounting for 90% of those cases [3]. Unfortunately,
many individuals who undergo finger amputations are unable to
continue in their original occupation, leading to a need for occu-
pational change. Despite the frequency of finger amputations,
advancements in finger prosthetics have been limited compared
to full hand or lower-limb prostheses [4]. To improve the design
and functionality of prosthetic devices, it is essential to consider
individual expectations and concerns [5]. Replicating human
hand functionality as closely as possible is a key factor in achiev-
ing better prosthetic performance [6]. It is known that fingers
work individually to achieve grasps. For example, the index fin-
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ger and thumb work independently [7] and their movement
varies from person to person. If we quantify the most frequent
finger postures of a selected group of people, for example, peo-
ple whose work involves the use of tools and machinery, then
we can better understand individual finger synergies. The data
obtained could inform on the kinematic parameters required
for a prosthetic finger and the design would them help to
restore function in a group that is highly exposed to injuries and
amputations.

Previous studies have classified and created taxonomies
of the variety of human hand grasps [8–10]. To the best of
our knowledge, only a couple of studies have recorded and
quantified such grasps during work tasks and activities of daily
life (ADL): Battraw et al. [11] evaluated and categorized the
hand activities of two children in their home environments
and Zheng et al. [12] quantified grasp type and frequency
in daily household and machine shop tasks. These studies
were able to identify the most common grasps for their
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target subjects in specific environments and have shown that
each target user has different preferences and manipulation
strategies [13], which emphasizes the need for more studies
evaluating grasps during ADL, including food preparation,
eating, self-maintenance, and even interaction with electronic
devices.

Current studies on grasps during household, machining, and
daily life tasks have certain limitations. They often rely on video
recordings, which require manual identification of the grasps
performed, making the process time-consuming and prone to
inaccuracies, as it is based on subjective judgement. Additionally,
another limitation of these studies is that information on the
full grasps executed is predominantly generated by observing
the whole hand, due to the reliance of human judgement-based
analysis methods. This information is useful when needed for
extrapolation to full hand function but can be limiting when
trying to describe the specific role of a finger and its contribu-
tions to grasps and tasks. Our argument is that understanding
individual finger motion is necessary for individual finger pros-
thetic design, whereas full hand function is useful mainly for full
hand prostheses development. The main limiting factor is that
when evaluating full hand kinematics, individual finger postures
are evaluated with regards to the rest of the hand, which may
not provide full information on how the finger works for finger
prosthetic design.

Research indicates that the thumb, index, and little fingers
demonstrate more individuated movements compared to the
middle and ring fingers [7]. This shows the independence of fin-
ger motion reflecting hand neuromuscular architecture [14]. It
is well known that multiple degrees of freedom of the hand are
controlled by a lower number of actuators, meaning that there
are intrinsic synergies that dictate hand and finger function [15].

In order to inform finger prosthetic design, this research
aims to utilize recent developments in artificial intelligence
for tracking and quantifying finger postures. While diverse
options for finger prostheses exist in the market with varying
levels of acceptability, adaptability, and workspace capabilities,
no standards currently dictate how finger prosthetic design
should meet these criteria and adapt to different needs [16]. By
quantifying finger postures during ADL, it should be possible
to design better prostheses that fulfil specific finger roles during
specific tasks.

Therefore, the primary goal of our study was to evaluate
if convolutional neural networks (CNNs) can be applied to
recognize defined grasps during ADL for individual fingers. If
true, this approach could offer a faster and more reliable anal-
ysis compared to video recordings, which often involve manual
frame-by-frame labelling. Also, this approach takes advantage
of the use of motion capture technology which is employed as
it is the ‘gold standard’ for biomechanical evaluation of human
movement.

The hypothesis of this research is that a subset of grasps can
be used to describe the most crucial finger postures required
during ADL. Hand postures can typically be characterized as a
linear combination of a smaller number of synergies, and the
same may apply to individual fingers. This implies that finger
prosthesis design can be simplified through a dimensionality
reduction approach, resulting in reduced size, weight, and cost.

The experiments performed used a motion capture system to
record finger kinematic data during static grasps extracted from
known taxonomies, which were transformed into custom RGB
images fed into a CNN using transfer learning. Finger kinemat-
ics were also recorded during ADL. Trained CNNs identified
grasps during such activities, allowing quantification of the most
common grasps for each finger.

The presented research is intended as a proof-of-concept
study. The objective of this letter is to explore and identify the
most common finger postures related to grasps described in
known taxonomies during ADL. We also hypothesized that the
participant would exhibit similar sets of grasps to those reported
in the literature, but with specific differences between fingers.

The results obtained from this method for identifying fin-
ger grasps during ADL will contribute to the design of larger
cohort studies of users who could benefit from improved func-
tional design of finger prosthetics based on real-world ADL
requirements data.

2 METHODS

The study received ethical approval from the University of War-
wick Ethics Committee (ID: BSREC 138/21-22). As the study
will serve as a proof-of-concept evaluation of the potential of
CNN to identify grasps, we recruited a single male, right-handed
participant (age = 34 years), who gave informed consent. The
participant attended one data collection session.

2.1 Setup

Data collection took place at the University of Warwick Gait
Laboratory. A motion capture system consisting of 12 MX-T20
cameras (Vicon Motion Systems, Oxford, UK), collecting data
at 125 Hz, was used.

A custom-made marker set was used. The marker set was
designed to evaluate tri-dimensional finger biomechanical func-
tion using motion capture systems during ADL. A total of
88 markers were placed on the participant’s right hand. This
included 33 calibration markers, which were positioned on
finger joint anatomical landmarks for the definition of rigid seg-
ments and removed after a static recording (see Figure 1 for
the marker positions used). Non-collinear markers were used
to define the segments, with anatomical reference planes estab-
lished using a right-handed Cartesian coordinate system and
a Cardan XYZ rotation sequence [17]. Distal interphalangeal
(DIP) flexion, proximal interphalangeal (PIP) flexion, metacar-
pophalangeal (MCP) flexion and finger abduction/adduction
angles were considered and recorded for each finger. Only the
index, middle, ring, and little fingers were evaluated in this study.

A static trial was recorded with participant wearing all cali-
bration and tracking markers, to capture the necessary kinematic
segments. After removing the calibration markers, a zero-degree
baseline for the finger joints was established during the test
by recording a calibration static trial using only tracking mark-
ers. Following the procedures described by Cook et al. [18] and
Nataraj and Li [19], the participant utilized a flat, square block
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TREJO RAMÍREZ ET AL. 3

FIGURE 1 (a) Dorsal and (b) palmar view of the full marker set with calibration and tracking markers. Calibration markers are circled in blue.

of wood, acting as a digit alignment device. In this position,
the participant laid their hand flat with fully adducted fingers,
while the thumb remained fully extended and adducted. Fin-
ger joint angles were recorded and averaged over 1 s for the
normalization of all motion tasks and static grasps.

2.2 Training data

Thirteen grasps were extracted from the GRASP taxonomy
[8] to be used for the training data set. The selection criteria
included: (1) Grasps that allowed the recording of most fin-
ger segments with minimal overlapping or occlusion; (2) grasps
where specific fingers were in contact with the object (relevant
during Convolutional Neural Network training); and (3) com-
monly observed grasps during household and machining tasks
[20]. The selected grasps are presented in Figure 2. The partici-
pant held the indicated object and maintained the desired grasp
for 1 s without moving or changing position. The time was
selected as suitable for the recording of intended grasp action
of the hand when holding the indicated object. Ten occurrences
per grasp were recorded.

2.3 Test data

Following the recording of static grasps, the participant engaged
in a series of ADL tasks, previously documented in the liter-
ature. These tasks encompassed eating and cooking tasks [21]
along with related assessments such as Brief activity perfor-

mance measure for upper limb amputees (BAM-ULA) [22],
the Sollerman Hand function test [23], and tasks aligned with
the World Health Organization International Classification of
Functioning, Disability and Health (ICF) [24]. These tasks
were also representative of self-maintenance, cleaning, and
food preparation. Additionally, tasks associated with the use of
technological devices were included, as these are increasingly
becoming part of day-to-day lives. The devices chosen were a
computer mouse, keyboard, mobile phone, and a videogame
console (all chosen activities can be seen in Figure 3).

For each task, recordings were initiated from the moment the
participant contacted the object, signalling readiness to perform
the task and continued until the participant finished the task.
The participant was instructed to perform the tasks in a natu-
ral manner. For tasks involving spreading butter, brushing teeth,
and shaving, the participant was asked to simulate the tasks as
closely as possible. In the case of tasks involving the use of a
mouse and typing using a keyboard, the devices were connected
to a tablet. The participant was then instructed to browse a
webpage of his choice and compose an email, respectively. For
tasks involving browsing on a mobile phone and playing with a
videogame console, the participant was given 5 min to interact
with Instagram and 9gag and play a selected videogame of their
choice, in a typical manner.

2.4 Data processing

The raw marker trajectories were filtered in Vicon Nexus using
a fourth-order zero-lag low-pass Butterworth filter with a cut-
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4 TREJO RAMÍREZ ET AL.

FIGURE 2 Selected grasps. The postures were used to train the CNN for each finger.

FIGURE 3 Images if the ADL tasks recorded. The participant used common household items to perform the tasks. The participant used for two of the tasks a
Oppo X5 Pro smartphone and a Nintendo Switch OLED.

off frequency of 15 Hz. This filtering step aimed to eliminate
displacement distortion that could lead to angle signal peaks
during calculation. The resulting filtered marker trajectory data
were then used to calculate finger joint angles using Vicon
ProCalc. The angle data for all trials and tasks were further
filtered using a zero-lag fourth-order low-pass Butterworth
filter with a cut-off frequency of 5 Hz, following the recom-
mendations outlined by Skogstad et al. [25], for hand motion
tracking.

2.5 Creation of the training image dataset

Following the calculation of joint angles, the kinematic data were
segmented per finger. The recorded data over 1 s were averaged
for each posture for each finger and processed using bespoke
MATLAB software.

To convert the finger joint angle data into images, the scalo-
gram technique was employed. Initially, the kinematic data were
transformed into a customized function. Subsequently, the data
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TREJO RAMÍREZ ET AL. 5

FIGURE 4 Creation of the training image data set. First, static grasps were recorded, then finger kinematics were calculated and transformed using a scalogram
method. The images were used to train the GoogLeNet neural network.

were transferred to the time-frequency domain using a con-
tinuous wavelet transform to generate a scalogram image. The
scalogram represents the kinematic data as an image composed
of blobs, colours, loops, and lines. An example of how to build
such images in Matlab is provided in [26]. The method was cho-
sen due to its effectiveness in translating signals into images
with discernible features for training and recognition tasks using
CNNs [27]. To enhance the recognition of grasp differences, a
custom colour map was utilized, emphasizing prominent image
features. The process of converting finger kinematic data into
images is illustrated in Figure 4. The resulting images were
sized at 224 by 224-pixels, aligning with the requirements of the
selected CNN.

2.6 Transfer learning of the CNN

For the classification of grasp images, the GoogLeNet deep
learning algorithm was used. GoogLeNet is a CNN network
proposed by Christian Szegedy [28]. The network is 22 layers
deep based on the Inception network architecture and pre-
trained using the ImageNet data set. The inception modules
are built from multiple concatenated convolutional layers, which
makes it very effective at extracting high-level features for image
recognition tasks. The network was chosen because it has shown
better results in image classification compared to other net-
works (such as AlexNet) due to the number of layers utilized,
displaying more efficient feature extraction for classification
[29]. To incorporate a GoogLeNet network in our application
transfer learning was used. Transfer learning is a machine learn-
ing approach that leverages the existing knowledge of a CNN
to classify new images. This methodology requires a smaller
amount of new data for training and benefits from the transfer
of pre-existing knowledge [30]. Using MATLAB’s Deep Net-
work Designer app, two layers at the end of the GoogLeNet
network were replaced. These are the fully connected layer,
combining primitive features into the specific patterns, and the
output layer, which assigns a label to a test image [31].

Transfer learning was done by adapting the 22-layer deep net-
work GoogLeNet, subsequently trained for each finger using

TABLE 1 Selected grasps for training the CNN for each of the fingers.

Grasps trained Index Middle Ring Little

Adducted thumb ✓ ✓ ✓ ✓

Finger extension ✓ ✓

Lateral ✓ ✓ ✓ ✓

Light tool ✓ ✓

Medium wrap ✓ ✓ ✓ ✓

Palmar pinch ✓

Parallel extension ✓ ✓ ✓ ✓

Power sphere ✓ ✓ ✓ ✓

Precision disc ✓ ✓ ✓ ✓

Precision sphere ✓ ✓ ✓ ✓

Prismatic 4 fingers ✓ ✓ ✓ ✓

Tripod ✓ ✓

Writing tripod ✓ ✓

a subset of the grasps recorded. Using MATLAB’s Deep Net-
work Designer app, we modified the pre-trained GoogLeNet
network. The image input layer is set to take on 224 by 224-pixel
images in colour (RGB). Only the final fullyConnectedLayer
and classificationLayer were replaced with the same layers but
with different parameters, in this case the number of output
classes (grasps) for each finger.

As not all fingers were in contact with the object or play a
role during the selected grasps, a subset of grasps was selected
for training each finger (see Table 1). A smaller subset of grasps
was selected for the ring and little fingers, as these do not play a
role in several grasps. For example, in writing tripod, these fin-
gers flex completely to move away and allow the index and/or
middle finger to grasp the object.

The training image data set used 10 images per grasp, using
30% of the data selected randomly for validation. Following the
training parameters shown in [32], and follow-up fine-tuning,
the networks were trained on a laptop equipped with an Intel
i7-11800 processor and a NVidia RTX3070 GPU graphics card.
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6 TREJO RAMÍREZ ET AL.

FIGURE 5 Example of the data extraction of one finger during ADL. Representative ADL were recorded and finger kinematics were used to create images via
scalograms of each recorded static posture.

TABLE 2 Final validation accuracy and loss of the networks for each
finger.

Finger

Final validation

accuracy

Final validation

loss

Index 84.61% 0.40%

Middle 100.00% 0.04%

Ring 87.50% 0.32%

Little 100.00% 0.09%

The training parameters for the network were set as follows: a
base learning rate of 0.001, a mini-batch size of 32, and training
conducted for 100 epochs. The final training results for each
network are summarized in Table 2.

2.7 Creation of the ADL image dataset

The ADL image dataset was created by extracting grasps for
each activity. A ‘grasp’ during an ADL was defined as a con-
sistent finger posture maintained across frames. To determine
the boundaries of a grasp, the changes in joint angles between
frames were examined. If there were no changes in joint angles
greater than 1◦, then this was considered a single grasp posture.
The criteria chosen were deemed suitable as it allowed to reduce
the number of grasps for testing during long ADL recordings
but also was sensitive enough to average similar grasps where
fingers were mostly static during tasks. On the other hand, if
changes in angles exceeded one degree between frames, then
this was considered a different grasp or posture. Frames where
no joint angle changes over one degree occurred were averaged,
representing a single grasp posture. The procedure for trans-
forming finger kinematic data into images followed a similar
process to the training dataset, as illustrated in Figure 5.

TABLE 3 Index finger total grasp occurrence during ADL.

Grasp name

Number of

instances

Percentage of

data% instance

Adducted thumb 69 2.3

Finger extension 38 1.3

Lateral 42 1.4

Medium wrap 76 2.5

Palmar pinch 54 1.8

Power sphere 4 0.1

Precision disc 614 20.6

Precision sphere 1422 47.7

Prismatic 4 fingers 6 0.2

Tripod 545 18.3

Writing tripod 112 3.8

ADL, activities of daily living.

3 RESULTS

The neural network for each finger was used to identify trained
grasps during ADL. The neural networks were able to recognize
grasps used during the chosen activities. Total grasp occurrences
and ADL occurrences per finger are shown in Tables 3–9.

3.1 Index finger

The precision sphere grasp has the highest occurrence with 1422
instances, accounting for 47.7% of all grasps (see Table 3). Even
though the precision sphere grasp dominated the percentage of
data metric, this was due to the high number of instances iden-
tified when the participant used the mouse (see Table 4), but
it was also present in other activities. This indicates that the
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TREJO RAMÍREZ ET AL. 7

TABLE 4 Index finger grasp occurrence for each ADL.

ADL Grasp name

Number of

instances

Percentage of

data%

Instance

Spreading butter Finger extension 1 12.5

Precision disc 7 87.5

Cleaning with a
cloth

Finger extension 16 69.6

Precision disc 7 30.4

Combing hair Precision sphere 17 65.4

Tripod 9 34.6

Using a mouse Adducted thumb 5 0.4

Finger extension 2 0.2

Medium wrap 16 1.4

Precision disc 278 24.5

Precision sphere 655 57.7

Tripod 180 15.8

Screwing a nut on
a bolt

Lateral 21 23.1

Palmar pinch 9 9.9

Tripod 18 19.8

Writing tripod 43 47.3

Picking up coins Adducted thumb 5 19.2

Precision disc 1 3.8

Prismatic 4 fingers 1 3.8

Tripod 13 50.0

Writing tripod 6 23.1

Pouring juice Medium wrap 1 6.3

Precision sphere 12 75.0

Tripod 3 18.8

Pouring milk Precision disc 8 27.6

Tripod 21 72.4

Shaving Adducted thumb 18 58.1

Tripod 13 41.9

Slicing Adducted thumb 2 8.7

Precision disc 6 26.1

Precision sphere 13 56.5

Tripod 2 8.7

Brushing teeth Adducted thumb 39 2.5

Finger extension 19 1.2

Lateral 21 1.3

Medium wrap 59 3.8

Palmar pinch 44 2.8

Power sphere 4 0.3

Precision disc 307 19.6

Precision sphere 722 46.1

Prismatic 4 fingers 5 0.3

Tripod 284 18.1

Writing tripod 63 4.0

(Continues)

TABLE 4 (Continued)

ADL Grasp name

Number of

instances

Percentage of

data%

Instance

Browsing on a
phone

Precision sphere 1 100.0

Cracking an egg Precision sphere 1 100.0

Grating a lemon Palmar pinch 1 100.0

Typing on a
keyboard

Tripod 1 100.0

Pouring water into
a jug

Precision sphere 1 100.0

Playing with a
console

Tripod 1 100.0

ADL, activities of daily living.

TABLE 5 Middle finger total grasp occurrence during ADL.

Grasp name

Number of

instances

Percentage of

data% instance

Precision sphere 1 0.3

Adducted thumb 34 9.2

Finger extension 32 8.6

Lateral 15 4.1

Light tool 109 29.5

Medium wrap 13 3.5

Parallel extension 10 2.7

Precision disc 2 0.5

Precision sphere 20 5.4

Prismatic 4 fingers 36 9.7

Tripod 20 5.4

Writing tripod 78 21.1

ADL, activities of daily living.

index finger precision sphere grasp is commonly used during ADL
and plays a significant role in manual dexterity. A similar case
occurred with the precision disc grasp which was the second most
frequent grasp appearing across different ADL. Other index fin-
ger grasps displaying lower occurrence rates, such as prismatic 4

fingers, lateral, and power sphere, are less commonly used and more
specific to certain ADL which may require particular index fin-
ger positioning, such as picking up coins, screwing a nut on a
bolt, or brushing teeth.

3.2 Middle finger

Among the identified grasps for the middle finger, the most
frequently observed was the light tool grasp, which accounted
for 29.5% of all instances (see Table 5), but this was mainly
observed during one specific ADL (combing hair, see Table 6),
whereas the second most identified grasp (writing tripod) was
identified in four of the considered ADL. The results showed
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8 TREJO RAMÍREZ ET AL.

TABLE 6 Middle finger grasp occurrence for each ADL.

ADL Grasp name

Number of

instances

Percentage

of data%

instance

Cleaning with a cloth Parallel extension 4

Combing hair Adducted thumb 5 2.6

Finger extension 5 2.6

Lateral 7 3.7

Light tool 109 57.4

Medium wrap 4 2.1

Parallel extension 1 0.5

Prismatic 4 fingers 2 1.1

Tripod 1 0.5

Writing tripod 56 29.5

Using a mouse Precision sphere 1 100.0

Screwing a nut on a bolt Adducted thumb 7 15.9

Medium wrap 8 18.2

Precision sphere 12 27.3

Tripod 6 13.6

Writing tripod 11 25.0

Pouring juice Tripod 1 100.0

Pouring milk Precision disc 1 100.0

Shaving Medium wrap 1 100.0

Brushing teeth Adducted thumb 22 18.5

Finger extension 27 22.7

Lateral 8 6.7

Precision sphere 7 5.9

Prismatic 4 fingers 33 27.7

Tripod 12 10.1

Writing tripod 10 8.4

Browsing on a phone Precision disc 1 100.0

Cracking an egg Prismatic 4 fingers 1 100.0

Typing on a keyboard Parallel extension 5 100.0

Pouring water into a jug Precision sphere 1 100.0

Playing with a console Writing tripod 1 100.0

ADL, activities of daily living.

TABLE 7 Ring finger total grasp occurrence during ADL.

Grasp name Instance % Instance

Adducted thumb 18 11.2

Lateral 62 38.5

Medium wrap 5 3.1

Power sphere 1 0.6

Precision disc 1 0.6

Precision sphere 5 3.1

Prismatic 4 fingers 69 42.9

ADL, activities of daily living.

TABLE 8 Ring finger grasp occurrence for each ADL.

ADL Grasp name

Number of

instances

Percentage

of data%

instance

Cleaning with a cloth Power sphere 1 100.0

Using a mouse Precision sphere 1 100.0

Screwing a nut on a bolt Adducted thumb 2 7.7

Lateral 9 34.6

Medium wrap 2 7.7

Prismatic 4 fingers 13 50.0

Pouring juice Precision sphere 1 100.0

Pouring milk Precision sphere 1 100.0

Shaving Adducted thumb 16 55.2

Lateral 11 37.9

Medium wrap 2 6.9

Brushing teeth Lateral 42 42.9

Prismatic 4 fingers 56 57.1

Browsing on a phone Precision sphere 1 100.0

Typing on a keyboard Precision disc 1 100.0

Pouring water into a jug Precision sphere 1 100.0

Playing with a console Medium wrap 1 100.0

ADL, activities of daily living.

TABLE 9 Little finger total grasp occurrence during ADL.

Grasp name

Number of

instances

Percentage of

data% instance

Adducted thumb 28 14.1

Lateral 32 16.1

Medium wrap 27 13.6

Parallel extension 22 11.1

Power sphere 73 36.7

Precision disc 15 7.5

Prismatic 4 fingers 2 1.0

ADL, activities of daily living.

that the middle finger might provide a supportive role in grasps
complimentary to index finger and thumb grasps, where more
support is required, and where the index finger cannot pro-
vide enough stability and dexterity to adapt to object size or
manipulation requirements.

It is worth noting that the data include a small number of
instances for certain grasps, such as precision sphere (one instance)
and precision disc (two instances). Therefore, while these grasps
had a low overall occurrence, it is important to note their role
during ADL for this particular participant—it might not be a
significantly necessary component of middle finger function to
achieve stable grasps. The remainder of the identified middle
finger grasps were more evenly distributed among tasks.
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TREJO RAMÍREZ ET AL. 9

3.3 Ring finger

Among the recorded grasps, the most prevalent ring finger
grasp was the prismatic 4 fingers, which accounted for a signif-
icant proportion of instances, 42.9% (see Table 7). This was
dominated by the number of instances identified for this grasp
during the screwing a nut on a bolt ADL (see Table 8). The sec-
ond most prevalent grasp (lateral) appeared in two ADL (shaving
and brushing teeth). It seems that, in the case of the ring finger,
certain postures tended to dominate finger dexterity during spe-
cific ADL. This may vary from task to task, as there were no
grasps that commonly appeared during all of the ADL consid-
ered for the ring finger, indicating their occasional utilization
during ADL.

3.4 Little finger

The most frequently observed little finger grasp was the power

sphere which accounted for a significant portion of instances
at 36.7% (see Table 9). The second most prevalent grasp was
the lateral, constituting 16.1% of instances. Both grasps only
appeared in two of the ADL, whereas the other grasps were
distributed over the remaining ADL, with the little finger pris-

matic 4 fingers grasp, appearing in only two instances during the
shaving task (see Table 10).

It is thought that the function of the little finger during
tasks employing the power sphere, such as pouring juice, shav-
ing and screwing a nut on a bolt, is to provide support for
the other fingers. This can be argued practically during tasks
involving large heavy objects or during meticulous tasks with
smaller objects. Other grasps had very similar frequencies in
total. Brushing teeth, combing hair, screwing a nut on a bolt
and shaving were tasks where the most frequently occurring
grasps were identified. The data show that some tasks require
varied ring finger grasps to allow for small adjustments. This can
be seen in transitions between finger postures from one grasp
to the other, allowing the hand to adapt to task requirements
and in-hand manipulation of a small object/tool, for example,
rotating the comb, toothbrush, and the razor during meticulous
tasks.

4 DISCUSSION

This letter presents the first individual quantification of grasps
for selected fingers during ADL. This quantification of fin-
ger grasps can help to prioritize finger postures for prosthesis
design and further contribute to our understanding of hand
function and grasp preferences during daily activities. The
employed CNN were able to identify the most prevalent grasps
for each finger studied.

The grasps with highest total percentage of frequency during
this study were the precision sphere for the index finger (47.7%)
and the prismatic 4 fingers for the ring finger (42.9%). The medium

wrap and precision disc grasps were identified for all fingers. The
finger extension grasp was found only on the index finger data,

TABLE 10 Little finger grasp occurrence for each ADL.

ADL Grasp name

Number of

instances

Percentage

of data%

Instance

Using a mouse Parallel extension 11 91.7

Precision disc 1 8.3

Screwing a nut on
a bolt

Adducted thumb 4 28.6

Lateral 1 7.1

Power sphere 9 64.3

Pouring juice Parallel extension 1 100.0

Pouring milk Parallel extension 10 100.0

Shaving Adducted thumb 15 17.6

Medium wrap 10 11.8

Power sphere 58 68.2

Prismatic 4 fingers 2 2.4

Brushing teeth Adducted thumb 9 11.8

Lateral 31 40.8

Medium wrap 16 21.1

Power sphere 6 7.9

Precision disc 14 18.4

Browsing on a
phone

Medium wrap 1 100.0

Typing on a
keyboard

Precision disc 1 100.0

Pouring water into
a jug

Adducted thumb 4 5.8

Medium wrap 19 27.5

Parallel extension 14 20.3

Precision disc 13 18.8

Precision sphere 9 13.0

Prismatic 4 fingers 10 14.5

Playing with a
console

Adducted thumb 1 100.0

ADL, activities of daily living.

whereas the lateral grasp was observed for all fingers except
the index finger, which shows the capabilities of the CNN to
identify grasps present in specific fingers, which provides vital
information on each finger movement strategy during ADL.

Most previous studies regarding hand function and grasps
have focused on creating taxonomies and classifications of
human hand function. To the best of our knowledge, there are
only two previous reports quantifying grasps during machinist
and house cleaning tasks. The first one is an investigation of the
grasp types and frequencies of a professional housekeeper and
a machinist [20]. The findings showed that the most common
grasps differed between professions, which could indicate that
grasping requirements vary between subject needs. There were
similarities between our findings and the aforementioned stud-
ies of both the housekeeper and the machinist, as their most
common grasps were present in our study for all fingers but in
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10 TREJO RAMÍREZ ET AL.

varying frequency. The most common grasps for the machin-
ist, and in this study, were the lateral pinch, light tool, tripod, medium

wrap, finger extension, and thumb-index (palmar pinch) grasps. For
the housekeeper, identified grasps in common were the medium

wrap, finger extension, power sphere, lateral, precision disc, and palmar

pinch grasps [33].The common grasps identified in our pilot
study and the grasps from the housekeeper and the machinist
might help to confirm the role of the hand and fingers during
job-specific tasks, which could also contribute to the design of
job-specific finger prostheses.

In this pilot study, identified grasps for the index finger, sim-
ilar to those for the housekeeper, were the finger extension, lateral,

medium wrap, palmar pinch, and precision sphere grasps, whereas pris-

matic 4 fingers and writing tripod were also observed for the index
finger as for the machinist.

Common grasps observed for the machinist were mainly
present in specific fingers. For example, the light tool grasp was
only observed for the middle finger, accounting for approx-
imately 30% of the total grasps identified. The tripod grasp
accounted for a larger total frequency percentage for the index
finger than for the middle finger (18.3% vs. 5.4%). These results
confirm finger independence in the execution of job-related
tasks and ADL.

The second study quantifying grasps during ADL focused on
children in their home environments. Study findings showed
that rehabilitation and prostheses could benefit from age-
appropriate and activity-specific task considerations to obtain
better outcomes and increased functional independence [11].
The housemaid and machinist study suggested that six to nine
grasps can account for approximately 80% of activities, whereas
they found that seven grasps accounted for 90% or more of
daily activities for children. In this study, two to six grasps
accounted for more than 80% of activities for each finger. It
is likely that by focusing on individual fingers we can better
reduce kinematic complexity and focus on functional design
for a specific finger prosthetic. For example, in comparison, six
grasps accounted for 83% of total grasp occurrence for the mid-
dle finger whereas only two grasps accounted for 81% of the
grasps for the ring finger. Specific fingers imply specific motor
requirements to achieve a stable grasp during ADL. Their find-
ings identified the tripod, lateral pinch, parallel extension, and medium

wrap as the most frequent grasps required. In part, this agrees
with our findings but also confirms the specificity of grasp
requirements for different users and groups.

A quantitative taxonomy of human grasps based on elec-
tromyography and kinematic data was able to divide hand
movements into five categories based on hand shape, finger
positioning, and muscle activity [34]. Our identified common
grasps per finger fall within the following identified categories:
distal, spherical, and flat grasps. Such grasps generally focus on
allowing the fingers to adapt to object size and shape, permitting
precision tasks to be performed.

The main limitation of this current study lies in the small
training and validation data sets and the lack of comparison
with other identification methodologies using video recordings.
On the other hand, this study’s strengths lie in the innova-
tive evaluation and fast, automated, recognition of grasps from

ADL. Another limitation of our study is the limited amount of
data collected as the experiment was designed to be a pilot,
proof-of-concept study to evaluate if CNN are appropriate
for the identification and quantification of grasps seen dur-
ing ADL. Furthermore, additional training data need to be
collected to evaluate CNN accuracy during classification. On
the other hand, the collected data suggests that specific grasp
strategies are required for different fingers. Consequently, more
in-depth group-focused evaluations could highlight important
grasp occurrences, which could improve the design considera-
tions of rehabilitation interventions and assistive and prosthetic
devices.

The methodology presented can be helpful in creating com-
prehensive special training data sets that can be used at a later
stage to improve functional rehabilitation interventions. For
example, the MusicGlove is a low-cost device developed as a
medium to guide hand exercise and quantifies movement recov-
ery [35]. Such devices and therapies could be improved by
quantifying finger postures and grasps stereotypical of a user
group (in this case, musicians) to create targeted rehabilitation
sessions that relate to patient needs and increase patient engage-
ment during rehabilitation. As previous studies have shown,
grasping strategies and the needs of users vary greatly with age
and occupation.

With the initial results obtained from a single participant, we
propose this methodology to facilitate finger kinematics and
grasp recognition within ADL for larger cohorts and specific
groups of users. Future applications include use in hospitals
and improving current manual evaluations of video recordings.
The method has shown potential for the recognition of grasps
using machine learning, which could lead to further research
in rehabilitation and prosthesis design. By quantifying the most
frequently used hand/finger grasps, prosthetic design could be
oriented to cover a specific range of needs when designing for
a large group or to specialize functionality based on certain tar-
get users. Future studies would help to quantify stereotypical
grasps in different prosthetic target groups; for example, man-
ual workers, who are commonly exposed to hazards and who are
highly affected following finger amputation. A prosthetic finger
is required to perform the tasks observed in day-to-day life if
it wishes to restore functionality as much as possible. Future
evaluations and quantification of grasps for prosthesis design
should go beyond household and self-maintenance tasks, with
consideration of the specific needs of the job/profession, age of
the user [11], hobbies [33], and the use of modern technological
devices [36].
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