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Abstract

We introduce a broad class of mechanistic spatial models to describe how spatially
heterogeneous populations live, die, and reproduce. Individuals are represented by
points of a point measure, whose birth and death rates can depend both on spatial
position and local population density, defined at a location to be the convolution of
the point measure with a suitable non-negative integrable kernel centred on that
location. We pass to three different scaling limits: an interacting superprocess, a
nonlocal partial differential equation (PDE), and a classical PDE. The classical PDE
is obtained both by a two-step convergence argument, in which we first scale time
and population size and pass to the nonlocal PDE, and then scale the kernel that
determines local population density; and in the important special case in which the
limit is a reaction-diffusion equation, directly by simultaneously scaling the kernel
width, timescale and population size in our individual based model.

A novelty of our model is that we explicitly model a juvenile phase. The number of
juveniles produced by an individual depends on local population density at the location
of the parent; these juvenile offspring are thrown off in a (possibly heterogeneous,
anisotropic) Gaussian distribution around the location of the parent; they then reach
(instant) maturity with a probability that can depend on the local population density at
the location at which they land. Although we only record mature individuals, a trace
of this two-step description remains in our population models, resulting in novel limits
in which the spatial dynamics are governed by a nonlinear diffusion.

Using a lookdown representation, we are able to retain information about genealo-
gies relating individuals in our population and, in the case of deterministic limiting
models, we use this to deduce the backwards in time motion of the ancestral lineage of
an individual sampled from the population. We observe that knowing the history of the
population density is not enough to determine the motion of ancestral lineages in our
model. We also investigate (and contrast) the behaviour of lineages for three different
deterministic models of a population expanding its range as a travelling wave: the
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Fisher-KPP equation, the Allen-Cahn equation, and a porous medium equation with
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1 Introduction

As one takes a journey, long or short, the landscape changes: forests thicken or thin
or change their composition; even in flat plains, springtime prairies host intergrading
mosaics of different types of flowers. The aim of this paper is to introduce and study a
broad class of mechanistic spatial models that might describe how spatially heteroge-
neous populations live, die, and reproduce. Questions that we (start to) address include:
How does population density change across space and time? How might we learn about
the underlying dynamics from genealogical or genetic data? And, how does genetic
ancestry spread across geography when looking back through time in these populations?

Reproduction of individuals naturally leads to spatial branching process models, in-
cluding branching random walk, branching Brownian motion, and the Dawson-Watanabe
superprocesses. However, as a result of the branching assumption (once born, individu-
als behave independently of one another), a population evolving according to any of these
models will either die out or grow without bound and, in so doing, can develop clumps
of arbitrarily large density and extent. Our starting point here is an individual-based
model of a single species in continuous space in which birth, death, and establishment
may all depend on local population density as well as on spatial location, allowing for
stable populations through density-dependent feedback. The model generalizes those
introduced to the ecology literature by [9] and [51], and our work follows various others
in the mathematical literature (e.g., [24, 33]).

Although it is often mathematically convenient to assume that individuals follow
Brownian motion during their lifetime, in our model, offspring are thrown off according
to some spatial distribution centred on the location of the parent and do not subsequently
move. This is particularly appropriate for modelling plant populations, in which this
dispersal of offspring around the parent is the only source of spatial motion.

Often models do not distinguish between juveniles and adults, so, for example, the
number of adults produced by a single parent is determined only by the degree of
crowding at the location of the parent. Although we shall similarly only follow the adult
population, in formulating the dynamics of the models we shall distinguish between
production of juveniles, which will depend upon the location of the adult, and their
successful establishment, which will depend on the location in which a juvenile lands.
The result is that not only the absolute number, but also the spatial distribution around
their parent, of those offspring that survive to adulthood will depend upon the local
population density.

We shall consider three different classes of scaling limits for our model. The first
yields a class of (generalised) superprocesses in which coefficients governing both the
spatial motion and the branching components of the process can depend on local popula-
tion density; the second is a corresponding class of deterministic non-local differential
equations; and the third are classical PDEs. We measure local population density around
a point by convolving with a smooth kernel ρ(·), which may differ for the two stages
of reproduction. When the limiting population process is deterministic, it is a (weak)
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solution of an equation of the form

∂tϕt(x) = r (x, ϕt)B∗
[
ϕt(·)γ

(
·, ϕt

)]
(x) + ϕt(x)F (x, ϕt) , (1.1)

where ϕt(x) can be thought of as the population density at x (although the limit may be a
measure without a density), and B∗ is (the adjoint of) a strictly uniformly elliptic second
order differential operator, typically the Laplacian. The dependence of each of the terms
r, γ, and F on ϕ is only through the local density at x, e.g., F (x, ϕ) = F (x, ρ∗ϕ(x)). We
shall be more specific about the parameters below.

By replacing ρ by ρε(·) = ρ(·/ε)/εd, we can also scale the “width” of the region over
which we measure local population density. When the population follows (1.1), we expect
that if we take a second limit of ε→ 0, thus scaling the kernels appearing in r, γ, and F
and making interactions pointwise, we should recover a nonlinear PDE. We verify that
this is indeed the case in two important examples: a special case of the porous medium
equation with a logistic growth term, in which the limiting equation takes the form

∂tϕ = ∆(ϕ2) + ϕ(1− ϕ); (1.2)

and a wide class of semi-linear PDEs of the form

∂tϕ = B∗ϕ+ ϕF (ϕ), (1.3)

which includes the Fisher-KPP equation and the Allen-Cahn equation. Equations of this
form have been studied extensively in the context of spatial ecology (see for instance [50]
and [14]) and in many other fields; for instance, [34] derive a stochastic version of (1.3)
to describe abundances of mutant bacteria strains along the human gut, [52] study the
effects of nonlinear diffusion on long-term survival of a lattice-based interacting particle
system, and [5] describe genetic variation in expanding waves using both forwards and
backwards-time arguments. Most of this work is theoretical; for empirical studies see
for instance [1] or [66]. We do not study the effect of movement of adults, which can
additionally affect the limiting equations: see for instance [42] or [59], especially if
movement depends on population density (as in [58] and [7]).

It is of interest to understand under what conditions we can replace the two-step
limiting process described above by one in which we simultaneously scale the kernels
and the other parameters in our population model to arrive at the PDE limit. This is
mathematically much more challenging, but we establish such one-step convergence in
cases for which the limit is a classical reaction-diffusion equation of the form (1.3) with
B = ∆, and ρ is a Gaussian density. We allow a wide class of reaction terms, F , so that
the Fisher-KPP equation (that is equation (1.3) with B = ∆ and F (ϕ) = 1− ϕ) emerges
as a special case.

Such results on (one-step) convergence to reaction-diffusion equation limits have
been achieved for a variety of interacting particle systems. Following the now classical
contributions of [17, 18, 55], much of this work has focused on lattice based models with
one particle per site, or on systems with a fixed number, N , of interacting diffusions as
N →∞. For systems of proliferating particles, as considered for example by [56, 32, 31],
an additional challenge (also apparent in our models), is the control of concentration of
particles. We follow [56, 32] in considering ‘moderate interactions’, meaning that the
number of individuals in the neighbourhood over which we measure local population
density tends to infinity, whereas [31] also consider the situation in which that number
remains finite. We refer to [31] for a more thorough literature review, but note that both
our model and scaling differ from those considered in the body of work discussed there:
whereas in those settings, the only scalings are the number of particles in the system
and the size of the neighbourhood over which individuals interact with one another, in
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keeping with the vast literature on continuous state branching models, we also scale
time and so must ensure that births are adequately compensated by deaths to prevent
the population from exploding.

The history of a natural population is often only accessible indirectly, through patterns
of genetic diversity: from genetic data, one can try to infer the genealogical trees that
describe how individuals in a sample from the population are related, and these have
been shaped by its history (see e.g., [54, 46]). It is therefore of interest to establish
information about the distribution of genealogical trees under our population model,
which we do with a lookdown construction. Lookdown constructions were first introduced
in [19] to provide a mechanism for retaining information about genealogical relationships
between individuals sampled from a population evolving according to the Moran model
when passing to the infinite population limit. Since then, they have been extended to
a wide range of models. Of particular relevance to our work here are the papers [48]
and [27], in which lookdown constructions are provided for a wide variety of population
models, including spatially structured branching processes.

In general, even armed with a lookdown construction, calculation of relevant statistics
of the genealogy remains a difficult question. However, in special circumstances, some
progress can be made. As an illustration, we shall consider a scenario that has received
a great deal of attention in recent years, in which a population is expanding into new
territory as a travelling wave. In Section 3.2 we shall describe the motion of a single
ancestral lineage relative to three different (deterministic) wavefronts across R1.

Most work on the topic of “waves” of expanding populations has focused on models
that caricature the classical Fisher-KPP equation with a stochastic term, i.e.

dw =
(
∆w + sw(1− w)

)
dt+

√
α(w)

N
W (dt, dx),

where W is space-time white noise, and N is a measure of the local population density.
The coefficient α(w) is generally taken to be either w, corresponding to a superprocess
limit, or w(1−w) giving a spatial analogue of a Wright-Fisher diffusion. Starting with the
pioneering work of [13], a considerable body of evidence has been amassed to underpin
the conjecture that for this, and a wide class of related models, genealogies converge
on suitable timescales in the infinite density limit to a Bolthausen-Sznitman coalescent.
This reflects the fact that, for this equation, ancestral lineages become trapped in the
wavefront, where the growth rate of the population is highest. Once there, they will
experience rapid periods of coalescence corresponding to significant proportions of
individuals in the front being descended from particularly reproductively successful
ancestors.

If one replaces the logistic growth term of the classical Fisher-KPP equation with a
nonlinearity that reflects cooperative behaviour in the population, such as

wF (w) = w(1− w)(Cw − 1), (1.4)

then, for sufficiently large C (strong cooperation), the nature of the deterministic wave
changes from “pulled” to “pushed”, [5, 6], and so the genealogies will be quite different
from the Fisher-KPP case. For example, [23] show that for a discrete space model
corresponding to this nonlinearity with C > 2, after suitable scaling, the genealogy of a
sample converges not to a Bolthausen-Sznitman coalescent, but to a Kingman coalescent.
The reason, roughly, is that ancestral lineages settle to a stationary distribution relative
to the position of the wavefront which puts very little weight close to the ‘tip’ of the wave,
so that when ancestral lineages meet it is typically at a location in which population
density is high, where no single ancestor produces a disproportionately large number of
descendants in a short space of time.
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The shape of the wave is not determined solely by the reaction term. For example,
as a result of the nonlinear diffusion, for suitable initial conditions, the solution to the
one-dimensional porous medium equation with logistic growth (1.2) converges to a
travelling wave with a sharp cut-off; i.e., in contrast to the classical Fisher KPP equation,
the solution at time t vanishes beyond x = x0 +ct for some constant wavespeed c > 0 [45].
As a first step towards understanding what we should expect in models with nonlinear
diffusion, one can ask about the position of an ancestral lineage relative to the wavefront
in the deterministic models. In Section 3.2 we shall see that in our framework, even with
logistic growth, the nonlinear diffusion corresponding to the porous medium equation
results in a stationary distribution for the ancestral lineage that is concentrated behind
the wavefront, leading us to conjecture that in the stochastic equation the cooperative
behaviour captured by the nonlinear diffusion will also result in a qualitatively different
pattern of coalescence to that seen under the stochastic Fisher-KPP equation. Indeed,
we believe that it should be feasible to show that in an appropriate limit one recovers a
Kingman coalescent.

Structure of the paper In this paper we study scaling limits of spatial population
models, obtaining convergence of both the population process (i.e., the population
density as a function of time, although strictly speaking it is a measure that may not have
a density) and of lineages traced back through such a population. We retain information
about lineages as we pass to the scaling limit by means of a lookdown construction.

In what follows we first study various scaling limits of the spatial population process,
and then turn our attention to lineages traced back through these populations. First, in
Section 2, we describe the model and the main results, Theorems 2.10, 2.21, and 2.24.
Next, in Section 3, we discuss a few striking consequences of these results regarding
the behavior of genealogies in travelling waves, the appearance of periodic “clumps”
in seemingly homogeneous population models, and identifiability of the underlying
dynamics from a stationary population profile. In Section 4, we provide heuristic
explanations of why the theorems ought to be true, and some key ideas behind them,
and in Section 5 we define and discuss the lookdown construction. Proofs of the results
begin in Section 6, which proves results for population models with nonlocal interactions,
while Section 7 gives the more difficult proof for the case when interaction distances also
go to zero in the limit. Finally, Section 8 gives proofs for convergence of the lookdown
process and the associated results for the motion of lineages. The Appendix contains a
few more technical and less central lemmas. The results are illustrated in a few places
with individual-based simulations, made using SLiM [38], but these are provided for
visualization and we do not embark on numerical study.

2 Model and main results

Our model is one of individuals distributed across a continuous space which we shall
take to be Rd. For applications, d = 1 or d = 2 (or even d = 3 for cells within the body),
but our main results apply more generally. At time zero, the population is distributed
over a bounded region, with O(N) individuals per unit area in that region, so the total
number of individuals will also be O(N). The population changes in continuous time,
and we encode the state of the population at time t by a counting measure X(t), which
assigns one unit of mass to the location of each individual.

Population dynamics are controlled by three quantities, birth (γ), establishment (r),
and death (µ), each of which can depend on spatial location and local population density
in a way specified below. Each individual gives birth at rate γ to a single (juvenile)
offspring, which is dispersed according to a kernel q(x, ·) away from the location x of the
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parent. We assume that q is the density of a multivariate Gaussian, allowing a nonzero
mean and anisotropic variance. Both the mean and covariance of q can change across
space, but do not depend on population density. The offspring does not necessarily
survive to be counted in the population: it “establishes” with probability r, or else it dies
immediately. Independently, each individual dies with rate µ.

We aim to capture universal behaviour by passing to a scaling limit. Specifically,
we shall take the “density”, N , to infinity, and also scale time by a factor of θ = θ(N),
in such a way that defining ηN (t) = X(θt)/N , the process {ηN (t)}t≥0 will converge to
a suitable measure-valued process as N and θ tend to infinity, with the nature of the
limit depending on how they tend to infinity together. Evidently, we also need to scale
the dispersal kernel if we are to obtain a nontrivial limit, for which we use qθ(x, ·), the
density of the multivariate Gaussian obtained by multiplying the mean and variance
components of q(x, ·) by 1/θ.

Birth, establishment, and death can depend on the location of the individual and
the local population density. Since we would like the population density to scale with
N , these are functions of X/N , i.e., the counting measure with mass 1/N placed at
the location of each individual. First consider birth rates, defined by a nonnegative
function γ(x,m) : Rd ×R≥0 → R≥0 of location x and local population density m. Local
population density is defined as the convolution of X/N with a smooth (non-negative,
integrable) kernel ργ(·). We write this convolution as ργ∗X/N . Then, when the state of
the population is X, an individual at location x gives birth to a single juvenile offspring
at rate γ(x, ργ ∗X(x)/N). Similarly, the establishment probability of an offspring at
location y is is r(y, ρr∗X(y)/N), where r(y,m) : Rd ×R≥0 → [0, 1] and again ρr∗X is the
convolution of X/N with the smooth kernel ρr.

We shall write µθ(x,X/N) for the per-capita death rate of a mature individual at x in
the population. In order for the population density to change over timescales of order θ,
we should like the net per capita reproductive rate to scale as 1/θ. In classical models, in
which r, γ, and µ are constant, this quantity is simply rγ−µ. Here, because production of
juveniles and their establishment are mediated by population density measured relative
to different points, the net reproductive rate will take a more complicated form. In
particular, the total rate of production of mature offspring by an individual at x will be

γ
(
x, ργ∗X(x)/N

) ∫
r
(
y, ρr∗X(y)/N

)
qθ(x, dy). (2.1)

Nonetheless, it will be convenient to define the death rate µθ in terms of its deviation
from rγ. To this end, we define the death rate of an individual at x, using a function
F (x,m) : Rd ×R≥0 → R, as

µθ(x,X/N) = r(x, ρr∗X(x)/N)γ(x, ργ∗X(x)/N)− 1

θ
F (x, ρF ∗X(x)/N), (2.2)

where ρF is again a smooth kernel. (We will also assume that parameters are chosen so
that this is always nonnegative, a point we return to later.) The function F is nearly the
net per capita reproductive rate, scaled by θ, and would be equal to it in a nonspatial
model; but, as can be seen from (2.1), differs because an offspring’s establishment
probability is measured at their new location rather than that of their parent. For the
most part, we work with F instead of µθ.

So, each of the three demographic parameters r, γ, and F , depends on local density,
measured by convolution with a smooth kernel, each of which can be different. As
a result, death rate depends (in principle) on population densities measured in three
different ways, so that we could write µθ(x) = µθ(x, ργ∗X(x)/N, ρr∗X(x)/N, ρF∗X(x)/N).
This may seem unnecessarily complex. However, not only is it natural from a biological
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perspective, it also turns out to be convenient for capturing nontrivial examples in the
scaling limit.

Remark 2.1. Although this model allows fairly general birth and death mechanisms,
there are a number of limitations. Perhaps most obviously, to simplify the notation
individuals give birth to only one offspring at a time, although this restriction could be
easily lifted (as in Section 3.4 of [27]). Furthermore, individuals do not move during their
lifetime, and the age of an individual does not affect its fecundity or death rate. Finally,
there is no notion of mating (although limitations on reproduction due to availability
of mates can be incorporated into the birth rate, γ), so the lineages we follow will be
uniparental. For these reasons, the model is most obviously applicable to bacterial
populations or selfing plants, although we do not anticipate that incorporation of these
complications will change the general picture.

For each N and θ, we study primarily the process with mass scaled by N and time
scaled by θ, (

ηNt
)
t≥0

:=
(
X(θt)/N

)
t≥0

,

which takes values in the space of càdlàg paths inMF (Rd) (the space of finite measures
on Rd endowed with the weak topology). In fact ηNt will be a purely atomic measure
comprised of atoms of mass 1/N .

Notation 2.2. Expressions like γ(x, ργ∗η(x)) will appear repeatedly in what follows. To
make formulae more readable, we overload notation to define

γ(x, η) := γ(x, ργ∗η(x)),

and similarly write r(x, η) for r(x, ρr∗η(x)), F (x, η) for F (x, ρF ∗η(x)), and µθ(x, η) for the
expression of equation (2.2). When convenient, we may also suppress the arguments
completely, writing simply γ, r, F , and µθ for these quantities.

Remark 2.3. In our prelimiting model, the population is represented by a point measure
in which each individual is assigned a mass 1/N . We use the term “population density”
for this process, as it is supposed to measure population size relative to a nominal
occupancy of N individuals per unit area. There is no implication that the measure
representing the population is absolutely continuous with respect to Lebesgue measure;
indeed in the prelimit it is certainly not.

In summary, at each time t, ηNt is purely atomic, consisting of atoms of mass 1/N

(which are the individuals). At instantaneous rate θγ(x, ηNt )NηNt (dx) an offspring of mass
1/N is produced at location x, which immediately disperses to a location y offset from x

by an independent Gaussian random variable, and once there establishes instantaneously
with probability r(y, ηNt ), or else dies. The distribution of the dispersal displacement
(i.e., y − x) may depend on x, and is specified by functions defining the mean ~b(x)/θ

and covariance matrix C(x)/θ. At instantaneous rate θµθ(x, ηNt )NηNt (dx) an individual
at location x dies. Note that the process

(
ηNt
)
t≥0

, which records numbers and locations
of adult individuals, is just a scaled spatial birth and death process. If, for example,
we insist that γ(x,m) is bounded, then existence (and in particular non-explosion) is
guaranteed by comparison with a pure birth process. We do not dwell on this, as we
shall require more stringent conditions if we are to pass to the limit as θ and N tend to
infinity.

It is convenient to characterise the process as a solution to a martingale problem. We
write C∞b (Rd) for the space of bounded smooth functions on Rd, and, where convenient,
we write 〈f, η〉 =

∫
Rd
f(x)η(dx).

Definition 2.4 (Martingale Problem Characterisation). For each value of N and θ, and
each purely atomic ηN0 ∈ MF (Rd) with atoms of mass 1/N , (ηNt )t≥0 is the (scaled)
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empirical measure of a birth-death process with càdlàg paths in MF (Rd) for which,
for all f ∈ C∞b (Rd), writing qθ(x, dy) for the Gaussian kernel with mean x+~b(x)/θ and
covariance C(x)/θ,

MN
t (f) := 〈f, ηNt 〉 − 〈f, ηN0 〉

−
∫ t

0

{〈(∫
θ
(
f(z)r(z, ηNs )− f(x)r(x, ηNs )

)
qθ(x, dz)

)
γ(x, ηNs ), ηNs (dx)

〉
+

〈
f(x)F (x, ηNs ), ηNs (dx)

〉}
ds

(2.3)
is a martingale (with respect to the natural filtration), with angle bracket process

〈
MN (f)

〉
t

=
θ

N

∫ t

0

{〈
γ(x, ηNs )

∫
f2(z)r(z, ηNs )qθ(x, dz), η

N
s (dx)

〉
+
〈
µθ(x, η

N
s )f2(x), ηNs (dx)

〉}
ds.

(2.4)

The angle bracket process (or, “conditional quadratic variation”) is the unique pre-
visible process making (MN (f)t)

2 − 〈MN (f)〉t a martingale with respect to the natural
filtration. It differs from the usual quadratic variation (usually denoted [MN (f)]t) be-
cause the process has jumps; for the (continuous) limit the two notions will coincide. The
use of angle brackets for both integrals and this process is unfortunately standard but
should not cause confusion, since the angle bracket process always carries a subscript
for time.

The form of (2.3) and (2.4) is explained in Section 4. Note that since (juvenile)
individuals are produced at rate Nγη, but each has mass 1/N , these factors of N cancel
in (2.3). Under our scaling, N and θ = θ(N) will tend to infinity in such a way that
α := limN→∞ θ(N)/N exists and is finite. From the expression (2.4) it is easy to guess
that whether the limiting processes will be deterministic or stochastic is determined by
whether α is zero or nonzero.

It is convenient to record some notation for the generator of the diffusion limit of a
random walk with jump distribution determined by qθ(x, dy).

Definition 2.5 (Dispersal generator). As above, we define the dispersal kernel, qθ(x, dy),
to be the density of a multivariate Gaussian with mean ~b(x)/θ and covariance matrix
C(x)/θ (although often we omit the dependence of ~b and C on x). Furthermore, we
define for f ∈ C∞b (Rd),

Bf(x) =
1

2

∑
ij

C(x)ij∂xi∂xjf(x) +
∑
i

~b(x)i∂xif(x) (2.5)

and denote the adjoint of B by

B∗f(x) =
1

2

∑
ij

∂xi∂xj (C(x)ijf(x))−
∑
i

∂xi(f(x)~b(x)i)

=
1

2

∑
ij

Cij(x)∂xi∂xjf(x) +
∑
i

1

2

∑
j

∂xjCij(x)−~bi(x)

 ∂xif(x)

+

1

2

∑
ij

∂xi∂xjCij(x)−
∑
i

∂xi
~bi(x)

 f(x).
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Remark 2.6. B is defined so that

θ

∫
(f(y)− f(x)) qθ(x, dy)→ Bf(x) as θ →∞.

Remark 2.7. An equivalent way to describe the model would be to say that when the
state of the population is η, an individual at x gives birth at rate

θγ(x, η)

∫
r(y, η)q(x, dy),

and that offspring disperse according to the kernel qmθ (with superscript m because it is
post-mortality), defined by:

qmθ (x, η, dy) :=
r(y, η)qθ(x, dy)∫
r(z, η)qθ(x, dz)

.

Clearly, the random walk driven by this dispersal kernel is biased towards regions of
higher establishment probability. For comparison with future results, it is interesting to
write down the limiting generator:

lim
θ→∞

θ

∫
(f(y)− f(x))qmθ (x, η, dy) =

B [f(·)r(·, η)] (x)− f(x)B [r(·, η)] (x)

r(x, η)
. (2.6)

In the simplest case of unbiased isotropic dispersal (i.e., ~b = 0 and C = I), B = ∆/2, and
so (2.6) is equal to

1

2
∆f(x) +∇f(x) · ∇ log r(·, ρr∗η(·))(x).

One might guess that the spatial motion described by following the ancestral lineage of
an individual back through time would be described (in the limit) by the adjoint of this
generator. However, we will see in Section 2.2 that this is not in fact the case.

In order to pass to a scaling limit, we will need to impose some conditions on the
parameters of our model.

Assumptions 2.8. We shall make the following assumptions on the parameters of our
model.

Dispersal generator: We assume that

1. ~b(x) and C(x) are β-Hölder continuous for some β ∈ (0, 1] and uniformly bounded
in each component, and

2. the operator B is uniformly strictly elliptic, i.e., infx infy:‖y‖=1

∑
ij yiC(x)ijyj > 0.

Reproduction parameters: We assume that

3. The function F (x,m) satisfies

(a) F (x,m) is locally Lipschitz in m;
(b) F (x,m) is uniformly bounded above (but not necessarily below);
(c) for each fixed m, supx∈Rd supk≤m |F (x, k)| <∞;

4. The functions r(x,m), γ(x,m) have bounded first and second derivatives in both
arguments;

5. γ(x,m) is uniformly bounded;
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6. For each f ∈ C2
b (Rd), there is a Cf such that

|γ(x, η)θ

∫
(r(y, η)f(y)− r(x, η)f(x))qθ(x, dy)| ≤ Cf (1 + |f(x)|)

for all x ∈ Rd and η ∈MF (Rd). Furthermore, Cf only depends on the norm of the
first two derivatives of f , i.e.,

Cf = C(sup
x

sup
‖z‖=1

max(
∑
i

zi∂xif(x),
∑
ij

zizj∂xixjf(x))).

7. To keep expressions manageable, we shall also assume that the death rate (as
defined in (2.2)) is nonnegative, i.e., that

µθ(x) = r(x, η)γ(x, η)− 1

θ
F (x, η) ≥ 0.

Since F is bounded above, the final assumption that µθ ≥ 0 – or, equivalently, that
F (x, η) ≤ θr(x, η)γ(x, η) – will always be true for large enough θ as long as r and γ are
bounded away from zero.

Since we take bounded f , for most situations the bound Cf (1 + |f(x)|) in Condition 6
above can be safely replaced simply by Cf ; however, this will be useful in certain
situations where we consider a sequence of f with increasing upper bounds. We now
give two concrete situations in which Condition 6 is satisfied. The proof is in Section 6.1.

Lemma 2.9. Assume that Conditions 2.8 are satisfied, except for Condition 6. If either

1. |∂xir(x, η)| and |∂xixjr(x, η)| are uniformly bounded for x ∈ Rd, η ∈MF (Rd);

2. or, m2γ(x,m) is uniformly bounded and there exists C < ∞ such that for θ suffi-
ciently large, and all x ∈ Rd, η ∈MF (Rd),

θ

∫ (
ρr∗η(y)− ρr∗η(x)

)
qθ(x, dy) ≤ Cργ∗η(x),

and

θ

∫ (
ρr∗η(y)− ρr∗η(x)

)2
qθ(x, dy) ≤ C(ργ∗η(x))2,

then Condition 6 is also satisfied.

The purpose of the conditions that we have placed on the reproduction parameters is
to ensure that the net per capita reproduction rate (before time scaling) is order 1/θ. As
remarked above, because of the non-local reproduction mechanism, it no longer suffices
to assume that r(x, η)γ(x, η) − µθ(x) is of order 1/θ. Perhaps the simplest example in
which we can see that non-local reproduction can lead to rapid growth even when
rγ = µ is where γ ≡ 1 and F ≡ 0, so that µθ = r, and η = δx (i.e., the population has
all individuals at a single location), so that ρr ∗η(y) = ρr(y). In this case, the mean
rate of change of the total population size is

∫
(r(y, ρr(y))− r(x, ρr(x)))qθ(x, dy); the first

condition of Lemma 2.9 would ensure this is of order 1/θ.
If r(x,m) is independent of m, then the conditions are easy to satisfy; they just

require some regularity of r as a function of x. Condition 1 of Lemma 2.9 is also satisfied
if for example ‖∇ρr‖ ≤ Cρr and m∂mr(x,m), m2∂mmr(x,m) are bounded. This is the
case, for instance, if ρr decays exponentially. On the other hand, it might seem more
natural to take ρr to be a Gaussian density with parameter σr, say. Then, as we check in
Lemma B.1, Condition 2 of Lemma 2.9 is satisfied if ργ is also Gaussian with parameter
σγ and σγ > σr. For large enough θ, this condition guarantees that σr + 1/θ < σγ , so that
the establishment probability of a juvenile is controlled by individuals that are already
‘felt’ by the fecundity-regulating kernel ργ at the location of their parent.
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Figure 1: Snapshots of two simulations, with small α = θ/N (left) and large α =

θ/N (right). Simulations are run with a Fisher-KPP-like parameterization: birth and
establishment are constant, while death increases linearly with density, at slope 1/θ. Left:
α = 0.1. Right: α = 10. Other parameters were the same: dispersal (qθ) and interactions
(here, only ρF ) are Gaussian with standard deviation 1, and the equilibrium density (N )
is 10 individuals per unit area. The remaining parameters are constant: r ≡ γ ≡ 1.

2.1 Scaling limits of the population process

Our main results depend on two dichotomies: Is the limiting process deterministic or
a (generalized) superprocess? And, are interactions pointwise in the limit or nonlocal?
See Figure 1 for snapshots of the population from direct simulation of the process using
SLiM [38] illustrating this first dichotomy. Below we have results for deterministic limits
with pointwise and nonlocal interactions, and for superprocess limits with nonlocal
interactions.

Scaling limits with nonlocal interactions: Recall that the process (ηNt )t≥0 takes its
values in the space D[0,∞)(MF (Rd)) of càdlàg paths on MF (Rd). We endow MF (Rd)

with the topology of weak convergence and D[0,∞)(MF (Rd)) with the Skorohod topology.
A sequence of processes taking values in D[0,∞)(MF (Rd)) is said to be tight if the
corresponding sequence of distributions is tight, i.e., if any infinite subsequence has a
weakly convergent subsubsequence. Our first main result establishes tightness of our
rescaled population processes in the case in which interactions remain nonlocal under
the scaling, and characterises limit points as solutions to a martingale problem.

Theorem 2.10. Let (ηNt )t≥0 be as defined in Definition 2.4 and assume that as N →
∞, θ(N) → ∞ in such a way that θ(N)/N → α. (However, the kernels ρr, ργ , and
ρF remain fixed.) Suppose that Assumptions 2.8 hold and, further, that {ηN0 }N≥1 is
a sequence of purely atomic measures, with ηN0 comprised of atoms of mass 1/N ,
which is tight in MF (Rd). Also assume there exists a nonnegative f0 ∈ C(Rd) with
uniformly bounded first and second derivatives (i.e., with supx sup‖z‖=1

∑
i ∂xif0(x)zi

and supx sup‖z‖=1

∑
ij ∂xixjf0(x)zizj both finite) and f0(x) → ∞ as |x| → ∞ for which

〈f0(x), ηN0 (dx)〉 < C <∞ for some C independent of N . Then the sequence of processes
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(ηNt )t≥0 is tight, and for any limit point (ηt)t≥0, for every f ∈ C∞b (Rd),

Mt(f) := 〈f(x), ηt(dx)〉 − 〈f(x), η0(dx)〉

−
∫ t

0

〈
γ(x, ηs)B (f(·)r(·, ηs)) (x) + f(x)F (x, ηs), ηs(dx)

〉
ds

(2.7)

is a martingale (with respect to the natural filtration), with angle bracket process

〈M(f)〉t = α

∫ t

0

〈
2γ (x, ηs) r (x, ηs) f

2(x), ηs(dx)
〉
ds. (2.8)

If α = 0 the limit is deterministic.

Recall when interpreting (2.7) that, for instance, r(x, ηs) = r(x, ρr ∗ηs(x)), and so
B(fr)(x) = B(f(·)r(·, ρr∗ηs(·)))(x). The proof of this theorem appears in Section 6.2.

Theorem 2.10 provides tightness of the rescaled processes. If the limit points are
unique, then this is enough to guarantee convergence.

Corollary 2.11. Under the assumptions of Theorem 2.10, if the martingale problem
defined by equations (2.7) and (2.8) has a unique solution, then (ηNt )t≥0 converges
weakly to that solution as N →∞.

When α > 0, the limit points can be thought of as interacting superprocesses.
For example, when r and γ are constant, and F (x, ηs) = 1 − ρF ∗ηs(x), we recover a
superprocess with nonlinear death rates corresponding to logistic growth [24] that is
a continuous limit of the Bolker-Pacala model [9, 10]. We are not aware of a general
result to determine when we will have uniqueness of solutions to the martingale problem
of Theorem 2.10 when α > 0. We do not address the question of uniqueness here, but
(as stated below in Proposition 5.3), a consequence of the Markov Mapping Theorem
(Theorem A.1) is that uniqueness of the martingale problem for the (yet to be defined)
lookdown process would imply uniqueness of solutions to this process.

Alternatively, the Dawson–Girsanov transform could be used to show uniqueness in
the special case of a superprocess with nonlinear death rates: if r and γ only depend
on x (not η), then the process with F = 0 is a heterogeneous branching superprocess
and hence the corresponding martingale problem is unique (see Section 4.3 of [16]).
Then, the Dawson–Girsanov transform (Theorem 7.2.2 of [16], extended to measures
with nonconstant mass as in Section 10.1.2 of [16]) would provide the Radon-Nikodym
derivative of the law of the process with more general F relative to the law of the process
with F = 0 under suitable conditions.

In a different but related setting, the Perkins stochastic calculus (and its adaptation to
a lookdown setting [20]) provides uniqueness for a different but related class of processes,
in which interactions affect the dispersal mechanism (rather than reproduction) of the
superprocess [58].

For the deterministic case of α = 0, the limiting process is a weak solution to a
nonlocal PDE. We next describe some situations in which more is known about uniqueness
and whether the solution is close to the corresponding local PDE. First, recall the
following notion of solution to a PDE.

Definition 2.12 (Weak solutions). We say that (ηt)t≥0, with ηt ∈ MF (Rd), is a weak
solution to the PDE

∂tϕ = rB∗(γϕ) + ϕF (2.9)

(where r, γ and F can all be functions of ϕ) if, for all f ∈ C∞b (Rd),

d

dt
〈f, ηt〉 = 〈γB(rf) + fF, ηt〉.
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The notation ϕ is meant to be suggestive of a density, and recall that equation (2.9)
has made dependencies on x and ϕ implicit; written out more explicitly, (2.9) is

∂tϕt(x) = r (x, ρr∗ϕt(x))B∗
[
ϕt(·)γ

(
x, ργ∗ϕt(·)

)]
(x) + ϕt(x)F (x, ρF ∗ϕt(x)) .

Because Theorem 2.10 only tells us about weak convergence, in the case α = 0 we can
only deduce that any limit point ηt is a weak solution to this nonlocal PDE.

Specialising the results of [49] to the deterministic setting provides general conditions
under which we have existence and uniqueness of solutions to (2.9) which have an L2-
density with respect to Lebesgue measure. Recall that the Wasserstein metric, defined
by

ρ(ν1, ν2) = sup
{∣∣∣ ∫ fdν1 −

∫
fdν2

∣∣∣ : sup
x
|f(x)| ≤ 1, |f(x)− f(y)| ≤ ‖x− y‖

}
,

determines the topology of weak convergence onMF (Rd). We write r(x, η)γ(x, η)C(x) =

J(x, η)J(x, η)T , and β(x, η) = r(x, η)γ(x, η)
(
~b(x) + C(x)∇ log r(x, η)

)
(quantities that will

appear in Proposition 5.6). If J , β, and F are bounded and Lipschitz in the sense that

|J(x1, ν1)−J(x2, ν2)|, |β(x1, ν1)−β(x2, ν2)|, |F (x1, ν1)−F (x2, ν2)| ≤ C(‖x1−x2‖+ρ(ν1, ν2))

(2.10)
for some C > 0, the methods of [49] show that if the initial condition η0 for our population
process has an L2 density, then so does ηt for t > 0. Although the necessary estimates
(for which we refer to the original paper) are highly nontrivial, the idea of the proof is
simple. Take a solution to the equation and use it to calculate the coefficients r, γ and
F that depend on local population density. Then η solves the linear equation obtained
by regarding those values of r, γ and F as given. It remains to prove that the solution
to the linear equation has a density which is achieved by obtaining L2 bounds on its
convolution with the heat semigroup at time δ and letting δ → 0. We also have the
following uniqueness result.

Theorem 2.13 (Special case of [49], Theorem 3.5). Suppose J , β, and F are bounded
and Lipschitz in the sense of (2.10). If η0 has an L2(Rd)-density, then there exists a
unique L2(Rd)-valued solution of (2.9) in the sense of Definition 2.12.

Remark 2.14. [49] considers an infinite system of stochastic differential equations for
the locations and weights of a collection of particles that interact through their weighted
empirical measure, which is shown to be the unique solution to a stochastic PDE. As
we shall see through our lookdown representation in Section 5, the solution to our
deterministic equation can be seen as the empirical measure of a countable number of
particles (all with the same weight) which, in the notation above, evolve according to

X(t) = X(0) +

∫ t

0

β
(
X(s), ηs

)
ds+

∫ t

0

J
(
X(s), ηs

)
dW (s)

(with an independent Brownian motion W for each particle).

Two-step convergence to PDE: Although the coefficients at x in (2.9) are nonlocal,
we can choose our kernels ργ , ρr, and ρF in such a way that they depend only on the
population in a region close to x, and so we expect that under rather general conditions
solutions of the nonlocal PDE will be close to the corresponding classical PDE. The
following propositions provide two concrete situations in which this is true. In the first,
the PDE is a reaction-diffusion equation, and in the proof in Section 6.3.1 we borrow an
idea from [57] to express the solutions to both the nonlocal equation and the classical
PDE through a Feynman-Kac formula.
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Proposition 2.15. Let ρεF (x) = ρF
(
x/ε)/εd. Assume ϕ0 ∈ L2(Rd) is a positive, uniformly

Lipschitz, and uniformly bounded function. Suppose that ϕε ∈ L2(Rd) is a weak solution
to the equation

∂tϕ
ε = B∗ϕε + ϕεF (ρεF ∗ ϕε), x ∈ Rd, t > 0, (2.11)

with initial condition ϕ0(·), and that ϕ is a weak solution to the equation

∂tϕ = B∗ϕ+ ϕF (ϕ), x ∈ Rd, t > 0, (2.12)

also with initial condition ϕ0(·). Suppose further that F is a Lipschitz function which is
bounded above, and that ~b(x) and C(x), the drift and covariance matrix of B, satisfy the
conditions of Assumptions 2.8 and are such that B∗1 = 0 (see Definition 2.5). Then, for
all T > 0 there exists a constant K = K(T, ‖ϕ0‖∞) <∞ and a function δ(ε) (dependent
on ρF ) with δ(ε)→ 0 as ε→ 0, such that, for all 0 ≤ t ≤ T , and ε small enough,

‖ϕt(·)− ϕεt(·)‖∞ ≤ Kδ(ε).

In particular, as ε→ 0, we have that ϕε converges uniformly in compact intervals of time
to ϕ.

Remark 2.16. Note that Theorem 2.13 guarantees uniqueness of solutions to equa-
tion (2.11).

Remark 2.17. Instead of putting the fairly strong constraint that B∗1(x) = 0 for all
x, it would be enough to assume instead that B∗1(x) is uniformly bounded, so that
f 7→ B∗f − fB∗1 is the generator of a conservative diffusion. Since then ϕ solves

∂tϕ = (B∗ϕ− ϕB∗1) + ϕ(F (ϕ) + B∗1),

the proof goes through essentially unchanged, with only F (ϕ(x)) replaced with F (ϕ(x))+

B∗1(x), a bounded perturbation.

Our second example in which we know solutions to the nonlocal PDE converge to
solutions of the local PDE as interaction distances go to zero is a nonlocal version of
a porous medium equation with logistic growth. That is, we consider non-negative
solutions to the equation

∂tψ
ε = ∆

(
ψε ρεγ ∗ ψε

)
+ ψε

(
1− ρεγ ∗ ψε

)
. (2.13)

The case without the reaction term (and with Rd replaced by a torus) is considered
by [53] who use it as a basis for a particle method for numerical solution of the porous
medium equation. Of course this does not quite fit into our framework, since in the
notation of our population models this would necessitate γ(x,m) = ρε ∗m which is
not bounded. However, this can be overcome by an additional layer of approximation
(c.f. our numerical experiments of Section 3.1) and we do not allow this to detain us here.
Existence and uniqueness of solutions to (2.13) can be obtained using the approach
of [53], so we should like to prove that as ε→ 0 we have convergence to the solution to
the porous medium equation with logistic growth:

∂tψ = ∆
(
ψ2
)

+ ψ (1− ψ) . (2.14)

Notation 2.18. We use ⇀ to denote weak convergence in the sense of analysts; that is,
ψε ⇀ ψ in L1 means

∫
ψεvdx→

∫
ψvdx for all v ∈ L∞.

We write L2
t (H

1) for functions for which the H1 norm in space is in L2 with respect
to time, i.e. ∫ T

0

∫ {
ψt(x)2 + ‖∇ψt(x)‖2

}
dxdt <∞,

and Ct(L1) will denote functions for which the L1 norm in space is continuous in time.
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Proposition 2.19. Suppose that we can write ργ = ζ ∗ ζ̌, where ζ̌(x) = ζ(−x) and
ζ ∈ S(Rd) (the Schwartz space of rapidly decreasing functions). Furthermore, suppose
that ψε0 ≥ 0 is such that there exists λ ∈ (0, 1) for which

sup
ε

∫
exp(λ‖x‖)ψε0(x)dx <∞, and sup

ε

∫
ψε0| logψε0|dx <∞,

with ψε0 ⇀ ψ0 as ε → 0. Then writing ψε for the solution to (2.13) on [0, T ] × Rd with
initial condition ψε0, ψε ⇀ ψ as ε→ 0 where ψ ∈ L2

t (H
1) ∩ Ct(L1),

∫
ψ| logψ|dx <∞, and

ψ solves (2.14) on [0, T ]×Rd.
The example that we have in mind for the kernel ργ is a Gaussian kernel. For the

proof, see Section 6.3.2.

Remark 2.20. Although it seems hard to formulate an all-encompassing result, Proposi-
tions 2.15 and 2.19 are by no means exhaustive. When the scaling limit is deterministic,
one can expect analogous results under rather general conditions. However, when the
limit points are stochastic, they resemble “nonlinear superprocesses” and so one cannot
expect a density with respect to Lebesgue measure in d ≥ 2. It is then not reasonable to
expect to be able to make sense of the limit if we scale the kernels in this way. Moreover,
in one dimension, where the classical superprocess does have a density with respect
to Lebesgue measure, the form of (2.7) suggests that even if one can remove the local
averaging from γ, it will be necessary to retain averaging of r in order to obtain a
well-defined limit (since otherwise the term B(f(·)r(·, η))(x) may not be well-defined).

One-step convergence to PDE: Theorem 2.10, combined with Proposition 2.15
or 2.19 implies that we can take the limit N → ∞ followed by the limit ε → 0 to
obtain solutions to the PDE (2.12). However, it is of substantial interest to know whether
we can take those two limits simultaneously. The general case seems difficult, but we
prove such “diagonal” convergence in the following situation. The proof is provided in
Section 7.

Theorem 2.21 (Convergence to a PDE). Let (ηNt )t≥0 be as defined in Definition 2.4 with
r(x,m) ≡ 1 ≡ γ(r,m), F (x,m) ≡ F (m), ρεF a symmetric Gaussian density with variance
parameter ε2, and B = ∆/2. Further suppose that F (m) is a polynomial with F (m)1m≥0

bounded above. Assume that 〈1, ηN0 〉 is uniformly bounded, and that for all x ∈ Rd and
k ∈ N,

lim sup
ε→0

E
[
ρεF ∗ η0(x)k

]
<∞,

and

lim sup
ε→0

∫
E
[
ρεF ∗ η0(x)k

]
dx <∞.

Finally assume that N →∞, θ →∞ and ε→ 0 in such a way that

1

θε2
+

θ

Nεd
→ 0. (2.15)

Then the sequence of D[0,∞)(MF (Rd))-valued stochastic processes
(
ρεF ∗ ηNt (x)dx

)
t≥0

converges weakly to a measure-valued process with a density ϕ(t, x) that solves

∂tϕ(t, x) =
1

2
∆ϕ(t, x) + ϕ(t, x)F (ϕ(t, x)). (2.16)

Remark 2.22. In fact, our proof goes through without significant change under the
conditions that F (m)1m≥0 is bounded above (but not necessarily below), and that for all
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m,n ∈ [0,∞)

|F (m)| ≤
k∑
j=1

ajm
j , and |F (n)− F (m)| ≤ |n−m|

k′∑
j=1

bj

(
nj +mj

)
,

for some non-negative constants {aj}kj=0, {bj}k
′

j=0. We take F to be polynomial to some-
what simplify notation in the proof.

2.2 Ancestral lineages in the scaling limit

Now that we have established what we can say about how population density changes
with time, we turn to results on ancestral lineages, i.e., how genealogical ancestry can
be traced back across the landscape. Informally, a lineage (LNt )t≥0, begun at a spatial
location LN0 = x where there is a focal individual in the present day, can be obtained for
each time t by setting LNt to be the spatial location of the individual alive at time t before
the present from whom the focal individual is descended. Since in our model individuals
have only one parent, this is unambiguous. Although we did not explicitly retain such
information, it is clear that for finite N , since individuals are born one at a time, one
could construct the lineage (LNt )Tt=0 given the history of the population (ηNt )Tt=0, for each
starting location to which ηNT assigns positive mass. It is less clear, however, how to
rigorously retain such information when we pass to the scaling limit.

However, the lookdown construction in Section 5 does just this – the construction
enables us to recover information about ancestry in the infinite population limit, and
thus gives a concrete meaning to (Lt)t≥0. Roughly speaking, each particle is assigned
a unique “level” from [0,∞) that functions as a label and thus allows reconstruction
of lineages. The key to the approach is that levels are assigned in such a way as to
be exchangeable, so that sampling a finite number, k say, of individuals from a given
region is equivalent to looking at the individuals in that region with the k lowest levels.
Moreover, as we pass to the infinite population limit, the collection of (individual, level)
pairs converges, as we show in Theorem 5.4. See [27] for an introduction to these ideas.
In particular, even in the infinite population limit, we can sample an individual from a
region (it will be the individual in that region with the lowest level) and trace its line
of descent. This will allow us to calculate, for each x and y ∈ Rd, the proportion of the
population at location x in the present day population that is descended from a parent
who was at location y at time t in the past. To make sense of this in our framework, in
Section 8.2, we justify a weak reformulation of this idea.

We are interested in two questions about the limiting process. First, when is the
motion of an ancestral lineage, given complete knowledge of the population process, a
well-defined process? In other words, is knowledge of the process (ηt)

T
t=0 that records

numbers of individuals but not their ancestry sufficient to define the distribution of
(Lt)

T
t=0? Second, does the process have a tractable description?
We focus on the simplest situation, that in which the population process is deter-

ministic. However, the results here apply when the population process solves either a
nonlocal or a classical PDE. There will be no coalescence of ancestral lineages in the
deterministic limit, but understanding motion of single lineages is useful in practice,
and our results can be seen as a first step towards understanding genealogies for high
population densities. Since the time scale on which coalescence occurs goes to infinity in
the deterministic limit, an important question to answer will be whether this description
of lineage motion is a good approximation over such a long time scale. Other information
may be important – for instance, in [26] the form of the coalescent that is obtained
depends on fluctuations happening on a longer time scale than the mixing time of a
lineage.
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Proofs of results in this section are found in Section 8.

Definition 2.23 (Ancestral lineage). Let (ϕt(x))0≤t≤T denote the density of the scaling
limit of our population model, solving (2.9), let y be a point with ϕT (y) > 0, and suppose
we have sampled an individual from location y at time T . We define (Ls)

T
s=0, the ancestral

lineage of that sampled individual by setting L0 = y and Ls to be the position of the
unique ancestor of that individual at time T − s. We define (Qs)s≥0 to be the time
inhomogeneous semigroup satisfying

Qsf(y) := Ey[f(Ls)].

The precise sense in which we can look at “the lineage of a sampled individual” in the
scaling limit is made clear by the introduction of the lookdown construction in Section 5:
the construction retains an unambiguous notion of ancestral lineages through to the
scaling limit, and Theorem 5.4 shows that the these converge. (For now, we can take
the definition to refer to the distribution obtained from a scaling limit of the finite-N
process.) It turns out that in the scaling limit, the process is Markovian, and our next
result identifies the ancestral lineage as a diffusion by characterizing its generator.

Theorem 2.24. For ϕ : Rd → R, define

Lϕf =
r

ϕ
[B∗(γϕf)− fB∗(γϕ)] (2.17)

= rγ

1

2

∑
ij

Cij∂xixjf +
∑
j

~mj∂xjf

 , (2.18)

where ~m is the vector

~mj =
∑
i

Cij∂xi log(γϕ) +
∑
i

∂xiCij −~bj .

Then the generator of the semigroup Qs of Definition 2.23 is given by ∂sQsf(y) =

LϕT−sQsf(y).

Remark 2.25. As usual, to make the generator readable, we’ve written it in concise
notation, omitting the dependencies on location and population density, which itself
changes with time. When interpreting this, remember that everything depends on
location and density at that location and time – for instance, “r” is actually r(x, ϕ(x)) (in
the classical case), or r(x, ρr∗η(x)) (in the nonlocal case).

Moreover, we haven’t proved any regularity of the population density process ϕ, so,
as written, the generator (2.17) may not make sense. Instead, it should be interpreted in
a weak sense which is made precise in Section 8.2.

Corollary 2.26. In addition to the assumptions of Theorem 2.24, if the covariance of the
dispersal process is isotropic (i.e., C = σ2I), then

Lϕf =
σ2

2
rγ

(
∆f +

(
2∇ log(γϕ)− 2~b

σ2

)
· ∇f

)
. (2.19)

(However, ~b can still depend on location.)

In other words, the lineage behaves as a diffusion driven by Brownian motion run at
speed σ2 multiplied by the local per-capita production of mature offspring (rγ) with mean
displacement in the direction of ∇ log(ϕsγ)−~b/σ2. In particular, lineages are drawn to
regions of high fecundity (production of juveniles), but their speed is determined by the
rate of production of mature offspring. This can be compared to Remark 2.7.

EJP 29 (2024), paper 28.
Page 17/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

Corollary 2.27. In addition to the assumptions of Corollary 2.26, if the population
process is stationary (so ϕt ≡ ϕ), and ~b(x) = ∇h(x) for some function h, then Y is
reversible with respect to

π(x) =
γ

r
ϕ(x)2e−2h(x)/σ2

. (2.20)

The long-term reproductive value of an individual is proportional to the fraction of
lineages from the distant future that pass through the individual, and hence the total
long-term reproductive value at a location is proportional to the stationary distribution
of Y there, if it exists. Therefore, if π is integrable then the per-capita long-term
reproductive value of an individual at x is proportional to π(x)/ϕ(x).

Corollary 2.28. In addition to the assumptions of Corollary 2.26, suppose that the
population process is described by a travelling wave with velocity c, i.e., the population
has density ϕ(t, x) = w(x− tc) where w solves

rB∗(γw) + wF + c · ∇w =
1

2
rσ2∆(γw)−~b · ∇(γw) + c · ∇w = 0.

Then the semigroup Qs of the motion of a lineage in the frame that is moving at speed c

is time-homogeneous with generator

Lf =
1

2
σ2rγ (∆f + 2∇ log(γw) · ∇f) + (c− rγ~b) · ∇f. (2.21)

3 Examples and applications

We now discuss some consequences of these results.

3.1 Beyond linear diffusion

Equation (2.9) is a nonlocal version of a reaction-diffusion equation; the diffusion
is nonlinear if γ depends on population density: in other words, if the diffusivity of
the population depends on the population density. Passing to the classical limit, we
recover equations like (2.14). Such equations are widely used in a number of contexts
in biology in which motility within a population varies with population density. For
example, density dependent dispersal is a common feature in spatial models in ecology,
eukaryotic cell biology, and avascular tumour growth; see [63] and references therein
for further discussion. In particular, such equations have been suggested as a model for
the expansion of a certain type of bacteria on a thin layer of agar in a Petri dish [15].
We shall pay particular attention to the case in which the equation can be thought of as
modelling the density of an expanding population. We focus on the monostable reaction
of (2.14).

Comparing with (2.9), we see that to set up a limit in which the population density ϕ
follows the porous medium equation with logistic growth of (2.14), we need r = 1, γ = ϕ,
and F = 1 − ϕ. Consulting equation (2.2), this implies that µθ = (1 + 1/θ)ϕ − 1/θ. In
other words, establishment is certain and birth rates increase linearly with population
density, but to compensate, death rates increase slightly faster (also linearly). Alert
readers will notice that the condition from Assumptions 2.8 that γ(x,m) be uniformly
bounded is violated. This can be corrected by use of a cut-off, and in fact the downwards
drift provided by the logistic control of the population size prevents m from getting too
big. In practice the simulations shown in Figure 2 take discrete time steps of length dt
(with dt suitably small), and have each individual reproduce and die with probabilities,
respectively,

pbirth(m) =
(
1− e−mdt

)
pdeath(m) =

(
1− e−(m(1+1/θ)−1/θ)dt

)
,
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Figure 2: Simulated populations under a porous medium equation with logistic
growth (2.14) in d = 1, θ/N small on the top; large on the bottom. Values of θ in
top and bottom figures are 1 and 100, respectively, and both have N set so that the
density is roughly 100 individuals per unit of habitat (as displayed on the vertical axis).
See text for details of the simulations.

where m is the local density at their location. This makes γ(x,m) = pbirth(m)/dt ≈ m and

F (x,m) = θ(γ(x,m)− µ(x,m))/dt ≈ 1−m.

Birth and death rates are equal at density m = 1, corresponding to an unscaled density
of N individuals per unit area.

In one dimension, equation (2.14) has an explicit travelling wave solution

wP (t, x) :=
(

1− e 1
2 (x−x0−t)

)
+
. (3.1)

Notice that the wave profile has a sharp boundary at x = x0 + t. There are also
travelling wave solutions with c > 1 [35], which lack this property. However, for initial
conditions that decay sufficiently rapidly at infinity, such as one might use in modelling a
population invading new territory, the solution converges to (3.1) [45]. In Figure 2 we
show simulations of the individual based model described above, which display travelling
wave solutions qualitatively similar to solutions of (2.14), with better agreement for
smaller θ/N (but in both cases, N is reasonably large).

3.2 Ancestry in different types of travelling waves

Although it remains challenging to establish the distribution of genealogical trees
relating individuals sampled from our population model, as described in the introduction,
we can gain some insight by investigating the motion of a single ancestral lineage. Here
we do that in the context of a one-dimensional population expanding into new territory
as a travelling wave. We focus on three cases in which we have explicit information
about the shape of the travelling wave profile: the Fisher-KPP equation, a special case
of the Allen-Cahn equation with a bistable nonlinearity, and the porous media equation
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with logistic growth, equation (2.14). We work here in one dimension, and take σ2 = 2

and ~b = 0.

Ancestry in travelling waves for populations described by reaction-diffusion equations
has been studied before by various authors, although most work assumes the diffusion
term is linear (in our notation, r and γ are constant, but F can depend on density). For
instance, following [37], various authors (e.g., [61, 5]) describe genetic diversity and
ancestry in (possibly noisy) travelling waves for reaction-diffusion equations in a situation
that covers our first two examples below. However, we are not aware of previous work
covering the third case with nonlinear diffusive term (the porous medium equation).

Fisher-KPP equation: Consider the classical Fisher-KPP equation,

∂tϕ = ∂xxϕ+ ϕ(1− ϕ). (3.2)

Even though we do not have an explicit formula for the wave shape in this case, our
methods provide information about ancestral lineages. The equation has non-negative
travelling wave solutions of speed c for all c ≥ 2, but, started from any compact per-
turbation of a Heaviside function, the solution will converge to the profile wF with the
minimal wavespeed, c = 2 [47, 30, 11]. No matter what initial condition, for any t > 0 the
support of the solution will be the whole real line. In this case, we must have r = γ = 1,
and F (x,m) = 1−m so µθ(x,m) = 1 + (m− 1)/θ. By Corollary 2.28, the generator of the
motion of an ancestral lineage is

LF f = ∂xxf + 2
∂xw

F

wF
∂xf + 2∂xf. (3.3)

Near the tip of the wave (for x large), wF (x) ∼ e−x, so (3.3) implies that the motion of
a lineage is close to unbiased Brownian motion. On the other hand, in the “bulk”, a
lineage behaves approximately as Brownian motion with drift at rate two to the right.
This implies that ancestral lineages are pushed into the tip of the wave, and there is no
stationary distribution, so that long-term dynamics of genetic inheritance depend on
the part of the wave not well-approximated by a smooth profile, in agreement with the
previous results referred to in the Introduction.

Allen-Cahn equation: Now take the Allen-Cahn equation:

∂tϕ = ∂xxϕ+ ϕ(1− ϕ)(2ϕ− 1 + s), (3.4)

for a given s ∈ (0, 2). Once again we have taken r = γ = 1, but now the reaction term
F (x,m) = (1−m)(2m− 1 + s) is bistable. This equation can be used to model the motion
of so-called hybrid zones in population genetics; see, for example, [3], [36], and [22].
This equation has an explicit travelling wave solution with speed s and shape

wA(x) = (1 + ex)−1,

i.e., φt(x) = wA(x− st) solves (3.4). Substituting wA in place of wF in (3.3), we find that
the generator of an ancestral lineage relative to the wavefront is now,

LAf = ∂xxf + 2
∂xw

A

wA
∂xf + s∂xf

= ∂xxf − 2
ex

1 + ex
∂xf + s∂xf,

EJP 29 (2024), paper 28.
Page 20/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

so lineages in the tip are pushed leftwards into the bulk of the wave at a rate s− 2ex/(1 +

ex). The density of the speed measure for this diffusion is

mA(x) ∝ esx(1 + ex)−2,

which is integrable, and so determines the unique stationary distribution. Thus the
position of the ancestral lineage relative to the wavefront will converge to a stationary
distribution which is maximised away from the extreme tip of the wave. This is consistent
with [23], who consider an analogous stochastic population model, although the stronger
result there (that the genealogy of a sample from behind the wavefront is approximately
a Kingman coalecsent) requires the stronger condition s < 1.

Porous Medium equation with logistic growth: Finally, consider equation (2.14).
Setting x0 = 0 (for definiteness) and substituting the form of wP from equation (3.1)
into Corollary 2.28, with c = 1, γ(x,m) = m, r(x,w) = 1, and F (x,m) = (1 − m), the
generator of the diffusion governing the position of the ancestral lineage relative to the
wavefront is, for x < 0,

LP f = wP
(
∂xxf + 2

∂x((wP )2)

(wP )2
∂xf

)
+ ∂xf

=
(

1− e 1
2x
)
∂xxf − 2e

1
2x∂xf + ∂xf.

The speed measure corresponding to this diffusion has density

mP (ξ) ∝ 1

2(1− eξ/2)
exp

(∫ ξ

η

{
1− ex/2

1− ex/2

}
dx

)
∝ eξ

(
1− eξ/2

)
, for ξ < 0

and mP (ξ) = 0 for ξ ≥ 0, which is integrable and so when suitably normalised gives the
unique stationary distribution. Notice that even though we have the same reaction term
as in the Fisher-KPP equation, with this form of nonlinear diffusion, at stationarity the
lineage will typically be significantly behind the front, suggesting a different genealogy.

3.3 Clumping from nonlocal interactions

Simulating these processes and exploring parameter space, one sooner or later
comes upon a strange observation: with certain parameter combinations, the population
spontaneously forms a regular grid of stable, more or less discrete patches, separated by
areas with nearly no individuals, as shown in Figure 3. The phenomenon is discussed in
Section 16.15 of [39], and has been described in similar models, e.g., by [12, 62, 40, 65],
and [4]. For example, if the density-dependent effects of individuals extend farther
(but not too much farther) than the typical dispersal distance, then depending on
the interaction kernel new offspring landing between two clumps can effectively find
themselves in competition with both neighbouring clumps, while individuals within a
clump compete with only one.

More mathematically, consider the case in which B = σ2∆ (so that dispersal variance
is 2σ2) and all parameters are spatially homogeneous, so that r(x, η) = r(ρr∗η(x)), and
similarly for γ and F . If ϕ0 is such that F (ϕ0) = 0 and F ′(ϕ0) < 0, then the constant
solution ϕ ≡ ϕ0 is a nontrivial equilibrium of (1.1). However, this constant solution may
not be unique, it may be unstable, and a stable solution may have oscillations on a scale
determined by the interaction distance.
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To understand the stability of the constant solution ϕ ≡ ϕ0, we linearise (1.1) around
ϕ0: let ϕt(x) = ϕ0 + ψt(x), and (informally) r(x) ≈ r(ϕ0) + r′(ϕ0)ρr ∗ψ(x). Recall that
in this section we are in d = 1. Writing r0 = r(ϕ0) and r′0 = r′(ϕ0), with analogous
expressions for γ and F ,

∂tψ ≈ σ2ϕ0r0γ
′
0∆ργ∗ψ + σ2r0γ0∆ψ + ϕ0F

′
0ρF ∗ψ.

Letting f̂(u) =
∫
eiuxf(x)dx/

√
2π denote the Fourier transform,

∂tψ̂(u) ≈
{
−u2σ2ϕ0r0γ

′
0ρ̂γ(u)− u2σ2r0γ0 + ϕ0F

′
0ρ̂F (u)

}
ψ̂(u). (3.5)

In the simplest case, in which γ is constant, so γ′0 = 0, this reduces to

∂tψ̂(u) ≈
(
−u2σ2r0γ0 + ϕ0F

′
0ρ̂F (u)

)
ψ̂(u). (3.6)

If we take ρF = pε2 , then ρ̂F (u) = exp(−ε2u2/2)/
√

2π and (recalling that F ′0 < 0) the term
in brackets is always negative, and we recover the well-known fact that in this case
the constant solution is stable. If, on the other hand, ρ̂F changes sign, there may be
values of u for which the corresponding quantity is positive. For example, if d = 1 and
ρF (x) = 1[−ε,ε](x)/2ε, then ρ̂F (u) = sin(εu)/(

√
2πεu), which is negative for u ∈ (π/ε, 2π/ε)

(and periodically repeating intervals). Setting v = εu, the bracketed term on the right
hand side of (3.6) becomes

ϕ0F
′
0

1√
2πv

sin(v)− σ2

ε2
v2r0γ0,

and we see that if σ2/ε2 is sufficiently small, there are values of v for which this is
positive. In other words, in keeping with our heuristic above, if dispersal is sufficiently
short range relative to the range over which individuals interact, there are unstable
frequencies that scale with the interaction distance ε. In two dimensions, replacing the
indicator of an interval by that of a ball of radius ε, a similar analysis applies, except that
the sine function is replaced by a Bessel function.

Now suppose that γ is not constant. Then, from (3.5), if we take ργ = ρF = p2
ε ,

∂tψ̂(u) ≈ 1√
2π
e−ε

2u2/2
{
−σ2ϕ0r0γ

′
0u

2 − σ2r0γ0u
2
√

2πeε
2u2/2 + ϕ0F

′
0

}
ψ̂(u).

If we make the (reasonable) assumption that γ′0 < 0, then we see that even when the
Fourier transform of ρ does not change sign, there may be parameter values for which
the constant solution is unstable. As before, we set v = εu. The term in brackets becomes

σ2

ε2
v2r0

(
−ϕ0γ

′
0 − γ0

√
2πev

2/2
)

+ ϕ0F
′
0,

and, provided −ϕ0γ
′
0/γ0

√
2π > 1, for sufficiently small v the term in round brackets is

positive. We now see that if σ2/ε2 is sufficiently large, the equilibrium state ϕ ≡ ϕ0 is
unstable. As before, the unstable frequencies will scale with ε and for given F , r and γ,
whether or not such unstable frequencies exist will be determined by σ2/ε2, but in this
case of Gaussian kernels, it is interaction distance being sufficiently small relative to
dispersal that will lead to instability.

3.4 Lineage motion distinguishes different models with the same equilibrium
density

It is natural for applications to wonder about identifiability: when can the observed
quantities like population density or certain summaries of lineage movement uniquely
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Figure 3: Left: A snapshot of individual locations in a two-dimensional simulation in
which the constant density is unstable and a stable, periodic pattern forms. Right:
Population density in an expanding wave in a one-dimensional simulation forming a
periodic pattern; each panel shows the wavefront in three periods of time; within each
period of time the wavefront at earlier times is shown in blue and later times in pink.
In both cases, γ(m) = 3/(1 +m), µ ≡ 0.3, and r ≡ 1; dispersal is Gaussian with σ = 0.2

and density is measured with ργ(x) = p9(x), i.e., using a Gaussian kernel with standard
deviation 3.

determine the underlying demographic parameters? Consider a deterministic, continu-
ous population generated by parameters γ, r, and F , with ~b = 0 and C = 2I. Suppose it
has a stationary profile w(x), that must satisfy

r∆(γw) + Fw = 0.

It is easy to see that w does not uniquely specify γ, F , and r: let λ(x) be a smooth,
nonnegative function on Rd, and let r̃(x,m) = λ(x)r(x,m) and F̃ (x,m) = λ(x)F (x,m)

(and, let γ̃ = γ). Since µ = rγ − F/θ, this corresponds to multiplying both establishment
probabilities and death rates by λ. Then the population with parameters γ̃, r̃, and F̃ has
the same stationary profile(s) as the original population.

Can these two situations be distinguished from summaries of lineage movement? The
first has lineage generator

f 7→ Lf = rγ (∆f + 2∇ log(γw) · ∇f) ,

while the second has lineage generator f 7→ λ(x)Lf(x). In other words, although the
stationary profile of the population is unchanged when we scale local establishment and
death by λ, the motion of lineages is sped up locally by λ. This corresponds to making
areas with λ > 1 more “sink-like” and λ < 1 more “source-like”: if λ(x) > 1, then at x
both the death rate and probability of establishment of new individuals are higher. As
a result, lineages in the second model spend more time in areas with λ < 1, i.e., those
areas have higher reproductive value, something that is, in principle, discernible from
genetic data (because, for instance, making reproductive value less evenly distributed
reduces long-term genetic diversity [29]).
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4 Heuristics

In this section we perform some preliminary calculations and use them to provide
heuristic arguments for our main results, to build intuition before the proofs.

4.1 The population density

We reiterate that in our prelimiting model, the population is represented by a point
measure ηN in which each individual is assigned a mass 1/N . We use the term “popula-
tion density” for this process, as it is supposed to measure population size relative to
a nominal occupancy of N individuals per unit area, but it is not absolutely continuous
with respect to Lebesgue measure.

We write PN for the generator of the scaled population process ηN of Definition 2.4
acting on test functions of the form G(〈f, η〉), where f ≥ 0 is smooth and bounded on
Rd and G ∈ C∞([0,∞)). Recall that θ = θ(N) → ∞ as N → ∞ in such a way that
θ(N)/N → α.

A Taylor expansion allows us to write

PNG(〈f, η〉) = G′(〈f, η〉) lim
δt↓0

1

δt
E [ 〈f, ηδt〉 − 〈f, η〉| η0 = η]

+
1

2
G′′(〈f, η〉) lim

δt↓0

1

δt
E
[(
〈f, ηδt〉 − 〈f, η〉

)2∣∣∣ η0 = η
]

+ εN (f,G, η), (4.1)

where the terms that make up εN (f,G, η) will be negligible in our scaling limit (at least
if G′′′ <∞).

Mean measure

Recall that in our parameterization only death rates µθ and the dispersal kernel qθ
depend on θ. For a suitable test function f , we find

PN 〈f, η〉 = lim
δt↓0

1

δt
E [ 〈f, ηδt〉 − 〈f, η〉| η0 = η]

= θ

∫ ∫
f(z)r(z, η)qθ(x, dz)γ(x, η)η(dx)− θ

∫
f(x)µθ(x, η)η(dx).

(4.2)

The first term is the increment in 〈f, η〉 resulting from a birth event (recalling that we
don’t kill the parent) integrated against the rate of such events, and the second reflects
death events. The factor of θ appears from the time rescaling. In both terms, the rate of
events has a factor of N (because events happen at a rate proportional to the number of
individuals, whereas η has mass 1/N for each individual) which is offset by the fact that
the birth or loss of a single individual at the point y, say, changes 〈f, η〉 by f(y)/N .

We use the fact that
∫
qθ(x, dz) = 1 to rewrite (4.2) as∫ (∫

θ (f(z)r(z, η)− f(x)r(x, η)) qθ(x, dz)

)
γ(x, η)η(dx)

+

∫
f(x)θ

(
r(x, η)γ(x, η)− µθ(x, η)

)
η(dx).

(4.3)

We have defined µθ so that the second term is simple:

θ
(
r(x, η)γ(x, η)− µθ(x, η)

)
= F (x, η).

Furthermore, recall from Remark 2.6 that∫
θ
(
r(z, η)f(z)− r(x, η)f(x)

)
qθ(x, dz)

θ→∞−→ B
(
r(·, η)f(·)

)
(x). (4.4)
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In particular, if dispersal is determined by a standard multivariate Gaussian with mean
zero and covariance σ2I/θ, then B = σ2∆/2, where ∆ denotes the Laplacian.

In summary, equation (4.3) converges to∫
γ(x, η)B

(
f(·)r(·, η)

)
(x)η(dx) +

∫
f(x)F (x, η)η(dx), (4.5)

which explains the form of the martingale of Theorem 2.10.

Quadratic variation

We now look at the second order term in (4.1), which will converge to the quadratic
variation of the limiting process. An individual at location x gives birth to a surviving
offspring at y at rate

γ(x, η)r(y, η)qθ(x, dy),

and since this increments 〈f, η〉 by f(y)/N , the contribution to the quadratic variation
from birth events, which occur at rate θ per individual (so, rate Nθ|η| overall), is∫

Nθγ(x, η)

∫
1

N2
f2(y)r(y, η)qθ(x, dy)η(dx).

Similarly, the increment in 〈f, η〉 resulting from the death of an individual at x is −f(x)/N ,
and so combining with the above, the second order term in the generator takes the form

G′′(〈f, η〉)1

2
Nθ

{∫
γ(x, η)

∫
1

N2
f2(y)r(y, η)qθ(x, dy)η(dx) +

∫
µθ(x, η)

1

N2
f2(x)η(dx)

}
=

1

2
G′′(〈f, η〉) θ

N

∫ {
γ(x, η)

∫
f2(y)r(y, η)qθ(x, dy) + f2(x)µθ(x, η)

}
η(dx).

Since
∫
f2(y)r(y, η)qθ(x, dy) → f2(x)r(x, η) and rγ + µθ = 2rγ − F/θ → 2rγ as θ → ∞,

this converges to

α

2
G′′(〈f, η〉)

〈
2r(x, η)γ(x, η)f(x)2, η(dx)

〉
.

An analogous argument shows that if G′′′ is bounded, then the term εθ,N (f,G, η)

in (4.1) will be O(θ/N2).
If we hold ργ , ρr, ρF fixed, then by taking θ/N → 0, the second order term in the

generator will vanish and we expect a deterministic limit, for which ∂t〈f, ηt〉 is equal
to (4.5). In other words, the limit is a weak solution to the deterministic equation

∂tϕt(x) = r(x, ϕt)B
(
γ(·, ϕt)ϕt(·)

)
(x) + F (x, ϕt)ϕt(x) (4.6)

in the sense of Definition 2.12, where ϕt is the density of ηt, if it has a density. On the
other hand, if N = αθ for some α > 0, the second order term remains, and we expect a
“generalised superprocess” limit. The limiting quadratic variation is exactly as seen in
Theorem 2.10.

One-step convergence: In order to pass directly to a classical PDE limit in Theo-
rem 2.21 we impose the stronger condition that θ/(Nεd) → 0 and also require that
θε2 →∞. Recall that in this case, we take ρεF to be a symmetric Gaussian density with
variance ε2. The condition θε2 →∞ ensures that ε2 is large enough relative to 1/θ that
the regularity gained by smoothing our population density by convolution with ρε is
preserved under the dynamics dictated by qθ. To understand the first condition, note that
we are aiming to obtain a deterministic expression for the limiting population density.
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It is helpful to think about a classical Wright-Fisher model (with no spatial structure
and just two types, say). We know then that if the timescale θ is on the same order as
population size N , we see stochastic fluctuations in the frequencies of the two types in
the limit as N → ∞; to obtain a deterministic limit, we look over timescales that are
short relative to population size. In our setting, the total population size is replaced by
the local population size, as measured by convolution with ρε, which we expect to be of
order Nεd, and so in order to ensure a deterministic limit we take θ/(Nεd)→ 0.

4.2 Motion of ancestral lineages

Although our proof of Theorem 2.24 uses an explicit representation in terms of the
lookdown process, the result can be understood through informal calculations. Suppose
that we have traced a lineage back to an individual at location y at time t. Looking
further back through time, at the time of the birth of that individual, the lineage will jump
to the location of the parent of the individual. Now, the rate at which new individuals
are born to parents at x and establish at y is

θNηNt (dx)γ(x, ηNt )qθ(x, dy)r(y, ηNt ).

Suppose that ηN did have a density (in the prelimit it does not), say ηNt (dx) = ϕNt (x)dx.
Informally, since the number of individuals near y is NϕNt (y)dy, the probability that a
randomly chosen individual near y is a new offspring from a parent at x in [t, t+ dt) is

θϕNt (x)γ(x, ηNt )r(y, ηNt )

ϕNt (y)

qθ(x, dy)

dy
dxdt. (4.7)

Leaving aside questions of whether a lineage can be treated as a randomly chosen
individual, we define a continuous-time jump process whose transition rates, conditional
on (ϕNt )Tt=0, are given by (4.7). Because we are tracing the lineage backwards in time
we make the substitution s = T − t and write (LNs )Ts=0 for the location of a lineage that
moves according to these jump rates. Then, abusing notation to write qθ(x, y) for the
density of qθ(x, dy),

E[f(LNs+ds)− f(y) | LNs = y]

= ds θ

∫
(f(x)− f(y))

ϕNT−s(x)γ(x, ηNT−s)r(y, η
N
T−s)

ϕNT−s(y)
qθ(x, y)dx.

(4.8)

(Note that this integral is with respect to x.) Referring back to Remark 2.6, a quick
calculation shows that as N →∞,

θ

∫ (
f(x)− f(y)

)
g(x)qθ(x, y)dx

= θ

∫ {
(f(x)g(x)− f(y)g(y))− f(y)(g(x)− g(y))

}
qθ(x, y)dx

→ B∗(fg)(y)− f(y)B∗g(y).

Applying this to (4.8) with g = ϕT−sγ, this suggests that the generator of the limiting
process is

Lsf =
r

ϕT−s
{B∗(γϕT−sf)− fB∗(γϕT−s)} . (4.9)

This agrees with Theorem 2.24.
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5 The lookdown process

Our characterisation of the motion of lines of descent (from which we establish that
of ancestral lineages) when we pass to the scaling limit in our model will be justified via
a lookdown construction. In this section we present such a construction for the general
population model of Definition 2.4. It will be in the spirit of [48]. The general set-up is
as follows. Each individual will be labelled with a “level”, a number in [0, N ]. We will still
encode the process embellished by these levels as a point measure: if the ith individual’s
spatial location is xi and level is ui, then we will write

ξN =
∑
i

δxi,ui ,

which is a measure on Rd × [0, N ]. Note that each individual contributes mass 1 to
the measure, not 1/N as above. If we assign mass 1/N to each individual and ignore
the levels we will recover our population model. Moreover, at any time, the levels of
individuals in a given spatial region will be exchangeable and conditionally uniform on
[0, N ]: in particular, choosing the k individuals with the lowest levels in that region is
equivalent to taking a uniform random sample of size k from the population in the region.
However, this exchangeability is only as regards the past : an individual’s level encodes
information about their future reproductive output, since individuals with lower levels
tend to live longer, and have more offspring. For more explanation of the set-up and
how this is possible, see [48] and [27] (and note that our N corresponds to the λ of
those papers). The power of this approach is that we can pass to a limit under the same
scalings as described in Theorem 2.10, and the limiting “spatial-level” process will still
be a point measure, and so we explicitly retain the notion of individuals and lineages in
the infinite-population limit.

5.1 Lookdown representation of the model of Definition 2.4

For the remainder of this subsection, when there is no risk of ambiguity we shall
suppress the superscript N on the processes η and ξ.

In this subsection, we’ll define the process (ξt)t≥0 in terms of the dynamics of labelled
particles, and write down its generator. The dynamics depend on the spatial locations of
particles, and in this section ηt is the corresponding spatial measure, i.e.,

ηt(·) =
1

N
ξt(· × [0, N ]).

A nontrivial consequence of the way we define ξt will be that the process (ηt)t≥0 defined
in this way has the same distribution as the process (ηt)t≥0 of Definition 2.4, which
provides our justification for using the same notation for both.

Following [27], we build the generator step by step from its component parts. Suppose
that the initial population is composed of O(N) particles with levels uniformly distributed
on [0, N ], and that the current state of the population is ξ, with spatial projection η.

An individual at spatial location x with level u produces one juvenile offspring at rate

2θ
(

1− u

N

)
γ(x, η),

which disperses to a location relative to x drawn from the kernel qθ(x, ·). Averaging over
the uniform distribution of the level u, we recover the birth rate θγ(x, η). This juvenile
– suppose its location is y – either survives, with probability r(y, η), or immediately
dies. (As before, “maturity” is instantaneous.) If it survives, a new level u1 is sampled
independently and uniformly from [u,N ], and the parent and the offspring are assigned
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in random order to the levels {u, u1}. This random assignment of levels to parent and
offspring will ensure that assignment of individuals to levels remains exchangeable.

Evidently this mechanism increases the proportion of individuals with higher levels.
To restore the property that the distribution of levels is conditionally uniform given η, we
impose that the level v of an individual at location x evolves according to the differential
equation

v̇ = −θ v
N

(N − v) γ(x, η)

∫
Rd
r(y, η)qθ(x, dy).

Since v ∈ [0, N ], this moves levels down; see [27], Section 3.4 for a detailed explanation.
This drift does not allow levels to cross below 0, while we will declare that particles

whose levels move above N are regarded as dead (and are removed from the population).
Therefore, in order to incorporate death, the level of the individual at location x with
level u moves upwards at an additional rate θµθ(x, η)u. Since levels are uniform, it is
easy to check that if µθ were constant, this would imply an exponential lifetime for each
individual; see [27], Section 3.1 for more general justification.

Putting these together, the level u of an individual at x evolves according to:

u̇ = −θ u
N

(N − u) γ(x, η)

∫
Rd
r(y, η)qθ(x, dy) + θµθ(x, η)u. (5.1)

We shall write

bθ(x, η) := θ

(
γ(x, η)

∫
Rd
r(y, η)qθ(x, dy)− µθ(x, η)

)
,

which captures the local net difference between reproduction and death, and

cθ(x, η) :=
θ

N
γ(x, η)

∫
Rd
r(y, η)qθ(x, dy), (5.2)

which captures the local rate of production of successful offspring. Recall from equa-
tion (2.2) that F (x, η) = θ(r(x, η)γ(x, η)− µθ(x, η)), and so

bθ(x, η) = θγ(x, η)

∫
Rd

(r(y, η)− r(x, η)) qθ(x, dy) + F (x, η). (5.3)

Under Assumptions 2.8, as θ →∞, cθ(x, η) will tend to αγ(x, η)r(x, η), and

bθ(x, η)→ γ(x, η)Br(x, η) + F (x, η). (5.4)

We can then rewrite the differential equation governing the dynamics of the level of
each individual as

u̇ = θγ(x, η)

∫
Rd
r(y, η)qθ(x, dy)

{
− u

N
(N − u) + u

}
− bθ(x, η)u

= cθ(x, η)u2 − bθ(x, η)u. (5.5)

Now, we can write down the generator for (ξt)t≥0, the lookdown process. In what
follows, we will write sums (and, products) over “(x, u) ∈ ξ” to mean a sum over the
(location, level) pairs of each individual in the population. Test functions for ξ will take
the form

f(ξ) =
∏

(x,u)∈ξ

g(x, u) = exp

(∫
log g(x, u)ξ(dx, du)

)
, (5.6)

where g(x, u) is differentiable in u and smooth in x. We will also assume that 0 ≤ g(x, u) ≤
1 for all u ∈ [0, N ], and g(x, u) ≡ 1 for u ≥ N . In the expressions that follow, we shall
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often see one or more factor of 1/g(x, u); it should be understood that if g(x, u) = 0, then
it simply cancels the corresponding factor in f(ξ).

First consider the terms in the generator that come from birth events. When a birth
successfully establishes, a new level is generated above the parent’s level, and this new
level is assigned to either the offspring or the parent. Since the probability of each is
1/2, the contribution of birth to the generator maps f(ξ) to

f(ξ)
∑

(x,u)∈ξ

2
θ

N
γ(x, η)

∫ N

u

∫
Rd

(
1

2

{
g(y, u1) +

g(y, u)g(x, u1)

g(x, u)

}
− 1

)
r(y, η)qθ(x, dy)du1

(5.7)

= f(ξ)
∑

(x,u)∈ξ

2γ(x, η)

{
1

2N

∫ N

u

g(x, u1)du1

θ
∫
Rd

(g(y, u)− g(x, u))r(y, η)qθ(x, dy)

g(x, u)

+
θ

N

∫ N

u

∫
Rd

(
g(y, u1) + g(x, u1)

2
− 1

)
r(y, η)qθ(x, dy)du1

}
.

(5.8)

In (5.7), u1 is the new level and y is the offspring’s location, and so the two terms in
the integral correspond to the two situations: in the first, we have added an individual
at (y, u1), while in the second, we replace an individual at (x, u) by one at (x, u1) and
another at (y, u). We’ve rewritten it in the form (5.8) because each of the two pieces
naturally converges to a separate term in the limit.

The remaining term in the generator is due to the motion of particles’ levels. Reading
off from (5.5), it takes the form

f(ξ)
∑

(x,u)∈ξ

(
cθ(x, η)u2 − bθ(x, η)u

) ∂ug(x, u)

g(x, u)
. (5.9)

We can now define the spatial-level process explicitly as a solution to a martingale
problem, whose generator is just the sum of (5.8) and (5.9). We need some notation.
Write C = C(Rd × [0,∞)) for the counting measures on Rd × [0,∞) and CN for the subset
consisting of counting measures on Rd × [0, N ].

Definition 5.1 (Martingale Problem Characterisation). For given positive values of N
and θ, define the generator AN by

ANf(ξ)

= f(ξ)
∑

(x,u)∈ξ

2γ(x, η)

{
1

2N

∫ N

u

g(x, u1)du1

θ
∫
Rd

(g(y, u)− g(x, u))r(y, η)qθ(x, dy)

g(x, u)

+
θ

N

∫ N

u

∫
Rd

(
g(y, u1) + g(x, u1)

2
− 1

)
r(y, η)qθ(x, dy)du1

}

+ f(ξ)
∑

(x,u)∈ξ

(
cθ(x, η)u2 − bθ(x, η)u

) ∂ug(x, u)

g(x, u)
,

(5.10)

where f(ξ) =
∏

(x,u)∈ξ g(x, u) is as defined in (5.6), and η(·) = ξ(· × [0, N ])/N as before.

Given ξ0 ∈ CN , we say that a D[0,∞)(CN )-valued process (ξt)t≥0 is a solution to the (AN , ξ0)

martingale problem if f(ξt)− f(ξ0)−
∫ t

0
ANf(ξs)ds is a martingale (with respect to the

natural filtration) for all test functions f as defined above.
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The martingale problem for finite N has a unique solution, since it is a finite-rate
jump process. Next we state the limiting martingale problem, for which we do not neces-
sarily have uniqueness. As before, the parameter α will correspond to limN→∞ θ(N)/N .
Whereas for finite N , conditional on the population process ηNt , the levels of particles
are independent and uniformly distributed on [0, N ], in the infinite population limit,
conditional on ηt, the process ξt is Poisson distributed on Rd× [0,∞) with mean measure
ηt × λ, where λ is Lebesgue measure.

Definition 5.2 (Martingale Problem Characterisation, scaling limit). Fix α ∈ [0,∞), and
define test functions f by f(ξ) =

∏
(x,u)∈ξ g(x, u) with g differentiable in u, smooth in x,

satisfying 0 ≤ g(x, u) ≤ 1 and such that there exists a u0 with g(x, u) = 1 for all u > u0.
Then, define the operator A on such test functions by

Af(ξ) = f(ξ)
∑

(x,u)∈ξ

γ(x, η)
B(g(·, u)r(·, η))(x)− g(x, u)Br(x, η)

g(x, u)

+ f(ξ)
∑

(x,u)∈ξ

2αγ(x, η)r(x, η)

∫ ∞
u

(g(x, u1)− 1)du1

+ f(ξ)
∑

(x,u)∈ξ

(
αγ(x, η)r(x, η)u2 − {γ(x, η)Br(x, η) + F (x, η)}u

) ∂ug(x, u)

g(x, u)
,

(5.11)

where η(·) = limu0→∞
1
u0
ξ(· × [0, u0]). We say that a D[0,∞)(C)-valued process (ξt)t≥0 is

a solution to the (A, ξ0) martingale problem if it has initial distribution ξ0 and f(ξt) −
f(ξ0) −

∫ t
0
Af(ξs)ds is a martingale (with respect to the natural filtration) for all test

functions f as defined above.

The lookdown processes have been carefully constructed so that observations about
the past spatial positions of individuals in the population do not give us any information
about the assignment of individuals to levels. In other words, the dynamics of the
lookdown process preserve the conditionally uniform (or in the limit, conditionally
Poisson) structure – if started with uniform levels, levels are uniform at all future times.
Moreover, if we average over levels in the expression for the generator (equation (5.10)
or (5.11)) we recover the generator for the population process. Once this is verified
(along with some boundedness conditions) the Markov Mapping Theorem (Theorem A.1;
also see [27]) tells us that by “removing labels” from the lookdown process ξ we recover
the population process η.

To make this precise, define the spatial projection maps κN : M(Rd × [0, N ]) →
M(Rd) by κN (ξN )(·) = ξN (· × [0, N ])/N , and κ :M(Rd × [0,∞)) →M(Rd) by κ(ξ)(·) =

limu0→∞ ξ(· × [0, u0])/u0. We will also need an inverse notion: for a measure ξN on
Rd × [0, N ] and a σ-field F , we say that ξN is conditionally uniform given F if κN (ξ) is
F -measurable and for all compactly supported f ,

E[e−〈f,ξ〉 | F ] = e−〈H
N
f ,κ

N (ξ)〉, (5.12)

where

HN
f (x) = −N log

1

N

∫ N

0

e−f(x,u)du.

In other words, the [0, N ] components of ξ are independent, uniformly distributed on
[0, N ], and independent of κN (ξ). Similarly, for a measure ξ on Rd × [0,∞) we say that ξ
is a conditionally Poisson random measure given F if κ(ξ) is F -measurable and for all
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compactly supported f ,

E[e−〈f,ξ〉 | F ] = e−〈
∫∞
0

(1−e−f(x,u))du,κ(ξ)(dx)〉. (5.13)

In other words, ξ is conditionally Poisson with Cox measure κ(ξ)×λ, where λ is Lesbegue
measure.

Proposition 5.3. If η̃N is a solution of the martingale problem of Definition 2.4 with
initial distribution ηN0 then there exists a solution ξN of the (AN , ξN0 )-martingale problem
of Definition 5.1 such that ηN = κN ◦ ξN has the same distribution on DMF (Rd)[0,∞) as

η̃N . Furthermore, for each t, ξNt is conditionally uniform given Fη
N

t in the sense of (5.12).
If uniqueness holds for the (AN , ξN0 )-martingale problem, then uniqueness also holds for
the martingale problem of Definition 2.4.

Similarly, if η̃ is a solution of the limiting martingale problem of Theorem 2.10 with
initial distribution η0 then there exists a solution ξ of the martingale problem of of
Definition 5.2 such that η = κ ◦ ξ has the same distribution on DMF (Rd)[0,∞) as η̃.
Furthermore, ξt is conditionally Poisson given Fηt in the sense of (5.13). If uniqueness
holds for the martingale problem of Definition 5.2 then uniqueness also holds for the
martingale problem of Theorem 2.10.

Now we can present the main convergence theorem that is analogous to Theorem 2.10
for the population process.

Theorem 5.4. Let (ξNt ) satisfy Definition 5.1 and assume that as N →∞, θ →∞ in such
a way that θ/N → α. Let ηN0 = κ(ξN0 ) and suppose also that ηN0 → η0 inMF (Rd), and that
for each N , ξN0 is conditionally uniform given ηN0 in the sense of (5.12). Then, (ξNt )t≥0

has a subsequence which converges in distribution as N → ∞ to a measure-valued
process (ξt)t≥0 with ξt conditionally Poisson given ηt = κ(ξt) for each t in the sense
of (5.13), that is a solution to the martingale problem of Definition 5.2.

Both results are proved in Section 8.

5.2 Explicit construction of lines of descent

The main interest in using a lookdown construction for our population processes
is that it allows us to retain information about the relatedness of individuals as we
pass to the infinite population limit. In order to exploit this, in this section we write
down stochastic equations for the locations and levels of individuals in the prelimiting
lookdown model. We will then be able to pass to the scaling limit. This provides an explicit
description of the solution to the limiting martingale problem of Definition 5.2 which will
enable us to identify all individuals in the current population that are descendants of a
given ancestor at time zero. In theory at least, this allows us to recover all the information
about genealogies relating individuals sampled from the present day population. This
idea draws on the notion of “tracers”, popular in statistical physics and used in population
genetics by a number of authors including [37], [21], and [8].

We will construct the process using a Ulam-Harris indexing scheme. First, we assign
each individual alive at time 0 a unique label from N. Suppose an individual with label
a and level u reproduces, and as a result there are two individuals, one with level u
and one with a new level u1 > u. The parent individual, previously labeled a, might be
assigned either level. We will track chains of descendant individuals forwards through
time by following levels, rather than individuals, and will call this a line of descent. So,
after reproduction, we give a new label to only the individual that is given the new level
u1, retaining the label a for the individual with the old level u. In this way, at each birth
event, a unique label is assigned to the resulting individual with the higher level, and
the label of an individual may change throughout its lifetime.
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Concretely, then: for each label a in I =
⋃
k≥1N

k, let Πa be an independent Poisson

process on [0,∞)2 ×Rd × {0, 1}. The mean measure of each Πa is a product of Lebesgue
measure on [0,∞)2, the density of the standard Gaussian on Rd, and (δ0 + δ1)/2 on {0, 1}.
It will also be convenient to suppose that for each label a we have an enumeration of
the points in Πa, so we may refer to “the jth point in Πa”, although the precise order of
this enumeration is irrelevant. If (τ, v, z, κ) is the jth point in Πa, then τ will determine
a possible birth time, v will determine the level of the offspring, z will determine the
spatial displacement of the offspring relative to the parent, κ will be used to determine
whether parent or offspring is assigned the new level, and the new label produced will be
a⊕ j, i.e., the label a with j appended (so, if a = (a1, . . . , ak) then a⊕ j = (a1, . . . , ak, j)).
Each label a has a birth time τa, when it is first assigned, and a (possibly infinite) death
time σa, when its level first hits N . For any τa ≤ t ≤ σa we denote by Xa(t) and Ua(t)

the spatial location and level of the individual carrying label a at time t, respectively.
Furthermore, define

ηNt =
1

N

∑
a:τa≤t<σa

δXa(t) and ξNt =
∑

a:τa≤t<σa

δ(Xa(t),Ua(t)).

Now, since we have defined labels so that the level does not jump, Ua satisfies (5.5)
for τa ≤ t ≤ σa, i.e.,

Ua(t) = Ua(τa)

+

∫ t

τa

(
cθ(Xa(s), ηs)Ua(s)2 − bθ(Xa(s), ηs)Ua(s)

)
ds,

(5.14)

and, of course, σa = inf{t ≥ τa : Ua(t) > N}.
Potential reproduction events occur at times τ for each point (τ, v, z, κ) ∈ Πa with

τa ≤ τ < σa. (We say “potential” since if the level of the resulting offspring is greater
than N , the event does not happen.) If this is the jth point in Πa, the potential new label
is a⊕ j, the birth time is τa⊕j = τ , and the spatial displacement of the potential offspring
is y(X(τ−), z), where

y(x, z) :=
1

θ
~b(x) +

1√
θ
K(x)z,

and K(x)KT (x) = C(x).
Next we must choose the new level created at the birth event. We would like an

individual with level u and at spatial position x to produce offspring at y at instantaneous
rate

2
(

1− u

N

)
θγ(x, η)r(x+ y, η). (5.15)

To do this we will associate the point (τ, v, z, κ) ∈ Πa with level u+ v`, where ` is chosen
so that the rate of appearance of points in Πa with level below N , that is points with
v` < N − u, is given by (5.15). Since the mean measure of Πa is Lebesgue measure in
the t and v directions, we must take

`(x, y, η) =
N − u

2(1− u/N)θγ(x, η)r(x+ y, η)
=

1

2N−1θγ(x, η)r(x+ y, η)
, (5.16)

and, using this, the (potential) new level is

Ua⊕j(τ) = Ua(τ) + v`
(
Xa(τ−), y(Xa(τ−), z), ητ−

)
.

If Ua⊕j(τ) < N , the new individual labeled a⊕ j is produced, and κ determines which
label, a or a⊕ j, is associated with the new location, so

Xa⊕j(τ) = Xa(τ−) + (1− κ)y
(
Xa(τ−), z

)
.

EJP 29 (2024), paper 28.
Page 32/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

On the other hand if Ua⊕j(τ) ≥ N , then Xa is unchanged and Xa⊕j is undefined, so

Xa(τ) = Xa(τ−) + κy(Xa(τ−), z)1Ua⊕j(τ)<N . (5.17)

Recall that the parental individual always retains their spatial location, so that κ = 1

corresponds to the parent being assigned a new level, and our line of descent switching
to the offspring. Combining these observations, Xa, for τa ≤ t < σa, solves the equation

Xa(t) = Xa(τa)

+

∫
[τa,t)×[0,∞)×R×[0,1]

y(Xa(τ−), z)κ1Ua(τ)+v`(Xa(τ−),y(Xa(τ−),z),ητ−)<NdΠa(τ, v, z, κ).

Although we have described the evolution of a line of descent only for a given label
(i.e., for τa ≤ t < σa), we can extend the definition to times 0 ≤ t < σa by setting Xa(t)

equal to X[a]t(t), where [a]t is the label of the ancestor of label a alive at time t, and
similarly for Ua(t). It is then straightforward, albeit tedious, to write down the time
evolution of (Xa(t), Ua(t)) for all time back to t = 0 in terms of the driving Poisson
processes.

Remark 5.5. Although we have a single construction that couples the processes across
all N , unlike in [48] the actual trajectories, Xa(·), do not necessarily coincide for different
values of N , since they are affected by the whole population process. However, this does
suggest approximating the genealogies in the infinite density limit by simulating up until
a sufficiently high level that we have a good approximation to the population process.

5.3 Limiting processes for lines of descent

The previous section constructed the lookdown process using the same underlying
Poisson processes {Πa}a∈I for different values of N . As a result, if the spatial projections
η converge, then individual lines of descent converge pointwise (i.e., for each realization
of {Πa}a∈I) as N →∞. To see this, first note that if the Poisson processes are fixed then
the set of events with which a given label a ∈ I is associated is also fixed – this is the
sequence (τk, vk, zk, κk) associated with the label a. To conclude that the lines of descent
converge, first, we clearly need that the spatial projections η converge. Supposing that
they do, consider how a line of descent (Xa(t), Ua(t)) evolves. It throws off a new line of
descent at a higher level when there is a point (τ, v, z, κ) in Πa with τ > τa and

v < 2

(
N − Ua(τ)

)
N

θγ(Xa(τ−), ητ−)r
(
Xa(τ−) + y

(
Xa(τ−), z

)
, ητ−

)
. (5.18)

Since the mean measure of the v coordinate is Lebesgue measure, θ/N → α, and
qθ(x, dy)→ δx(dy), this corresponds in the limit to new lines of descent being thrown off
according to a Poisson process with intensity

2αγ(Xa(t), ηt)r(Xa(t), ηt)dt× du.

Now consider the location of the line of descent: at each birth event, with probability
one half the line of descent jumps to Xa(t) + y. Taking g to be a suitable test function
on Rd, and rewriting (5.18), when the level is u and the state of the population is η, the

EJP 29 (2024), paper 28.
Page 33/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

generator of the spatial motion of the line of descent applied to g(x) is(
1− u

N

)
γ(x, η)θ

∫
Rd
r(x+ y, η)(g(x+ y)− g(x))qθ(x, dy)

=
(

1− u

N

)
γ(x, η)

{
θ

∫
Rd

(r(x+ y, η)g(x+ y)− r(x, η)g(x))qθ(x, dy)

− θ
∫
Rd

(r(x+ y, η)− r(x, η))g(x)qθ(x, dy)

}
→ γ(x, η) (B(rg)(x)− g(x)B(r)(x)) , as N, θ →∞.

Notice that the factors of 2 have cancelled, and that the result is independent of u. Also
recall that r(x, η) depends on η only through ρr∗η(x), which is guaranteed to be smooth,
so that B(r) and B(gr) are well-defined.

We write out the differential operator above in more detail. Recall that Bg(x) =∑
i
~bi∂ig(x) + 1

2

∑
ij Cij∂ijg(x), and for the moment write r(x) for r(x, η), ~b(x) = ~b, and

C(x) = C so that

B(rg)(x)− g(x)B(r)(x) = r(x)
∑
i

~bi∂ig(x) +
∑
ij

∂ir(x)Cij∂jg(x) +
1

2
r(x)

∑
ij

Cij∂ijg(x)

= r(x)

(~b+ C∇ log r(x)
)
· ∇g(x) +

1

2

∑
ij

Cij∂ijg(x)

 . (5.19)

The only thing that remains is to describe how the levels change, but this is immediate
from applying limit (5.4) to equation (5.5).

We summarize the results in a proposition.

Proposition 5.6 (Line of descent construction). Define J(x, η) and β(x, η) by

r(x, η)γ(x, η)C(x) = J(x, η)J(x, η)T

β(x, η) = r(x, η)γ(x, η)
(
~b(x) + C(x)∇ log r(x, η)

)
.

Associate with each label a ∈ I = ∪k≥1N
k an independent d-dimensional Brownian

motion Wa and an independent Poisson process Ra on [0,∞)2 with Lebesgue mean
measure, and with points ordered in some way. Given η0 ∈ MF (Rd), let (xi, ui) be the
points of a Poisson process on Rd × [0,∞) with mean measure η0 × λ (the product of
η0 and Lebesgue measure). For each i, begin a line of descent with label i, location
Xi(0) = xi, level Ui(0) = ui, and birth time τi = 0.

Write τa for the birth time of the label a and σa = limu0→∞ inf{t ≥ 0 : Ua(t) > u0} the
time the level hits∞. Suppose that the spatial locations and level of each line of descent
a solve, for τa ≤ t < σa,

Xa(t) = Xa(τa) +

∫ t

τa

β(Xa(s), ηs)ds+

∫ t

τa

J(Xa(s), ηs)dWa(s)

Ua(t) = Ua(τa) +

∫ t

τa

(
αγ(Xa(s), ηs)r(Xa(s), ηs)Ua(s)2

−
{
γ(Xa(s), ηs)Br(Xa(s), ηs) + F (Xa(s), ηs)

}
Ua(s)

)
ds,

(5.20)

where ηt = limu0→∞ η
[u0]
t and

η
[u0]
t :=

1

u0

∑
a:τa≤t<σa ; Ua(t)<u0

δXa(t).
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Each point in each Ra denotes a potential birth time for a: if the jth point in Ra is (τ, v),
with τa ≤ τ < σa, then a new line of descent with label a⊕ j is produced, with birth time
τa⊕j = τ , location Xa⊕j(τ) = Xa(τ), and level

Ua⊕j(τ) = Ua(τ) +
v

2αγ(Xa(τ), ητ )r(Xa(τ), ητ )
, (5.21)

if this is finite. For any solution {(Xa(t), Ua(t))t≥0 : a ∈ I} to (5.20) and (5.21), the
process ηt is a solution to the martingale problem of Theorem 2.10, and the process

ξt =
∑

a:τa≤t<σa

δ(Xa(t),Ua(t)) (5.22)

is a solution to the martingale problem of Theorem 5.4.

In particular, note that if α = 0, no new lines of descent are produced. More precisely,
comparing with (5.16), they are produced, but “at infinity”, and their trace is seen in the
spatial motion of the line of descent which results from the production of these lineages.

Proof of Proposition 5.6: Let (X,U) = {(Xa(t), Ua(t))t≥0 : a ∈ I} be a solution to the
system of equations (5.20) and (5.21). The fact that ξ defined with these using (5.22) is
a solution to the martingale problem of Theorem 5.4 is an application of Itô’s theorem.
Furthermore, in Proposition 5.3 we showed that the conditional Poisson property of ξ0 is
preserved (i.e., holds for ξt for all t), and so (ηt)t≥0 is well-defined, and furthermore that
ηt is a solution to the martingale problem of Theorem 2.10.

For completeness, we should also show that ηt defined in this way is càdlàg. However,
this can be verified by considering ηt as a limit of the càdlàg processes η[u0]

t .

Remark 5.7. The process ξ we consider is similar to the state-dependent branching
processes of [48], so one might expect that the proofs there would carry over with little
change. However, there is an important difference: Recall that the level Ua(t) of a line of
descent evolves as

u̇ = cθ(x, η)u2 − bθ(x, η)u, (5.23)

where bθ(x, η) and cθ(x, η) are defined in (5.3) and (5.2) respectively. Note that cθ(x, η) ≥
0, while bθ(x, η) may take either sign. Assumptions 2.8 imply that cθ(x, η) is bounded,
while bθ(x, η), because of F (x, η), is bounded above but not necessarily below. In [48],
bθ was bounded above and cθ was bounded away from zero, so they noted that if
Ua(t) ≥ bθ/cθ for some label a, that line of descent would only move upwards from that
time onwards. Furthermore, coefficients did not depend on the state of the process (i.e.,
on η), thus allowing the processes to be jointly and simultaneously constructed for all
values of N , with a pointwise embedding of (ξNt )t≥0 within (ξM )t≥0 for bθ/cθ < N < M . In
other words, individuals with levels aboveN > bθ/cθ at time t0 do not affect (ξNt )t≥t0 , thus
allowing a comparison of the number of lines of descent below level u0 to a branching
process. Although we have provided a joint construction of ξN for all N in Section 5.2,
it does not have this monotonicity: for one thing, bθ and cθ depend on the population
process η and so all individuals can affect all other ones (even those with lower levels).
Furthermore, in the deterministic case θ/N , and hence c, converges to zero, and so lines
of descent with arbitrarily high level may drift back downwards. Indeed, this must be
the case if the population persists, since in the deterministic case there is no branching.

6 Proofs of convergence for nonlocal models

In this section we present proofs of the first two of our three scaling limits. In
Subsection 6.2 we prove Theorem 2.10, to obtain (both stochastic and deterministic)
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limits in which interactions between individuals in the population are nonlocal. In
Subsection 6.3 we show how, in two important examples in which the nonlocal limit is
respectively a deterministic solution to a non-local equation of reaction-diffusion type
and a deterministic solution to a nonlocal porous medium equation with an additional
logistic growth term, one can pass to a further limit to obtain a classical PDE.

6.1 Preliminaries

Below we will have frequent use for the quantity

Bθf (x, η) = θ

∫
Rd

(f(y)r(y, η)− f(x)r(x, η))qθ(x, dy). (6.1)

First, we prove Lemma 2.9.

Proof of Lemma 2.9: Here, we need to prove that |γ(x, η)Bθf (x, η)| is bounded, uniformly
over x and η. Note that Conditions 2.8 assume nothing about η, and so, for instance,
although r(x,m) has uniformly bounded derivatives, it might still be the case that
r(x, η) = r(x, ρr∗η(x)) changes arbitrarily rapidly; the additional conditions of the Lemma
prevent this from happening.

First suppose that assumption 1 of Lemma 2.9 is satisfied. We write

r(y, η)f(y)− r(x, η)f(x)

= r(y, η)(f(y)− f(x)) + (r(y, η)− r(x, η))f(x)

= r(y, η)

∑
i

(y − x)i∂xif(x) +
∑
ij

(y − x)i(y − x)j∂xixjf(z1)


+ f(x)

∑
i

(y − x)i∂xir(x, η) +
∑
ij

(y − x)i(y − x)j∂xixjr(z2, η)


=

r(x, η) +
∑
j

(y − x)j∂xjr(z3, η)

(∑
i

(y − x)i∂xif(x)

)

+ r(y, η)
∑
ij

(y − x)i(y − x)j∂xixjf(z1)

+ f(x)

∑
i

(y − x)i∂xir(x, η) +
∑
ij

(y − x)i(y − x)j∂xixjr(z2, η)

 ,

for some zi = κix+ (1− κi)y. Integrating this against q(x, dy), we get that∣∣∣∣θ ∫ (r(y, η)f(y)− r(x, η)f(x)) qθ(x, dy)

∣∣∣∣
≤
∣∣∣∣∑

i

(r(x, η)∂xif(x) + f(x)∂xir(x, η)) θ

∫
(y − x)iqθ(x, dy)

∣∣∣∣
+

∣∣∣∣f(x)θ

∫ ∑
ij

∂xixjr(z2, η)(y − x)i(y − x)jqθ(x, dy)

∣∣∣∣
+

∣∣∣∣θ ∫ ∑
ij

(y − x)i(y − x)j
(
∂xif(x)∂xjr(z3, η) + r(y, η)∂xixjf(z1)

)
qθ(x, dy)

∣∣∣∣.
Since qθ(x, dy) is the density of a Gaussian with mean ~b(x)/θ and covariance C(x)/θ,
and both ~b(x) and C(x) are uniformly bounded, θ

∫
(y − x)iqθ(x, dy) is bounded as well.
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Furthermore, a change of variables that diagonalizes C(x) shows for any g : Rd → Rd+d,
that if Cg = supy sup‖z‖=1

∑
ij g(y)ijzizj and λ∗ = supy sup‖z‖=1

∑
ij C(y)ijzizj then

θ

∫ ∑
ij

g(y)ij(y − x)i(y − x)jqθ(x, dy) ≤ Cgλ∗.

Condition 1 gives uniform bounds on the derivatives of r(x, η) = r(x, ρr ∗ η(x)) in this
expression and so, provided f also has uniformly bounded first and second derivatives,
we have a bound of the form

|Bθf | ≤ K1 +K2|f(x)|,

for suitable constants K1, K2 that depend only on the derivatives of f .
Now suppose instead that assumption 2 of Lemma 2.9 is satisfied. First note that

|Bθf | =
∣∣∣∣θ ∫

Rn

{
f(y)r

(
y, ρr∗η(y)

)
− f(x)r

(
x, ρr∗η(x)

)}
qθ(x, dy)

∣∣∣∣
≤
∣∣∣∣θ ∫

Rn

{
f(y)r

(
y, ρr∗η(y)

)
− f(x)r

(
x, ρr∗η(y)

)}
qθ(x, dy)

∣∣∣∣ (6.2)

+

∣∣∣∣θ ∫
Rn

{
f(x)r

(
x, ρr∗η(y)

)
− f(x)r

(
x, ρr∗η(x)

)}
qθ(x, dy)

∣∣∣∣ .
(Note the extra term introduced here, r(x, ρr ∗η(y)), has the two arguments to r “at
different locations”, contrary to the usual pattern.)

Writing K3 = supx,m maxi |∂xif(x)r(x,m)| and K4 = supx,m maxi,j |∂xixjf(x)r(x,m)|,
the first term is bounded exactly as above. For the second,

r(x, ρr∗η(y))− r(x, ρr∗η(x))

= (ρr∗η(y)− ρr∗η(x))r′(x, ρr∗η(x)) +
1

2
(ρr∗η(y)− ρr∗η(x))2r′′(x,m),

where m = κ′ρr∗η(x) + (1−κ′)ρr∗η(y) for some 0 ≤ κ′ ≤ 1, and we have used r′ and r′′ to
denote the first and second derivatives of r(x,m) with respect to the second argument.
So, writing K5 = ‖r′‖∞ and K6 = ‖r′′‖∞, the second term in (6.2) is bounded by |f(x)|
multiplied by

K5

∣∣∣∣θ ∫
Rd

(ρr∗η(y)− ρr∗η(x))qθ(x, dy)

∣∣∣∣+K6

∣∣∣∣θ ∫
Rd

(ρr∗η(y)− ρr∗η(x))2qθ(x, dy)

∣∣∣∣ .
Under Condition 2 of Lemma 2.9, this is bounded by a constant times ργ∗η(x)+(ργ∗η(x))2

and supxm
2γ(x,m) is bounded. Therefore |γ(x, η)Bθf (x, η)| ≤ K7 + K8|f(x)|, where K7

comes from K3, K4, and the supremum of γ, while K8 comes from K5, K6, and the
supremum of m2γ(x,m).

6.2 Proof of Theorem 2.10: convergence for the nonlocal process

In this section we prove Theorem 2.10. This would be implied by convergence of the
lookdown process (see [48] and [27]); however in our setting, because the parameters in
the lookdown process depend on the empirical distribution, we actually use tightness of
the sequence of population processes in the proofs of tightness for the corresponding
lookdown processes.

Proof of Theorem 2.10. The proof follows a familiar pattern (see, for instance, Sec-

tion 1.4 of [25]). First we extend Rd to its one-point compactification R
d

and establish,
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in Lemma 6.2, compact containment of the sequence of scaled population processes

in MF (R
d
) (for which, since we have compactified Rd, it suffices to consider the se-

quence of total masses); armed with this, tightness of the population processes in

D[0,∞)(MF (R
d
)) follows from tightness of the real-valued processes (H(ηt))t≥0 for a

sufficiently large class of test functions H, which we establish through an application of
the Aldous-Rebolledo criterion in Lemma 6.3. These ingredients are gathered together
in Proposition 6.4 to deduce tightness of the scaled population processes in the larger

space D[0,∞)(MF (R
d
)).

We then characterise limit points as solutions to a martingale problem in Lemma 6.6;
finally in Lemma 6.7 we check that in the process of passing to the limit, no mass
‘escaped to infinity’, so that in fact the limit points take values in D[0,∞)(MF (Rd)).

As advertised, we work with the one-point compactification ofRd and consider (ηNt )t≥0

as a sequence ofMF (R
d
)-valued processes. Since, for each K > 0, {η : 〈1, η〉 ≤ K} is

a compact set in MF (R
d
), we shall focus on controlling (〈1, ηNt 〉)t≥0. The key is that

Assumptions 2.8 are precisely chosen to guarantee boundedness of the net per-capita
reproduction rate.

Lemma 6.1. Under Assumptions 2.8, for all f ∈ C2
b (Rd) with uniformly bounded first

and second derivatives, and all T > 0, there exists a C = C(f, T ) <∞, independent of
N , such that

E[〈f, ηNt 〉] ≤ CE[〈1, ηN0 〉] (6.3)

for all N ≥ 1.

Proof. Consider the semimartingale decomposition from equation (2.3):

〈f, ηNt 〉 = 〈f, ηN0 〉+

∫ t

0

∫
Rd

{
γ(x, ηNs )Bθf (x, ηNs ) + f(x)F (x, ηNs )

}
ηNs (dx)ds+MN

t (f),

(6.4)

where MN
t (f) is a martingale and Bθf is defined in (6.1). First note that Condition 6 of

Assumptions 2.8 stipulates that |γBθf | is uniformly bounded by a contant times 1 + f ,
and so recalling that F is bounded above, we conclude that under Assumptions 2.8
γ(x, η)Bθf (x, η) + f(x)F (x, η) ≤ Cf (1 + |f(x)|) for some Cf .

Now, taking expectations in (6.4),

E
[
〈f, ηNt 〉

]
≤ E

[
〈f, ηN0 〉

]
+ Cf

∫ t

0

E
[
〈1 + |f |, ηNs 〉

]
dt. (6.5)

The bound (6.3) then follows by first applying Gronwall’s inequality in the case f = 1,
which yields

E
[
〈1, ηNt 〉

]
≤ eCtE

[
〈1, ηN0 〉

]
,

with C independent of N , and substituting the resulting bound on E
[
〈1, ηNs 〉

]
into the

expression above.

With a bound on per-capita net growth rate in hand, bounds on the expectation of the
supremum of the total population size over a finite time interval also follow easily.

Lemma 6.2 (Compact containment for the population process). Under the assumptions
of Theorem 2.10, for each T > 0, there exists some constant CT , independent of N , such
that

E

[
sup

0≤t≤T
〈1, ηNt 〉

]
≤ CTE[〈1, η0〉]. (6.6)
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In particular, for any δ > 0, there exists Kδ > 0 such that

lim sup
N→∞

P

{
sup

s∈[0,T ]

〈1, ηNs 〉 > Kδ

}
≤ CT
Kδ

< δ. (6.7)

Proof. First note that by the proof of Lemma 6.1, E[〈1, ηNt 〉] ≤ E[〈1, ηN0 〉]eCt for some C
(independent of N ). Now, let MN∗

t (f) = sup0≤s≤tM
N
t (f), and as before let 〈MN (f)〉t be

the angle bracket process of MN
t (f). The Burkholder-Davis-Gundy inequality says that

there is a K for which E
[
MN∗
t (1)

]
≤ KE[

√
[MN (1)]t], where [MN (1)]t is the quadratic

variation of MN (1). Furthermore, as discussed by [41], the expectation of the quadratic
variation of a local martingale is bounded by a (universal) constant multiple of the
expectation of its angle bracket process ([2], Item (4.b’), Table 4.1, p. 162). Now, since√
x ≤ 1 + x, in the notation of Lemma 6.1, there is a C ′ such that

E
[
MN∗
t (1)

]
≤ C ′

(
1 + E

[〈
MN (1)

〉
t

])
= C ′

(
1 +

θ

N
E

[∫ t

0

〈{
γ(x, ηNs )

∫
Rd
r(y, ηNs )qθ(x, dy) + µθ(x, η

N
s )

}
, ηNs (dx)

〉
ds

])
= C ′

(
1 + E

[ ∫ t

0

〈{2θ

N
γ(x, ηNs )r(x, ηNs )

+
γ(x, ηNs )

N
Bθ1(x, ηNs )− 1

N
F (x, ηNs )

}
, ηNs (dx)

〉
ds
])
.

We have not assumed that F is bounded below, but to see that the term involving −F
does not cause us problems, we rearrange equation (6.4) with f = 1 to see that

E

[∫ t

0

〈
− F (x, ηNs ), ηNs (dx)

〉
ds

]
= E[〈1, ηN0 〉]− E[〈1, ηNt 〉]

+ E

[∫ t

0

〈
γ(x, ηNs )Bθ1(x, ηNs ), ηNs (dx)

〉
ds

]
,

(6.8)

which is bounded above since γ(x, η) and Bθ1(x, η) are both bounded and 〈1, ηNt 〉 ≥ 0.
Since θ/N → α <∞, combining constants, we obtain that for some C ′′,

E
[
MN∗
t (1)

]
≤ C ′ + C ′′E[〈1, ηN0 〉]etC .

Taking suprema and expectations on both sides of equation (6.4), then again using the
fact that γ(x, η)Bθ1(x, η) + F (x, η) ≤ C,

E

[
sup

0≤s≤T
〈1, ηNs 〉

]
≤ E[〈1, ηN0 〉] + E[MN∗

t (1)]

+ E

[
sup

0≤t≤T

∫ t

0

〈{
γ(x, ηNs )Bθ1(x, ηNs ) + F (x, ηNs )

}
, ηNs (dx)

〉
ds

]
≤ E[〈1, ηN0 〉] + CE

[∫ T

0

sup
0≤s≤t

〈1, ηNs 〉dt

]
+ C ′ + C ′′E[〈1, ηN0 〉]etC .

Once again applying Gronwall’s inequality,

E

[
sup

0≤s≤T
〈1, ηNs 〉

]
≤ C ′′′

(
1 + E[〈1, ηN0 〉]

)
e2TC .

For any T , the quantity on the right is bounded above by a constant C(T ) independent
of N . As a result, for any K > 0,

lim sup
N→∞

P

[
sup

0≤s≤T
〈1, ηNs 〉 ≥ K

]
≤ C(T )

K
.
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Our next task is to show tightness of (〈f, ηNt 〉)t≥0 for f ∈ C∞b (R
d
).

Lemma 6.3 (Tightness of (〈f, ηNt 〉)t>0). For each f ∈ C∞b (R
d
), the collection of processes

(〈f, ηNt 〉)t≥0 for N = 1, 2, . . . is tight as a sequence of càdlàg, real-valued processes.

Proof. The Aldous-Rebolledo criterion (Theorem B.2) applied to the semimartingale
representation of 〈f, ηNt 〉 of equation (6.4), tells us that it suffices to show that for each
T > 0, (a) for each fixed 0 ≤ t ≤ T , the sequence {〈f, ηNt 〉}N≥1 is tight, and (b) for any
sequence of stopping times τN bounded by T , and for each ν > 0, there exist δ > 0 and
N0 > 0 such that

sup
N>N0

sup
t∈[0,δ]

P

{∣∣∣∣∫ τN+t

τN

∫
Rd

{
γ(x, ηNs )Bθf (x, ηNs ) + f(x)F (x, ηNs )

}
ηNs (dx)ds

∣∣∣∣ > ν

}
< ν,

(6.9)

and sup
N>N0

sup
t∈[0,δ]

P
{∣∣〈MN (f)〉τN+t − 〈MN (f)〉τN

∣∣ > ν
}
< ν. (6.10)

Tightness of 〈f, ηNt 〉 for fixed t follows from Lemma 6.1 and Markov’s inequality, so we
focus on the remaining conditions.

The proof of Lemma 6.1 provides a uniform bound on γBθf , but we only know that F
is bounded above. However, by assumption, for each fixed value of m, supk≤m |F (x, k)|
is uniformly bounded as a function of x. Noting that ρF ∗η ≤ 〈1, η〉‖ρF ‖∞, we can use
Lemma 6.2 to choose N0 and K such that if N > N0, then

P

{
sup

0≤s≤T
〈1, ηNs 〉 ≥ K

}
< ν/2,

we now choose δ1 so that

δ1‖f‖∞ sup
{

sup
x
|F (x, k)| : k ≤ K‖ρF ‖∞

}
< ν/4, sup

x,η
γ(x, η)Bθf ( η)δ1 < ν/4,

so that (6.9) is satisfied with δ = δ1.
Similarly,∣∣〈MN (f)〉τN+t − 〈MN (f)〉τN

∣∣
=
∣∣∣ ∫ τN+t

τN

θ

N

∫
Rd

{
γ(x, ηNs )

∫
Rd
f2(y)r(y, ηNs )qθ(x, dy) + µθ(x, η

N
s )f2(x)

}
ηNs (dx)ds

∣∣∣
=
∣∣∣ ∫ τN+t

τN

θ

N

∫
Rd

{
γ(x, ηNs )

(
2f2(x)r(x, ηNs ) +Bθf2(x, ηNs )

)
− f2(x)

F (x, ηNs )

θ

}
ηNs (dx)ds

∣∣∣,
and so using the fact that θ/N → α <∞, an argument entirely analogous to that for (6.9)
yields a δ2 for which (6.10) is satsified. Taking δ = min{δ1, δ2}, the result follows.

We collect the implications of the last two lemmas into a proposition.

Proposition 6.4 (Tightness of (ηNt )t≥0). The collection of measure-valued processes

{(ηNt )t≥0 : N ≥ 1} is tight in D[0,∞)(MF (R
d
)).

Proof. Theorem 3.9.1 in [28] says that if the collection of E-valued processes satisfies a
compact containment condition (for any ε > 0 and T > 0, there is a compact set such that
the processes stay within that set up to time T with probability at least 1− ε), then the
collection is relatively compact (which is equivalent to tightness since we are working
on a Polish space) if and only if {(f(ηNt ))t≥0 : N ≥ 1} is relatively compact for all f in a
dense subset of Cb(E) under the topology of uniform convergence in compact sets.
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Since {ν : 〈1, ν〉 ≤ K} is compact inMF (R
d
), Lemma 6.2 gives compact containment.

Lemma 6.3 shows that the real-valued processes 〈f, ηNt 〉 are relatively compact for all

f ∈ C∞b (R
d
). Since by the Stone-Weierstrass theorem, the algebra of finite sums and

products of terms of this form is dense in the space of bounded continuous functions

on MF (R
d
), and tightness of 〈f, ηNt 〉 extends to sums and products of this form by

Lemma B.3, we have relative compactness in D[0,∞)(MF (R
d
)).

We wish to characterise the limit points of {(ηNt )t>0}N≥1 as solutions to a martingale
problem with generator P∞ which we now identify. Most of the work was done in
Section 4. First, we record an equivalent formulation of the martingale problems, which
were essentially laid out in Subsection 4.1.

Lemma 6.5. For G ∈ C∞(R) with ‖G′′′‖∞ <∞, and f ∈ C∞b (R
d
), define the function Gf

by Gf (η) := G(〈f, η〉). Let PN be the generator given by

PNGf (η) := θN

〈
γ(x, η)

∫
(G(〈f, η〉+ f(z)/N)−G(〈f, η〉)) r(z, η)qθ(x, dz)

+ (G(〈f, η〉 − f(x)/N)−G(〈f, η〉))µθ(x, η), η(dx)

〉
.

(6.11)

The process (ηNt )t≥0 of Definition 2.4 is the unique solution to the (PN , η0)-martingale
problem, i.e.,

Mt := Gf (ηNt )−Gf (ηN0 )−
∫ t

0

PNGf (ηNs )ds

is a martingale for all such test functions (with respect to the natural σ-field).

Furthermore, let P∞ be the generator given by

P∞Gf (η) := G′(〈f, η〉)
〈
γ(x, η)B (f(·)r(·, η)) (x) + f(x)F (x, η), η(dx)

〉
+ αG′′(〈f, η〉)

〈
γ (x, η) r (x, η) f2(x), η(dx)

〉
.

(6.12)

A process (η∞t )t≥0 satisfies the martingale characterization of equations (2.7) and (2.8)
if it is a solution to the (P∞, η∞0 )-martingale problem, i.e., if for all such test functions

Mt := Gf (η∞t )−Gf (η∞0 )−
∫ t

0

P∞Gf (η∞s )ds

is a martingale (with respect to the natural σ-field).

The converse – that any solution to equations (2.7) and (2.8) is a solution to the
(P∞, η∞0 )-martingale problem – requires continuity, which we expect to be true, but have
not proved.

Lemma 6.6 (Characterisation of limit points). Suppose that (ηN0 )N≥1 converges weakly

to η0 as N →∞. Then any limit point of {(ηNt )t≥0}N≥1 in D[0,∞)(MF (R
d
)) is a solution

to the martingale problem for (P∞, η0).

Proof. We use Theorem 4.8.2 in [28]. First observe that the set of functions {Gf (η) :=

G(〈f, η〉), G ∈ C∞(R), ‖G′′′‖∞ <∞, f ∈ C∞b (R
d
)} is separating onMF (R

d
). Therefore,

it suffices to show that for any t > 0 and τ > 0 that

lim
N→∞

E

[(
Gf (ηNt+τ )−Gf (ηNt )−

∫ t+τ

t

P∞Gf (ηNs )ds

) k∏
i=1

hi(η
N
ti )

]
= 0 (6.13)
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for all k ≥ 0, 0 ≤ t1 < t2 < . . . , tk ≤ t < t+τ , and bounded continuous functions h1, . . . , hk

onMF (R
d
). Since (ηNt )t≥0 is Markov, the tower property gives that, for each N ,

E

[(
Gf (ηNt+τ )−Gf (ηNt )−

∫ t+τ

t

PNGf (ηNs )ds

) k∏
i=1

hi(η
N
ti )

]
= 0. (6.14)

Therefore, it suffices to show that

lim
N→∞

E

[∫ t+τ

t

∣∣PNGf (ηNs )− P∞Gf (ηNs )
∣∣ ds k∏

i=1

hi(η
N
ti )

]
= 0, (6.15)

and, again using the tower property, since the functions hi are bounded, this will follow
if

lim
N→∞

E

[∫ t+τ

t

∣∣PNGf (ηNs )− P∞Gf (ηNs )
∣∣ ds∣∣∣∣Ft] = 0 (6.16)

(where {Ft}t≥0 is the natural σ-field).
We rewrite PNGf (ηNs ) using a Taylor series expansion up to third order for G

(
〈f, η〉±

f(y)/N
)

around G(〈f, η〉). As in Section 4 (except that now we are more explicit about
the error term), we find

PNGf (η) :=G′(〈f, η〉)
∫
Rd
θ
{
γ(x, η)

∫
Rd
f(y)r(y, η)qθ(x, dy)− f(x)µθ(x, η)

}
η(dx)

+
1

2

θ

N
G′′(〈f, η〉)

∫
Rd

{
γ(x, η)

∫
Rd
f2(y)r(y, η)qθ(x, dy) + f2(x)µθ(x, η)

}
η(dx)

+
1

6

θ

N2
G′′′(w)γ(x, η)

∫
Rd

{
f3(y)r(y, η)qθ(x, dy)−G′′′(v)f3(x)µθ(x, η)

}
η(dx)

(6.17)
for some w, v ∈ [〈f, η〉 − ‖f‖∞/N, 〈f, η〉+ ‖f‖∞/N ].

Combining with equation (4.5), and the fact that µθ(x, η)→ r(x, η)γ(x, η) as θ →∞,
we have pointwise convergence:

lim
N→∞

|PNG(〈f, η〉)− P∞G(〈f, η〉)| = 0. (6.18)

To conclude convergence of the expectation, we would like to apply the Dominated Con-
vergence Theorem in (6.15). Recall that f and G and their derivatives are bounded, and
γ(x, η) is bounded independent of θ. Since θ/N2 → 0, rearranging as in (4.3) and using
the convergence of (4.4), we deduce that we can dominate

∣∣PNGf (ηNs )− P∞Gf (ηNs )
∣∣ by

a constant multiple of 〈1 + |F (x)|, ηs(dx)〉. Since F is bounded above, there is a constant
K such that |F | ≤ K − F so that, exactly as in equation (6.8), we can check that

E
[ ∫ t+τ

t

〈
|F (x, ηNs )|, ηNs (dx)

〉
ds

∣∣∣∣Ft] <∞,
which concludes our proof.

The last step in the proof of Theorem 2.10 is to check that any limit point (ηt)t≥0

of {(ηNt )t≥0}N≥1 actually takes its values inMF (Rd), that is, “no mass has escaped to
infinity”.

Lemma 6.7. Under the assumptions of Theorem 2.10, if (ηt)t≥0 is a limit point of
{(ηNt )t≥0}N ≥ 1, then for any δ > 0 and T > 0,

P

[
sup

0≤t≤T
ηt
(
{‖x‖ > R}

)
> δ

]
→ 0 as R→∞.
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Sketch. Take f0(x) as in the statement of Theorem 2.10, i.e., f0 is nonnegative, grows
to infinity as x → ∞, has uniformly bounded first and second derivatives, and has
〈f0, η

N
0 〉 uniformly bounded in N . We take a sequence of nonnegative test functions

fn that increase to the function f0 and having uniformly bounded first and second
derivatives, so that there is a (single) C from Condition 6 of Assumptions 2.8 such
that γ(x, η)Bθfn(x, η) ≤ C(1 + fn(x)) for all x, η, and fn. Then, just as we arrived at
equation (6.5),

E
[〈
fn(x), ηNt (dx)

〉]
≤ E

[〈
fn(x), ηN0 (dx)

〉]
+ C

∫ t

0

E
[〈
fn(x), ηNs (dx)

〉]
ds,

with the same constant for all n and all N . Gronwall’s inequality then implies that
E[〈fn, ηNt 〉] ≤ C ′ for some C ′ independent of n, N , and t ∈ [0, T ]. By first taking N →∞
and then n → ∞, we find that E[〈f0, ηt(dx)〉] ≤ C ′ for t ∈ [0, T ]. However, this is for a
single time – we would like instead to uniformly bound E[sup0≤t≤T 〈fn, ηNt (dx)〉]. This
can be done in a similar but lengthier manner, following the proof of Lemma 6.2 and
observing that bounds can be taken independent of n and N .

Finally, since f0 →∞ as |x| → ∞, an application of Markov’s inequality tells us that
for any δ > 0,

P

{
sup

0≤t≤T
ηt({x : ‖x‖ > R}) > δ

}
≤
E[sup0≤t≤T 〈f0, ηt〉]
δ inf{x:‖x‖≥R} f0(x)

→ 0 as R→∞.

6.3 Convergence of some nonlocal equations to classical PDEs

It is natural to conjecture that when the limit of the rescaled population process
that we obtained in the previous section solves a nonlocal PDE, if we further scale
the kernels ρr, ργ , and ρF by setting ρε(·) = ρ(·/ε)/εd, as ε → 0, the corresponding
solutions should converge to a limiting population density that solves the corresponding
“classical” PDE. We verify this in two examples; in the first the nonlocal equation is a
reaction-diffusion equation with the “nonlocality” only appearing in the reaction term; in
the second the nonlocal PDE is a special case of a nonlinear porous medium equation.
These, in particular, capture the examples that we explored in Section 3.2.

6.3.1 Reaction–diffusion equation limits

In this subsection we prove Proposition 2.15. The conditions of the proposition are in
force throughout this subsection. The proof rests on a Feynman-Kac representation.
We write (Zt)t≥0 for a diffusion with generator B∗ and denote its transition density by
ft(x, y). The first step is a regularity result for this density.

Lemma 6.8. Fix T > 0. There exists a constant K = K(T ) > 0 such that, for any
x, y ∈ Rd and t ∈ [0, T ], ∫

|ft(x, z)− ft(y, z)|dz ≤
‖x− y‖√

t
K. (6.19)

Proof. We first use the Intermediate Value Theorem to obtain the bound∫
|ft(x, z)− ft(y, z)|dz ≤

∫
‖x− y‖‖∇ft(w, z)‖dz

where ∇ acts on the first coordinate only and w is in the line segment [x, y] joining x to y.
Under our assumptions on b and C, equation (1.3) of [64], gives existence of constants

EJP 29 (2024), paper 28.
Page 43/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

λ = λ(T ) > 0 and K such that,

‖∇ft(w, z)‖ ≤
K√
t
pλt(w, z),

where ps(x, y) is the Brownian transition density. Hence,∫
|ft(x, z)− ft(y, z)|dz ≤ K

‖x− y‖√
t

∫
pλt(w, z)dz = K

‖x− y‖√
t

.

Lemma 6.9. Fix T > 0. Let x, y ∈ Rd, t ∈ [0, T ], and denote by (Zyt )t≥0 and (Zxt )t≥0

independent copies of the diffusion (Zt)t≥0 starting from y and x respectively. There
exists a constant K = K(T ) > 0 such that,

E[‖Zyt − Zxt ‖] ≤ K(
√
t+ ‖y − x‖).

Proof. First we write,

E[‖Zyt − Zxt ‖] =

∫ ∫
‖u− v‖ft(y, u)ft(x, v)dudv.

Under our regularity assumptions on C, b, using equation (1.2) of [64], there exist
constants K, λ = λ(T ) > 0 for which,

ft(y, u) ≤ Kpλt(y, u).

It then follows that,

E[‖Zyt − Zxt ‖] ≤
∫ ∫

‖u− v‖K2pλt(y, u)pλt(x, v)dvdu = K2E[‖Byλt −B
x
λt‖], (6.20)

where (Byt )t≥0 and (Bxt )t≥0 are independent Brownian motions starting at y and x

respectively. Using the triangle inequality, and writing (B0
t )t≥0 for a Brownian motion

started from the origin,

E[‖Byλt −B
x
λt‖] ≤ ‖y − x‖+ E[‖B0

2λt‖] ≤ ‖y − x‖+ C
√
t. (6.21)

Substituting (6.21) in (6.20) gives the result.

We use the representations of the solutions to equations (2.12) and (2.11) respec-
tively:

ϕt(x) = Ex

[
ϕ0(Zt) +

∫ t

0

ϕs(Zt−s)F (ϕs(Zt−s))ds
]
, (6.22)

ϕεt(x) = Ex

[
ϕ0(Zt) +

∫ t

0

ϕεs(Zt−s)F (ρεF ∗ ϕεs(Zt−s))ds
]
, (6.23)

from which

ϕt(x)− ϕεt(x) = Ex

[∫ t

0

(
ϕs(Zt−s)F

(
ϕs(Zt−s)

)
− ϕεs(Zt−s)F

(
ρε ∗ ϕεs(Zt−s)

))
ds

]
, (6.24)

where Ex denotes expectation for Z with Z0 = x. The key to our proof of Proposition 2.15
will be to replace F (ϕs(Zt−s)) by F (ρεF ∗ ϕs(Zt−s)) in this expression. We achieve this
through three lemmas.

First we need a uniform bound on ϕ and ϕε.
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Lemma 6.10. For any T > 0 there exists M = M(T, ‖ϕ0‖) > 0 such that, for all
0 ≤ t ≤ T :

max{‖ϕt(·)‖∞, ‖ϕεt(·)‖∞} < M.

Proof. Using that ϕ0 and F are bounded above, from the representation (6.22), we have

ϕt(x) ≤ ‖ϕ0‖∞ +KE
[ ∫ t

0

ϕs(Zt−s)ds
]
.

In particular,

‖ϕt(·)‖∞ ≤ ‖ϕ0‖∞ +K

∫ t

0

‖ϕs(·)‖∞ds,

so, by Gronwall’s inequality,

‖ϕt(·)‖∞ ≤ ‖ϕ0‖∞ exp (KT ) .

Similarly, ‖ϕεt(·)‖∞ ≤ ‖ϕ0‖∞ exp (KT ).

We also need a continuity estimate for ϕ.

Lemma 6.11. Let T > 0. There exists a constant K = K(T, ‖ϕ0‖∞) > 0 and δ0 =

δ0(T, ‖ϕ0‖∞) > 0 such that for all 0 < δ < δ0 and 0 ≤ t ≤ T ,

‖x− y‖ < δ3 ⇒ |ϕt(x)− ϕt(y)| < Kδ.

Proof. First we need some notation. Fix T > 0 and write M for the corresponding
constant from Lemma 6.10. Let ‖F‖M = supm∈[0,M ] |F (m)|. We reserve K̂ for the

constant on the right hand side of equation (6.19) and K̃ for the constant in Lemma 6.9,
and write Kϕ0

for the Lipschitz constant of ϕ0. Set

δ0 = min
( 1

‖F‖2M
,

1

Me
(
2‖F‖M + K̂

) , 1

K̃Kϕ0
+ 2‖F‖MM

, 1
)
.

In what follows we take 0 < δ < δ0.
We first prove that the result holds if t < δ2. As before let Zxt and Zyt be independent

copies of the diffusion Zt starting at x and y respectively. From our representation (6.22)
and Lemma 6.10, we can write:

|ϕt(x)− ϕt(y)| ≤
∣∣Ex[ϕ0(Zt)]− Ey[ϕ0(Zt)]

∣∣+ 2‖F‖MMt

≤ E[|ϕ0(Zxt )− ϕ0(Zyt )|] + 2‖F‖MMt

≤ Kϕ0
E[‖Zxt − Z

y
t ‖] + 2‖F‖MMt

≤ K̃Kϕ0
(
√
t+ ‖y − x‖) + 2‖F‖MMt

≤ K̃Kϕ0(δ + δ3) + 2‖F‖MMδ2 ≤ (K̃Kϕ0 + 1)δ,

where we have used Lemma 6.9 in the fourth inequality and the definition of δ0 in the
last inequality.

Suppose now that δ2 < t. We will follow the pattern in Lemma 2.2 of [57]. First, note
that by the Feynman-Kac formula we have an alternative representation for ϕt(x): for
any t′ < t,

ϕt(x) = Ex

[
ϕt−t′(Zt′) exp

( ∫ t′

0

F (ϕt−s(Zs))ds
)]
.

Therefore, setting t′ = δ2 and using Lemma 6.10, for all z,

e−δ
2‖F‖MEz

[
ϕt−δ2(Zδ2)

]
≤ ϕt(z) ≤ eδ

2‖F‖MEz
[
ϕt−δ2(Zδ2)

]
.
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We can then deduce that

ϕt(x)− ϕt(y) ≤ eδ
2‖F‖MEx

[
ϕt−δ2(Zδ2)

]
− e−δ

2‖F‖MEy
[
ϕt−δ2(Zδ2)

]
= eδ

2‖F‖M
(
Ex
[
ϕt−δ2(Zδ2)

]
− Ey

[
ϕt−δ2(Zδ2)

])
+
(
eδ

2‖F‖M − e−δ
2‖F‖M

)
Ey
[
ϕt−δ2(Zδ2)

]
≤ eδ

2‖F‖M
(
Ex
[
ϕt−δ2(Zδ2)

]
− Ey

[
ϕt−δ2(Zδ2)

]
) +M

(
eδ

2‖F‖M − e−δ
2‖F‖M

)
.

(6.25)

To bound the differences of the expected values in the last equation note that, by
using again Lemma 6.10,

Ex
[
ϕt−δ2(Zδ2)

]
− Ey[ϕt−δ2(Zδ2)

]
=

∫
ϕt−δ2(z)(fδ2(x, z)− fδ2(y, z))dz

≤M
∫ ∣∣fδ2(x, z)− fδ2(y, z)

∣∣dz
≤MK̂

‖x− y‖
δ

≤MK̂δ2,

where we have used Lemma 6.8 and that ‖x− y‖ < δ3. Substituting in (6.25),

ϕt(x)− ϕt(y) ≤ eδ
2‖F‖M

(
MK̂δ2 +M −Me−2δ2‖F‖M

)
≤ eδ

2‖F‖M
(
MK̂δ2 + 2Mδ2‖F‖M

)
≤ e

(
MK̂ + 2M‖F‖M

)
δ2 ≤ δ,

where the last two inequalities follow from the definition of δ. Interchanging x and y

yields the same bound for ϕt(y)− ϕt(x), and the result follows.

We proceed to control the difference between F (ϕ) and F (ρεF ∗ ϕ). Note first that
since ρF ∈ L1,

I(ε) :=

∫
{‖y‖>ε3/4}

ρεF (y)dy =

∫
{‖y‖>ε−1/4}

ρF (y)dy → 0 as ε→ 0.

Lemma 6.12. Let T > 0. There exists a constant C = C(T, ‖ϕ0‖∞) > 0 such that, for all
0 ≤ t ≤ T , for all ε small enough,

‖ϕt(·)− ρεF ∗ ϕt(·)‖∞ ≤ C(I(ε) + ε1/4). (6.26)

Furthermore, there is a constant C̃(T, ‖ϕ0‖∞) = C̃ such that, for all 0 ≤ t ≤ T ,

‖F (ϕt(·))− F (ρεF ∗ ϕt(·))‖∞ ≤ C̃
(
I(ε) + ε1/4

)
. (6.27)

Proof. Let ε < δ4
0 , with δ0 from Lemma 6.11. Then,

|ϕt(x)− ρεF ∗ ϕt(x)| ≤
∫
‖x−y‖>ε3/4

ρεF (x− y)|ϕt(y)− ϕt(x)|dy

+

∫
‖x−y‖≤ε3/4

ρεF (x− y)|ϕt(y)− ϕt(x)|dy

≤ 2M

∫
‖x−y‖>ε3/4

ρεF (x− y)dy +

∫
‖x−y‖≤ε3/4

ρεF (x− y)Kε1/4dy

≤ 2MI(ε) +Kε1/4,
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where we used the estimates of Lemma 6.10 and Lemma 6.11. This proves (6.26). For
(6.27), let LM be the (uniform) Lipschitz constant of F on [0,M ], with M still taken from
Lemma 6.10. Then,

‖F (ϕt(·))− F (ρεF ∗ ϕt(·))‖∞ ≤ LM‖ϕt(·))− (ρεF ∗ ϕt(·))‖∞
≤ LM (2MI(ε) +Kε1/4),

which proves (6.27).

Proof of Proposition 2.15: Let ε be small enough that Lemma 6.12 holds. We use the
notation δ̂(ε) for the quantity on the right hand side of (6.27). Then from the representa-
tion (6.24) and Lemma 6.12 we can write,

|ϕt(x)− ϕεt(x)|

≤ Ex
[∫ t

0

∣∣∣ϕs(Zt−s)F (ρεF ∗ ϕs(Zt−s))− ϕεs(Zt−s)F
(
ρεF ∗ ϕεs(Zt−s)

)∣∣∣ds]+Mtδ̂(ε)

≤ Ex
[∫ t

0

∣∣F (ρεF ∗ ϕεs(Zt−s))
∣∣ · ∣∣ϕεs(Zt−s)− ϕs(Zt−s)∣∣ds]

+ Ex

[∫ t

0

|ϕs(Zt−s)|
∣∣F (ρεF ∗ ϕεs(Zt−s))− F (ρεF ∗ ϕs(Zt−s))

∣∣ds]+Mtδ̂(ε)

≤ ‖F‖M
∫ t

0

‖ϕεs(·)− ϕs(·)‖∞ds+MLM

∫ t

0

‖ρεF ∗ ϕεs(·)− ρεF ∗ ϕs(·)‖∞ds+Mtδ̂(ε)

≤ (‖F‖M +MLM )

∫ t

0

‖ϕεs(·)− ϕs(·)‖∞ds+Mtδ̂(ε),

where the second inequality is the triangle inequality, and the third is Lemma 6.10. An
application of Gronwall’s inequality then yields,

‖ϕεt(·)− ϕt(·)‖∞ ≤Mtδ̂(ε) exp(t(‖F‖M +MLM ))

≤MTδ̂(ε) exp(T (‖F‖M +MLM )),

giving the result, since δ̂ → 0 as ε→ 0.

6.3.2 Porous Medium Equation

In this subsection we prove Proposition 2.19. To ease notation, we present the proof
in d = 1 (although we retain the notation ∇). However, to recall the dependence on ε

we write ρε for ργ . It should be clear that it extends almost without change to higher
dimensions.

Recall that we are concerned with non-negative solutions to the equation (2.13):

∂tψ
ε
t (x) = ∆ (ψεt ρ

ε ∗ ψεt ) (x) + ψεt (x) (1− ρε ∗ ψεt (x)) .

and we assume that ρ = ζ ∗ ζ̌ with ζ a rapidly decreasing function and ζ̌(x) = ζ(−x). The
example we have in mind is ζ (and therefore ρ) being the density of a mean zero Gaussian
random variable. We shall prove that under the assumptions of Proposition 2.19, as
ε→ 0, we have convergence to the solution to the porous medium equation with logistic
growth, equation (1.2):

∂tψt(x) = ∆
(
ψ2
t

)
(x) + ψt(x) (1− ψt(x)) .

We work on the time interval [0, T ], and will require a lower bound on
∫
ψεt logψεtdx

which we record as a lemma.
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Lemma 6.13. Suppose that there exists λ ∈ (0, 1) and C < ∞, both independent of ε,
such that

∫
exp(λ|x|)ψε0(x)dx < C. Then there exists a constant K <∞, independent of

ε, such that
∫
ψεt (x) logψεt (x)dx > −K for all t ∈ [0, T ].

Proof. First observe that, since x log x is bounded below,
∫ 1

−1
ψεt (x) logψεt (x)dx is bounded

below, and recall that ψεt (x) ≥ 0.
Now consider

d

dt

∫
exp(λx)ψεt (x)dx =

∫
exp(λx)∆

(
ψεt ρ

ε ∗ ψεt
)
(x)dx

+

∫
exp(λx)ψεt (x)

(
1− ρε ∗ ψεt (x)

)
dx

=

∫
(λ2 − 1) exp(λx)ψεt (x)ρε∗ψεt (x)dx+

∫
exp(λx)ψεt (x)dx

≤
∫

exp(λx)ψεt (x)dx, (6.28)

and so, by Gronwall’s inequality,
∫

exp(λx)ψεt (x)dx is uniformly bounded on [0, T ]. In
particular, combining with the Mean Value Theorem, we find∫ x+1

x

ψεt (y)dy ≤ C exp(−λx),

where the constant C is independent of x ≥ 1. A fortiori,∫ x+1

x

ψεt (y)1ψεt (y)≤1dy ≤ C exp(−λx). (6.29)

Now the function ψ 7→ 10≤ψ≤1ψ| logψ| is concave, and so using Jensen’s inequality
and (6.29), ∫ x+1

x

ψεt (y)| logψεt (y)|1ψεt (y)≤1dy ≤ C ′x exp(−λx).

Evidently a symmetric argument applies for x ≤ −1. Summing over x, and using that
ψ logψ ≥ −ψ| logψ|1ψ≤1, we find∫

ψεt (x) logψεt (x)dx ≥ −C ′′
∞∑
x=1

x exp(−λx) > −K > −∞,

as required.

Proof of Proposition 2.19. First observe that∫
ψεt (x) ρε ∗ ψεt (x)dx =

∫ ∫ ∫
ψεt (x)ψεt (x− y)ζε(y − z)ζ̌ε(z)dzdydx

=

∫ ∫ ∫
ψεt (x̃− z̃)ψεt (x̃− ỹ)ζε(ỹ)ζε(z̃)dz̃dỹdx̃ =

∫
(ζε ∗ ψεt (x))

2
dx,

where we have set x̃ = x− z, ỹ = y − z, z̃ = −z.
Now note that

d

dt

∫
ψεt (x)dx =

∫
∆
(
ψεt ρ

ε ∗ ψεt
)
(x)dx+

∫
ψεt (x)

(
1− ρε ∗ ψεt (x)

)
dx

=

∫
ψεt (x)dx−

∫ (
ζε ∗ ψεt (x)

)2
dx.
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Thus, Gronwall’s inequality implies that
∫
ψεt (x)dx is uniformly bounded above in ε and

t ∈ [0, T ]. Note that this also then gives a uniform bound on the rate of change of∫
ψεt (x)dx, and since we are working on [0, T ] this will be enough to give continuity in

time of the L1 norm of the limit when we pass to a convergent subsequence.
Now consider

d

dt

∫
ψεt logψεtdx

=

∫
(1 + logψεt )

[
∆
(
ψεt ρ

ε ∗ ψεt
)

+ ψεt
(
1− ρε ∗ ψεt

)]
dx

=

∫
(1 + logψεt )

[
∇
(
ψεt ∇(ρε ∗ ψεt ) +∇ψεt ρε ∗ ψεt

)
+ ψεt

(
1− ρε ∗ ψεt

)]
dx

=

∫ [
−∇ψ

ε
t

ψεt

(
ψεt ∇(ρε ∗ ψεt ) +∇ψεt ρε ∗ ψεt

)
+ (1 + logψεt )ψ

ε
t (1− ρε ∗ ψεt )

]
dx

= −
∫

(∇(ζε ∗ ψεt ))
2
dx−

∫
(∇ψεt )2 ρ

ε ∗ ψεt
ψεt

dx

+

∫ [
ψεt + ψεt logψεt

(
1− ρε ∗ ψεt

)
− ψεt ρε ∗ ψεt

]
dx

= −
∫

(∇(ζε ∗ ψεt ))
2
dx−

∫
(∇ψεt )2 ρ

ε ∗ ψεt
ψεt

dx−
∫

(ζε ∗ ψεt )2dx

+

∫ [
ψεt + ψεt logψεt

(
1− ρε ∗ ψεt

)]
dx. (6.30)

The first three terms are negative; and we already saw that the L1 norm of ψεt is uniformly
bounded. Moreover, since ψεt logψεt is uniformly bounded below and

∫
ρε(x)dx = 1,

−
∫
ψεt logψεt ρ

ε ∗ ψεtdx ≤ C
∫
ρε ∗ ψεtdx = C

∫
ψεtdx.

From this and (6.30), we see immediately that
∫
ψεt logψεtdx is uniformly bounded above

in ε and t ∈ [0, T ]. Combining with Lemma 6.13, we deduce that we have a uniform bound
on
∫
ψεs(x)| logψεs(x)|dx. From (6.30), this in turn means that both

∫ t
0

∫
(ζε ∗ ψεs(x))2dxds

and
∫ t

0

∫ (
∇(ζε ∗ ψεs(x))

)2
dxds are uniformly bounded in ε and t ∈ [0, T ].

We shall next show that ζε ∗ψεt solves (1.2) up to a remainder of order ε. First observe
that ∫

∆ ((ρε ∗ ψεt )ψεt )φdx = −
∫
∇(ρε ∗ ψεt )ψεt ∇φdx−

∫
ρε ∗ ψεt ∇ψεt ∇φdx. (6.31)

We would like to show that this is close to
∫

(ζε ∗ ψεt )2∆φdx. For the first term∫
∇(ρε ∗ ψεt )ψεt ∇φdx =

∫ ∫ ∫
∇ψεt (x− y)ζε(y − z)ζ̌ε(z)ψεt (x)∇φ(x)dzdydx

=

∫ ∫ ∫
∇ψεt (x̃− ỹ)ζε(ỹ)ζε(z̃)ψεt (x̃− z̃)∇φ(x̃− z̃)dz̃dỹdx̃

=

∫
(∇ζε ∗ ψεt ) (ζε ∗ (ψεt∇φ)) dx

=
1

2

∫
∇((ζε ∗ ψεt )2)∇φdx

+

∫
∇(ζε ∗ ψεt ) [ζε ∗ (ψεt ∇φ)−∇φ (ζε ∗ ψεt )] dx, (6.32)

where, as before, we have substituted x̃ = x − z, ỹ = y − z, z̃ = −z. We are going to
bound the square of the L2-norm of the term in square brackets in (6.32) by the product
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of its L1-norm (which is bounded by a constant times the L1-norm of ψεt ) and its L∞-norm.
To control the L∞-norm, we use the Intermediate Value Theorem to see that∣∣∣∣∫ [ψεt (x− y)∇φ(x− y)ζε(y)−∇φ(x)ψεt (x− y)ζε(y)] dy

∣∣∣∣
≤ C‖∆φ‖∞

∫
ψεt (x− y)ε

|y|
ε
ζε(y)dy ≤ C‖∆φ‖∞ε‖zζ(z)‖∞

∫
ψεt (x− y)dy.

Since ζ ∈ S(R), and (as we checked above) ψεt is uniformly bounded in L1 over [0, T ], this
expression is O(ε) – i.e., is bounded by a constant multiple of ε with a constant that does
not depend on t ∈ [0, T ] or x.

We can now apply the Cauchy-Schwarz inequality to (6.32) to bound it by the square
root of

Cε

∫ (
∇(ζε ∗ ψεt (x))

)2
dx. (6.33)

Similarly, for the second term in (6.31),∫
(ρε ∗ ψεt )∇ψεt ∇φdx =

∫ ∫ ∫
ψεt (x− y)ζε(y − z)ζ̌ε(z)∇ψεt (x)∇φ(x)dzdydx

=

∫ ∫ ∫
ψεt (x̃− ỹ)ζε(ỹ)ζε(z̃)∇ψεt (x̃− z̃)∇φ(x̃− z̃)dz̃dỹdx̃

=

∫
(ζε ∗ ψεt ) (ζε ∗ (∇ψεt ∇φ)) dx

=
1

2

∫
∇((ζε ∗ ψεt )2)∇φdx

+

∫
(ζε ∗ ψεt ) [ζε ∗ (∇ψεt ∇φ)−∇φ (∇ζε ∗ ψεt )] dx. (6.34)

The term in square brackets in (6.34) is∣∣∣∣∫ [∇ψεt (x− y)∇φ(x− y)ζε(y)−∇φ(x)∇ψεt (x− y)ζε(y)] dy

∣∣∣∣
=

∣∣∣∣∫ [ψεt (x− y)∇
(
(∇φ(x− y)−∇φ(x))ζε(y)

)]
dy

∣∣∣∣ ,
and expanding ∇φ in a Taylor series about x and once again using that ζ ∈ S(R), we see
that the L∞ norm of this quantity is O(ε).

We can now apply the Cauchy-Schwarz inequality to (6.34) to bound it by the square
root of

Cε

∫ (
ζε ∗ ψεt (x)

)2
dx. (6.35)

We now have the ingredients that we need. Recalling that
∫ t

0

∫
(ζε ∗ ψεs(x))2dxds and∫ t

0

∫ (
∇(ζε ∗ψεs(x))

)2
dxds are uniformly bounded in ε and t ∈ [0, T ], the calculations above

yield both a uniform (in ε) bound on ζε ∗ ψεt in L1 ∩ L2
(
[0, T ] × R

)
, and (with another

application of Cauchy-Schwarz, this time applied to the time integral, to control the
error terms) that∫

ψεt (x)φ(x)dx−
∫
ψε0(x)φ(x)dx =

∫ t

0

∫
(ζε ∗ ψεs(x))2∆φ(x)dx

+

∫ t

0

∫
ζε ∗ ψεs(x) (1− ζε ∗ ψεs(x))φ(x)dx+O(

√
ε) (6.36)
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(for sufficiently regular φ). Since
∫
ψεt (x)φ(x)dx −

∫
ζε ∗ ψεt (x)φ(x)dx is order ε, if we

replace ψε by ζε∗ψε on the left hand side, then (6.36) says that ζε∗ψε solves (2.14) weakly
up to order ε. Therefore, ζε ∗ ψε converges weakly to ψ in L1, where ψ is the (unique)
solution to equation (2.14) and, so, therefore, does ψε. In fact, strong convergence, that
is
∫
|ψε − ψ|φdx → 0, follows from the uniform integrability of ψε that we can deduce

from the uniform control of
∫
ψε| logψε|dx that we proved above.

7 Simultaneous scaling with interaction distance

In this section we prove Theorem 2.21, which proves convergence in the case that
the width of the interaction kernel ρF simultaneously scales along with the parameters θ
and N , in the special case in which r ≡ 1 ≡ γ, qθ(x, dy) is isotropic with zero mean, the
kernel ρF is Gaussian, and the scaling limit is a reaction-diffusion equation.

To simplify notation, in this section we shall write

ρε ∗ η(x) = ρεF ∗ η(x) = 〈pε2(x, y), η(dy)〉,

where pt(x, y) denotes the heat semigroup. The assumptions of Theorem 2.21 will be in
force throughout, in particular,

ε2θ →∞, and
θ

Nεd
→ 0. (7.1)

That N, θ → ∞ and ε → 0 simultaneously will be implicit, so for example if we write
limε→0, it should be understood that θ,N → ∞ in such a way that (7.1) is satisfied.
Moreover, where there is no risk of confusion, except where it is helpful for emphasis,
we suppress dependence of η on N .

The first part of the proof mirrors that of Theorem 2.10: in Subsection 7.1 we establish
bounds on the moments of ρε ∗ ηt(x) that are sufficient to imply tightness and then apply
standard results on convergence of Markov processes from [28]. The challenge comes
in identifying the limit points. This is much more intricate than the case in which we
do not scale the interaction kernel, as weak convergence will no longer be sufficient to
guarantee the form of the nonlinear terms in the limiting equation. Identification of the
limit will rest on regularity inherited from continuity estimates for a random walk with
Gaussian jumps which we prove in Subsection 7.2, before identifying the limit points in
Subsection 7.3.

Roughly speaking, the assumption that θ/Nεd is small is used in ensuring a well-
defined and deterministic limit, while the assumption on ε2θ is used in proving continuity.
For more motivation behind these assumptions, see the last part of Section 4.1.

7.1 Moment bounds for ρε ∗ η

Let us write Lθf(x) := θ
∫

(f(y) − f(x))qθ(x, y)dy where qθ is a Gaussian kernel of
mean 0 and variance 1/θ. We note that Lθ is the generator of a continuous (time and
space) random walk, which makes jumps of mean 0 and variance 1/θ at rate θ. In what
follows we write ψε,xt (y) for the solution of

∂tψ
ε,x
t = Lθψε,xt , (7.2)

with initial condition ψε,x0 (y) = ρε(y − x) = pε2(x, y).

To see why ψε,xt is useful, first note that for any time-dependent function φt(x) with
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time derivative φ̇t(x) = ∂tφt(x),

〈φt(x), ηt(dx)〉 = 〈φ0(x), η0(dx)〉+Mt(φ) +

∫ t

0

〈
Lθφs(x) + φ̇s(x), ηs(dx)

〉
ds

+

∫ t

0

〈
φs(x)F (x, ηs), ηs(dx)

〉
ds, (7.3)

where Mt(φ) is a martingale (with respect to the natural filtration) with angle bracket
process given by (2.4) with f replaced by φs(·). So, taking φs(·) = ψε,xt−s(·) for 0 ≤ s ≤ t,

ρε ∗ ηt(x) = 〈ψε,x0 (y), ηt(dy)〉

= 〈ψε,xt (y), η0(dy)〉+

∫ t

0

〈
ψε,xt−s(y)F

(
ρε ∗ ηs(y)

)
, ηs(dy)

〉
ds+Mt(x), (7.4)

where Mt(x) has mean zero and a second moment we can easily write down.

Lemma 7.1. Fix t > 0, let (Π(s))s≥0 be a rate one Poisson process, and let T (t) = Π(θt)/θ.
Then

ψε,xt (y) = E
[
pε2+T (t)(x, y)

]
,

and, moreover, since under our assumptions θε2 is bounded below, there is a C indepen-
dent of ε or t such that

‖ψε,xt ‖∞ ≤
C

(ε2 + t)d/2
.

Proof. The first claim is immediate from the definition of the random walk with generator
Lθ.

For the second claim, first define τ(t) = T (t) − t. Since if τ(t) ≥ −(ε2 + t)/2, then
1/(ε2+T (t)) ≤ 2/(ε2+t), while ε2+T (t) ≥ ε2 always, partitioning over {τ(t) ≥ −(ε2+t)/2}
and its complement,

‖ψε,x‖∞ = E

[
1(

2π(ε2 + T (t))
)d/2

]

≤ C

(ε2 + t)d/2
+
C

εd
P
{
τ(t) < −(ε2 + t)/2

}
. (7.5)

Now, observe that since E[e−Π(θt)] = exp(−θt(1− e−1)), by Markov’s inequality,

P

{
τ(t) < −ε

2 + t

2

}
= P

{
e−Π(θt) > e−θ(t−ε

2)/2
}

≤
E[exp

(
−Π(θt)

)
]

exp
(
− θ(t− ε2)/2

)
=

exp(−θt(1− e−1))

exp(−θ(t− ε2)/2)

= exp

{
−χθt− θε2

2

}
, (7.6)

where χ = 1/2− e−1 > 0. The second term in (7.5) is therefore bounded by

C

(
1 +

t

ε2

)d/2
e−χθt

1

(ε2 + t)d/2
e−ε

2θ/2.

Now observe that the derivative (with respect to t) of e−χθt(1 + t/ε2)d/2 is(
d

2ε2
−
(

1 +
t

ε2

)
χθ

)(
1 +

t

ε2

)d/2−1

e−χθt,
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which is negative if θ(ε2 + t) > d/2χ. At the maximum, (1 + t/ε2) = d/(2χθε2), and so this
quantity is bounded uniformly over not only t but also ε (since we’ve assumed that θε2 is
bounded below). Therefore, we have the bound

1

εd
P
{
τ(t) < −(ε2 + t)/2

}
≤ C

(ε2 + t)d/2
e−ε

2θ/2. (7.7)

Substituting this into (7.5) yields the result.

Lemma 7.2. Let {Ft}t≥0 denote the natural filtration. Under the assumptions of The-
orem 2.21, for each T ∈ [0,∞), and k ∈ N, there exist constants C = C(k, T ) and
C̃ = C̃(k, T ), independent of ε, such that for all x ∈ Rd and all u, t ∈ [0, T ] with u < t,

E
[ (
ρε ∗ ηt(x)

)k∣∣∣Fu] ≤ C〈ψε,xt−u(z), ηu(dz)〉k + C
θ

Nεd
〈ψε,xt−u(z), ηu(dz)〉; (7.8)

and

E
[ ∫ t

u

〈ψε,xt−s(z), ηs(dz)〉k−1
〈
ψε,xt−s(z)|F (ρε ∗ ηs(z))|, ηs(dz)

〉
ds

∣∣∣∣Fu]
≤ C̃〈ψε,xt−u(z), ηu(dz)〉k + C̃

θ

Nεd
〈ψε,xt−u(z), ηu(dz)〉; (7.9)

where the function ψε,xt (·) was defined in (7.2). In particular, under the assumptions
of Theorem 2.21, the expected values of the quantities on the right hand side of (7.8)
and (7.9) are both integrable with respect to Lebesgue measure.

Proof. To simplify our expressions, we shall consider the case u = 0, but the proof goes
through unchanged for other values of u.

We proceed by induction. Taking expectations in (7.4), using that F is bounded above,
and applying Gronwall’s inequality to 〈ψε,xt−s, ηs〉 we obtain E[〈ψε,x0 , ηt〉] ≤ CE[〈ψε,xt , η0〉],
which implies (7.8) in the case k = 1. Moreover, rearranging (7.4) we find

−
∫ t

0

〈
ψε,xt−s(y)F (ρε∗ηs(y), ηs(dy)

〉
ds = 〈ψε,xt (y), η0(dy)〉−〈ψε,x0 (y), ηt(dy)〉+Mt(x), (7.10)

and taking expectations again, since 〈ψε,x0 , ηt〉 > 0, and M0(x) = 0, this yields

E
[
−
∫ t

0

〈ψε,xt−s(y)F (ρε ∗ ηs(y)), ηs(dy)〉ds
∣∣∣F0

]
≤ 〈ψε,xt (y), η0(dy)〉.

Since F is bounded above, there exists a constant K such that |F | ≤ K − F and so
combined with the bound on E[〈ψε,x0 (y), ηt(dy)〉] just obtained, this in turn yields

E
[ ∫ t

0

〈
ψε,xt−s(y)|F (ρε ∗ ηs(y))|, ηs(dy)

〉
ds
∣∣∣F0

]
≤ C̃〈ψε,xt (y), η0(dy)〉,

which is (7.9) in the case k = 1.
Now suppose that we have established (7.8) and (7.9) for all exponents j < k. First

we apply the generator PN of our scaled population process to functions of the form
〈f, η〉k. Recalling that each jump of the process involves the birth or death of a single
individual, and so increments 〈f, η〉 by ±f/N at the location of that individual and that
r ≡ γ ≡ 1, we find

PN
(
〈f, η〉k

)
=
〈∫

θN

k∑
j=1

(
k

j

)
f(y)j

N j
〈f, η〉k−jqθ(x, dy), η(dx)

〉

+
〈
θN
(

1− F (ρε ∗ η(x))

θ

) k∑
j=1

(
k

j

)
(−1)j

f(x)j

N j
〈f, η〉k−j , η(dx)

〉
. (7.11)
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Mimicking what we did above, we set f(·) = ψε,xt (·) and write

E
[
〈ψε,x0 , ηt〉k

∣∣∣F0

]
= 〈ψε,xt (y), η0(dy)〉k + E

[ ∫ t

0

PN
(
〈ψε,xt−s(y), ηs(dy)〉k

)
ds

−
∫ t

0

〈kψ̇ε,xt−s(y), ηs(dy)〉
〈
ψε,xt−s(y), ηs(dy)

〉k−1
ds
∣∣∣F0

]
. (7.12)

Since ψ̇ε,xs = Lθψε,xs , the j = 1 term from PN (〈ψε,xt−s(y), ηs(dy)〉k) combines with the last
term in (7.12) to yield∫ t

0

k〈ψε,xt−s, η〉k−1〈F (ρε ∗ ηs(y))ψε,xt−s(y), ηs(dy)〉ds.

As for the remaining terms, using (from Lemma 7.1) that sups ‖ψε,xs (·)‖∞ = C/εd, Nεd > 1,
and our inductive hypothesis, we find

E
[〈 ∫ t

0

θN

k∑
j=2

(
k

j

)∫
ψε,xt−s(z)

j

N j
〈ψε,xt−s, ηs〉k−jqθ(y, dz), ηs(dy)

〉
ds

+
〈∫ t

0

θN

k∑
j=2

(
k

j

)
ψε,xt−s(y)j

N j
〈ψε,xt−s, ηs〉k−j(−1)j

(
1− F (ρε ∗ ηs(y))

θ

)
, ηs(dy)

〉
ds
∣∣∣F0

]

≤ CE
[〈 ∫ t

0

k∑
j=2

θ

Nεd(Nεd)j−2

〈
ψε,xt−s(y)

(
2 +
|F (ρε ∗ ηs(y))|

θ

)
, ηs(dy)

〉
〈ψε,xt−s, ηs〉k−jds

∣∣F0

]

≤ C ′ θ

Nεd

k−1∑
j=1

〈ψε,xt (y), η0(dy)〉j ≤ C ′′ θ

Nεd

(
〈ψε,xt (y), η0(dy)〉k + 〈ψε,xt (y), η0(dy)〉

)
.

Combining this with (7.11) and (7.12), using once again the fact that F is bounded above,
we find

E
[
〈ψε,x0 , ηt〉k

∣∣∣F0

]
≤ 〈ψε,xt (y), η0(dy)〉k + C̃E

[ ∫ t

0

〈ψε,xt−s(y), ηs(dy)〉kds
∣∣∣F0

]
+ C ′′

θ

Nεd

(
〈ψε,xt (y), η0(dy)〉k + 〈ψε,xt (y), η0(dy)〉

)
,

and (7.8) follows from Gronwall’s inequality. Rearranging exactly as in the case k = 1,
we recover (7.9) and the inductive step is complete.

We shall also need the following consequence of the bounds that we obtained in
Lemma 7.2:

Corollary 7.3. Under the assumptions of Theorem 2.21, for each k ≥ 1, T > 0, there is
a C(k, T ) such that

E
[〈

(ρε ∗ ηt)k, ηt
〉]
< C(k, T ) <∞, for all t ∈ [0, T ]. (7.13)

Sketch. First observe that if A ∈ (0, 1), then

pAε2(x, y) =
1

Ad/2
pε2(x, y) exp

(
− ‖x− y‖

2

2ε2
( 1

A
− 1
))
≤ 1

Ad/2
pε2(x, y). (7.14)
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Now consider

E
[
〈ρε ∗ ηt(x), ηt(dx)〉

]
= E

[ ∫ ∫
pε2(x, z)ηt(dz)ηt(dx)

]
= E

[ ∫ ∫ ∫
pε2/2(x, y)pε2/2(y, z)dyηt(dz)ηt(dx)

]
= E

[ ∫ (
pε2/2 ∗ ηt(y)

)2
dy
]

≤ C
∫
E
[(
ρε ∗ ηt(x)

)2]
dx,

where we used (7.14) in the last line. Using Lemma 7.2 and our assumptions on η0, this
quantity is finite.

To illustrate the inductive step, now consider

E
[
〈ρε ∗ ηt(x)2, ηt(dx)〉

]
= E

[ ∫ ∫ ∫
pε2(x, z1)pε2(x, z2)ηt(dz1)ηt(dz2)ηt(dx)

]
= E

[ ∫
· · ·
∫
pε2/2(x, y1)pε2/2(x, y2)pε2/2(y1, z1)pε2/2(y2, z2)ηt(dz1)ηt(dz2)dy1dy2ηt(dx)

]
.

(7.15)

We use the identity

pε2/2(x, y1)pε2/2(x, y2) = pε2(y1, y2)pε2/4

(
x,
y1 + y2

2

)
to rewrite (7.15) as

E
[ ∫ ∫

pε2/2 ∗ ηt(y1) pε2/2 ∗ ηt(y2) pε2/4 ∗ ηt
(y1 + y2

2

)
pε2(y1, y2)dy1dy2

]
≤ E

[ ∫ ∫ {(
pε2/2 ∗ ηt(y1)

)3
+
(
pε2/2 ∗ ηt(y2)

)3
+
(
pε2/4 ∗ ηt

(y1 + y2

2

))3}
pε2(y1, y2)dy1dy2

]
where we have used that for any non-negative real numbers β1, β2, β3, β1β2β3 ≤ β3

1 +β3
2 +

β3
3 . For the first two terms in the sum we integrate with respect to y2 and y1 respectively

to reduce to an expression of the form considered in Lemma 7.2. For the final term,
the change of variables z1 = y1 + y2, z2 = y1 − y2 in the integral similarly allows us to
integrate out the heat kernel, and we conclude that the result holds for k = 2.

We can proceed in the same way for larger values of k, using repeatedly that

pt1(x, y1)pt2(x, y2) = p t1t2
t1+t2

(
x,
t2y1 + t1y2

t1 + t2

)
pt1+t2(y1, y2)

to write
k∏
j=1

pτ (y, yj) =

k∏
j=2

p jτ
j−1

(
yj , Yj−1

)
p τ
k

(y, Yk)

where

Y1 = y1, Yj =
j − 1

j
Yj−1 +

1

j
yj , for j ≥ 2.

Writing pε2(x, zj) =
∫
pε2/2(x, yj)pε2/2(yj , zj)dyj and using the above with τ = ε2/2, this
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yields〈(
ρε ∗ ηt(x)

)k
, ηt(dx)

〉
=

∫
· · ·
∫ k∏

j=2

pε2j/2(j−1)(yj , Yj−1)

k∏
i=1

pε2/2 ∗ ηt(yi)pε2/2k ∗ ηt(Yk)dy1 . . . dyk

≤
∫
· · ·
∫ k∏

j=2

pε2j/2(j−1)(yj , Yj−1)

×
{ k∑
i=1

(
pε2/2 ∗ ηt(yi)

)k+1
+
(
pε2/2k ∗ ηt(Yk)

)k+1
}
dy1 . . . dyk,

and once again we can change variables in the integrals and use (7.14) to bound this by

a constant multiple of
∫
E
[(
ρε ∗ ηt(x)

)k+1]
dx, and the inductive step is complete.

Corollary 7.4 (Tightness of {(ρε∗ηNt (x)dx)t≥0}). Under the assumptions of Theorem 2.21,
the sequence of measure valued processes {ρε ∗ ηNt (x)dx}t≥0 is tight (as measures on
D[0,T ](MF (Rd))).

Proof. First observe that the proof, from Lemma 6.2, that E[sup0≤t≤T 〈1, ηNt 〉] is bounded
goes through unchanged, and since 〈1, ρε ∗ ηNt (x)dx〉 = 〈1, ηNt 〉, compact containment
follows.

As in the nonlocal case, it suffices to prove that for T > 0, and any f ∈ C∞b (Rd)

with bounded second derivatives and
∫
|f(x)|dx < ∞, the sequence of real-valued

processes
{( ∫

f(x)ρε ∗ ηNt (x)dx
)
t≥0

}
N≥1

is tight. Let us temporarily write XN
f (t) for∫

f(x)ρε ∗ ηNt (x)dx and set

w′
(
XN
f , δ, T

)
= inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

∣∣XN
f (t)−XN

f (s)
∣∣,

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn−1 < T ≤ tn with
min1≤i≤n(ti − ti−1) > δ and n ≥ 1. Using Corollary 3.7.4 of [28], to prove tightness of
the sequence of real-valued processes XN

f it suffices to check compact containment of

the sequence {
∫
f(x)ρε ∗ ηNt (x)dx}N≥1 at any rational time t and that for every ν > 0 and

T > 0, there exists δ > 0 such that

lim sup
N→∞

P
[
w′
(
XN
f , δ, T

)
> ν

]
< ν.

Evidently this will follow if we can show that this condition is satisfied when we replace
the minimum over all partitions with mesh at least δ in the definition of w′, by the
partition into intervals of length exactly δ.

We have

∣∣〈ρε ∗ f, ηNt 〉 − 〈ρε ∗ f, ηNs 〉∣∣ ≤ ∣∣∣∣∫ t

s

〈
θ

∫ (
ρε ∗ f(y)− ρε ∗ f(x)

)
qθ(x, dy), ηNu (dx)

〉
du

∣∣∣∣
+

∫ t

s

〈
|F
(
ρε ∗ ηNu (x)

)
|ρε ∗ |f |(x), ηNu (dx)

〉
du+ 2 sup

0≤u≤T
|M̂N (f)u|, (7.16)

where M̂N (f) is the martingale of (6.4) with the test function f replaced by ρε ∗ f . We
control each of the three terms on the right hand side separately.
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By the Intermediate Value Theorem, using Tt to denote the heat semigroup, there
exists s ∈ (0, 1/θ) such that∣∣∣∣θ ∫ (ρε ∗ f(y)− ρε ∗ f(x)

)
qθ(x, dy)

∣∣∣∣ =
∣∣∣θ(Tε2+1/θf(x)− Tε2f(x)

)∣∣∣
= |∂sTε2+sf(x)| = |Tε2+s∆f(x)| ≤ ‖∆f‖∞.

The first term in (7.16) is therefore bounded by

‖∆f‖∞|t− s| sup
0≤u≤T

〈1, ηNu 〉.

We follow the approach of Lemma 6.2. Consulting (2.4), the angle bracket process of
M̂N (f) satisfies E[〈M̂N

f 〉T ] ≤ C(θ/N)
∫ T

0
E[〈1, ηs〉]ds ≤ C ′θ/N for some constants C and

C ′. Now, using the Burkholder-Davis-Gundy inequality and the same fact as before from
[2], E[sup0≤u≤T |M̂N (f)u|2] ≤ C ′′E[〈M̂N (f)〉T ], and so using Markov’s inequality,

lim sup
N→∞

P
[
2 sup

0≤u≤T
|M̂N (f)u| >

ν

3

]
≤ lim sup

N→∞

36

ν2
C ′′E

[
〈M̂N (f)〉T

]
≤ lim sup

N→∞

36

ν2

C ′C ′′θ

N
= 0.

(7.17)
Now consider

E
[( ∫ t

s

〈
ρε ∗ |f |(x)

∣∣F (ρε ∗ ηNu (x)
)∣∣, ηNu (dx)

〉
du
)2]

= 2E
[ ∫ t

s

〈
ρε ∗ |f |(x)

∣∣F (ρε ∗ ηNu (x)
)∣∣, ηNu (dx)

〉
×
∫ t

u

〈
ρε ∗ |f |(x)

∣∣F (ρε ∗ ηNr (x)
)∣∣, ηNr (dx)

〉
drdu

]
. (7.18)

Since F is polynomial, we use the approach of Corollary 7.3, the tower property, and
Lemma 7.2, to bound this in terms of sums of terms of the form

E
[ ∫ t

s

(t− u)

∫
ρε ∗ |f |(x)ρε ∗ ηNu (x)jdx

∫
ρε ∗ |f |(y)ρε ∗ ηNu (y)kdydu

]
.

Now observe that, again using Lemma 7.2, since for nonnegative a and b, ajbk ≤
aj+k + bj+k,

E

[∫ ∫
ρε ∗ |f |(x)ρε ∗ ηNu (x)jρε ∗ |f |(y)ρε ∗ ηNu (y)kdxdy

]
≤ E

[∫ ∫
‖f‖∞ρε ∗ ηNu (x)j+kρε ∗ |f |(y)dxdy +

∫ ∫
ρε ∗ |f |(x)‖f‖∞ρε ∗ ηNu (y)j+kdxdy

]
≤ C

∫
|f |(x)dx.

Thus the quantity (7.18) is bounded by C(t− s)2 for a new constant C which we can take
to be independent of s, t and ε. Markov’s inequality then gives

P
[
‖f‖∞

∫ t

s

〈∣∣F (ρε ∗ ηNu (x)
)∣∣, ηNu (dx)

〉
du ≥ ν

3

]
≤ C (t− s)2

ν2
.

A union bound gives that

P
[

max
i
‖f‖∞

∫ ti

ti−1

〈∣∣F (ρε ∗ ηNu (x)
)∣∣, ηNu (dx)

〉
du ≥ ν

3

]
≤ CTδ

ν2
. (7.19)
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Now using Markov’s inequality, we can choose K so that

P
[
‖∆f‖∞ sup

0≤t≤T
〈1, ηNt 〉 > K

]
<
ν

3
,

and so choosing δ so that Kδ < ν/3 in this expression and Cδ < ν3/3T in (7.19),
combining with (7.17), the result follows.

7.2 Continuity estimates for ρε ∗ η
To identify the limit point of any convergent subsequence of {ρε ∗ ηN (x)}, we will

require some control on the spatial continuity of the functions ρε ∗ ηN (x). This will be
inherited from the regularity of the transition density of the Gaussian random walk
with generator Lθ, which in turn follows from its representation as that of a Brownian
motion evaluated at the random time T (t) defined in Lemma 7.1. Our approach will be to
approximate ψε,xt (·) by pε2+t(x, ·), and to control the error that this introduces we need
to control T (t)− t.
Lemma 7.5. In the notation of Lemma 7.1, for any A > 1,

P
{
T (t)− t > A(ε2 + t)

}
≤ exp

(
−θA

4

(
ε2 + t

))
.

Proof. This is just a Chernoff bound. With Π a rate one Poisson process as in Lemma 7.1,
for any A > 1,

P
{
T (t)− t > A(ε2 + t)

}
= P

{
Π(θt) > θ

(
t+A(ε2 + t)

)}
≤ E [exp (αΠ(θt))]

exp
(
αθ
(
t+A(ε2 + t)

))
= exp

(
θt
(
eα − 1

)
− αθ

(
t+A(ε2 + t)

))
≤ exp

(
θt
(
eα − α− 1− Aα

2

)
− Aα

2
θ(ε2 + t)

)
.

Now set α = 1/2. Since A > 1, eα − α− 1−Aα/2 < 0 and the result follows.

As advertised, we wish to control the difference between ψε,xt (y) and pε2+t(x, y).

Lemma 7.6. In the notation of Lemma 7.1, there exists a C <∞ such that

|ψε,xt (y)− pε2+t(x, y)| ≤ C

(ε2θ)1/2
p6(ε2+t)(x, y) +

C

(ε2 + t)d/2
exp(−ε2θ/2). (7.20)

Proof. Still using the notation of Lemma 7.1, we partition into three events according
to the value of τ(t). Let A1 = {τ(t) < −(ε2 + t)/2}, A2 = {τ(t) > 2(ε2 + t)}, and A3 the
remaining event, {−(ε2 + t)/2 ≤ τ(t) ≤ 2(ε2 + t)}. Then,

|ψε,xt (y)− pε2+t(x, y)| =
∣∣E [pε2+t+τ(t)(x, y)− pε2+t(x, y)

]∣∣
≤ E

[
(1A1 + 1A2 + 1A3)

∣∣pε2+t+τ(t)(x, y)− pε2+t(x, y)
∣∣] .

For the first term, note that if a < b then

|pa(x, y)− pb(x, y)| = 1

(2π)d/2

∣∣∣∣ 1

ad/2
e−‖x−y‖

2/2a − 1

bd/2
e−‖x−y‖

2/2b

∣∣∣∣
=

1

(2πa2)d/2
e−‖x−y‖

2/2b

∣∣∣∣e−‖x−y‖2( 1
2a−

1
2b ) −

(a
b

)d/2∣∣∣∣
≤ C

(
b

a

)d/2
pb(x, y),
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where the inequality follows because both terms under the absolute value are less than
1. Since, on the event A1, τ(t) < 0, we can apply this with a = ε2 + t+ τ(t) and b = ε2 + t,
and, using the bound (7.6),

E [1A1
|pa(x, y)− pb(x, y)|] ≤ C

(
ε2 + t

ε2

)d/2
pε2+t(x, y)P

{
τ(t) < −ε

2 + t

2

}
≤ C 1

εd
P

{
τ(t) < −ε

2 + t

2

}
≤ C

(ε2 + t)d/2
exp

(
−θε

2

2

)
.

For the third term, we will first collect some facts. Observe that on the event A3,
ε2 + t+ τ(t) is between (ε2 + t)/2 and 3(ε2 + t), and for any s in this interval,

p2s(y) ≤
(

6(ε2 + t)

ε2 + t

)d/2
p6(ε2+t)(x, y)

= 6d/2p6(ε2+t)(x, y). (7.21)

Moreover, since ue−u ≤ e−1 for all u ≥ 0,

‖x− y‖2

s
ps(x, y) =

4

(2πs)d/2
e−
‖x−y‖2

4s
‖x− y‖2

4s
e−
‖x−y‖2

4s

≤ Cp2s(x, y). (7.22)

Now, by the Intermediate Value Theorem,∣∣pε2+t+τ(t)(x, y)− pε2+t(x, y)
∣∣ = |τ(t)|

∣∣∣∣∂ps(x, y)

∂s

∣∣∣∣ (7.23)

for some s between ε2 + t+ τ(t) and ε2 + t. Since

∂sps(x, y) = ∂s

(
1

(2πs)d/2
exp

(
−‖x− y‖

2

2s

))
= − d

2s
ps(x, y) +

‖x− y‖2

2s2
ps(x, y),

applying the inequality (7.22), using the fact that ps(x, y) ≤ 2d/2p2s(x, y), and then (7.21),
we have that for any s ∈ ((ε2 + t)/2, 3(ε2 + t)),∣∣∣∣ ∂∂sps(x, y)

∣∣∣∣ ≤ C

s
p2s(x, y) ≤ C

ε2 + t
p6(ε2+t)(x, y).

Therefore, recalling that E[τ(t)2] = t/θ, substituting into (7.23),

E
[
1A3

∣∣pε2+t+τ(t)(x, y)− pε2+t(x, y)
∣∣] ≤ C

ε2 + t
p6(ε2+t)(x, y)E [|τ(t)|]

≤ C

ε2 + t
p6(ε2+t)(x, y)E

[
τ(t)2

]1/2
=

(
Ct

θ(ε2 + t)2

)1/2

p6(ε2+t)(x, y)

≤ C√
θε2

p6(ε2+t)(x, y),

where the last inequality follows from 2ε2t ≤ (ε2 + t)2.
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Finally, on the event A2 = {τ(t) > 2(ε2 + t)}, we simply use

∣∣pε2+t+τ(t)(x, y)− pε2+t(x, y)
∣∣ ≤ C

(ε2 + t)d/2
,

so that

E
[
1A2

∣∣pε2+t+τ(t)(x, y)− pε2+t(x, y)
∣∣] ≤ C

(ε2 + t)d/2
P
{
τ(t) > 2(ε2 + t)

}
,

and apply Lemma 7.5 with A = 2.

The last result will be useful when combined with the next bound for the heat kernel.

Lemma 7.7. Let s > 0, and x, y, z ∈ Rd. The following estimate holds:

|ps(x, z)− ps(y, z)| ≤
C‖x− y‖√

s
(p2s(x, z) + p2s(y, z)) ,

where the constant C does not depend on x, y, z or s.

Proof. Expanding the difference of two squares,

e−
‖y−z‖2

2s − e−
‖x−z‖2

2s =

(
e−
‖y−z‖2

4s − e−
‖x−z‖2

4s

)(
e−
‖y−z‖2

4s + e−
‖x−z‖2

4s

)
.

Now, thinking of the first term in brackets as a function of a single variable x on the line
segment [y, z] connecting y to z, we can apply the Intermediate Value Theorem and take
the modulus to bound this expression by

‖y − x‖
(

2‖w − z‖
4s

exp

(
−‖w − z‖

2

4s

))
(4πs)d/2 (p2s(y, z) + p2s(x, z))

for some w ∈ [y, z]. Using the fact that xe−x
2

is uniformly bounded, we can bound the
first bracket in the last equation by C/

√
s, and the result follows.

We now have the ingredients that we need to write down a continuity estimate for
ρε ∗ η. We fix δ > 0 and suppose that s > δ. Let us write

ε̂(δ, ε, θ) :=
1

(ε2 + δ)d/2
e−ε

2θ/2,

and note that under the assumption that ε2θ →∞, for each fixed δ > 0, ε̂(δ, ε, θ)→ 0 as
ε→ 0 and θ →∞. Using the semimartingale decomposition (7.4), and Lemma 7.6, we
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have

|ρε ∗ ηs(y)− ρε ∗ ηs(w)| = |〈pε2(y, z)− pε2(w, z), ηs(dz)〉|
≤
〈
|pε2+s(y, z)− pε2+s(w, z)|, η0(dz)

〉
+

∫ s−δ

0

〈
|ps−r+ε2(y, z)− ps−r+ε2(w, z)|||F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+
〈 C

(θε2)1/2

(
p6(ε2+s)(y, z) + p6(ε2+s)(w, z)

)
+ Cε̂(δ, ε, θ), η0(dz)

〉
+

∫ s−δ

0

〈{ C

(ε2θ)1/2
|p6(s−r+ε2)(y, z) + p6(s−r+ε2)(w, z)|+ ε̂(δ, ε, θ)

}
× |F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+

∫ s

s−δ

〈
|ψε,ys−r(z) + ψε,ws−r(z)||F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+ |Ms(y)|+ |Ms(w)|

≤
〈‖y − w‖√

s+ ε2

(
p2(s+ε2)(y, z) + p2(s+ε2)(w, z)

)
, η0(dz)

〉
+

∫ s−δ

0

〈 ‖y − w‖√
s− r + ε2

(
p2(s−t+ε2)(y, z) + p2(s−r+ε2)(w, z)

)
|F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+
〈 C

(θε2)1/2

(
p6(ε2+s)(y, z) + p6(ε2+s)(w, z)

)
+ Cε̂(δ, ε, θ), η0(dz)

〉
+

∫ s−δ

0

〈{ C

(ε2θ)1/2
(p6(s−r+ε2)(y, z) + p6(s−r+ε2)(w, z)) + ε̂(δ, ε, θ)

}
× |F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+

∫ s

s−δ

〈
|ψε,ys−r(z) + ψε,ws−r(z)||F (ρε ∗ ηr(z)|, ηr(dz)

〉
dr

+ |Ms(y)|+ |Ms(w)|. (7.24)

Although this expression is lengthy, we have successfully isolated the terms involving
‖y − w‖, which will control the regularity as we pass to the limit. Asymptotically, we
don’t expect the martingale terms to contribute, since their quadratic variation scales
with θ/(Nεd); under the assumption that ε2θ →∞, for any fixed δ > 0, the terms arising
from approximating the transition density ψε,·s−r(·) of the Gaussian walk by ps−r+ε2(·, ·)
at times with s − r > δ will tend to zero; and the moment bounds of Lemma 7.2 will
allow us to control the integral over [s− δ, s]. There is some technical work to be done to
rigorously identify the limit points of ρε ∗ ηN , but it really amounts to applying the tower
property and our moment bounds from Lemma 7.2 and Corollary 7.3.

7.3 Identification of the limit

We now turn to the identification of the limit points of the sequence of measure-valued
processes

(
ρε ∗ ηNt (x)dx

)
t≥0

. We would like to show that any limit point solves (2.16) in
the limit, i.e.,

〈f(x), ϕ(t, x)dx〉 =

∫ t

0

〈1

2
∆f(x) + f(x)F (ϕ(s, x)), ϕ(s, x)dx

〉
ds. (7.25)

Since 〈f, ρε ∗ ηNt (x)dx〉 = 〈ρε ∗ f(x), ηNt (dx)〉, and the limit is deterministic, this will follow
if we can show that each of the terms in the semimartingale decomposition (2.3), with
the test function f replaced by ρε ∗ f(·), converges to the corresponding term in (7.25).
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The linear term is straightforward. Write T· for the heat semigroup, so that ρε ∗f(x) =

Tε2f(x). By a Taylor expansion,∫ t

0

〈
LθTε2f, ηNs (dx)

〉
ds =

∫ t

0

〈1

2
∆Tε2f(x), ηNs (dx)

〉
+O

(1

θ

)
=

∫ t

0

〈1

2
∆f(x), ρε ∗ ηNs (x)dx

〉
ds+O

(1

θ

)
.

Thus, from weak convergence we can deduce that under our scaling, for any (weakly)
convergent subsequence {ρε ∗ ηN (x)dx}N≥1,∫ t

0

〈
LθTε2f, ηNs (dx)

〉
ds→

∫ t

0

〈1

2
∆f(x), ϕ(s, x)dx

〉
ds.

The nonlinear term in the semimartingale decomposition is more intricate. It takes
the form

E
[ ∫ t

0

〈
Tε2f(y)F

(
ρε ∗ ηs(y)

)
, ηs(dy)

〉
ds
]

and we should like to show that this converges to∫ t

0

∫
f(y)F (ϕ(s, y))ϕ(s, y)dyds.

We proceed in stages. First we should like to transfer the heat semigroup from Tε2f onto
ηs. Since f is smooth, this will follow easily if we can show that

E
[ ∫ t

0

〈
Tε2f(y)F

(
ρε ∗ ηs(y)

)
, ηs(dy)

〉
ds
]
∼ E

[ ∫ t

0

〈
Tε2f(y)F

(
ρε ∗ ηs(y)

)
, ρε ∗ ηs(y)dy

〉
ds
]
.

This is the content of Proposition 7.8.

Proposition 7.8. Under the conditions of Theorem 2.21,

lim
ε→0

E
[∣∣∣ ∫ t

0

〈
Tε2f(y)F (ρε ∗ ηs(y)), ηs(y)

〉
−
〈
Tε2f(y)F (ρε ∗ ηs(y)), ρε ∗ ηs(y)dy

〉
ds
∣∣∣] = 0.

(7.26)

Proof. In fact we are going to fix δ > 0, with t > δ, and show that the expression on the
left hand side of (7.26) is less than a constant times δ, with a constant independent of δ,
N , and ε. Since δ is arbitrary, the result will follow.

We first note that,

〈Tε2f(y)F (ρε ∗ ηs(y)), ρε ∗ ηs(y)dy〉 − 〈Tε2f(y)F (ρε ∗ ηs(dy)), ηs(dy)〉

= 〈
∫
Tε2f(y)F (ρε ∗ ηs(y))ρε(y − w)dy, ηs(dw)〉 − 〈Tε2f(w)F (ρε ∗ ηs(w)), ηs(dw)〉

= 〈
∫ {

Tε2f(y)F (ρε ∗ ηs(y))− Tε2f(w)F (ρε ∗ ηs(w))
}
ρε(w − y)dy, ηs(dw)〉.

Let us denote the integral against dy in the last expression by I, that is

I :=

∫
{Tε2f(y)F (ρε ∗ ηs(y))− Tε2f(w)F (ρε ∗ ηs(w))}ρε(w − y)dy,

and note that |I| is bounded by∫ {
|F (ρε ∗ ηs(y))− F (ρε ∗ ηs(w))|Tε2f(y)

+ F (ρε ∗ ηs(w))|Tε2f(y)− Tε2f(w)|
}
ρε(w − y)dy

≤
∫
‖f‖∞

∣∣F (ρε ∗ ηs(y))− F (ρε ∗ ηs(w))
∣∣ρε(w − y)dy + Cε‖f ′‖∞|F (ρε ∗ ηs(w))|, (7.27)
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where we have used that∫
|Tε2f(y)− Tε2f(w)|pε2(w, y)dy ≤ ‖f ′‖∞

∫
|y − w|pε2(w, y)dy.

Now recall that F is a polynomial of degree n, and so there exist real numbers bk such
that F (a)− F (b) = (a− b)

∑n−1
k=1 bka

kbn−1−k and so

|F (ρε∗ηs(y))−F (ρε∗ηs(w))| ≤ |ρε∗ηs(y)−ρε∗ηs(w)|
n−1∑
k=1

|bk|
(
ρε ∗ ηs(y)n−1 + ρε ∗ ηs(w)n−1

)
.

Combining the above, we have reduced the problem to showing that for any k ≥ 0,

lim
ε→0

E
[ ∫ t

0

〈 ∫
|ρε∗ηs(y)−ρε∗ηs(w)|

(
ρε ∗ ηs(y))k + ρε ∗ ηs(w)k

)
pε2(w, y)dy, ηs(dw)

〉
ds
]

= 0.

(7.28)
We are going to use the estimate (7.24). First note that by Lemma 7.2 (with u = 0),
the contribution to (7.28) from the integral over the time interval [0, δ] is bounded by a
constant multiple of δ, with a constant that depends only on η0. We focus instead on the
interval (δ, t].

The first term in (7.24) gives∫ t

δ

E
[〈 ∫ 〈‖y − w‖√

s+ ε2

(
p2(s+ε2)(y, z) + p2(s+ε2)(w, z)

)
, η0(dz)

〉
(
ρε ∗ ηs(y)k + ρε ∗ ηs(w)k

)
pε2(w, y)dy, ηs(dw)

〉]
ds.

We “borrow” from the exponential term to see that ‖y − w‖pε2(w, y) ≤ Cεp2ε2(w, y) and
so bound this by

C

∫ t

δ

ε√
s+ ε2

E
[〈 ∫ 〈(

p2(s+ε2)(y, z) + p2(s+ε2)(w, z)
)
, η0(dz)

〉
(
ρε ∗ ηs(y)k + ρε ∗ ηs(w)k

)
p2ε2(w, y)dy, ηs(dw)

〉
ds
]
. (7.29)

The four terms in the product are taken separately, according to the combinations of w
and y appearing. First,∫ t

δ

ε√
s+ ε2

E
[〈 ∫ 〈

p2(s+ε2)(y, z), η0(dz)
〉
ρε ∗ ηs(y)kp2ε2(w, y)dy, ηs(dw)

〉]
ds

can be rewritten as∫ t

δ

ε√
s+ ε2

E
[ ∫ ∫ 〈

p2(s+ε2)(y, z), η0(dz)
〉
ρε ∗ ηs(y)kpε2(x, y)ρε ∗ ηs(x)dydxds

]
≤
∫ t

δ

ε√
s+ ε2

E
[ ∫ ∫ 〈

p2(s+ε2)(y, z), η0(dz)
〉(
ρε∗ηs(y)k+1+ρε∗ηs(x)k+1

)
pε2(x, y)dydx

]
ds

and using Lemma 7.2 and the tower property, and integrating with respect to s, under
our assumptions on η0, this is bounded by

Cε

∫ t

δ

1√
s+ ε2

E
[ ∫ ∫ 〈

p2(s+ε2)(y, z), η0(dz)
〉

(
ρε ∗ η0(y) + ρε ∗ η0(y)k+1 + ρε ∗ η0(x) + ρε ∗ η0(x)k+1

)
pε2(x, y)dydx

]
ds

≤ C ′ε
∫ t

δ

1

(s+ ε2)d/2
ds.
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For fixed δ, this bound tends to zero as ε → 0. The term involving the product of〈
p2(s+ε2)(w, z), η0(dz)

〉
and ρε ∗ ηs(w)k is handled similarly.

On the other hand

〈 ∫
〈p2(s+ε2)(y, z), η0(dz)〉ρε ∗ ηs(w)kp2ε2(w, y)dy, ηs(dw)

〉
≤ C

(s+ ε2)d/2
〈1, η0〉

〈
ρε ∗ ηs(w)k, ηs(dw)

〉
,

and since 〈1, η0〉 is uniformly bounded we apply Corollary 7.3 to obtain a bound on the
contribution to (7.29) from this term of the same form as the others.

Now consider the contribution to the left hand side of (7.28) from the second term
in (7.24). Since F is a polynomial, it is bounded by a sum of terms of the form∫ t

δ

∫ s−δ

0

〈∫ ‖y − w‖√
s− r + ε2

〈(
p2(s−r+ε2)(y, z) + p2(s−r+ε2)(w, z)

)
ρε ∗ ηr(z)j , ηr(dz)

〉
ρε ∗ ηs(y)kpε2(y, w)dy, ηs(dw)

〉
drds

≤ Cε
∫ t

δ

∫ s−δ

0

1√
s− r + ε2

〈∫ 〈(
p2(s−r+ε2)(y, z) + p2(s−r+ε2)(w, z)

)
ρε ∗ ηr(z)j , ηr(dz)

〉
ρε ∗ ηs(y)kp2ε2(y, w)dy, ηs(dw)

〉
drds,

where as usual we have “borrowed” from the exponential term in p2
ε(y, w) to replace

‖y − w‖ by a constant times ε.
Once again, our approach is to rearrange terms so that we can apply Lemma 7.2 or

Corollary 7.3 to obtain a bound on the contribution to (7.28) from these terms of the
form Cε (where C may depend on δ but not ε).

For example, using the Chapman-Kolmogorov equation to rewrite∫ 〈〈
p2(s−r+ε2)(y, z)ρε ∗ ηr(z)j , ηr(dz)

〉
ρε ∗ ηs(y)kp2ε2(y, w), ηs(dw)

〉
dy

as ∫ ∫ 〈
p2(s−r+ε2)(y, z)ρε ∗ ηr(z)j , ηr(dz)

〉
ρε ∗ ηs(y)kpε2(y, x)ρε ∗ ηs(x)dxdy,

and using Lemma 7.2 and the tower property, we are led to control terms of the form

E
[ ∫ 〈

p2(s−r+ε2)(y, z)ρε ∗ ηr(z)j , ηr(dz)
〉
ρε ∗ ηr(y)k+1dy

]
.

This, in turn, is at most

E
[〈
ρε ∗ ηr(z)j+k+1, ηr(dz)〉

]
+ E

[ ∫ ∫
p2(s−r)(y, x)ρε ∗ ηr(x)ρε ∗ ηr(y)j+k+1dydx

]
≤ E

[〈
ρε ∗ ηr(z)j+k+1, ηr(dz)〉

]
+ 2

∫
E
[
ρε ∗ ηr(x)j+k+2

]
dx,

which is bounded by Lemma 7.2.
We now turn to the contribution arising from the martingale terms in (7.24):

E
[ ∫ t

δ

〈∫ (
|Ms(y)|+ |Ms(w)|

)(
ρε ∗ ηs(y)k + ρε ∗ ηs(w)k

)
pε2(w, y)dy, ηs(dw)

〉
ds
]
.

Since ψε,xt−s(y) = E[pT (t−s)+ε2(x, y)], rearranging (7.4) we see that we can pull a convolu-
tion with pε2/2 out of our expressions for Ms(y) and Ms(w) and so all the manipulations
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that we used to control terms above will still be valid. To deal with the two terms in
the product involving |Ms(y)|, we write the first as

∫
|Ms(y)|ρε ∗ ηs(y)k+1dy and then use

Hölder’s inequality, Lemma 7.2, and the fact that E
[
|Ms(y)|2

]
is O

(
θ/(Nεd)

)
to see that

the contribution from this term tends to zero in the limit. For the second, we use the
idea of the proof of Corollary 7.3 to reduce to a form to which we can apply Hölder’s
inequality.

Control of the terms arising from approximating ψε,x by the heat kernel follows in an
entirely analogous way.

Combining the above, we see that given δ > 0,

lim
ε→0

E
[∣∣∣ ∫ t

0

〈
Tε2f(y)F (ρε∗ηs(y)), ηs(y)

〉
ds−

∫ t

0

〈
Tε2f(y)F (ρε∗ηs(y)), ρε∗ηs(y)dy

〉
ds
∣∣∣] < Cδ,

where the constant C is independent of δ. Since δ was arbitrary, the proof is complete.

Since f is smooth, T 2
ε f − f is O(ε), with an application of the triangle inequality,

lim
ε→0

E
[∣∣∣ ∫ t

0

〈
Tε2f(y)F (ρε ∗ ηs(y)), ηs(y)

〉
ds−

∫ t

0

〈
f(y)F (ρε ∗ ηs(y)), ρε ∗ ηs(y)dy

〉
ds
∣∣∣] < Cδ,

now follows immediately. Thus to complete the characterisation of the limit, it remains
to show that if we take a convergent subsequence

{(
ρε ∗ ηNt (dx)

)
t≥0

}
converging to a

limit point
(
ϕ(t, x)dx

)
t≥0

, then∫ t

0

∫
f(x)ρε ∗ ηNs (x)F (ρε ∗ ηNs (x))dxds→

∫ t

0

∫
f(x)ϕ(s, x)F (ϕ(s, x))dxds.

Since F is a polynomial, we consider powers of ρε ∗ η. To illustrate the approach, we first
prove that ∫ t

0

∫
f(x)ρε ∗ ηNs (x)2dxds→

∫ t

0

∫
f(x)ϕ(s, x)2dxds. (7.30)

The convergence of higher powers will follow in an entirely analogous manner, but with
more complex expressions.

The approach is standard. We fix τ > 0 and, in keeping with our notation ρε, in this
subsection, use ρτ to denote the symmetric Gaussian kernel with variance parameter τ2.
Our strategy is to show that, up to an error that tends to zero as τ → 0,∫ t

0

∫
f(z)ρε ∗ ηs(z)2dzds ∼

∫ t

0

∫ ∫
f(z)(ρε ∗ ηs)(z)ρτ (z − y)(ρε ∗ ηs)(y)dzdyds. (7.31)

Analogously, also up to an error that vanishes as τ → 0,∫ t

0

∫
f(z)ϕ(s, z)2dzds ∼

∫ t

0

∫ ∫
f(z)ϕ(s, z)ρτ (z − y)ϕ(s, y)dzdyds. (7.32)

On the other hand, weak convergence of ρε ∗ η (plus continuity of the mapping (z, y)→
f(z)ρτ (z − y)) gives that∫ t

0

∫ ∫
f(z)(ρε ∗ ηs)(z)ρτ (z − y)(ρε ∗ ηs)(y)dzdyds

→
∫ t

0

∫ ∫
f(z)ϕ(s, z)ρτ (z − y)ϕ(s, y)dzdyds.

Since τ is arbitrary, the convergence (7.30) will follow.
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Proposition 7.9. Under the conditions of Theorem 2.21, we have that along any con-
vergent subsequence,

lim sup
ε→0

E
[∣∣∣ ∫ t

0

∫
f(y)ρε ∗ ηs(y)2dyds

−
∫ t

0

∫ ∫
f(z)(ρε ∗ ηs)(z)ρτ (z − y)(ρε ∗ ηs)(y)dzdyds

∣∣∣] ≤ Cτ, (7.33)

where C is independent of τ .

Proof. First note,∫ t

0

E

[∣∣〈f(y), (ρε ∗ ηs(y))2)dy〉 −
∫ ∫

f(y)(ρε ∗ ηs)(z)ρτ (z − y)(ρε ∗ ηs)(y)dzdy
∣∣] ds

≤ ‖f‖∞
∫ ∫ t

0

E

[∫
{|(ρε ∗ ηs)(y)− (ρε ∗ ηs)(z)| ρτ (z − y)dz} (ρε ∗ ηs)(y)

]
dsdy. (7.34)

Now proceed exactly as in the proof of Proposition 7.8. The only distinction is that
|pε2(y, z)−pε2(w, z)| is replaced by |pτ (y, z)−pτ (w, z)| and the estimate ‖y−w‖pτ2(y, w) ≤
Cτp2τ2(y, w) replaces the corresponding statement with ε2 replacing τ2 in our previous
argument.

The extension of Proposition 7.9 to higher moments is straightforward, if notationally
messy. For fixed (but arbitrary) τ , one shows that

lim sup
ε→0

E
[∣∣∣ ∫ t

0

∫
f(y)ρε ∗ ηNs (y)kdyds

−
∫ t

0

∫
· · ·
∫
f(y1)ρε ∗ ηNs (y1)

k∏
i=2

ρτ (yi − yi−1)ρε ∗ ηNs (yi)dyk . . . dy1ds
∣∣∣] ≤ Cτ,

as well as a corresponding statement with ρε ∗ ηNs (x) replaced by ϕ(s, x) and then use
weak convergence to see that, up to an error of order τ , any limit point of the sequence
{ρε ∗ ηN (x)dx} solves (the weak form of) equation (2.16). Since τ was arbitrary, the proof
of Theorem 2.21 is complete.

8 Proofs of results for the lookdown process and ancestral lin-
eages

Now we turn to results about the lookdown process, first establishing the basic con-
nection between the population process ηN and the lookdown process ξN , Proposition 5.3,
and then in the next section, convergence of the lookdown process itself.

Proof of Proposition 5.3: This proposition is the content of the Markov Mapping Theo-
rem, reproduced from [27] as Theorem A.1, applied to our situation. The function γ

of that theorem is what we have called κ above, and the kernel α of that theorem is
the transition function that assigns levels uniformly on [0, N ] (in the first case) or as a
Poisson process with Lesbegue intensity (in the limiting case). We need a continuous
ψN (ξ) ≥ 1 such that |ANf(ξ)| ≤ cfψ

N (ξ) for all f in the domain of AN (and similarly
a function ψ for A). We also need that applying the lookdown generator to a function
and averaging over levels is equivalent to applying the population process generator to
the function whose dependence on levels has been averaged out, a condition which we
precisely state, and verify, in Lemmas A.2 and A.3 of the Appendix.
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For finite N , if we take f(ξ) to be of the form (5.6), we can use ψN (ξ) = 〈C(1 +

u|F (x, η)|), ξ(dx, du)〉 for an appropriate constant C. For the scaling limit, recall that the
test functions f are of the form f(ξ) =

∏
(x,u)∈ξ g(x, u) with g(x, u) = 1 for u ≥ u0, and

consulting (5.11), we see that most terms in Af(ξ) can be bounded as above by constant
multiples of 〈1, η〉. However, the term involving F is, as usual, more troublesome. Since
0 ≤ f(ξ)/g(x, u) ≤ 1 for any (x, u) ∈ ξ,∣∣f(ξ)

∑
(x,u)∈ξ

F (x, η)u
∂ug(x, u)

g(x, u)

∣∣ ≤ ‖∂ug‖∞ ∑
(x,u)∈ξ

|F (x, η)u1u≤u0 |

≤ ‖∂ug‖∞eu0

∑
(x,u)∈ξ

|F (x, η)ue−u|.

The first line would be just what we want, except that ψ(ξ) cannot depend on f , and
hence neither on u0. So, the second line provides us with the required bound: we absorb
‖∂ug‖∞eu0 into cf and take ψ(ξ) = 1 + 〈1 + F (x, η)ue−u, ξ(dx, du)〉.

8.1 Tightness of the Lookdown Process

Now we turn to the main theorem on convergence of the lookdown process, Theo-
rem 5.4, whose proof follows a similar pattern to that of convergence for the population
processes in Section 6.2.

We first give a description of the lookdown process ξN in terms of the lines of descent
introduced in Section 5.2. Each line of descent gives birth to lines at higher levels at
rate 2(N − u)cθ(x, η), and each such new line chooses a level uniformly from [u,N ], a
spatial location y from the kernel

qm(x, dy, η) = r(y, η)q(x, dy)/

∫
Rd
r(z, η)q(x, dz), (8.1)

and the two lines swap spatial locations with probability 1/2; the level of each line of
descent evolves according to equation (5.23).

It is evident from the description of the process (or, by differentiating in Definition 5.1)
that

〈f, ξNt 〉 = 〈f, ξN0 〉+Mf
t

+

∫ t

0

〈
cθ(x, η

N
s )

∫ N

u

∫
Rd

(f(y, u1) + f(x, u1) + f(y, u)− f(x, u)) qm(x, dy, ηNs )du1

+
(
cθ(x, η

N
s )u2 − bθ(x, ηNs )u

) d

du
f(x, u), ξNs (dx, du)

〉
ds,

(8.2)

where Mf is a martingale with angle bracket process

〈
Mf

〉
t

=

∫ t

0

〈
cθ(x, η

N
s )

∫ N

u

∫
Rd

[
f(y, u1)2

+ (f(x, u1) + f(y, u)− f(x, u))
2 ]
du1q

m(x, dy, ηNs ), ξNs (dx, du)

〉
ds.

(8.3)

Remark 8.1. In addition to tightness of the measure-valued processes ξN , the bounds
used in the proofs below also imply tightness of the number of lines of descent and the
number of births below a fixed level, and of the motion of individual lines of descent. In
other words, the limiting “line of descent” construction of Section 5.2 holds.

Proof of Theorem 5.4. As in Section 6.2, the theorem will follow from tightness and
characterization of the limit points. This time, the processes ξN take values inM(Rd ×

EJP 29 (2024), paper 28.
Page 67/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

[0,∞)), the space of locally finite measures on space × levels. (They will in fact be
point measures, including the limit, but that is a consequence of this theorem.) Again,
tightness follows from a compact containment condition, tightness of one-dimensional
distributions, and an application of [28] Theorem 3.9.1.

Lines of descent can escape to infinite level in finite time, and so we endowM(Rd ×
[0,∞)) with the vague topology “in the level coordinate”, induced by test functions
on Rd × [0,∞) of the form g(x)h(u), where g ∈ Cb(Rd) is bounded and continuous and
h ∈ Cc([0,∞)) is compactly supported (following, e.g., [27], Condition 2.1). In several
places below we require a dense subset of Cb(M(Rd × [0,∞))), the bounded, continuous
functions onM(Rd × [0,∞)). The functions ξ 7→ exp(−〈f, ξ〉) for nonnegative, compactly
supported f : Rd× [0,∞) do not form not a dense subset of Cb(M(Rd× [0,∞))), but they
do separate points and vanish nowhere, since for any ξ1 and ξ2 there is an f with 〈f, ξ1〉 6=
〈f, ξ2〉, and a g such that 〈g, ξ1〉 6= 0. Therefore, by the Stone-Weierstrass theorem,
the algebra they generate is dense in Cb(M(Rd × [0,∞))) with respect to uniform
convergence on compact subsets. Topologized in this way, the spaceM(Rd × [0,∞)) is
completely metrizable, and we may choose a countable set of bounded, nonnegative fk,
each supported on Rd×[0, uk] for some uk <∞, such that a subset K ⊂M(Rd×[0,∞)) is
relatively compact if and only if supξ∈K〈fk, ξ〉 <∞ for each k. (To see this, use Theorem
A.2.3 of [44].) Below, Lemma 8.4 proves exactly this, and therefore compact containment.
Here we have compactified Rd for convenience (since it turned out to be straightforward
to show that mass does not escape to infinity in space); however, we need to use the
vague topology “in the level direction” because levels may escape to infinity in finite
time in the limit.

In order to apply [28] Theorem 3.9.1 we require that {(F (ξNt ))t≥0}N is tight as a
sequence of real-valued càdlàg processes, for all F in a subset of Cb(M(Rd × [0,∞)))

that is dense with respect to uniform convergence on compact subsets. Lemma 8.5
shows that {〈f, ξNt 〉}N is a tight sequence for any f : Rd × [0,∞) → R with compact
support in the level direction, and hence {e−〈f,ξNt 〉}N is tight as well. Since as above
the algebra generated by the functions ξ 7→ exp(−〈f, ξ〉) is dense in Cb(M(Rd × [0,∞))),
it suffices to show that tightness for the processes (exp(−〈f, ξNt 〉))t≥0 extends to finite
sums and products (and constant multiples) of these processes, which is shown in
Lemma B.3. The fact that martingale properties are preserved under passage to the limit
is straightforward, and can be proved in a way analogous to Lemma 6.6; we omit the
proof. Finally, we must show that the limiting lookdown process ξ projects to the limiting
process η, i.e., a solution of the martingale problem in Theorem 2.10. Let Nk →∞ be a
sequence along which ξNk converges. By Theorem 2.10, there is a subsequence Nk(j)

along which the projected population processes ηNk(j) converge, and the limit solves
the martingale problem. Thus any limit point of ξN projects to a population process η
solving the martingale problem of Theorem 2.10.

What we need for compact containment will come from the following Lemma. The
generality is unimportant – for concreteness one may take h(u) = e−u.

Lemma 8.2. Let h be a positive, continuous, nonincreasing, differentiable function on
[0,∞) such that

∫∞
0

∫∞
u
h(v)dvdu,

∫∞
0
u2|h′(u)|du, and

∫∞
0
h(u)2du are all finite. Suppose

that Assumptions 2.8 hold, and that θ/N → α and ξN0 → ξ0 weakly as N → ∞, where
each ξN0 is conditionally uniform given ηN0 in the sense of (5.12) and ξ0 is conditionally
Poisson given η0 in the sense of (5.13). Then for any T there exists a constant K(T ) such
that for all M > 0,

lim sup
N→∞

P

{
sup

0≤t≤T
〈h, ξNt 〉 > M

}
<
K(T )

M
.

We postpone the proof of this Lemma until we have shown how it yields compact
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containment. First, we show that this implies compact containment of the processes
(〈f, ξNt 〉)0≤t≤T for arbitrary compactly supported f .

Lemma 8.3. Suppose f ∈ C(R
d × [0,∞)) and there is a uf such that if u ≥ uf then

supx f(x, u) = 0. Under the assumptions of Lemma 8.2, for any T there exists a constant
K(f, T ) such that for all M > 0,

lim sup
N→∞

P

{
sup

0≤t≤T
〈f, ξNt 〉 > M

}
<
K(f, T )

M
.

Proof of Lemma 8.3: Let h be as in Lemma 8.2, so there is a cf <∞ such that f(x, u) ≤
cfh(u) for all x and u. Therefore, 〈f, ξ〉 ≤ cf 〈h, ξ〉, and so by Lemma 8.2,

lim sup
N→∞

P

{
sup

0≤t≤T
〈f, ξNt 〉 > M

}
≤ lim sup

N→∞
P

{
sup

0≤t≤T
〈h, ξNt 〉 > M/cf

}
<
K(T )cf
M

.

Lemma 8.4 (Compact containment for ξ). Let f1, f2, . . . be a sequence of functions each
satisfying the conditions of Lemma 8.3. Under the assumptions of Lemma 8.2, for any T
and δ > 0 there exists a sequence (C1, C2, . . .) of finite constants such that

lim sup
N→∞

P

{
sup

0≤t≤T
〈fk, ξNt 〉 > Ck for some k ≥ 1

}
< δ. (8.4)

In other words, the processes ξN stay in the set{
ξ ∈M(Rd × [0,∞)) : 〈fk, ξ〉 ≤ Ck for all k ≥ 1

}
,

for all 0 ≤ t ≤ T with uniformly high probability, a set which (as discussed in the proof of
Theorem 5.4) is relatively compact for an appropriate choice of {fk}k≥1.

Proof of Lemma 8.4: By a union bound,

P

{
sup

0≤t≤T
〈fk, ξNt 〉 > Ck for some k ≥ 1

}
≤
∑
k≥1

P

{
sup

0≤t≤T
〈fk, ξNt 〉 > Ck

}
,

so (8.4) follows by taking Ck = 2k−1K(fk, T )/δ and using Lemma 8.3.

Finally, we prove the key lemma.

Proof of Lemma 8.2: Applied to f(x, u) = h(u), the martingale representation (8.2) is

〈h, ξNt 〉 = 〈h, ξN0 〉+Mh
t

+

∫ t

0

〈
2cθ(x, η

N
s )

∫ N

u

h(v)dv, ξNs (dx, du)
〉
ds

+

∫ t

0

〈 (
cθ(x, η

N
s )u2 − bθ(x, ηNs )u

)
h′(u), ξNs (dx, du)

〉
ds,

where Mh
t is a martingale with angle bracket process

〈
Mh

〉
t

=

∫ t

0

〈2cθ(x, ηNs )

∫ N

u

h(v)2dv, ξNs (dx, du)
〉
ds.
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Now, note that 0 ≤ cθ(x, η
N
x ) ≤ Ca <∞ and bθ(x, ηNs ) ≤ Cb <∞, and we have assumed

that h′(u) ≤ 0 (since h is nonincreasing), so we may bound

〈h, ξNt 〉 ≤ 〈h, ξN0 〉+Mh
t

+

∫ t

0

〈
2Ca

∫ ∞
u

h(v)dv +
(
Cau

2 + Cbu
)
|h′(u)|, ξNs (dx, du)

〉
ds.

(8.5)

Now, since ξNt is conditionally uniform given ηNt in the sense of (5.12), we know that

for compactly supported f , E[〈f, ξNt 〉] = E[〈f̃N , ηNt 〉], where f̃N (x) =
∫ N

0
f(x, u)du. By our

assumptions on h, we know that∫ ∞
0

(
2Ca

∫ ∞
u

h(v)dv +
(
Cau

2 + Cbu
)
|h′(u)|

)
du < C

for some C <∞, and so (by dominated convergence)

E
[
〈h, ξNt 〉

]
≤ E

[
〈h, ξN0 〉

]
+ C

∫ t

0

E

[〈
1, ηNs

〉]
ds,

which we know by Lemma 6.1 is bounded by C0e
C1t for some other constants C0 and C1.

Now consider the maximum. By (8.5), using that the integrand is nonnegative,

sup
0≤t≤T

〈h, ξNt 〉 ≤ 〈h, ξN0 〉+ sup
0≤t≤T

Mh
t

+

∫ T

0

〈
2Ca

∫ ∞
u

h(v)dv +
(
Cau

2 + Cbu
)
|h′(u)|, ξNs (dx, du)

〉
ds.

As in the proof of Lemma 6.2, the Burkholder-Davis-Gundy inequality, [2], and the
fact that

√
x ≤ 1 + x for x ≥ 0 tells us that there is a C ′ such that

E

[
sup

0≤t≤T
Mh
t

]
≤ C ′

(
1 + E

[
〈Mh〉T

])
≤ C ′

(
1 +

∫ T

0

E

[
〈2cθ(x, ηNs )

∫ ∞
u

h(v)2dv, ξNs (dx, du)
〉]
ds

)

≤ C ′
(

1 + 2Ca

∫ ∞
0

h(v)2dv

∫ T

0

E
[
〈1, ξNs (dx, du)

〉]
ds

)
≤ C2e

C1T ,

for a constant C2 which is finite by our assumption that
∫∞

0
h(v)2dv <∞.

Therefore,

E

[
sup

0≤t≤T
〈h, ξNt 〉

]
≤ E

[
〈h, ξN0 〉

]
+ (C2 + C0/C1)eC1T ,

and so

P

{
sup

0≤t≤T
〈h, ξNt 〉 > K

}
≤
E
[
〈h, ξN0 〉

]
+ (C2 + C0/C1)eC1T

K
.

Lemma 8.5. Let f be a bounded, continuous real-valued function on Rd × [0,∞) with
uniformly bounded first and second derivatives for which there exists a u0 such that
if u > u0 then f(x, u) = 0. Then, the sequence of real-valued processes (〈f, ξNt 〉)t≥0 for
N ≥ 1 is tight in D[0,∞)(R).
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Proof of Lemma 8.5: Again, we use the Aldous-Rebolledo criterion. Tightness of 〈f, ξt〉
for a fixed t follows from Lemma 8.3, so we need only prove conditions analogous
to (6.9) and (6.10) applied to the martingale representation of equations (8.2) and (8.3).
Rewriting (8.2) with cθ = cθ(x, ηs),

〈f, ξt〉 = 〈f, ξ0〉+Mf
t +

∫ t

0

〈
cθ

∫ N

u

∫
(f(y, u1) + f(x, u1))qm(x, dy, η)du1

+ cθ(N − u)

∫ t

0

(f(y, u)− f(x, u))qm(x, dy, η) + (cθu
2 − bθu)

d

du
f, ξs

〉
ds.

The bounds analogous to (6.9) and (6.10) follow as in the proof of Lemma 6.3: for
instance, observe that using that cθ ≤ Ca for some Ca, the predictable part of this
semimartingale decomposition is bounded by〈

2Ca‖f‖∞uf + (1− u/N)γBθf + (Cau
2 − bθu)

d

du
f, ξs

〉
,

the last term of which is bounded by

〈Cau2
f + sup

x
|bθ(x, ηs)|uf‖

d

du
f‖∞〉,

which can be bounded as we did for (6.9).

8.2 Motion of ancestral lineages

In this section we prove Theorem 2.24. The argument follows directly from the
discussion in Section 5.3.

Proof of Theorem 2.24: For brevity, in the proof we write γ(x) or γ for γ(x, η).
Here we have taken the high-density, deterministic limit (so, θ,N →∞ and θ/N → 0).

We first proceed informally, as if the limiting process has a density ϕt(x) at location x

and time t (which it may not), and follow this with an integration against test functions
to make the argument rigorous. Let Y denote the spatial motion followed by a single
line of descent. Above equation (5.19), we showed that Y is a diffusion with generator at
time s

LYs g(x) = γ(x, ηs)(B(r(·, ηs)g(·))(x)− g(x)Br(x, ηs)).

The diffusion is time-inhomogeneous if the density is not constant in time. Let ϕt(x) be
the limiting density, which is a weak solution to (1.1), ∂tϕt = rB∗[ϕtγ] + ϕtF . Formally,
the intensity of individuals at y at time t that are descended from individuals that were
at x at time s (with s < t) is

ϕs(x)Es,x

[
exp

(∫ t

s

(F + γBr)(Yu)du

)
1Yt=y

]
dy, (8.6)

where the subscript s, x in the expectation indicates that Ys = x. To see why this should
be true, suppose that an ancestor at time s has level v. Conditional on its spatial motion
{Yu}s≤u≤t, its level at time t will be v exp(−

∫ t
s
(F + γBr)(Yu)du). This will be less than

a given level λ if v < λ exp(
∫ t
s
(F + γBr)(Yu)du). The intensity of levels at y that are

descended from individuals at x can therefore be obtained as the limit as λ → ∞ of
1/λ times the number of levels at x at time s with u < λ exp(

∫ t
s
(F + γBr)(Yu)du) and

for which the corresponding individual is at y at time t, which is precisely the quantity
in (8.6).

By our construction in Section 5.3, when we integrate (8.6) with respect to x we
recover ϕt(y)dy. Consider an individual sampled at location y at time t, and write
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p(t, s, y, x) for the probability density that their ancestor at time s was at x. As a
consequence of (8.6), still formally,

p(t, s, y, x) =
ϕs(x)

ϕt(y)
Es,x

[
exp

(∫ t

s

(F + γBr)(Yu)du

)
1Yt=y

]
for s < t. (8.7)

To make (8.7) meaningful, we multiply by suitable test functions f and g and integrate.∫ ∫
f(y)ϕt(y)p(t, s, y, x)g(x)dydx

=

∫
g(x)ϕs(x)Ex,s

[
exp

(∫ t

s

(F + γBr)(Yu)du

)
f(Yt)

]
dx.

Writing T̂t,s for the time-inhomogeneous semigroup corresponding to the motion of

ancestral lineages backwards in time (that is, T̂t,sf(y) =
∫
p(t, s, x, y)f(x)dy), we can

write this as∫
f(y)ϕt(y)T̂t,sg(y)dy =

∫
g(x)ϕs(x)Es,x

[
exp

(∫ t

s

(F + γBr)(Yu)du

)
f(Yt)

]
dx. (8.8)

Next, we will differentiate this equation with respect to t. There are two terms in the
product on the left-hand side that depend on t, so if we use that ∂tϕt = rB∗[ϕtγ]+ϕtF (in

a weak sense), and write Lu for the generator of T̂t,s at time t = u so that ∂tT̂t,sg(y)
∣∣∣
t=s

=

Lsg(y), then

d

dt

∫
f(y)ϕt(y)T̂t,sg(y)dy

∣∣∣
t=s

=

∫
f(y) {ϕs(y)Lsg(y) + [r(y)B∗(γϕs)(y) + ϕs(y)F (y)] g(y)} dy.

As for the right-hand side, since Ys = x under Ex,s,

d

dt
Ex,s

[
exp

(∫ t

s

(F + γBr)(Yu)du

)
f(Yt)

] ∣∣∣∣∣
t=s

= [F (x) + γ(x)Br(x)] f(x) + LYs f(x).

Therefore, the derivative of (8.8) (with respect to t, evaluated at t = s) is∫
f(y) {ϕs(y)Lsg(y) + (r(y)B∗(γϕs)(y) + ϕs(y)F (y)) g(y)} dy

=

∫
g(x)ϕs(x)

(
LYs f(x) + [F (x) + γ(x)Br(x)] f(x)

)
dx

=

∫
f(x)

(
(LYs )∗(ϕsg)(x) + [F (x) + γ(x)Br(x)]ϕs(x)g(x)

)
dx,

where (LYs )∗ is the adjoint of LYs . Since f was arbitrary,

Lsg =
1

ϕs

[
(LYs )∗(ϕsg) + γϕsgB(r)− rgB∗(γϕs)

]
.

(Note that the ϕsFg terms have cancelled.) Since the adjoint of LYs is

(LYs )∗f = rB∗(γf)− γfBr,

we can rewrite the generator of a lineage as

Lsg =
r

ϕs
[B∗(γϕsg)− gB∗(γϕs)] .
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This is equation (2.17).
To simplify to equation (2.18), first define Df(x) =

∑
ij Cij∂ijf(x), and so the adjoint

of D is
D∗f(x) =

∑
ij

∂ij(Cijf(x)).

Note that D∗ satisfies the following identity:

D∗(fg) =
∑
ij

{g∂ij(Cijf) + 2f∂i(Cij)∂j(g) + 2Cij∂i(f)∂j(g) + Cijf∂ijg}

= gD∗f + 2f~c · ∇g + 2(C∇f) · ∇g + fDg,

where ~cj =
∑
i ∂iCij . So, with f = γϕs,

Lsg =
r

ϕs

[
1

2
D∗(γϕsg)−∇ · (γϕsg~b)−

1

2
gD∗(γϕs) + g∇ · (γϕs~b)

]
=

r

ϕs

[
1

2
γϕsDg + γϕs~c · ∇g + (C∇(γϕs)) · ∇g − γϕs~b · ∇g

]
= rγ

[
1

2
Dg + ~c · ∇g + (C∇ log(γϕs)) · ∇g −~b · ∇g

]
,

which is equation (2.18).

Proof of Corollary 2.27: For the moment, we will write r(x) for r(x, η) and γ(x) for γ(x, η).
First note that since in this case the semigroup does not depend on time, we can write
L = Ls, and

Lf =
σ2

2
rγ
(
∆f +∇(2 log(γϕ)− 2h/σ2) · ∇f

)
.

Now, observe that∫
Rd
eH(x)f(x)(∆ +∇H(x) · ∇)g(x)dx = −

∫
Rd
eH(x) {∇f(x) · ∇g(x)} dx,

so that by choosing H(x) = 2 log(γ(x)ϕ(x))− 2h(x)/σ2 and

π(x) =
eH(x)

σ2r(x)γ(x)/2
=
γ(x)ϕ(x)2e−2h(x)/σ2

σ2r(x)/2
,

we have that ∫
Rd
π(x)f(x)Lg(x)dx = −

∫
Rd
eH(x)∇f(x) · ∇g(x)dx.

Since this Dirichlet form is symmetric in f and g, the process Y is reversible with respect
to π (and the factor of σ2/2 is constant).
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A Markov Mapping Theorem

The following appears as Theorem A.2 in [27], specialized slightly here to the case
that the processes are càdlàg and have no fixed points of discontinuity. For an S0-
valued, measurable process Y , F̂Yt denotes the completion of the σ-algebra generated
by Y (0) and {

∫ r
0
h(Y (s))ds, r ≤ t, h ∈ B(S0)}. Also, let DS [0,∞) denote the space of

càdlàg, S-valued functions with the Skorohod topology, and MS [0,∞) the space of Borel
measurable functions from [0,∞) to S, topologized by convergence in Lesbegue measure.
For other definitions see [27].

Theorem A.1 (Markov Mapping Theorem). Let (S, d) and (S0, d0) be complete, separable
metric spaces. Let A ⊂ Cb(S) × C(S) and ψ ∈ C(S), ψ ≥ 1. Suppose that for each
f ∈ D(A) there exists cf such that

|Af(x)| ≤ cfψ(x), x ∈ A,

and define A0f(x) = Af(x)/ψ(x).
Suppose that A0 is a countably determined pre-generator, and suppose that D(A) =

D(A0) is closed under multiplication and is separating. Let γ : S → S0 be Borel
measurable, and let α be a transition function from S0 into S (y ∈ S0 → α(y, ·) ∈ P(S) is
Borel measurable) satisfying

∫
h ◦ γ(x)α(y, dx) = h(y) for y ∈ S0 and h ∈ B(S0), that is,

α(y, γ−1(y)) = 1. Assume that ψ̃(y) ≡
∫
S
ψ(z)α(y, dz) <∞ for each y ∈ S0 and define

C = {
∫
S

f(z)α(·, dz),
∫
S

Af(z)α(·, dz) : f ∈ D(A)}. (1.1)

Let µ0 ∈ P(S0) and define ν0 =
∫
α(y, ·)µ0(dy).

(a) If Ỹ satisfies
∫ t

0
E[ψ̃(Ỹ (s))]ds <∞ for all t ≥ 0 and Ỹ is a solution of the martingale

problem for (C, µ0), then there exists a solution X of the martingale problem for
(A, ν0) such that Ỹ has the same distribution on MS0 [0,∞) as Y = γ ◦X. If Y and
Ỹ are càdlàg, then Y and Ỹ have the same distribution on DS0 [0,∞).

(b) For t ≥ 0,
P{X(t) ∈ Γ | F̂Yt } = α(Y (t),Γ), for Γ ∈ B(S).

(c) If, in addition, uniqueness holds for the martingale problem for (A, ν0), then unique-
ness holds for the MS0

[0,∞)-martingale problem for (C, µ0). If Ỹ has sample
paths in DS0

[0,∞) then uniqueness holds for the DS0
[0,∞)-martingale problem for

(C, µ0).

(d) If uniqueness holds for the martingale problem for (A, ν0) then Y is a Markov
process.

In our application, we have taken S to be the space of locally finite counting measures

on Rd × [0, N) or on Rd × [0,∞), and S0 the space of finite measures on R
d
. Then, A

corresponds to the generator for the lookdown process (i.e., either AN or A), and C

corresponds to the generator for the spatial population process (i.e., either PN or P).
The “γ” of the theorem is our spatial projection operator that we have called κN or κ,
and the “α” of the theorem will be named ΓN or Γ below. Finally, “X” of the theorem is
our lookdown process, ξ, and “Y ” is our spatial process, η.

A.1 Lookdown Generators

In this section we verify one of the conditions of the Markov Mapping Theorem,
namely, that “integrating out levels” in the generator of the lookdown process we obtain
the generator of the projected process. In the notation of the theorem, we are verifying
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that C defined in (1.1) is in fact PN (if defined with AN ) or P∞ (if defined with A). We
will work with test functions of the form

f(ξ) =
∏

(x,u)∈ξ

g(x, u) = exp (〈log g, ξ〉) , (1.2)

where 0 ≤ g ≤ 1 and g(x, u) = 1 for all u ≥ ug for some ug < ∞. Furthermore,
recall that κN (ξ)(·) = ξ(· × [0, N))/N is the “spatial projection operator”, and define
the transition function ΓN : MF (Rd) → M(Rd × [0, N)) so that for η ∈ MF (Rd), if

ĝN (x) =
∫ N

0
g(x, u)du/N , then

FNg (η) :=

∫
f(ξ)ΓN (η, dξ)

= exp

(
N

〈
log

1

N

∫ N

0

g(x, u)du, η(dx)

〉)
= exp (N 〈log ĝN (x), η(dx)〉) ,

i.e., ΓN assigns independent labels on [0, N ] to each of the points in η. It follows from
Lemma 6.5 that for test functions of this form the generator of ηNt is

PNFNg (η) = FNg (η)Nθ

〈
γ(x, η)

∫
r(z, η) (ĝN (z)− 1) qθ(x, dz)

+ µθ(x, η)

(
1

ĝN (x)
− 1

)
, η(dx)

〉
.

(1.3)

(Note that f here differs from the f used in Lemma 6.5 so as to agree with standard
usage in the literature on lookdown processes.) The generator of ξNt is AN , defined in
equation (5.10).

Lemma A.2. For all finite counting measures η on Rd, if f is of the form (1.2), then∫
ANf(ξ)ΓN (η, dξ) = PNFNg (η). (1.4)

For the limiting process, recall that κ(ξ)(·) = limu→∞ ξ(· × [0, u))/u is the “spatial
projection operator”, and define the probability kernel Γ :MF (Rd)→M(Rd × [0,∞)) so
that for η ∈MF (Rd), defining g̃(x) =

∫∞
0

(g(x, u)− 1)du,

Fg(η) :=

∫
f(ξ)Γ(η, dξ)

= exp

(〈∫ ∞
0

(g(x, u)− 1)du, η(dx)
〉)

= e〈g̃(x),η(dx)〉.

i.e., Γ(η, ·) is the distribution of a conditionally Poisson process with intensity a product
of η and Lebesgue measure. It again follows from Lemma 6.5 that for test functions of
this form the generator of ηt is

P∞Fg(η) = Fg(η)
〈
γ(x, η)B(g̃(·)r(·))(x) + F (x, η)g̃(x) + αγ(x, η)r(x, η)g̃2(x), η(dx)

〉
.

(1.5)

The generator of ξt is A, defined in equation (5.11).

Lemma A.3. For all η ∈MF (Rd), if f is of the form (1.2), then∫
Af(ξ)Γ(η, dξ) = P∞Fg(η). (1.6)
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Proof of Lemma A.2: First, break the generator AN into three parts,

AN1 f(ξ) = f(ξ)
∑

(x,u)∈ξ

2cθ(x, η)

∫ N

u

(
1

2

g(x, v1)

g(x, u)

∫
Rd

(g(y, u)− g(x, u))qmθ (x, dy, η)

)
dv1,

AN2 f(ξ) = f(ξ)
∑

(x,u)∈ξ

2cθ(x, η)

∫ N

u

(
1

2

∫
Rd

(
g(y, v1) + g(x, v1)

2
− 1

)
qmθ (x, dy, η)

)
dv1,

AN3 f(ξ) = f(ξ)
∑

(x,u)∈ξ

(
cθ(x, η)u2 − bθ(x, η)u

) ∂ug(x, u)

g(x, u)
,

where qm was defined in equation (8.1), so that

ANf(ξ) = AN1 f(ξ) +AN2 f(ξ) +AN3 f(ξ).

We now integrate each piece against ΓN . First note that by the product form of f ,∫
f(ξ)

∑
(x,u)∈ξ

`(x, u)

g(x, u)
ΓN (η, dξ) = FNg (η)

〈
1

NĝN (x)

∫ N

0

`(x, u)du,Nη(dx)

〉
.

Therefore,∫
AN1 f(ξ)ΓN (η, dξ)

= FNg (η)

〈
cθ(x, η)

ĝN (x)

∫ N

0

{∫ N

u

(
1

2
g(x, v1)

∫
Rd

(g(y, u) − g(x, u))qmθ (x, dy, η)

)
dv1

}
du, η(dx)

〉

= FNg (η)

〈
cθ(x, η)

ĝN (x)

{∫
Rd

{∫ N

0

∫ N

u
g(x, v1)(g(y, u) − g(x, u))dv1du

}
qmθ (x, dy, η), η(dx)

〉
.

For the second generator, we have∫
AN2 f(ξ)ΓN (η, dξ)

= FNg (η)

〈
cθ(x, η)

ĝN (x)

∫ N

0
g(x, u)

{∫ N

u

(∫
Rd

(
g(y, v1) + g(x, v1)

2
− 1

)
qmθ (x, dy, η)

)
dv1

}
, η(dx)

〉

= FNg (η)

〈
cθ(x, η)

ĝN (x)

∫
Rd

{∫ N

0

∫ N

u
g(x, u) (g(y, v1) + g(x, v1) − 2) dv1du

}
qmθ (x, dy, η), η(dx)

〉
.

For the third generator we have that∫
AN3 f(ξ)ΓN (η, dξ)

= FNg (η)

〈
1

ĝN (x)

∫ N

0

(
cθ(x, η)u2 − bθ(x, η)u

)
∂ug(x, u)du, η(dx)

〉
= FNg (η)

〈
1

ĝN (x)

∫ N

0

(bθ(x, η)− 2cθ(x, η)u) (g(x, u)− 1)du, η(dx)

〉
.

Note that 2
∫ N

0

∫ N
u
g(x, v1)g(y, u)dv1du = N2ĝN (x)ĝN (y), and so∫ N

0

∫ N

u

g(x, v1)(g(y, u)− g(x, u))dv1du+

∫ N

0

∫ N

u

g(x, u) (g(y, v1) + g(x, v1)− 2) dv1du

= N2ĝN (x)(ĝN (y)− 2) + 2

∫ N

0

ug(x, u)du.

EJP 29 (2024), paper 28.
Page 76/85

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

Combining the last equations, and using the fact that Ncθ(x, η)− bθ(x, η) = θµθ(x, η),
we have∫ (

AN1 f(ξ) +AN2 f(ξ) +AN3 f(ξ)

)
ΓN (η, dξ)

= FNg (η)

〈
cθ(x, η)N2

∫
Rd

(ĝN (y)− 2)qm(x, dy, η) +
1

ĝN (x)
cθ(x, η)

∫ N

0

2udu

+
1

ĝN (x)
bθ(x, η)

∫ N

0

(g(x, u)− 1)du, η(dx)

〉
= FNg (η)

〈
cθ(x, η)N2

∫
Rd

(ĝN (y)− 1)qm(x, dy, η) +N2cθ(x, η)

(
1

ĝN (x)
− 1

)
+Nbθ(x, η)

(
1− 1

ĝN (x)

)
, η(dx)

〉
= FNg (η)N

〈
Ncθ(x, η)

∫
Rd

(ĝN (y)− 1)qm(x, dy, η) + θµθ(x, η)

(
1

ĝN (x)
− 1

)
, η(dx)

〉
.

This matches equation (1.3), as desired, because Ncθ(x, η)qm(x, dy, η) = θγ(x, η)qθ(x, dy).

Before proving Lemma A.3, we recall an important equality for conditionally Poisson
point processes ([48] Lemma A.3).

Lemma A.4. If ξ =
∑
i δZi is a Poisson random measure with mean measure ν, then for

` ∈ L1(ν) and g ≥ 0 with log g ∈ L1(ν),

E

∑
j

`(Zj)
∏
i

g(Zi)

 =

∫
`gdνe

∫
(g−1)dν . (1.7)

Proof of Lemma A.3: By Lemma A.4,∫
f(ξ)

∑
(x,u)∈ξ

`(x, u)

g(x, u)
Γ(η, ξ) = Fg(η)

〈∫ ∞
0

`(x, u)du, η(dx)

〉
.

Comparing this to the definition of A (equation (5.11)), we see that∫
Af(ξ)Γ(η, dξ) = Fg(η)

〈∫ ∞
0

(`1(x, u) + `2(x, u) + `3(x, u))du, η(dx)

〉
,

where

`1(x, u) = γ(x, η) (B(g(·, u)r(·, η))(x)− g(x, u)Br(x, η))

= γ(x, η) (B((g(·, u)− 1)r(·, η))(x)− (g(x, u)− 1)Br(x, η))

and

`2(x, u) = 2g(x, u)αγ(x, η)r(x, η)

∫ ∞
u

(g(x, v)− 1)dv

and

`3(x, u) =
(
αγ(x, η)r(x, η)u2 − {γ(x, η)Br(x, η) + F (x, η)}u

)
∂ug(x, u).

First note that since B acts on space, it commutes with the integral over levels, and
so ∫ ∞

0

`1(x, u)du = γ(x, η) (B(g̃(·)r(·, η))(x)− g̃(x)Br(x, η)) ,
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since g̃(x) =
∫∞

0
(g(x, u)− 1)du. Next,∫ ∞

0

`2(x, u)du = αγ(x, η)r(x, η)2

∫ ∞
0

g(x, u)

∫ ∞
u

(g(x, v)− 1)dvdu.

Finally, integrating by parts,∫ ∞
0

`3(x, u)du = −αγ(x, η)r(x, η)

∫ ∞
0

2u(g(x, u)− 1)du

+ {γ(x, η)Br(x, η) + F (x, η)}g̃(x)

Now, note that∫ ∞
0

g(x, u)

∫ ∞
u

(g(x, v)− 1)dvdu−
∫ ∞

0

u(g(x, u)− 1)du

=

∫ ∞
0

g(x, u)

∫ ∞
u

(g(x, v)− 1)dvdu−
∫ ∞

0

∫ ∞
v

(g(x, u)− 1)dudv

=

∫ ∞
0

(g(x, u)− 1)

∫ ∞
u

(g(x, v)− 1)dvdu

= g̃(x)2/2.

Adding these together, we get that∫ ∞
0

(`1(x, u) + `2(x, u) + `3(x, u))du

= γ(x, η)B(g̃(·)r(·, η))(x) + F (x, η)g̃(x) + αγ(x, η)r(x, η)g̃(x)2,

which agrees with (1.5), as desired.

B Technical Lemmas

B.1 Constraints on kernel widths

Lemma B.1. Suppose the first three conditions of Assumptions 2.8 hold, and furthermore
the kernels ρr = pε2r and ργ = pε2γ are each Gaussian with standard deviations εr and εγ
respectively. Let λ = supx supy:‖y‖=1 y

TC(x)y be the largest eigenvalue of C(x) across

all x. If ε2r + 2λ
θ < ε2γ , then there is a C <∞ such that for all x ∈ Rd, η ∈MF (Rd),∣∣∣∣θ ∫

Rd
(ρr∗η(y)− ρr∗η(x))qθ(x, dy)

∣∣∣∣ ≤ Cργ∗η(x) (2.1)

and

θ

∫
Rd

(ρr∗η(y)− ρr∗η(x))
2
qθ(x, dy) ≤ C (ργ∗η(x))

2
. (2.2)

Note that the right hand side of each is the average density over a wider region
(since εγ > εr). The key assumption here is that the spatial scale over which local density
affects birth rate is larger than the scale over which it affects establishment. In the
simple case of ~b = 0 and C = σ2I, the condition is simply that ε2r + 2σ2/θ < ε2γ . This gives
a yet more concrete situation in which Condition 2 of Lemma 2.9 holds.

Proof of Lemma B.1: First we prove (2.1). Recall that ρr∗η(x) =
∫
pε2r (x−w)η(dw), where

pt is the density of a Gaussian with mean 0 and variance t, so that applying Fubini, (2.1)
is ∣∣∣∣∫

Rd
θ

∫
Rd

(pε2r (y − w)− pε2r (x− w))qθ(x, dy)η(dw)

∣∣∣∣ .
EJP 29 (2024), paper 28.

Page 78/85
https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1075
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Dynamics and genealogies of locally regulated populations

Write ps,x(·) for the density of a Gaussian with mean s~b(x) and covariance ε2rI + sC(x),
so that

∫
pε2r (y − w)qθ(x, dy) = p1/θ,x(w − x). It therefore suffices to show that for all x

and w ∈ Rd, there exists K such that∣∣∣∣θ ∫
Rd

(pε2r (y − w)− pε2r (x− w))qθ(x, dy)

∣∣∣∣ = θ
∣∣p1/θ,x(w − x)− p0,x(w − x)

∣∣ ≤ Kpε2γ (w − x).

However, θ(p1/θ,x(z) − p0,x(z)) = ∂sps,x(z) for some 0 ≤ s ≤ 1/θ. Write Γ(s, x) = ε2rI +

sC(x), so that

ps,x(z) =
1

(2π|Γ(s, x)|)d/2
exp

(
−1

2
(z − s~b(x))TΓ(s, x)−1(z − s~b(x))

)
,

and note that if λi are the eigenvalues of C(x) then |Γ(s, x)| =
∏
i(ε

2
r + sλi), and

∂s|Γ(s, x)| =
∑
i λi|Γ(s, x)|/(ε2r + sλi). Therefore,

∂sps,x(z) =

(
~b(x)TΓ(s, x)−1(z − s~b(x)) + (z − s~b(x))TΓ(s, x)−1C(x)Γ(s, x)−1(z − s~b(x))

−
∑
i

λi
ε2r + sλi

)
ps,x(z),

where zT is the transpose of z. This implies that

θ
∫
Rd

(pε2r (y − w)− pε2r (x− w))qθ(x, dy)

pε2γ (x− w).
= h(x− w)ek(x−w),

where h(z) and k(z) are quadratic polynomials in z whose coefficients depend on s and x
but are uniformly bounded, and

k(z) =
1

2ε2γ
‖z‖2 − 1

2
(z − s~b(x))TΓ(s, x)−1(z − s~b(x)),

Since infz z
TΓ(s, x)−1z/‖z‖2 = 1/(sλ(x) + ε2r), where λ(x) = sup zTC(x)z/‖z‖2 is the

largest eigenvalue of C(x), this is negative for all z outside a bounded region, and so
equation (2.1) follows from the assumption that ε2r + 2 supx λ(x)/θ < ε2γ . (Note that we do
not yet need the factor of 2.)

Next we prove equation (2.2), in a similar way. Again applying Fubini,

θ

∫
Rd

(ρr∗η(y)− ρr∗η(x))
2
qθ(x, dy)

=

∫
Rd

∫
Rd
θ

∫
Rd

(pε2r (y − w)− pε2r (x− w))(pε2r (y − v)− pε2r (x− v))qθ(x, dy)η(dv)η(dw),

and so as before, equation (2.2) will follow if the integrand is bounded by Kpγ(x −
w)pγ(x− v). Now, let Y1, Y2, and Z be independent d-dimensional Gaussians with mean
zero, where Y1 and Y2 have covariance ε2rI, and Z has covariance C(x). Write ps,t,x(·, ·)
for the joint density of Y1 +

√
sZ + s~b(x) and Y2 +

√
tZ + t~b(x). Then, observe that

θ

∫
Rd

(pε2r (y − w)− pε2r (x− w))(pε2r (y − v)− pε2r (x− v))qθ(x, dy)

= θ
(
p1/θ,1/θ,x(x− w, x− v)− p0,1/θ,x(x− w, x− v)

− p1/θ,0,x(x− w, x− v) + p0,0,x(x− w, x− v)
)

= ∂sps,1/θ,x(x− w, x− v)− ∂tp0,t,x(x− w, x− v),
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for some 0 ≤ s, t ≤ 1/θ. As before,

θ
∫
Rd

(pε2r (y − w)− pε2r (x− w))(pε2r (y − v)− pε2r (x− v))qθ(x, dy)

pε2γ (x− w)pε2γ (x− v)

= h(x− w, x− v)ek(x−w,x−v),

where h(z1, z2) is a polynomial with uniformly bounded coefficients and

k(z1, z2) = (‖z1‖2 + ‖z2‖2)/(2ε2γ)− 1

2
[z1, z2]TΓ(s, t, x)−1[z1, z2],

where [z1, z2] is the R2d vector formed by concatenating z1 and z2, and Γ(s, t, x) is the
block matrix

Γ(s, t, x) =

[
ε2rI + sC(x)

√
stC(x)√

stC(x) ε2rI + tC(x)

]
.

If C(x)u = au for some a ∈ R, then [u
√
s, u
√
t] is an eigenvector of Γ(s, t, x) with

eigenvalue ε2r + (s+ t)a, and [u
√
t,−u

√
s] is an eigenvector of Γ(s, t, x) with eigenvalue 0.

This implies the largest eigenvalue of Γ(s, t, x) is equal to ε2r + (s+ t)λ(x), where λ(x) is
again the largest eigenvalue of C(x). Therefore, if s+ t ≤ 2/θ,

(‖z1‖2 + ‖z2‖2)/ε2γ − [z1, z2]TΓ(s, t, x)−1[z1, z2]

≤ (‖z1‖2 + ‖z2‖2)

(
1

ε2γ
− 1

ε2r + 2λ(x)/θ

)
,

which is negative by assumption. Therefore, there is a K such that∣∣∂sps,1/θ,x(x− w, x− v)− ∂tp0,t,x(x− w, x− v)
∣∣

pε2γ (x− w)pε2γ (x− v)
≤ K

for all θ > 1 and all x, v, and w ∈ Rd, proving equation (2.2) and hence the lemma.

B.2 Tightness of processes

Here we record, for completeness, the fact used above that tightness for a family of
processes, if determined by the Aldous-Rebolledo criterion, extends to sums and products
of those processes. We first record for reference one version of the Aldous-Rebolledo
criteria for tightness of a sequence real-valued processes (as it appears in Theorem 1.17
of [25]; see also Theorem 4.13 of [43]):

Theorem B.2 ([60]). Let {Y (n)}n≥1 be a sequence of real-valued processes with càdlàg
paths. Suppose that the following conditions are satisfied.

1. For each fixed t ∈ [0, T ], {Y (n)
t }n≥1 is tight.

2. Given a sequence of stopping times τn, bounded by T , for each ε > 0 there exists
δ > 0 and n0 such that

sup
n≥n0

sup
θ∈[0,min(δ,T−τn)]

P
{∣∣∣Y (n)

τn+θ − Y
(n)
τn

∣∣∣ > ε
}
≤ ε.

Then the sequence {(Y (n)
t )Tt=0}n≥1 is tight.

Lemma B.3. Let {X(n)}n≥1 and {Y (n)}n≥1 be sequences of jointly defined real-valued
processes with càdlàg paths satisfying the conditions of Theorem B.2.

Then {X(n)Y (n)}n≥1 and {X(n) + Y (n)}n≥1 also satisfy the conditions of Theorem B.2.
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By “jointly defined” we mean that X(n) and Y (n) are defined on the same probability
space, so that the products and sums make sense.

Proof of Lemma B.3: The proof for X(n) + Y (n) is similar to but more straightforward
than for X(n)Y (n), so on only prove the Lemma for the latter.

First, note that for any ε > 0, by tightness of (X
(n)
t )n≥0 and (Y

(n)
t )n≥0 there is a K

such that P{X(n)
t >

√
K} and P{Y (n)

t >
√
K} are both less than ε/2, and hence

P{X(n)
t Y

(n)
t > K} ≤ P{X(n)

t >
√
K}+ P{Y (n)

t >
√
K} ≤ ε.

Therefore, (X
(n)
t Y

(n)
t )n≥0 is tight.

Next, note that for 0 ≤ τn ≤ T ,

sup
0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θY

(n)
τn+θ −X

(n)
τn Y

(n)
τn

∣∣∣
≤ sup

0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θ

∣∣∣ ∣∣∣Y (n)
τn+θ − Y

(n)
τn

∣∣∣+
∣∣∣X(n)

τn+θ −X
(n)
τn

∣∣∣ ∣∣∣Y (n)
τn

∣∣∣
≤ sup

0≤t≤T

∣∣∣X(n)
t

∣∣∣ sup
0≤θ≤min(δ,T−τn)

∣∣∣Y (n)
τn+θ − Y

(n)
τn

∣∣∣
+ sup

0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θ −X

(n)
τn

∣∣∣ sup
0≤t≤T

∣∣∣Y (n)
t

∣∣∣ ,
so that for any C,

P

{
sup

0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θY

(n)
τn+θ −X

(n)
τn Y

(n)
τn

∣∣∣ > ε

}

≤ P
{

sup
0≤t≤T

∣∣∣X(n)
t

∣∣∣ > C

}
+ P

{
sup

0≤θ≤min(δ,T−τn)

∣∣∣Y (n)
τn+θ − Y

(n)
τn

∣∣∣ > ε/C

}

+ P

{
sup

0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θ −X

(n)
τn

∣∣∣ > ε/C

}
+ P

{
sup

0≤t≤T

∣∣∣Y (n)
t

∣∣∣ > C

}
(2.3)

Now, since max0≤t≤T X
(n)
t is tight (and likewise for Y ) (see, e.g., Remark 3.7.3 in [28]),

we may choose a C ≥ 4 for which

P

{
sup

0≤t≤T

∣∣∣X(n)
t

∣∣∣ > C

}
≤ ε

4
.

Similarly, by assumption we can choose a δ for which

P

{
sup

0≤θ≤min(δ,T−τn)

∣∣∣X(n)
τn+θ −X

(n)
τn

∣∣∣ > ε/C

}
≤ ε

C
.

If we choose C and δ that do this for both X(n) and Y (n), then each of the terms
in equation (2.3) are bounded by ε/4, and condition (2) is satisfied for the product
process.
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