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Abstract 
The detection of Volatile Organic Compounds (VOCs) has shown great potential as a non-

invasive and rapid diagnostic tool for early cancer and disease detection. The use of VOCs 

for early disease detection has several advantages and can provide valuable insights into 

disease pathophysiology. This PhD research aimed to investigate the presence of VOCs in 

urine samples and the development of chemical fingerprints for various cancers, namely, 

bladder cancer, colorectal cancer, prostate cancer and hepatocellular cancer, and diseases 

such as fibrosis and urinary tract infection. This study investigated the possibility of using 

analytical techniques such as Gas Chromatography-Ion Mobility Spectrometry (GC-IMS), 

Gas Chromatography-Time of Flight-Mass Spectrometry (GC-TOF-MS), and Electronic 

Noses (eNoses) for the identification of these biomarkers. 

The study findings demonstrate the presence of particular VOCs in urine samples. We found 

that GC-IMS and GC-TOF-MS was able to distinguish between some of the cancers with 

100% sensitivity and 100% specificity. During this research, a total of 46 VOCs were 

identified as relevant for the identification of these cancer groups, with some VOCs being 

specific to each type of cancer. 13 VOCs with the highest concentration in urine samples of 

bladder cancer patients were identified in the course of this study. The electronic noses 

utilized in this research were the AlphaMOS FOX 4000 and PEN3 eNose. The AlphaMOS 

FOX 4000 was able to distinguish between some of the cancer groups with 100% sensitivity 

and 100% specificity. Although, PEN3 eNose did not exhibit 100% sensitivity in 

distinguishing between the different cancer groups, it still demonstrated high levels of 

sensitivity and specificity. 

Overall, the study contributes to the advancement of research on the detection of VOCs and 

provides insights into the potential for using analytical techniques for the detection of VOCs 

in urine samples. However, there are some limitations to these technologies such as some of 

them require specialized training and expertise to operate and interpret results accurately 

and the cost of some of these technologies can be high, making them less accessible. Another 

limitation is that the detection of VOCs can be affected by factors such as sample collection, 

handling, and storage, which can impact on the accuracy of results. 

The second aim of this research presents the development of an in-house device based on 

Photo Ionisation Detector (PID) for the detection of VOCs. The thesis focuses on the 
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evaluation of the performance of the developed PID+ based device for detecting ISB. 

Throughout this thesis, we have examined the electronics of PID+. Experiments were 

conducted to assess the performance of the PID+ at various flow rates, ISB (Isobutylene) 

gas concentrations, bias voltages of detector plates, and amplifier circuit gains. 

The results of the study demonstrate the feasibility and efficacy of the developed device in 

detecting ISB with high response. It was observed that increasing the flow rate of the sample 

gas has the potential to improve the response time of the detector. Additionally, it was 

observed that the concentration of the target VOCs, in this case ISB gas, was a crucial factor 

that affected the response of the detector, with higher concentrations resulting in higher 

sensitivities. However, it was noted that elevating either the flow rate or the concentration 

of the target VOCs beyond a certain threshold could lead to the saturation of the output. 

During the testing of the two versions of PID+, the performance of the PID+ was 

significantly improved. Nevertheless, more extensive research is required to verify the 

validity of the results of this study with respect to various VOCs. 
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Chapter 1. Introduction 

The early detection of diseases has always been a crucial aspect of the healthcare system 

with the use of biomarkers showing great promise in this regard. Among the various 

biomarkers that have been identified, Volatile Organic Compounds (VOCs) have emerged 

as a potentially powerful tool for early disease detection. This chapter delves into the 

background details surrounding VOCs and their potential as biomarkers. It provides a 

comprehensive overview of the biological basis of biomarkers and the history of VOCs 

research. The chapter also examines the generation of VOCs and their significance in 

detecting or recognizing diseases. The devices and technologies currently available for 

VOCs detection are also discussed, along with their advantages and disadvantages. 

Ultimately, the chapter culminates with an in-depth examination of the aims and objectives 

of this research, highlighting the potential impact that the detection of VOCs could have on 

early disease diagnosis and treatment. 

1.1. Disease Diagnosis using Biomarkers: 

Disease diagnosis and management have been the cornerstone of medical research for 

decades. The use of biomarkers has played a significant role in this field, enabling clinicians 

to identify and monitor disease progression in patients. Biomarkers can be defined as any 

measurable substance or process that provides information about the biological state of an 

individual and can be used to diagnose, monitor, or predict a disease's course [1]. The 

identification of specific biomarkers has revolutionized disease diagnosis and management, 

making it possible to detect diseases earlier and with greater accuracy than ever before [2]. 

Biomarkers can be used to monitor the response of the human body at different stages of the 

disease. It can be used to evaluate the cause, detection, progression, and reaction to the 

treatment and result of the treatment. VOCs emitted by the human body describe the various 

pathological processes and act as indicators of illness or disease or lack of illness [3][4]. 

VOCs biomarkers are being tested in a wide range of areas including the biomarkers for 

cardiovascular diseases [5, 6], cancer disease [7], psychiatric disorders [8], and diabetes [9] 

amongst many others. However, despite the significant advances in biomarker research, 

there are still significant challenges that need to be overcome. 
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The diagnosis of the majority of diseases relies heavily on the manifestation of clinical signs 

and symptoms, and despite significant advancements in medical science, many of the 

currently available screening methods demonstrate low sensitivity, particularly in the early 

stages of the disease. A prime example of this is cancer, which typically originates within 

organs and tissues, and progresses continuously until it develops into a tumour. While the 

survival rate for most cancers has improved since the mid-1970s, it remains the second most 

prevalent cause of death globally. Surgical or radiological interventions are often used to 

halt the advancement of cancer. However, the efficacy of these treatments is greatly reduced 

when the cancer is diagnosed at later stages [10, 11]. 

Therefore, early diagnosis and prognosis are crucial for effective disease management and 

can have a significant impact on patient outcomes. It can potentially increase the possibility 

of better outcomes, lower morbidity, improve survival chances, and propose effective and 

cheaper treatments. Biomarkers are used for the diagnosis of diseases at the early stages so 

that the prognosis and treatment selection becomes better [12]. Though the concept of early 

detection is one of the most promising methods to decrease the mortality rate, the 

technologies and screening methods required for it are challenging. With screening, the risk 

of overdiagnosis and overtreatment increases [13]. Screening tests should be inexpensive, 

minimally invasive, and should be highly effective to diagnose the disease in its early stages, 

as well as diagnose the stage of the disease. The technologies used until now are mostly 

invasive, expensive, and time-consuming. Therefore, it is important to search for a non-

invasive and inexpensive method, which in part led to the discovery and use of biomarkers 

[14]. As a result, there is a continuous drive to develop analytical instruments that offer high 

sensitivity and specificity in the detection of diseases at their early stages by measuring 

biomarkers. 

Numerous studies have been conducted to investigate the relationship between VOCs 

patterns and various diseases. Researchers have sought to identify specific VOCs 

biomarkers that could be used for disease diagnosis and monitoring. This was first reported 

when a dog started constantly sniffing at a mole on its owner’s leg. After seeking medical 

advice, it was found that the lesion was a malignant melanoma [15]. However, this remained 

the hypothetical prediction and lacked experimental evidence. To investigate its potential, 

researchers trained six dogs for seven months to differentiate between urine from human 
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bladder cancer and controls. The dogs were able to recognize 22 cancer samples out of 54 

samples proving that dogs have the ability to distinguish between cancer patients and healthy 

controls [16]. It was proposed that every disease has a ‘smell-print’, which could be used to 

differentiate them. In 1971, Pauling and co-workers reported a new method for the analysis 

of human breath and reported that it consisted of several hundreds of VOCs [17]. VOCs 

have been used to distinguish Inflammatory Bowel Disease (IBD) and healthy control 

patients [18]. VOCs can also be used to identify patients who suffered from gastrointestinal 

side effects after pelvic radiotherapy [19]. A total of 1840 VOCs have been identified in the 

healthy human body. Among these VOCs, 872 VOCs are associated with breath, 381 VOCs 

with faeces, 279 VOCs with urine, 532 VOCs with skin secretions, 154 VOCs with blood, 

and 359 VOCs with saliva [20]. It is worth mentioning that the high number of VOCs found 

in breath may reflect the significant amount of research and ease of sample availability rather 

than the chemical richness of each biological source.  

Detection of VOCs for the diagnosis of cancer and other diseases is a promising method and 

potentially has high accuracy, specificity, and sensitivity. However, the sensitivity and 

specificity depend on the analytical technique and the biological samples used. Gas 

Chromatography coupled with Mass Spectrometry (GC-MS) is considered as the gold 

standard for the identification of VOCs because it has high sensitivity and specificity and is 

a very reliable technique for the identification of VOCs. It gives detailed information on the 

analytic compounds [21]. However, the high sensitivity of GC-MS often depends on the 

preconcentration of the samples. Preconcentrators are employed in GC-MS analysis to 

increase the concentration of the target analytes in the sample, can reduce the background 

noise and improve the signal-to-noise ratio of the GC-MS analysis. GC-Coupled with IMS 

(Ion Mobility Spectrometry) or IMS is another successful technique in the detection of 

VOCs. It works on the principle of ionisation of gases and detection of the molecules. In 

comparison to GC-MS, it is less expensive and gives results at a faster rate and mostly does 

not need pre-concentrators. The main disadvantage of this technique is it is less reliable in 

identifying unknown compounds and can have low selectivity depending on the chemicals 

[21, 22]. Though all these methods yield high sensitivity and are highly preferable for the 

identification of VOCs, they are very expensive, take a long time to undertake an analysis, 

involve highly complex technology and require specially trained operators. In comparison 

to these technologies, the electronic nose, or eNose, is less expensive, smaller in size, less 
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time-consuming, easy to manufacture and easily assessable to everyone. An eNose is made 

from an array of sensors resulting in high sensitivity and can identify VOCs without 

separation. However, eNoses may lack the sensitivity and selectivity of conventional 

analytical techniques, such as gas chromatography-mass spectrometry (GC-MS), resulting 

in the potential inability to distinguish between similar VOCs, leading to possible false 

positives or false negatives in VOCs detection. Moreover, regular calibration is necessary 

to maintain accuracy, as eNoses may experience drift over time. Changes in environmental 

conditions or sensor performance can compromise the device's reliability, necessitating 

frequent recalibration. Additionally, the presence of environmental factors, including 

temperature, humidity, and other odours, can exert interference on eNose performance and 

impact VOCs detection [23, 24]. Photo Ionisation detector (PID) is another small size, rapid 

and cheaper device used for the identification of VOCs. It works on the principle of 

ionisation with the use of high intensity UV-rays [25]. PID suffer from poor selectivity, 

similar to eNoses, but it offers very rapid analysis time in comparison to all the devices 

available including the eNose [26]. 

Despite the significant advancements in early disease diagnosis, challenges still exist. One 

of the major challenges is the identification of reliable biomarkers that are specific to a 

particular disease and demonstrate high sensitivity in detecting the disease at its earliest 

stages. Additionally, the development of accurate and non-invasive technology that can 

potentially detect the disease at its earliest stages is also challenging. In light of this, there 

is a need for a device that has the advantages of both the eNose as well as a PID, i.e., low 

cost, simpler technology, fast analysis, portable and offers the advantages of GC-MS devices 

such as high sensitivity, high selectivity, high accuracy, and repeatability. Hence, this has 

prompted the idea of developing a tool that can be used for the identification of VOCs for 

different diseases and malignancies. This device may be used as a screening test for diseases 

and may help to reduce the costs, mortalities, social pressure, and misdiagnosis from 

currently available tests. It is also important to generate VOCs chemical profiles for different 

diseases to understand the changes in VOCs patterns of diseases. If we know the chemical 

fingerprint of a disease, it can be used to identify the disease in its early stages. This would 

help to reduce mortality rates and severe physiological effects by detecting the disease 

before it develops. 
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1.2. Aim and Objectives: 

The primary aim of this doctoral research was to identify and investigate biomarkers 

associated with various diseases, with a particular focus on cancer, and to develop an in-

house diagnostic device for the early detection of these diseases. This study was conducted 

in collaboration between the School of Engineering, Warwick, and Owlstone Medical Ltd. 

The specific objectives of this thesis were as follows: 

1. To employ advanced analytical techniques such as Gas Chromatography-Ion 

Mobility Spectrometry (GC-IMS), Gas Chromatography-Time of Flight-Mass 

Spectrometry (GC-TOF-MS) and electronic noses for VOCs analysis. 

2. To explore the potential of urinary biomarkers as indicators for the early detection 

and diagnosis of cancer and other diseases. The aim was to identify unique VOCs 

patterns associated with each condition and to evaluate the sensitivity and specificity 

of these patterns as diagnostic biomarkers. 

3. To investigate the efficacy of VOCs measurements in urine samples for disease 

detection and monitoring, considering their potential to facilitate early diagnosis and 

disease progression tracking. 

4. To address the complexity and cost constraints associated with advanced analytical 

technologies by designing and developing an in-house diagnostic device based on 

the concept of ion mobility. 

5. To employ the principle of photoionization in the design of the in-house device, 

thereby aiming to achieve comparable diagnostic capabilities with lower unit cost, 

ease of use, and portability. 

6. To optimize the in-house device for the accurate detection and quantification of 

VOCs biomarkers in urine samples. 

Overall, the overarching goal of this PhD thesis was to contribute to the advancement of 

non-invasive, cost-effective, and accurate diagnostic tools for the early detection and 

diagnosis of various diseases. By identifying and quantifying VOCs biomarkers in urine 

samples and developing a photo-ionization-based diagnostic device, this research has the 

potential to enhance patient outcomes and reduce healthcare expenses. 
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1.3. Thesis structure 

Chapter 2: Literature Review. This chapter presents a comprehensive background on 

volatile organic compounds (VOCs), and their association with various cancers and diseases. 

It provides insight into the rationale for selecting VOCs as the focus of this research and 

includes a detailed review of published literature on the subject. Additionally, this chapter 

presents an extensive review of various cancers as well as diseases and the current 

technologies used for their detection with their advantages and disadvantages. It further 

provides a thorough overview of different analytical methods used for VOCs identification, 

along with a detailed discussion of their advantages and disadvantages. 

Chapter 3: Analytical instruments for VOCs detection: This chapter provides a 

comprehensive overview of the methodology employed for the detection of the VOCs. It 

provides comprehensive details on the analytical instruments employed in this work. It 

elucidates the operating principles, sample preparation techniques, and methods used to 

operate each instrument. Moreover, the chapter features an illustrative example of the output 

generated by all the analytical instruments considered, along with an overview of the data 

analysis methods used for each instrument. 

Chapter 4: Analysis of the cancer samples using GC-IMS and GC-TOF-MS: Chapter 4 

consists of the biological testing and findings. The biological sample used in this research is 

urine. The main focus of this chapter is the presentation and interpretation of the results 

obtained from the GC-IMS and GC-TOF-MS analyses. We provide a detailed discussion of 

the chromatographic and spectrometric data obtained, including the identification and 

quantification of key metabolites and biomarkers associated with cancer. We also highlight 

any notable differences observed between cancer and control urine samples, as well as any 

potential limitations or sources of error in the analysis. 

Chapter 5: Analysis of the cancer samples using eNose: Chapter 5 presents the results of 

our investigation into the use of electronic noses, specifically the eNose AlphaMOS FOX 

4000 and the PEN3 eNose, for the detection of cancer samples from healthy controls. In 

contrast to the previous chapter, where the focus was on the identification and quantification 

of specific metabolites and biomarkers, the results presented in this chapter focus on the 
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overall performance of the eNose devices in distinguishing between cancer samples and 

healthy controls. We provide a detailed discussion of the statistical analysis used to evaluate 

the data, including the calculation of sensitivity, specificity, and other performance metrics. 

Chapter 6: Analysis of Infectious disease VOCs: This chapter consists of the analysis of 

UTI urine samples using different analytical devices, specifically, we evaluated the 

sensitivity and specificity of the GC-IMS, GC-TOF-MS, and eNoses in detecting the 

presence of UTI in patient samples. The chapter provides a detailed discussion of the 

statistical analysis used to analyse the data and to determine the diagnostic accuracy of the 

different techniques. The results presented in this chapter focus on the overall performance 

of the analytical techniques in distinguishing between UTI positive and negative samples.  

Chapter 7: Development of enhanced Photo Ionisation detector: Chapter 7 presents the 

details of the design and construction of an in-house device, an enhanced photo-ionization 

detector (PID+), for the detection of volatile organic compounds (VOCs). The chapter 

begins with an overview of the motivation behind the project, including the need for a low-

cost, portable, and sensitive VOCs detection system. We then provide a detailed description 

of the design and construction of the PID+ prototype, including the selection of the key 

components and the design of the electronic circuitry. Different versions of the prototype 

were developed and tested to analyse the sensitivity and selectivity of the PID+. 

Chapter 8: PID+ experimental results and discussions: Chapter 8 presents the 

experimental setup and the testing procedures used to evaluate the performance of the 

different versions of PID+ as well as the findings of these tests. The chapter provides a 

thorough discussion of the results, including the sensitivity and selectivity of the different 

PID+ prototypes. 

Chapter 9: Conclusions and Further work: The different analytical devices used in this 

research as well as the findings of these devices are compared in this chapter. This chapter 

also considers the PID+ developments and comparisons. Further developments, limitations 

and advantages are also considered in this chapter. 
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Chapter 2. Literature Review 

In chapter 1, the use of VOCs for the detection of diseases, including cancer was discussed. 

This chapter aims to provide a comprehensive review of the use of VOCs for the detection 

of diseases, particularly cancer. It is divided into two parts. The first part focuses on the 

biological and pathological background of VOCs, their relevance in disease detection, and 

the sources of VOCs, including their advantages and disadvantages. Furthermore, the first 

part provides an overview of the cancers and diseases being investigated in this research, 

their pathological background, current diagnostic methods, and their limitations, as well as 

studies focused on the detection of VOCs for these cancers. 

The second part of the chapter will provide a detailed analysis of the analytical instruments 

used for the detection of VOCs. This section will also discuss the advantages and 

disadvantages of these instruments and technologies. Additionally, the chapter will conclude 

with a discussion of Photoionization detectors (PIDs), including a brief review of 

commercially available PIDs and their advantages and disadvantages. The objective of this 

chapter is to provide a foundation for the research on the development of a novel VOCs 

detection system for early cancer diagnosis. 

2.1. Medical Literature Review:  

2.1.1. Background of VOCs: 

VOCs are a diverse group of molecules that have been found to play an important role in 

medicine. The olfactory senses have historically been employed as a tool for disease 

diagnosis predating the advent of modern medicine [1, 2]. VOCs represent a heterogeneous 

class of organic molecules characterized by their low boiling points, which means that they 

easily evaporate. These compounds can originate from two sources: endogenous VOCs, 

which are produced through metabolic processes within the human body and influenced by 

the individual's physiological health status, and exogenous VOCs, which are derived from 

external sources such as environmental pollutants, tobacco smoke, dietary intake, and so on. 
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These external factors can impact the production of endogenous VOCs [3, 4]. VOCs families 

are commonly based on alcohols, hydrocarbons, ketones, acids, and aldehydes. 

Hydrocarbons, produced mainly through the peroxidation of polyunsaturated fatty acids, are 

found in cellular and subcellular membranes. Alcohols, which are absorbed into the 

bloodstream through the gastrointestinal tract, undergo metabolism by enzymes such as 

alcohol dehydrogenases. Aldehydes are generated from various sources, including 

metabolized alcohols, lipid peroxidation, tobacco smoke, and dietary intake etc. Ketones are 

produced by the liver from fatty acids. Finally, aromatic and nitrile VOCs, considered 

pollutants of exogenous sources, such as cigarette smoke and pollution, are stored in fatty 

tissues and are highly reactive, leading to peroxidative damage [5]. 

Due to the chemical characteristics of VOCs, real-time monitoring is possible with minimal 

sample preparation requirements. The study of VOCs in medicine has grown rapidly in 

recent years, with researchers exploring their potential as biomarkers for various diseases 

such as cancer, diabetes, and infectious diseases. The use of VOCs in medicine has several 

advantages, including non-invasiveness, low cost, and the ability to monitor disease 

progression and treatment efficacy in real time. The potential of VOCs to be used as non-

invasive biomarkers in medicine for the diagnosis and monitoring of various medical 

conditions is discussed in the subsequent section. 

2.1.2. Sources of VOCs for disease detection: 

a. Urine: 

VOCs are known to be transported throughout our body via the bloodstream, and 

subsequently, are filtered by the kidneys into urine, thus making urine an important source 

of VOCs [6, 7]. Urine VOCs belong to a diverse range of chemical classes, such as ketones, 

alcohols, aldehydes, carboxylic acids, amines, furans, pyrroles, hydrocarbons, and sulphur 

compounds, and are generally considered intermediate or end products of metabolic 

pathways.  

Due to its non-invasive collection process and ability to be obtained in large volumes, urine 

has been utilized in several studies for VOCs analysis. A study conducted by Khalid et al 
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[8] used urine samples collected from 59 patients with prostate cancer and 43 healthy 

controls. They suggested that VOCs, namely, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-

octanone, and 2-octanone are VOCs fingerprints of prostate cancer. Another study showed 

the potential of urine used to distinguish between colorectal cancer from healthy controls 

with a sensitivity and specificity of 88% and 60% respectively [9]. 

While urine serves as an easily accessible source of VOCs, its components can be readily 

influenced by external factors, such as the ingestion of foods or drinks. Moreover, studies 

have shown that the VOCs in urine are susceptible to degradation due to improper storage 

procedures or inadequate storage conditions [10, 11]. 

b. Skin: 

The analysis of skin VOCs has been explored as a potential tool for disease diagnosis and 

monitoring. Skin is one of the primary sources of odour compounds in humans and is home 

to bacteria, fungi and viruses which play an important role in the generation of skin VOCs 

[12]. The composition of VOCs generated by skin varies depending on several factors such 

as age, gender, ethnicity, diet, and lifestyle. These microorganisms can produce a range of 

VOCs, including short-chain fatty acids (SCFAs), alcohols, ketones, and esters, through 

metabolic processes [13, 14]. 

Several studies have reported that changes in the composition of skin VOCs can be used as 

biomarkers for various diseases such as cancer, diabetes, and skin disorders. For instance, a 

study conducted by Bernier et al. [15] collected VOCs from the palms and backs of hands. 

The researchers found that hundreds of compounds were released from the skin, most of 

which were organic acids, and that these acids were not volatile at body temperatures, 

meaning that they did not contribute significantly to the odour of human skin. This finding 

was noteworthy because it suggested that other VOCs present in smaller amounts may play 

a more significant role in determining the odour profile of human skin. 

The use of skin VOCs is limited by the fact that the VOCs profile of the skin can be 

influenced by various external factors such as exposure to environmental pollutants and the 

use of personal care products. 
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c. Breath: 

Breath sampling is a non-invasive technique that can be easily performed and is well 

received by patients. This makes it an attractive option for disease detection and monitoring, 

particularly for diseases that are difficult to diagnose using traditional methods [16]. Breath 

contains a complex mixture of VOCs that originates from various sources, including the 

airways, lungs, blood, and digestive system [17]. The concentration and composition of 

breath VOCs can vary depending on the metabolic state of the individual and the presence 

of diseases [18, 19]. For instance, it has been reported that individuals with diabetes have a 

distinct breath VOCs profile compared to healthy individuals. Similarly, changes in the 

composition of breath VOCs have been reported in individuals with respiratory disorders 

such as asthma and chronic obstructive pulmonary disease (COPD) [20]. 

The analysis of breath VOCs has been explored as a potential tool for disease diagnosis and 

monitoring. Several studies have reported that changes in the composition of breath VOCs 

can be used as biomarkers for various diseases. Phillips et al. [21] showed in their study that 

VOCs in the breath of women with breast cancer differed significantly from those in the 

breath of healthy women. The study was able to differentiate between women with and 

without breast cancer with an accuracy of 88% using a single breath sample. 

However, Breath VOCs can be generated by endogenous metabolic processes or influenced 

by exogenous sources such as dietary intake and exposure to environmental pollutants. The 

composition of breath VOCs can vary depending on factors such as age, gender, diet, and 

lifestyle. For example, the composition of breath VOCs can be influenced by the type of diet 

consumed, with high-fat and low-carbohydrate diets resulting in the production of different 

VOCs profiles. Similarly, cigarette smoking and exposure to air pollutants can also influence 

the composition of breath VOCs. 

d. Faeces: 

Faeces are a rich source of VOCs that can provide valuable information about gut health, 

microbiome composition, and disease status. The analysis of VOCs in faecal samples can 
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provide a non-invasive method for disease diagnosis, monitoring, and treatment [22, 23]. As 

the human stool represents the end-product of diet, digestive and excretory processes, as 

well as colonic bacterial metabolism, the examination of faeces may be the best non-invasive 

way of diagnosing gastrointestinal diseases, including inflammatory bowel disease (IBD) 

[24], colorectal cancer (CRC) [25, 26], and irritable bowel syndrome (IBS)[27]. 

Despite the potential benefits, the use of faecal VOCs for disease detection also presents a 

number of limitations and drawbacks. For example, the sensitive nature of collecting faecal 

samples may make some individuals uncomfortable or reluctant to participate in the 

diagnostic process, though some cultures have fewer issues with this sample medium. 

Moreover, the use of faecal VOCs analysis as a diagnostic tool presents challenges and 

limitations due to limited research and a lack of standardized methods for sample collection, 

preparation, and analysis. 

2.1.3. VOCs for disease detection: 

Recent studies have focused on utilizing biomarkers discovered in biological samples as a 

diagnostic instrument for detecting illnesses and have shown that this approach can aid in 

the creation of cost-effective methods for screening diseases [28-30].  

VOCs analysis performed on diseases, such as breast cancer [31-33], tuberculosis [34-36], 

inflammatory bowel diseases [37, 38], diabetes [39, 40] etc, suggests the potential of 

biomarkers that could be used for disease diagnosis. For instance, a study was conducted by 

Amal et al [41] to investigate the potential of gaseous VOCs obtained from cell cultures to 

differentiate between hepatocellular cancer patients from healthy controls. They compared 

and analysed four different groups, namely, all HCC and normal controls, low metastatic 

HCC and normal controls, high metastatic HCC and normal controls and high and low HCC 

using GC-MS and nanomaterial-based sensor arrays. They found four VOCs, namely, acetic 

acid, ethanol, 2,3 di-hydro-benzofuran and methane-sulfonyl chloride either significantly 

increased or decreased in HCC samples. They were also able to distinguish between 

different HCC samples and healthy controls with very high sensitivity and specificity. Their 

pilot study was able to deliver a proof-of-concept of the potential of headspace gaseous 

VOCs for the identification of HCC and its metastatic potential using nanomaterial-based 
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sensors. Another similar study conducted to diagnose and investigate the VOCs profile for 

lung cancer successfully identified four compounds 2-ethyl-1-hexanol, 2-pentanone, 

tetrahydrofuran, and 2-mehtylpyrazine as good indicators of lung cancer [42]. 

2.1.4. Advantages of VOCs for disease 

detection: 

There are several advantages of using volatile organic compounds (VOCs) for disease 

detection: 

1. Non-invasive: VOCs can be detected in various bodily fluids, including breath, 

urine, and faeces, which can be collected non-invasively and without causing 

discomfort to the patient [43]. 

2. Sensitivity and specificity: VOCs can provide early indicators of disease, as they can 

be present in trace amounts before clinical symptoms appear and VOCs profiles can 

be unique to certain diseases, which can aid in accurate diagnosis and treatment 

planning. [44]. 

3. Speed: VOCs analysis can provide rapid results, which can enable prompt treatment 

and improve patient outcomes [45]. 

4. Cost-effectiveness and portability: VOCs analysis is relatively inexpensive 

compared to other diagnostic methods, such as imaging or biopsies. VOCs analysis 

devices can be made small and portable, allowing for point-of-care testing in various 

settings [46]. 

Overall, the use of VOCs for disease detection holds great potential for improving patient 

outcomes through non-invasive, accurate, and cost-effective diagnostic methods. 
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2.1.5. Disadvantages of VOCs for disease 

detection: 

While the analysis of VOCs has shown promising results as a non-invasive and rapid method 

for disease detection, there are also several disadvantages associated with this approach. 

1. Identification: The identification of specific VOCs that are indicative of a particular 

disease or condition can be challenging. The composition of VOCs in bodily fluids 

can vary greatly between individuals and can also be affected by various external 

factors such as diet, medication, and environmental exposure. Therefore, the 

identification of reliable biomarkers that can be used for disease detection can be 

difficult [47, 48]. 

2. Cost implications: The analysis of VOCs requires sophisticated and expensive 

equipment, such as gas chromatography-mass spectrometry (GC-MS) or electronic 

nose devices, which can be cost-prohibitive for many healthcare settings. 

Additionally, the complexity of these instruments can also make them difficult to 

operate and they require specialized expertise to interpret the results [49]. 

3. Lack of standardized protocols: The interpretation of VOCs data can be challenging 

due to the large amount of data generated, as well as the lack of standardized 

protocols for VOCs analysis. There is also a need for comprehensive databases of 

VOCs profiles for different diseases and conditions, which can be time-consuming 

and expensive to develop [50]. 

In conclusion, while the analysis of VOCs has shown potential as a non-invasive and 

rapid method for disease detection, there are several challenges and limitations 

associated with this approach that need to be addressed. 

2.2. Introduction to Cancer: 

Early detection of cancer is important for its prevention and control. Recognising the signs 

of cancer and preventing its spread early can significantly improve the prognosis of patients. 

According to GLOBOCAN (Global Cancer Observatory), the estimated number of new 
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cases of cancer were 18.1 million and the number of deaths were 9.6 million in 2018 

worldwide [51, 52]. The WHO stated in 2015, that the first or second cause of death below 

the age of 70, in most countries, was cancer and it has been predicted that the incident rate 

will increase to be as high as 29.5 million in another 20 years [53]. The reasons behind the 

increment in the incidence are aging, population growing, unhealthy lifestyles, physical 

inactivity etc [54]. 

Numerous organizations, both on a national and global scale, have exerted significant efforts 

towards managing cancer. The concept of early detection is one of the most promising 

methods in order to decrease its mortality rate [55].  However, screening and detection are 

important for the diagnosis of cancer, the technologies and methods required for it are 

challenging. In addition, with screening, the risk of over-diagnosis and overtreatment 

increases [56]. The main focus of researchers in the research for the best treatment of cancer, 

is discovering the cancer and finding it at an early stage. 

Screening tests should be inexpensive, minimally invasive and should be highly effective in 

diagnosing the disease in its early stages. The technologies used until now are mostly 

invasive, expensive, and time-consuming. Therefore, it is important to search for a non-

invasive, inexpensive and rapid biomarker [57]. An increasing number of researchers are 

focused on the diagnosis and monitoring of high-risk cancers, identifying their symptoms, 

and detecting them early through the evaluation of VOCs. The following sections provide a 

literature review of the cancers studied in this research. 

2.2.1. Bladder Cancer (BCa): 

Bladder cancer is one the most difficult cancers to manage and is the ninth most common 

cancer in the world. The diagnosis and treatment of bladder cancer strongly depends upon 

the stage of the cancer. Bladder cancer can be either a non-muscle-invasive cancer or 

muscle-invasive [58, 59]. Non-muscle invasive bladder cancer is relatively easy to treat and 

has higher survival rates and invasive bladder cancer is a high-grade cancer and is caused 

when the cancer cells invade in the bladder muscle layer [60]. 
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Bladder cancer is associated with several risk factors including smoking, occupational 

exposure, genetics, age, and gender [61-64]. Presence of haematuria (blood in urine) is a 

common indicator of bladder cancer.  The most common diagnostic methods for bladder 

cancer detection are Computed Tomography Urography (CTU) and Cystoscopy with 

cytology. Cystoscopy with Cytology is considered as the golden standard for the diagnosis 

of bladder cancer. However, this diagnostic method suffers from low sensitivity, high cost, 

its invasive nature, painful procedure and the sensitivity of cytology is very low for lower 

stages of cancer and a lot of it is affected by the experience of the examiner [65, 66]. Due to 

these reasons, this method cannot be used as a screening test. Similarly, a study showed that 

though CTU is effective for detection of bladder cancer with high sensitivity and specificity, 

the accuracy of CTU was low because of false-negative results and patients were exposed 

to high radiations during the diagnosis [67, 68].  

Utilizing biomarkers as a diagnostic approach for detecting bladder cancer could potentially 

address the limitations of current methods, leading to an improvement in overall survival 

rates. Urine is considered the optimal source of VOCs for detecting bladder cancer. A study 

employing high-performance liquid chromatography-quadrupole time-of-flight mass 

spectrometry (HPLC-QTOFMS) was conducted on a cohort of 138 bladder cancer patients 

and 121 male healthy controls. The study successfully distinguished between the two groups 

with a high sensitivity of 91.3% and specificity of 92.5% using multivariate statistical 

analysis [69].                                                   

2.2.2. Prostate Cancer (PCa): 

Prostate Cancer is the most common cancer in men in the UK and the sixth most common 

cancer in the world [70]. The primary factors associated with prostate cancer are age and 

ethnicity, genetic history, diet, obesity, sexually transmitted diseases (STDs), and smoking. 

It has been found that incidences of prostate cancer are most common in the age group of 

75 and above [71-73]. Early detection of prostate cancer helps in the diagnosis and prognosis 

of prostate cancer. However, there are many factors that increase a patient’s risk of prostate 

cancer. One of them is poor healthcare quality. Studies shown that poor healthcare quality 

influences the decisions of the men to undergo screening tests and delay screening. This 

serves as a barrier and also disrupts the collaboration between men and a physician [74]. 
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PSA (Prostate Specific Antigen) based screening is one of the most common methods used 

for early detection. Elevated levels of PSA indicate the presence of prostate cancer. 

However, PSA based screening has a high risk of over diagnosis and over-treatment due to 

false results. The false test results lead to unnecessary biopsies which may end up causing 

fever, pain, bleeding, infection etc. to the patient [71-73]. Another study indicated that a 

PSA test alone is not accurate enough to be used as a screening procedure. It is useful when 

combined with rectal examination or ultrasonography [75]. Though PSA screening has 

shown a significant decrease in the mortality rate of prostate cancer, it has its own concerns 

and limitations. 

Using a non-invasive method for prostate cancer detection not only overcomes the 

limitations of PSA screening, but it is also a fast, easy, and efficient method. Discovery of a 

VOC for the detection of cancer has emerged as a very promising approach for decreasing 

the mortality rate. A study was conducted to find out the VOCs from the headspace of urine 

from men with or without prostate cancer. A total of 37 urine samples consisting of 24 

healthy controls and 13 patients with prostate cancer were used and 91 VOCs were 

identified. Out of these 91 VOCs, 21 VOCs distinguished between healthy and PCa with 

sensitivity and specificity of 92.3% and 96.3% respectively. However, the sample size for 

this study was relatively small [76]. Another study compared the VOCs in urine samples of 

prostate cancer patients and benign prostatic hypertrophy (BPH). 57 VOCs were identified, 

and it was found that urinary furan levels were higher in PCa patients than in BPH. They 

reported p-xylene as a good cancer biomarker and its presence in the urine of PCa patients 

[77]. In 2015, Khalid et al. [78] found that lower levels of 2, 6-dimethyl-7-octen-2-ol may 

be linked with the presence of prostate cancer. 

2.2.3. Colorectal Cancer (CRC): 

Colorectal Cancer is the second leading cause of the cancer-related deaths and the third 

leading cause of cancer-related deaths among men and women respectively in Europe [51]. 

The main causes of colorectal cancer are obesity, intake of red meat or alcohol, smoking and 

it has been found that physical activity, healthy body weight, dairy products, calcium 

supplements and smoking and alcohol cessation can reduce the risk of colorectal cancer [79-

81]. A Colonoscopy is the most commonly used diagnostic technique for CRC screening. A 
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recent study was conducted to assess the rate of missed or newly detected CRC during 

colonoscopy and revealed that the rate of missed CRC diagnosis ranged from 2% to 6%. 

Secondly, the cancer might be too small and situated behind folds of the colon. Lastly, 

missing lesions could also occur due to the miss-handling of the physician or if the bowel 

preparation was not adequate enough etc [82, 83]. Another type of CRC screening is faecal 

immunochemical tests (FIT). This test is used to identify blood in the stool. Many studies 

reported high sensitivity and specificity for colorectal cancer detection using FITs for later 

stages of cancer, whereas they also found that the sensitivity of these tests is relatively low 

for early stages of cancer [84-87].  

Therefore, VOCs profile analysis related to colorectal cancer is a novel non-invasive 

method. A study was conducted to identify VOCs analysis related to colorectal cancer using 

breath analysis [88]. They conducted two studies, one with 37 patients with colorectal cancer 

and 41 healthy controls and another with 15 CRC patients and 10 healthy controls and 

identified 58 VOCs. Out of these 58 VOCs, 15 were potentially discriminating VOCs 

between CRC patients and healthy controls [88]. A review paper compared the different 

technologies available and different studies conducted for the diagnosis of colorectal cancer 

using VOCs. They concluded that the detection of the colorectal cancer using VOCs present 

in urine, faecal or breath is a non-invasive, cheaper and a promising tool [89]. 

2.2.4. Hepatocellular Cancer (HCC): 

Hepatocellular carcinoma is the cancer of the liver. It is the sixth most common occurring 

cancer in the world and the third most common reason for deaths in the world with 781,631 

estimated deaths in 2018 according to GLOBOCAN 2018 [90]. The major causes of HCC 

are age, gender, consumption of alcohol, cirrhosis, and hepatitis B virus (HBV) or C (HBC) 

or both etc [91, 92]. HBV is a DNA virus, which can occur from sexual contact with an 

infected person, needles, transfusion or by birth. HBV causes mutation in the liver cells 

which leads to HCC [93, 94]. HCV contributes a high percentage of cirrhosis cases which 

contributes to HCC [95, 96]. Cirrhosis is the most significant risk factor and increases the 

chance of HCC development. There are more chances of patients suffering from cirrhosis to 

develop HCC, if not, then they are most likely to exhibit an undetectable tumour during their 

lifetime [97-99].  
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Finding an effective screening method for HCC is difficult as it is highly dependent on the 

stage of the cancer and there are no curative treatments available for patients with high grade 

HCC. Therefore, it is important to find HCC at its early stages to improve the survival rate 

[100]. The most common screening method is monitoring AFP (Alpha-Fetoprotein) levels 

[100]. One limitation of using AFP levels for screening is that monitoring AFP levels is not 

a standardized practice. This is because some patients with high-grade HCC may have 

normal AFP levels, while patients with cirrhosis or chronic hepatitis may have elevated AFP 

levels, leading to false positive results [101-103]. Ultrasound is a recommended method for 

HCC detection. It is a non-invasive process, but the sensitivity varies with operator 

experience [104]. A study showed that ultrasound is the best available technology for the 

early detection of HCC but its sensitivity is only 63% [105]. Another study showed that 

ultrasound examinations were insufficient for HCC surveillance. They proved that 

ultrasonography gives inadequate results for obese patients and those with excessive alcohol 

consumption [106]. 

The screening tests available for HCC detection are low in sensitivity and not appropriate 

for population screening. Therefore, use of VOCs for early detection of HCC is a promising 

diagnostic method.  A study conducted in China concluded that there are three potential 

biomarkers obtained from breath analysis. They investigated that 3-hydroxy-2-butanone, 

styrene and decane exist as HCC biomarkers with sensitivity and specificity of 86.7 % and 

91.7% respectively. From this, they concluded 3-hydroxy-2-butanone as the best marker for 

HCC with 83.3 % sensitivity and 91.7 % specificity [107].  Another study used blood 

biomarkers for the detection of liver cancer. They used SPME (Solid Phase Micro 

Extraction) with GC/MS and detected three highly sensitive biomarkers hexanal, 1-octen-3-

ol and octane in the blood for the detection of liver cancer [108]. Another study used GC/MS 

coupled with head-space needle tap extraction and found 2-pentanone, 3-heptanone, 3-

octanone, dimethyl sulphide, ethyl methyl sulphide, 3-methyl thiophene, 2-methyl-1-

(methylthio)-propane, n-propyl acetate and 2-heptene as VOCs markers for HCC [109]. 
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2.2.5. Overview of Urinary Tract Infection 

(UTI): 

a. Introduction: 

UTI is caused by the presence of bacteria in the urinary tract including the bladder (cystitis), 

urethra, or kidneys (pyelonephritis) and is expected to infect 35% of healthy women in their 

lifetime. Most of the bacterial infections of the urinary tract occur in either the renal 

parenchyma or the bladder [110]. When the presence of bacteria in the urine increases more 

than 105 bacteria/ml, than this can lead to UTI [111, 112]. The pathogens responsible for 

UTIs originate in the rectal flora and move from the urethra to the bladder and the kidney. 

Since the distance to the bladder is shorter in women, it makes them more prone to UTIs 

[113]. It is estimated that 60% of women suffer from UTIs once in their lifetime and have a 

30-50% chance of reoccurrence [114]. The signs and symptoms of a UTI may include fever, 

chills, dysuria, urinary urgency, frequency, and cloudy or malodorous urine. Though UTIs 

are not considered fatal, they can cause high distress and require high levels of healthcare 

and costs [115]. 

UTIs can be characterised as either complicated or uncomplicated infections. 

Uncomplicated infections are the most common infections with no anatomical or functional 

abnormalities. Risk factors that can increase the chances of developing a UTI are con-genital 

abnormalities, urinary obstructions or non-secretion of specific blood-group antigens, 

pregnancy, diabetes etc. Pathogens responsible for uncomplicated UTIs are E. Coli, which 

is responsible for more than 70% of cases, Proteus mirabilis, Staphylococcus saprophyticus, 

Enterococcus faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa with less than 

10% of cases [116-118]. E. Coli have the potential to increase the virulence and help bacteria 

to grow, injuring the host cells and tissues. A study was conducted by Vosti et al. [119] in 

which they studied 235 women over a period of 1.1 to 19.4 years and found 1018 confirmed 

infections. They also found that E. Coli was responsible for almost 69.3% of the infections. 

Complicated UTIs are mostly related to the anatomical and functional abnormalities of the 

renal tract [120]. When the intensity of the pathogens increases, it disturbs the normal host 

defence and results in the disturbance in the urine flow or other disruptions in the urine tract 
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[121]. With complicated UTIs, it is important to know the extent of the infection. For 

example, if a person is suffering from kidney failure and contracts a complicated UTI, it 

becomes hard to eradicate it and infection keeps reappearing [122]. The pathogens 

responsible for complicated UTIs include E. Coli, Gram-negative aerobic bacilli, and Gram-

positive cocci [123]. A study showed that Pseudomonas aeruginosa (gram-negative aerobic 

bacilli) was an important pathogen causing complicated UTIs [124]. 

b. UTI Diagnostic methods: 

The gold standard for the diagnosis of UTI is urine culture. Urine culture is used to test the 

presence of pathogens in the urine and is expressed in terms of the number of bacteria per 

high-power field. However, it is important to provide proper care while collecting, 

preserving and transporting the urine as any contamination can lead to death of the bacteria 

and hence give false results [125, 126]. Urine culture is an expensive and complex 

procedure. Furthermore, it is required to cultivate the bacteria in the medium for around 18 

hours which leads to 24-48 hrs delay in treatment [127]. Another test used for UTI diagnosis 

is dip stick urinalysis. A dip stick is used to test the presence of nitrite, leukocyte esterase, 

protein, and blood (as a marker of inflammation). The presence of nitrite in urine is the result 

of metabolic activities of pathogens in urinary tracts. Urinalysis is cheaper and faster in 

comparison to urine culture, however, this testing method has low sensitivity, and the testing 

depends on the possibility of symptoms [128]. 

Therefore, there is need for a rapid, cheap and point of care test which can be used to identify 

UTIs and lead to swift treatment [129]. UTI detection can be achieved by the analysis of 

VOCs that originate due to the presence of bacterial pathogen. It has been proved by 

different studies that VOCs present great potential for diagnosis and prognosis of UTIs [130, 

131]. 
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2.3. Analytical Literature Review: Investigative 

tools for cancer and disease diagnosis: 

Detection of VOCs requires highly sensitive and accurate instrumentation in order to 

correctly identify and distinguish them at very low levels. There are different techniques that 

have been reported for the measurement and analysis of VOCs, for instance, Gas 

Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Ion mobility 

Spectrometry (GC-IMS), Gas Chromatography- Time of Flight- Mass Spectrometry (GC-

TOF-MS), Electronics nose (eNose) and Photoionization Detector (PID) amongst others 

[132]. 

2.3.1. Gas Chromatography - Mass 

Spectrometry (GC-MS) 

Gas Chromatography (GC) was first introduced by James and Martin in 1952. They reported 

the separation of volatile fatty acids by partition chromatography with nitrogen gas as the 

mobile phase [133-135]. GC-MS is considered as the gold standard for the analysis of VOCs 

due to its ability to analyse chemicals at trace levels, high sensitivity, accuracy and with 

extensive compound databases and experimental protocols [136, 137]. Gas chromatography 

is a method in which the chemicals are separated inside a capillary column. When a sample 

is introduced to GC, the chemicals move inside the capillary column at different rates based 

on their physical and chemical properties. This results in separation of the chemicals at the 

end of the column [133, 138]. The separated chemicals are then introduced to MS where 

they are first ionised using an ion source, and then passed through a drift tube under a high 

electric field. Once the sample is ionized, the ions are accelerated in an electric field and 

separated based on their mass-to-charge ratio using a mass analyser. There are several types 

of mass analysers, including time-of-flight (TOF), quadrupole, and ion trap. Each type of 

mass analyser works differently to separate the ions based on their mass-to-charge ratio 

[139, 140]. Quite a number of researchers have shown the capabilities of GC-MS as an 

effective analytical technique in different applications/industries, such as, the perfume 
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industry [141], the medical industry [142, 143] and the food industry [144, 145]. The 

advantages and disadvantages of GC-MS are listed in Table 2.3-1. 

Table 2.3-1: The advantages and disadvantages of GC-MS. 

Advantages Disadvantages 

Highly sensitive technique, capable of 
detecting trace amounts of analytes even in 
complex mixtures 

Expensive to purchase, operate, and 
maintain, making them less accessible to 
some laboratories. 

Excellent specificity, enabling the 
identification and quantification of 
individual compounds in a sample 

GC-MS analysis requires skilled operators 
and expertise in data interpretation, making 
it less user-friendly for inexperienced users. 

GC-MS can analyse a broad range of 
volatile and semi-volatile compounds, 
making it suitable for diverse applications. 

Complex samples with numerous analytes. 

Mass spectral libraries can be used to 
compare unknown spectra with reference 
spectra, facilitating compound 
identification. 

GC-MS is a destructive technique, as the 
sample is consumed during analysis, 
preventing further analysis or retesting. 

High-resolution separation of analytes, 
enhancing the accuracy of analysis. 

The presence of complex matrices in 
samples can interfere with GC-MS analysis 
and affect the accuracy of results. 

2.3.2. Gas Chromatography- Ion Mobility 

Spectrometry (GC-IMS): 

GC combined with IMS provides a very efficient, fast response and high accuracy method 

for the separation and detection of volatile organic compounds. GC-IMS provides a 2-

dimensional chromatograph based on retention time and drift time which provides better 

accuracy than GC-MS [146]. GC is used for the separation of chemicals and IMS is used for 

detection. Ion Mobility Spectrometry (IMS) was first introduced in 1970 under the name of 

plasma spectrometry and became popular in succeeding decades after some modifications 

in engineering design and drift tube [147, 148]. 

A study showed the use of GC-IMS for the detection of pancreatic cancer from urinary 

volatile organic compounds. They analysed a total of 123 urine samples, out of which, there 

were 33 control samples, 45 chronic pancreatitis and 45 pancreatic cancer samples. The 

results showed that GC-IMS was able to separate pancreatic cancer from healthy controls 
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with a sensitivity of 84% and specificity of 94% [149]. Another study showed that GC-IMS 

demonstrates the potential for it to be used as a diagnostic tool for clinical studies [150]. 

They used GC-IMS to identify chronic obstructive pulmonary disease (COPD) VOCs from 

exhaled breath [150]. The advantages and disadvantages of GC-IMS are listed in Table 

2.3-2. 

Table 2.3-2: The advantages and disadvantages of GC-IMS. 

Advantages Disadvantages 

Fast analysis of volatile compounds. It does not offer precise identification of 
individual compounds, which could be a 
limitation in some applications. 

Excellent sensitivity, capable of detecting 
low concentrations of volatile compounds 
even in complex samples. 

GC-IMS can be sensitive to matrix effects, 
leading to interference from complex 
sample matrices. 

GC-IMS offers good selectivity. High-quality GC-IMS instruments can be 
costly to acquire and maintain. 

GC-IMS is a non-destructive technique, 
preserving the original sample for further 
analysis or confirmation using 
complementary methods. 

GC-IMS may have limited resolution for 
highly complex samples, potentially 
resulting in overlapping peaks and reduced 
accuracy in compound identification. 

Some GC-IMS instruments are portable, 
allowing on-site or field analysis 

GC-IMS instruments require regular 
calibration to maintain accuracy, and drift 
may occur over time, necessitating periodic 
recalibration 

2.3.3. Gas Chromatography - Time of Flight-

Mass Spectrometry (GC-TOF-MS): 

Time of Flight-Mass Spectrometry (TOF-MS) was introduced by A.E. Cameron and D.F. 

Eggers in 1948. They built a TOF instrument with a pulsed ion source, field-free drift space 

and an oscillograph for detection. TOF-MS was first published in 1953 [151] and this was 

followed by several developments to improve its separation and detection capabilities [152]. 

GC-TOF-MS is a GC coupled with TOF-MS where GC is used for separation and TOF-MS 

is used for detection [153-155]. 

Several studies showed that GC-TOF-MS provides a high separation capability. Joanna et 

al. [156] in their study used a gas chromatograph 7890A (Agilent, Waldbronn, Germany) 
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coupled with a spectrometer TruTOF (Leco, St. Joseph, MI, USA) equipped with CP-

Porabond-Q (Varian Inc., Middelburg, The Netherlands) 25 m × 0.25 m × 3 μm column to 

analyse the exhaled VOCs from lung cancer patients to differentiate them from healthy 

controls. This study showed that propane, carbon disulfide, 2-propenal, ethylbenzene and 

isopropyl alcohol were the five compounds distinguishing lung cancer patients from healthy 

controls. Another study demonstrated the use of GC-TOF-MS to represent the contribution 

of CCl4 in liver fibrosis. They used an Agilent GC system coupled with a Pegasus HT TOF-

MS and analysed the resulting statistical data using Chroma TOF4.3X software [157]. The 

advantages and disadvantages of GC-TOF-MS are listed in Table 2.3-3. 

Table 2.3-3: The advantages and disadvantages of GC-TOF-MS. 

Advantages Disadvantages 

GC-TOF-MS provides high-resolution 
mass spectra, enabling accurate 
identification of compounds even in 
complex samples. 

GC-TOF-MS may produce fragmented 
spectra, making it challenging to identify 
and characterize complex compounds 
accurately. 

It can detect a broad range of volatile and 
semi-volatile compounds. 

Interpretation of GC-TOF-MS data requires 
specialized knowledge and expertise. 

GC-TOF-MS is highly sensitive, capable of 
detecting low levels of analytes. 

GC-TOF-MS can be sensitive to matrix 
effects, leading to interference from 
complex sample matrices. 

The technique generates comprehensive 
data, providing detailed information on the 
mass and abundance of compounds present 
in the sample. 

Proper sample preparation is critical for 
GC-TOF-MS analysis, and it can be time-
consuming and labour-intensive. 

GC-TOF-MS can be used for quantitative 
analysis, providing accurate quantification 
of compounds in the sample. 

Regular maintenance and calibration of the 
instrument are necessary to ensure reliable 
and accurate results. 

2.3.4. Overview of Electronic Nose (eNose) 

Technology: 

The Electronic Nose is a device that attempts to imitate the human olfactory system. In 

human olfactory, volatile molecules are detected by receptor cells. For an eNose, that 

function is performed by an array of gas sensors. In 1982, G.Dodd and K.Persuad of the 

Warwick Olfaction Research Group introduced their work on artificial olfaction [158]. A 

basic eNose system is shown in Figure 2.3-1. 
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Figure 2.3-1: eNose System 

ENose sensors can convert chemicals signals to electrical signals and respond to the 

concentration of chemicals, which include gases and VOCs, present in the test sample. 

Signals from different sensors can be combined into a single vector and used for quantitative 

and qualitative analysis of VOCs [159]. There are several different types of sensors that have 

been used in electronic nose systems. 

A summary of the common ones is provided here: 

a. Conducting Polymer Sensors 

A conducting polymer (CP) gas sensor typically consists of a single layer of a conducting 

polymer coated onto an electrode. CP sensors became popular after the first electrochemical 

preparation and characterisation of polyaniline in 1862 [160]. Conducting polymers are 

organic compounds that can conduct electricity when they are oxidized or reduced. When a 

gas interacts with the surface of a conducting polymer, it can either donate or accept 

electrons, causing the polymer to become either more or less conductive [161]. They offer 

relatively low price, good durability, and broad-spectrum sensitivity whereas they suffer 

from oxidation drift which leads to large response time, effects of humidity and are 

temperature dependant. Figure 2.3-2 shows a diagram of CP sensors [162, 163]. 
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Figure 2.3-2: Conducting Polymer (CP) sensor. 

The advantages and disadvantages of conducting polymer sensors are listed in Table 2.3-4. 

Table 2.3-4: The advantages and disadvantages of Conducting Polymer sensors. 

Advantages Disadvantages 

Conducting polymer sensors exhibit high 
sensitivity to changes in their environment, 
making them capable of detecting even 
small concentrations of target analytes. 

conducting polymers have temperature 
limitations, which can affect their 
performance in extreme temperature 
conditions. 

Conducting polymer eNose sensors 
typically respond rapidly to changes in the 
VOCs’ environment. 

These sensors can experience drift over 
time, requiring regular recalibration to 
maintain accuracy and consistency. 

Compared to some other types of sensors, 
conducting polymer eNose sensors can be 
produced using relatively inexpensive 
materials and manufacturing processes, 
leading to cost-effective sensor arrays. 

Conducting polymers may exhibit limited 
stability in harsh chemical environments, 
affecting the sensor's long-term reliability 
and performance. 

Conducting polymer eNose sensors can be 
miniaturized, allowing for the development 
of portable and handheld devices 

The response of conducting polymer eNose 
sensors may be influenced by 
environmental factors, interfering with the 
detection of target VOC. 

b. Metal Oxide Semiconductor (MOS) sensors: 

MOS sensors are the most commonly used sensors for eNose systems due to the widespread 

availability of the sensors. A metal oxide gas sensor typically consists of a thin film of metal 

oxide material deposited on a substrate, which is often a ceramic material, though more 

recently silicon is used. MOS sensors work on the principle of chemisorption, which occurs 

when gas molecules are adsorbed onto the surface of the metal oxide material and form 

chemical bonds with the surface atoms. This leads to the transfer of electrons between the 
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gas molecules and the metal oxide material, which changes the electrical conductivity of the 

material [164]. The advantages and disadvantages of MOS sensors are listed in Table 2.3-5. 

Table 2.3-5: The advantages and disadvantages of MOS sensors. 

Advantages Disadvantages 

MOS sensors offer fast response times, 
allowing real-time monitoring and quick 
detection of changes in the environment. 

Regular calibration is often necessary to 
maintain accuracy, and MOS sensors may 
experience drift over time 

MOS sensors can be tailored to respond 
selectively to specific gases or analytes, 
providing excellent selectivity in complex 
sample matrices. 

Environmental conditions, such as 
temperature and humidity, can influence 
the sensor's response. 

MOS sensors generally consume low 
power, making them energy efficient. 

Some MOS sensors may exhibit reduced 
stability over prolonged use, resulting in a 
decline in sensitivity and selectivity. 

MOS sensors can be miniaturized, making 
them suitable for integration into small and 
lightweight devices. 

The sensitivity and performance of MOS 
sensors may change over time due to aging 
effects, impacting their long-term utility. 

The sensitivity of these sensors is also affected by environmental factors [165, 166]. Figure 

2.3-3 represents an illustration of a MOS sensor. 

 

Figure 2.3-3: Metal Oxide Sensor 

c. Quartz Crystal Microbalance (QCM) sensors: 

QCM sensors consist of a quartz crystal that is equipped with thin-film gold electrodes on 

either side of it. An alternating current (AC) signal is applied to the electrodes, causing the 

crystal to vibrate at its resonant frequency, which is determined by its size, shape, and 

material properties. The change in frequency is proportional to the mass of the material that 

adheres to the surface of the sensor. Therefore, a QCM sensor can be used to measure the 
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mass of the deposited material [167]. There are almost limitless options for coating, allowing 

high sensitivity and a broad range of VOCs detection using QCM sensors. The main 

disadvantages of QCM sensors are environmental effects and poor signal to noise 

performance [168]. Figure 2.3-4 illustrates a QCM sensor. 

 

Figure 2.3-4: Quartz Crystal Microbalance Sensor. 

The advantages and disadvantages of QCM sensors are listed in Table 2.3-6. 

Table 2.3-6: The advantages and disadvantages of QCM sensors. 

Advantages Disadvantages 

QCM sensors offer label-free detection, 
eliminating the need for additional 
chemical markers or labels, simplifying the 
assay process. 

QCM sensors may lack inherent selectivity 
to specific analytes. 

These sensors provide real-time monitoring 
capabilities, allowing dynamic and 
continuous measurements of molecular 
interactions or environmental changes. 

Changes in temperature, humidity, and 
other environmental factors can impact the 
sensor's performance and introduce noise or 
interference. 

QCM sensors require only small sample 
volumes, making them suitable for analysis 
with limited or precious samples. 

Regular calibration is necessary to maintain 
accuracy and to correct for drift, which can 
add complexity to data analysis. 

QCM sensors provide precise 
measurements, enabling accurate 
quantification and characterization of 
analytes. 

High-quality QCM instruments can be 
costly to acquire. 

d. Surface Acoustic Wave (SAW) sensors: 

SAW sensors are comprised of piezoelectric crystals along with interdigital transducers 

(IDT). When an AC signal is applied to the transducer, an acoustic wave of a single 
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frequency is generated. This wave is generated by one electrode and measured by another 

and after interacting with VOCs, the mass of the crystal changes, which results in the change 

in the frequency of the wave [169]. The advantages and disadvantages of QCM sensors are 

listed in Table 2.3-7. 

Table 2.3-7: The advantages and disadvantages of SAW sensors. 

Advantages Disadvantages 

SAW sensors offer high sensitivity to 
changes in mass, viscosity, or other 
properties at the sensor surface, enabling 
the detection of small quantities of 
analytes. 

The sensitivity of SAW sensors may vary 
for analytes with extremely high or low 
molecular weights, limiting their detection 
range in some cases. 

SAW sensors provide label-free detection, 
eliminating the need for additional 
chemical markers or labels in the assay 
process. 

Analysing SAW sensor data requires 
expertise in data interpretation and 
modelling to extract meaningful 
information about the interactions or 
processes being studied. 

Some SAW sensors can operate wirelessly, 
allowing remote monitoring and integration 
into IoT (Internet of Things) systems. 

The sensitivity of SAW sensors is affected 
by frequency shifts, which can complicate 
data analysis and interpretation. 

These sensors enable real-time and 
continuous monitoring of interactions or 
changes in the environment, allowing 
dynamic data acquisition. 

Contamination or fouling of the sensor 
surface can impact sensor performance and 
require cleaning or replacement. 

Although SAW sensors are considered mass-sensitive, the high-mass sensitivity of SAW 

sensors decreases at high frequencies due to noise [170, 171]. Figure 2.3-5 shows an 

illustration of a SAW sensor. 

 

Figure 2.3-5: Figure shows a SAW sensor. 
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2.4. Photo-Ionisation Detector (PID) 

Technology: 

Gas Chromatography and Mass spectrometry technologies, including GC-IMS and GC-

TOF-MS, have presented very high separation capabilities. They have been one of the most 

employed analytical technologies in metabolic research due to their high robustness, high 

sensitivity, and selectivity. However, there are limitations to these technologies. They are 

very expensive, require high processing time, instrumentation complexity and need trained 

personal to operate them. Electronic noses are cheap and have easy to use sensors, but they 

are easily affected by the surrounding environment. Increase in temperature and humidity, 

the presence of oxygen, poor response time, non-linearities in the fabrication process etc 

limit their ability to be used for chemical detection. Therefore, there is a need for an 

analytical instrument which is portable, less costly, easy to use and does not require a lot of 

processing time. 

One such technology is a Photo Ionisation Detector. A photoionization detector consists of 

a UV lamp which emits photons that are absorbed by the molecules of the gaseous sample 

and if the ionisation energies of the molecules present in the sample are less than the 

ionisation potential of the UV light, then this results in the ionisation of the molecules. These 

ions are then transported to the detector in the presence of the high electric field and produce 

electric current. The PID detector employed in this study was configured using Field 

Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). FAIMS is a technique that 

exploits the variation in ion mobility of different ions when subjected to an asymmetric 

electric field. By applying an asymmetric waveform to the detector plates, ions with distinct 

mobilities encounter varying forces, resulting in selective transmission or filtration of ions. 

This capability enables the separation of ions based on their ion mobility, allowing FAIMS 

to selectively detect and identify specific compounds within complex mixtures. Through 

adjustment of the FAIMS parameters, targeted VOCs can be preferentially transmitted and 

detected, thereby improving the differentiation of various VOCs in the sample. 

PID were found to be very sensitive to organic compounds in comparison to the available 

technologies in the 1960s, but were considered extremely unstable because they needed to 
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be operated at low pressure [172]. With the development of the PID with a sealed UV 

chamber by HNU Systems, Inc .(Newton Upper Falls, Massachusetts), PID have been 

extensively used as detectors for gas chromatography in the past few decades [173]. PID 

with a sealed UV chamber were tested and documented. Driscoll et al. [174] conducted a 

study that demonstrated improved sensitivity and dynamic range in a new design of PID 

(Photoionization Detector) with a 10.2 eV sealed UV source. They found that PID had 30 

times more sensitivity than FIDs (Flame Ionisation Detectors). Another study conducted by 

Hobbs et al. [175] compared the ability of PID and electronic noses to distinguish between 

pig and chicken slurry based on the odour. They found that PID showed more sensitivity 

than an electronic nose Narayanan et al. [176] in their study reported a µPID compatible 

with µGC. They assembled a photoionizing gas detector with a micro-discharge and a 

remote electrode. 

There is ongoing research on the use of PID for disease detection, particularly in the 

detection of volatile organic compounds (VOCs) that are associated with certain diseases. 

However, the use of PID as a standalone tool for disease detection is still in its early stages, 

and there are few published examples of its application in this field. One example of the use 

of a PID for disease detection can be found in a study by Gasparri et al. [177] which explored 

the potential of PID for the detection of urinary biomarkers associated with lung cancer. The 

study used GC-IMS and an electronic nose complemented by a photoionization detector to 

distinguish and identify VOCs in urine samples from lung cancer patients and healthy 

controls. The results of the study showed that the PID results were somewhat less effective 

than the GC-IMS results in distinguishing between individuals with early-stage lung cancer 

and those without, they still achieved an overall accuracy rate of 71.6% [177]. Another study 

by Sharma et al. [178] investigated the effectiveness of portable breath-based VOCs 

monitoring for the detection of COVID-19 infections. They utilized gas chromatography 

(GC) coupled with a photoionization detector (PID) to identify VOCs biomarkers in their 

study. Their findings revealed the presence of four VOCs - Benzene, Octane, 

Trimethyloctane, and Methyldecane - which demonstrated an ability to differentiate between 

COVID and non-COVID samples. Another study conducted by Oliva et al. [179] presented 

a novel approach for detecting VOCs using zeolite layers coupled with a PID. The author 

utilized a MiniRae 3000 PID consisting of an ionization chamber and a set of electrodes 

combined with a zeolite composite. This composite was used to function as a molecular 
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sieve, enabling the physical confinement of small molecules, which were later desorbed in 

an analysis chamber during photoionization detection. The study demonstrated the potential 

of this method for detecting VOCs in medical applications, as it was able to distinguish 

between different VOCs with good accuracy. Overall, this study highlighted the potential of 

the use of a PID coupled with zeolite layers for detecting VOCs for disease detection. PID 

sensors are considered to be highly sensitive in relative terms when compared to many other 

gas sensing technologies. They can detect a wide range of VOCs and other gases at very low 

concentrations. In many cases, PID sensors can detect VOCs in parts per billion (ppb) or 

even parts per trillion (ppt) levels. The sensitivity of PID sensors can vary depending on the 

specific model and design, as well as the characteristics of the target gases. Generally, PID 

sensors are capable of providing real-time, high-resolution measurements of gas 

concentrations, making them valuable tools for various applications, including 

environmental monitoring, industrial safety, and indoor air quality assessment. However, it 

is essential to note that the sensitivity of PID sensors can be influenced by factors such as 

the type of target gases, background levels of other gases, and the presence of interfering 

substances. Calibration and proper maintenance of the sensor are crucial for ensuring 

accurate and reliable measurements. Compared to some other gas sensing technologies, such 

as metal oxide sensors or catalytic bead sensors, PID sensors often offer superior sensitivity 

and selectivity, particularly for VOCs detection. 

Miniaturized PID are extensions of conventional PID, utilizing microelectromechanical 

system (MEMS) technology to miniaturize the device. This class of PID has been deployed 

in various studies to test their efficacy in gas detection and analysis and has demonstrated 

varying levels of success. For instance, a study by Rezende et al. [180] developed a 

miniaturized photoionization detector (PID) that can be applied in various gas detection 

applications, including medical diagnostics and environmental monitoring. The device was 

designed using MEMS technology and comprises a micro gas chromatography column and 

a micro photoionization detector. They successfully demonstrated the feasibility of the 

device by detecting various VOCs that are commonly present in indoor air and concluded 

that the miniaturized PID could function as a standalone sensor or be integrated into a more 

complex analytical system. Though, miniaturized the PID offers several advantages over the 

traditional PID such as reduced size and weight, lower power consumption, and improved 

portability. However, they suffer from several disadvantages as well such as the small size 
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of the device which may result in limited sample throughput and reduced sample capacity, 

the potential for interference from background gases or other compounds in the sample 

matrix and in addition the use of MEMS technology in the fabrication of miniaturized PID 

devices can lead to increased complexity and cost compared to traditional PID instruments 

[181]. 

The basis of this research is inspired by the photoionization detector (PID) created by 

Owlstone Medical as a proof-of-concept prototype developed in-house for the purpose of 

detecting VOCs rather than a commercial product. The PID unit produced by Owlstone 

employs a 10.6 eV UV bulb for ionisation and necessitates a power supply ranging from +/- 

5 V to 15 V @ 40 mA for multiple integrated circuits within the PID circuit, and 5 – 8 V @ 

50 mA for the lamp supply. The unit generates two outputs within the +/- 3 V range, the first 

indicating the detected concentration and the second indicating the detected composition. 

The Owlstone Medical's PID unit had several disadvantages that prevented it from being 

commercialized. These included: 

1. Requirement for frequent servicing and calibration: The unit had to be returned to 

the factory for servicing and calibration every three months, which was an 

inconvenience. 

2. Voltage offset present on the concentration signal: Offsets within the internal 

circuitry caused voltage offset in the concentration signal, resulting in unstable data. 

3. Complex maintenance: The PID unit required complex maintenance, which made it 

difficult to operate and maintain. 

However, there are several PID which are commercially available. Table 2.4-1 contains the 

list of the commercially available PID. 

Table 2.4-1: Commercial PID 

S. No. Commercial PID Product PID Manufacturer 

1 PID-A15, PID-AY5, PID-AH5, PID-AR5, PID-
AG5, PID-AH2 and PID-A12 Alphasense Ltd., UK 

2 PhoCheck Tiger, MiniPID2 sensor Ion Science Ltd., UK 

3 Mini RAE 3000, ppbRAE Plus, Ultra RAE 3000 RAE Systems Inc., USA 
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4 piD-TECH eVx Baseline MOCON, USA 

5 Gas-Pro Crowcon 

6 ToxiRAE Pro Honeywell Ltd., 

7 VOC-TRAQ II Myriad Industrial Solutions 

 

a. PID Sensors by Alphasense Ltd., UK: 

Alphasense offers a photoionization detector that can measure VOCs in the range of 0-

10,000 ppm. Figure 2.4-1 shows the commercial PID-AH2 and PID-A12. All seven sensors 

require a voltage of between 3 - 3.6 V, consume 26-40 mA current and target a range of 

gases such as carbon monoxide, ethylene oxide, hydrogen chloride, hydrogen cyanide, 

VOCs etc [182]. Their compact size and light weight make them highly convenient for 

integration with a variety of systems, and also suitable for use with handheld devices. These 

products are either developed by Ion science or MOCON Ltd. but are rebranded by 

Alphasense. 

The detection ranges for all the sensors listed in Table 2.4-2. 

Table 2.4-2: Detection range of Alphasense PID 

S. No. PID Product Detection Range 

1 PID-A15 0-4000 ppm 

2 PID-AY5 0-20 ppm 

3 PID-AH5 0-40 ppm 

4 PID-AR5 0-200 ppm 

5 PID-AG5 0-10000 ppm 

6 PID-AH2 1 ppb – 50 ppm 

7 PID-A12 50 ppb - 6000 pm 

8 SGX PID Amphenol SGX Sensortech 

The study conducted by Xiaobing et al. [183] showed the use of PID-AH to determine the 

potential of a commercial PID in comparison to the GC-Q-TOF-MS system. They used PID 
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as a standalone system as well as PID as a detector for a compact two-dimensional gas 

chromatography system to quantify different VOCs and reagents. Another study showed the 

potential of PID to be used for routine air quality testing [184]. They used PID-AH2 to test 

and verify the presence of benzene, ethylbenzene, isooctane, 2-propanol, toluene, and 

trichloroethylene in the air. They found that the PID showed a response to a wide variety of 

VOCs [184]. 

 

Figure 2.4-1: PID sensors from Alphasense Ltd [182]. 

b. MiniPID2 sensor, ION Science Ltd., UK: 

MiniPID2 is another form of miniature PID sensor manufactured by ION science. They have 

7 versions of MiniPI2 sensors with different detection ranges and capabilities [185]. They 

offer detection ranges from 0 to 10,000 ppm and response times of less than 3 sec and can 

be used in the detection of chemicals such as unsaturated fluorocarbons, formaldehyde, 

ethylene, chlorinated hydrocarbons and methanol [186]. PID require a supply voltage from 

3.6 to 18V and the current consumption can range from 20 to 32 mA [187]. These are used 

in different industries such as oil and gas, food and beverage, defence, manufacturing, 

aerospace etc. The Ion science PID sensors are humidity resistant and provide long term 

stability. The small size of MiniPID2 sensors allow them to be easily applied within different 

systems, for example, the commercial mini-GC system PyxisGC BTEX, equipped with a 

MiniPID2 to test the preconcentrate material for BTEX (Benzene, Toluene, Ethylbenzene 

and Xylenes) which are harmful chemicals and can lead to various diseases such as cancer 

etc [188]. The most common use of a MiniPID2 is sensor Tiger, a handheld VOCs detector. 

Figure 2.4-2 shows an example of MiniPID2 from ION Science Ltd.  
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Figure 2.4-2: MiniPID2 sensors [187]. 

c. ppbRAE, RAE Systems Inc., USA: 

A ppbRAE PID sensor is a 3rd generation PID/ VOCs monitor from RAE Systems which 

can detect more than 200 VOCs in a ppb range. It is used in many industries like oil and gas, 

defence, in hazardous environments, testing air quality etc. It provides real time sensor data 

with a 3 second response time [189]. Figure 2.4-3 shows an example of a ppbRAE PID 

sensor. Research conducted by V. Bocos-Bintintan et al. [190] used ppbRAE PID sensor to 

detect acetic anhydride and compared the results with an IMS system. They found that both 

PID and IMS were able to detect acetic anhydride successfully with different concentration 

levels. The main disadvantage of ppbRAE is the size. The bulb used in this PID alone is 

much bigger than the miniature PID sensors such as PID-AH2, PID-A12, MiniPID etc.  
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Figure 2.4-3: MiniPID2 sensors [189]. 

d. piD-TECH eVx, Baseline MOCON, USA: 

MOCON piD-Tech eVx is an alternative PID sensor and can detect VOCs with as low as a 

0.5 ppb detection range. The voltage supply required ranges from 3.2V to 5.5V with current 

consumption of 24mA to 36mA. It is used in various applications such as industrial hygiene 

and safety, soil contamination, leak detection, air quality etc [191]. Figure 2.4-4 shows the 

commercial PID sensors from Baseline MOCON.  

 

Figure 2.4-4: MiniPID2 sensors [191]. 

e. SGX PID, Amphenol SGX Sensortech: 

Amphenol SGX Sensortech's PID sensors use UV lamps with different ionisation energies 

including 10.0eV, 10.6eV, and 11.7eV. The voltage supply required ranges from 3.6V to 10 

V and can accurately detect VOCs with a sensitivity of up to 0.5ppb. The company's PID 

sensors are designed for use in a wide range of applications, including indoor air quality 

monitoring [192], environmental monitoring [192], and industrial safety [192]. They are 

available in a variety of sizes and configurations to suit different applications, and are highly 

sensitive and accurate, with fast response times and low power consumption. 
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Figure 2.4-5: SGX PID sensor  [193]. 

2.5. Conclusion: 

The detection and surveillance of volatile organic compounds (VOCs) have become crucial 

not only for disease detection but also for various other applications such as air quality 

monitoring, the defence industry, food, and beverage industries. Several analytical 

instruments are available for the detection of VOCs, but it is imperative to detect these 

compounds at trace levels, which necessitates the use of highly sensitive and accurate 

systems. Gas chromatography and mass spectrometry (GC-MS) coupled systems are widely 

regarded as the gold standard for VOCs detection due to their high sensitivity and selectivity 

capabilities. However, GC-IMS or GC-TOF-MS systems have their limitations. These 

instruments are costly, may require pre-concentration techniques, are complex, need skilled 

personnel to operate, and take longer to analyse, making them unsuitable for rapid medical 

diagnosis [194] [2, 195]. 

This highlights the importance of developing a point-of-care instrument that is simple, cost-

effective, portable, and efficient for detecting a VOCs rapidly. One possible solution is the 

use of electronic nose (eNose) technology, which has evolved over time and employs 

various types of sensors such as MOS sensors, conducting polymer sensors, and Quartz 

Crystal Microbalance sensors. The eNose offers several benefits such as affordability, ease 

of integration, high versatility, reliability, fast response, and portability [196]. However, 

eNose technologies suffer from low selectivity, high operating temperatures, ageing effects, 

humidity etc. [197]. Another limiting factor for eNose technology is the inability to detect 
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individual VOCs in a gaseous mixture [198]. Due to these disadvantages, the eNose systems 

cannot be used as a standalone device for the diagnosis of diseases. Therefore, we need a 

device which can adapt the advantages of eNose and can overcome the disadvantages. A 

PID is one such device. It is a low-cost device with excellent sensitivity and a quick response 

[180, 199]. Commercially available PID provide advantages over eNose and GC-MS based 

instruments, but they suffer from limited sensitivity and linearity. A study was conducted to 

show if ppb-RAEs can be used detect VOCs. They used 3 unit of ppb-RAE to evaluate the 

repeatability and accuracy of the PID and to measure VOCs like toluene and ethyl acetate. 

They found that all three units produced different results and resulted in inconsistent 

performance [200]. Commercial instrumentation for online monitoring of gas with a PID is 

limited. This was the motivation for developing the PID+ prototype. 

Therefore, the objective of this research is to develop a portable, low cost, easy to use and 

simple PID which may be able to overcome the disadvantages of commercially available 

PID and may be used to detect and diagnose diseases with better sensitivity and selectivity. 
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Chapter 3. Analytical Instruments for 

VOCs Detection 

This chapter introduces the primary instrumentation, methodology, and data analysis 

techniques employed for the various analytical instruments in the current research. The 

analytical technologies utilized in this study comprise GC-IMS (Gas Chromatography - Ion 

Mobility Spectrometry), GC-TOF-MS (Gas Chromatography - Time of Flight - Mass 

Spectrometry), and electronic noses. These instruments were employed for analysing 

biological samples to detect VOCs and to obtain qualitative and quantitative data pertaining 

to VOCs associated with various cancers and illnesses. 

3.1. Gas Chromatography-Ion Mobility 

Spectrometry (GC-IMS): 

3.1.1. Introduction: 

The GC-IMS technique is a very powerful approach that uses the advantages of highly 

selective GC technology combined with highly sensitive IMS. GC-IMS is used for the 

separation and detection of Volatile Organic Compounds [1, 2]. Figure 3.1-1 illustrates a 

pictorial representation of the operation of GC-IMS. 
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Figure 3.1-1: Principal operation of GC-IMS. 

The GC-IMS instrument used for this research was a FlavourSpec device (G.A.S., 

Dortmund, Germany) shown in Figure 3.1-2. The FlavourSpec is an analytical instrument 

used for the analysis of volatiles in both liquid and solid headspaces. It consists of an 

automatic headspace injector that decreases the difficulty and time-consuming handling of 

samples. The results obtained from the FlavourSpec system can be analysed by G.A.S. 

VOCal software. 
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Figure 3.1-2: GC–IMS (FlavourSpec®; G.A.S., Dortmund, Germany) with PAL RSI (CTC 

Analytics) autosampler. 

a. Principle of Operation: GC System: 

The purpose of GC is to separate the individual chemical components of a complex sample 

mixture [3]. Gas chromatography operates on the fundamental principle of separating the 

chemical components of a sample using two phases. The stationary phase, which is a liquid, 

is coated on the interior of the column, and the gas phase serves to transport the sample 

through the column [4]. 

The length, temperature, and coating material inside the column are critical factors that 

influence separation in gas chromatography. The sample is introduced into the column via 

a syringe and transported along the column by a mobile phase (i.e., a carrier gas). For gas 

chromatography, hydrogen, helium, nitrogen, or argon are typically used as these gases are 

inert and do not interact with the compounds being analysed. The carrier gas carries the 

compounds across the column, and the purity of the gas flow is crucial for column efficiency. 

Maintaining a proper linear gas flow throughout the system is important to ensure 

effectiveness and enable qualitative analysis. Temperature is also a vital factor in optimizing 

the efficiency of GC-IMS. It helps to enhance analysis, improve selectivity, and achieve 

good separation [5]. 
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Since different compounds have different distribution/separation constant, some of the 

compounds are retained by the coating on the column or stationary phase for different 

lengths of time. Compounds that have stronger interactions with the stationary phase will be 

retained in the column for a longer time. They "stick" to the stationary phase more 

effectively, resulting in slower movement through the column. Compounds that have weaker 

interactions with the stationary phase will be less retained and spend less time in the column. 

They move more quickly through the column with the carrier gas. This results in the 

separation of the compounds. The time taken by the chemicals to elute from the column is 

called the retention time [6]. 

b. Principle of Operation: Ion Mobility Spectrometry (IMS): 

Ion Mobility Spectrometry (IMS) is a technique used for ion separation and detection based 

on the mobility of the ionised compounds. The first step for an IMS system is sample 

introduction. There are two types of IMS techniques as follows: 

1. Drift-tube IMS (DTIMS): This is the most common type of IMS, which uses a long tube 

filled with a buffer gas, such as nitrogen or helium, and an electric field to separate ions. 

The ions are introduced into the tube and are separated based on their drift time through 

the buffer gas. 

2. FAIMS (high-field asymmetric waveform ion mobility spectrometry): This type of IMS 

uses asymmetric waveform electric fields to separate ions based on their mobility. 

FAIMS is often used as a front-end separation technique in mass spectrometry to 

improve selectivity and reduce sample complexity. 

In this study, a Drift-tube IMS was considered. The analytes from GC are introduced to the 

drift tube of the IMS. The approach used for sample introduction is unidirectional, i.e., the 

analytes are introduced in the drift tube directly into the buffer gas flow that flows in the 

opposite direction and swept out depending upon the electric field strength and the number 

of collisions with the buffer gas [7, 8]. The ionisation method in the G.A.S. FlavourSpec is 

soft chemical-ionisation (CI). Soft chemical-ionisation generates ions by a cascade of 

reactions following the collision of a fast electron emitted from the β-radiator H3. This 
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transfer of charge carrier from a charged electron to the reactant ion results in low internal 

energy ions. 

In this IMS system, the drift tube is the main part of the IMS system. It provides an electric 

region for the ions to be migrated towards the detector under the influence of an electric 

field. The drift tube is filled with a neutral gas which flows in the opposite direction to slow 

down the ions based upon their mass-to-charge (m/z) ratio. When analytes are introduced to 

the drift tube, a force is applied to the ions directly proportional to the magnitude of the 

electric field [9, 10]. Figure 3.1-3 represents a drift tube for IMS.  

 

Figure 3.1-3: Drift Tube IMS [11]. 

The time taken by the ions to drift to the electrodes is called the drift time [12]. The drift 

time depends on several factors such as the density of the drift gas, the number of collisions, 

the electric field applied etc [13]. Also, the velocity with which ions migrate towards the 

detector under the electric field is called drift velocity vd (m/s), which is given by: 

  vd = µ E    Equation 1   

where µ is mobility (m2/(V⋅s)) and E (V/m) is the electric field applied. 

The main function of the ion detector is to convert an ion current into an electrical current. 

The electrometer converts an ion current into an electric current, which is then amplified 

and converted into a voltage. These voltages are measured by the detector at different drift 

times creates a plot called a chromatogram, which contains all the quantitative information 
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about the ion based on its separation with respect to its drift velocity in the form of peak 

heights and area [14]. 

c. Parameter Settings for the G.A.S. FlavourSpec: 

An autosampler headspace injector (PAL RSI from CTC Analytics) was used to introduce 

samples into the FlavourSpec device. It consisted of an incubator, agitator, and gastight 

syringe where the incubator stored and heated the current sample under analysis, the agitator 

shook the sample to increase the sample headspace concentration and a gastight syringe was 

used to transfer the sample into the FlavourSpec. The incubator temperature was set at 40oC 

and the agitation time to 10 min. These parameters were set after several optimizations and 

are limited to water-based samples only. 

The carrier gas used throughout the FlavourSpec experiments was Nitrogen. A nitrogen 

generator (G.A.S, Dortmund, Germany) was used to provide gas through the inlet, the 

column, and the detector at a speed of 150 ml/min. The carrier gas used was 99.995% pure. 

The temperature setup for the various components of the G.A.S. FlavourSpec was as 

follows: Temperature of IMS was heated to 45°C (T1), the GC to 40°C (T2), the injector to 

80°C (T3), the T4 transfer line to 80°C and the T5 transfer line to 45°C. 

The GC Column used was SE-54. SE-54 is a non-bonded or cross-linked column based on 

a poly silicone (94%methyl/ 5%phenyl/ 1%vinyl). The length of SE-54 is 30 m, and its 

internal diameter is 0.25 mm.  

The length of the drift tube for the G.A.S FlavourSpec is 53 mm, and a constant voltage of 

500 V was applied. The ionisation of the molecules in the G.A.S. FlavourSpec was initiated 

by Radioactive - Tritium H3 (ß— Radiation). 

d. Sample Preparation: 

Urine samples used in this research were collected directly from the patient and stored at -

80°C in standard universal sterile specimen containers according to standard operating 
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procedures complaint with tissue bank requirements under the Human Tissue Act 2004. This 

study was approved by Coventry and Warwickshire and North-East Yorkshire NHS Ethics 

Committees (Ref 18717 and Ref 260179). The samples were then transferred to University 

of Warwick and briefly stored at -20°C. For sample analysis, the urine samples were 

defrosted at room temperature. The defrosted samples were transferred from sample bottles 

to 20 mL glass vials with crimp caps. 5 ml of each sample were then transferred into 20 ml 

glass vials which were sealed with Blue BiMetal Seal, 3mm Thick PTFE/Blue Silicone, 

Ultra Low Bleed crimp caps (Thames Restek, FI5150BMUL-20B) using an appropriate 

crimp tool. 

The glass vials containing the samples were transferred to the autosampler (PAL RSI from 

CTC Analytics). The sample tray was chilled to 4°C to reduce degradation of the samples 

while waiting for the analysis. Every glass vial containing the sample was transferred to the 

agitator and agitated for 10 minutes at a temperature of 40°C before sampling. 0.5 mL of 

sample was transported to the device using a gastight syringe. The machine settings for the 

analysis are given in Table 3.1-1. The total run time per sample was set to 10 minutes. 

Table 3.1-1: Parameter settings of G.A.S. FlavourSpec. 

S. No. Parameter Parameter Setting 

1 The temperature of GC Column 80°C 

2 The temperature of injector 70°C 

3 The temperature of drift tube for IMS 45°C 

4 The flow rate of Carrier gas 20 mL/min 

5 The flow rate for drift gas 150 mL/min 

e. Qualitative and Quantitative Analysis: 

The output obtained from the urine samples using G.A.S. FlavourSpec is in the form of a 

chromatogram as shown in Figure 3.1-4. The x-axis represents the drift time spectra from 

the IMS and is measured in milliseconds, and the y-axis represents the retention time of the 

GC and is measured in seconds. In the figure, the ‘dots’ are the chemicals detected by the 

IMS and the intensity of the peak represents the number of ions. The ‘dots’ in red are the 
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most intense. The extended red line represents the reactant ion peak (RIP). This is a constant 

background signal in the spectrum that occurs as a consequence of the carrier gas being 

present throughout the measurement procedure. The software used for viewing and 

processing the FlavourSpec data was VOCal (v0.1.3, G.A.S., Dortmund, Germany). 

FlavourSpec data were extracted from a .mea file to a .csv file format which was further pre-

processed using a bespoke LabView program. 

 

Figure 3.1-4: Typical output plot from the GC-IMS instrument. 

The data analysis pipeline used to analyse raw data from the GC-IMS in this study generally 

include pre-processing, data splitting, cross-validation, feature selection, classification, 

calculation of performance/generating ROC curves, and significant features as shown in 

Figure 3.1-6. 

1. Pre-processing: 

The primary goal of pre-processing is to decrease the data dimensionality by eliminating 

non-informative information from the raw GC-IMS output files, which tend to be complex 

and high-dimensional. This involves implementing several procedures, such as RIP 

alignment, cropping, and thresholding [15]. 



 
64 

Since the GC-IMS operates at atmospheric pressure, the carrier and drift gas, usually 

nitrogen or air, contains water, which plays a crucial role in the ionization process. Water 

molecules interact with the fast electrons emitted by the beta radiation source, leading to the 

formation of reactant ions known as RIP. These ions are present in all spectra and can be 

used for sample alignment [16]. The RIP remains consistent across all samples; however, 

slight shifts in its position may occur due to variations in ambient pressure caused by weather 

conditions. In order to tackle this issue, the pre-processing stage includes RIP alignment, 

where a single sample is selected as the reference, and all other RIP samples are adjusted to 

align with the position of the reference sample. This alignment is crucial for assisting the 

feature selection process in identifying the most informative features to be used as input for 

the classification model. The RIP alignment standardizes the data, thereby facilitating 

accurate feature selection and enhancing the overall performance of the classification model 

[17-19]. 

The typical GC-IMS output matrix comprises approximately 11 million data points. 

However, these high-dimensional data do not align with the actual information content 

stored in the data. Over 50% of these data points are considered background noise, visually 

represented as a blue area in Figure 3.1-4. To address this issue, the subsequent pre-

processing steps involve cropping out the area of interest and applying a threshold to the 

dataset. These procedures result in a pre-processed GC-IMS output matrix where 

background data points are zero-valued, and non-zero data points represent VOCs peaks 

[20]. Figure 3.1-5 represents a pictorial representation of the process followed for pre-

processing the GC-IMS data. 
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Figure 3.1-5: Pre-processing steps for the GC-IMS instrument (a) Raw data from the GC-IMS 

device, (b) RIP alignment, (c) Cropping of the important features, and (d) Applying threshold to 

remove the noise. 

2. Data Splitting: 

Data splitting constitutes a crucial step in the research workflow, following the pre-

processing of the raw data, wherein noise and unwanted variability are effectively removed. 

This pivotal process takes place prior to the construction of a classification model. Statistical 

quantification of the data was performed using a custom R program (version 3.6.2) tailored 

to the specific requirements of the study and can be found at GitHub 

(https://github.com/JimSkinner/toftools). 

A 10-fold Cross-validation approach was adopted in this research to address the delicate 

balance between computational efficiency and minimizing bias while estimating model 

performance. The 10-fold cross-validation method involves partitioning the original datasets 

into ten equivalent subgroups to produce meaningful outcomes. Subsequently, these ten 

subsets are divided into two distinct groups: one comprising nine subsets for training 

purposes and the other, constituting the remaining subset, retained for meticulous model 

assessment. The training subset serves as the foundation for creating feature sets, 

developing, and meticulously comparing multiple models, all aimed at achieving the final 

model's optimum configuration [21]. Once the final model is firmly established, it is 
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subjected to rigorous evaluation using the test subset, enabling a robust quantification of its 

performance. An exemplary model is one that not only delivers accurate predictions on test 

data but also showcases its capacity to extrapolate insights beyond the training data [22, 23]. 

Notwithstanding these advantages, subpar generalization, characterized by overtraining, can 

pose a potential challenge. Overtraining arises when the model becomes excessively attuned 

to the patterns within the training data, ultimately impairing its ability to discern patterns in 

the data beyond the confines of the training set. Ascertaining an appropriate data splitting 

methodology becomes imperative in the quest to develop a well-generalized model, armed 

with the capability to proficiently handle new and uncharted data [24]. 

3. Feature Selection: 

Despite applying pre-processing techniques to the GC-IMS data, the dimensionality remains 

relatively high, encompassing around 1,976,000 data points in the GC-IMS. Consequently, 

to further mitigate this issue, we incorporated a supervised feature selection technique into 

the pipeline. Specifically, in this research, we employed the Wilcoxon rank sum test as the 

supervised feature selection method. By conducting comparisons between groups derived 

from the pre-processed data, we identified the feature point with the lowest p-value, thereby 

streamlining the number of features. The p-value is used to determine the significance of the 

features [25, 26]. 

In the initial stage, we conduct the classification analysis employing 20, 50, or 100 features 

with the lowest p-values to determine the optimal number of features that yield the highest 

classification performance. This approach ensures sufficient information for the algorithms 

to learn while minimizing the risk of overfitting, while also enabling the identification of 

significant features at a later stage in the pipeline. Nevertheless, the present limitation of this 

method lies in the fact that the feature selection process relies solely on statistical criteria 

and does not incorporate any consideration of biological functions. 

4. Classification Training Models: 

Following the feature selection with the Wilcoxon rank sum test, the chosen features serve 

as inputs for machine learning classification algorithms implemented within a 10-fold cross-

validation framework. For this study, six sophisticated non-parametric machine learning 

algorithms were selected, namely Random Forest (RF), Neural Network (NN), Logistic 
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Regression (LR), Support Vector Machine (SVM), Xtreme Gradient Boost (XGBoost), and 

Gaussian Process (GP). These algorithms are well-suited for handling high-dimensional data 

with limited samples, making them suitable choices for the analysis [27]. 

The Random Forest (RF) method, devised by Breiman in 2001, has emerged as one of the 

most successful general-purpose algorithms. Comprising numerous decision trees, RF 

leverages bootstrapping to build each tree, where subsets of the training data are randomly 

selected with replacement. The individual trees are trained to learn patterns and make class 

predictions. Aggregating the predictions of each tree results in a final classification outcome. 

RF is renowned for its accuracy and robustness, especially in scenarios with small sample 

sizes and high-dimensional feature spaces, justifying its inclusion in our analysis [28]. 

Neural Network (NN) attempts to emulate the learning process of the human brain, 

composed of interconnected "neurons" that collaborate to solve problems. The neurons in 

the NN model are based on non-linear functions that produce outputs based on one or more 

inputs. Analogous to synapses in the brain, each neuron transmits a signal (a real number) 

to other neurons, and associated weights determine the strength of input signals relative to 

other neurons. Typically, NN consists of multiple layers of neurons, with the final layer 

yielding a single classification result [29, 30]. 

A Support Vector Machine (SVM) is a supervised machine learning algorithm that seeks to 

identify an optimal hyperplane with maximum margin distance in an n-dimensional space, 

effectively distinguishing different classes of data points. The hyperplane serves as a 

decision surface, aiding the classification of data points based on their respective classes. 

Support vectors, which are data points nearest to the hyperplane, influence its location and 

orientation. Maximizing the margin distance reinforces subsequent data point 

categorization. In handling nonlinear problems, SVM employs a kernel function that 

transforms low-dimensional data into higher-dimensional data, aiding the search for the 

optimal hyperplane. SVM is particularly well-suited for binary classification tasks with 

high-dimensional datasets [31]. 

A Gaussian Process (GP) is a supervised probabilistic classification model that expresses 

test predictions as class probabilities. A GP applies a prior probability distribution on a latent 

function, which is then transformed via a link function. While the latent function facilitates 
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model construction, its value is neither observable nor pertinent and is thus treated as a 

nuisance function, eliminated during prediction. For binary classification, GP utilizes the 

logistic link function [32]. 

Logistic Regression is a statistical method used for binary classification, where the outcome 

variable takes only two possible values. It aims to model the relationship between the binary 

outcome variable (dependent variable) and one or more predictor variables (independent 

variables) by estimating the probability of the outcome belonging to a specific category. The 

logistic function converts the linear combination of predictor variables and coefficients into 

a probability value, determining the classification outcome based on a predefined threshold 

(usually 0.5) [33]. 

Xtreme Gradient Boosting (XGBoost) represents a powerful machine learning algorithm 

suitable for both regression and classification tasks. As an ensemble method, XGBoost 

combines predictions from multiple weak learners, often decision trees, to construct a robust 

and highly accurate final model. Its efficiency, scalability, and capacity to handle large 

datasets render XGBoost a popular choice for various applications [34]. 

The following machine learning packages were used in this study: RF- random Forest; 

Neural Network using ‘nnet’ package; Logistic Regression with elastic net regularisation 

using glmnet; Gaussian Process classifier radial basis kernel (using ‘kernlab’ R package’); 

extreme gradient boosting XGBoost; and Support Vector Machine (RBF kernel). 

5. Performance Parameters: 

Following the completion of the training process within the cross-validation, the final model 

is subsequently evaluated using the testing set. The performance of the models is measured 

by several key metrics, including sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), p-value, Receiver Operating Characteristic (ROC) curve, 

and the Area Under the ROC curve (AUC) [35].  

Sensitivity is a measure of the model's ability to correctly identify positive instances from 

the total actual positive instances in the dataset. High sensitivity indicates that the model is 

good at identifying positive cases and vice-versa. Specificity is the true negative rate, 
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representing the model's ability to correctly identify negative instances from the total actual 

negative instances in the dataset. High specificity indicates that the model is effective in 

identifying negative cases and vice-versa. Positive Predictive Value (PPV), also known as 

precision, is the proportion of true positive predictions over the total predicted positive 

instances. It measures the accuracy of positive predictions made by the model. Negative 

Predictive Value (NPV) represents the proportion of true negative predictions over the total 

predicted negative instances. It measures the accuracy of negative predictions made by the 

model. The p-value is a statistical measure used to determine the significance of a result in 

hypothesis testing. In the context of model evaluation, it may be used to assess the 

significance of differences between different models or approaches. A low p-value suggests 

that the differences are likely not due to random chance and are statistically significant [36]. 

The Receiver Operating Characteristic (ROC) Curve is a graphical representation of the 

model's performance at various classification thresholds. It plots the true positive rate 

(sensitivity) against the false positive rate (1 - specificity). The ROC curve helps visualize 

how the model performs across different classification thresholds and is particularly useful 

when dealing with imbalanced datasets. The Area Under the ROC Curve (AUC) is a single 

scalar value that quantifies the overall performance of a model's ROC curve. It represents 

the area under the ROC curve, and its value ranges from 0 to 1. A higher AUC indicates 

better discrimination power of the model, meaning it can distinguish between positive and 

negative instances more effectively [37]. 
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Figure 3.1-6: Data analysis pipeline for G.A.S. FlavourSpec GC-IMS 

3.2. Gas Chromatography - Time-of-Flight - 

Mass Spectrometry: 

3.2.1. Introduction: 

GC-TOF-MS is a combination of GC technology, a separation technique, with TOF- Mass 

Spectrometry, an identification technique. Time of Flight was first reported by Cameron and 

Eggers in 1948. In 1958, the first commercial time of flight instrument was manufactured 
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by Bendix after Wiley and McLaren achieved significant improvements in resolving the 

power of TOF in 1955 [38, 39]. TOF-MS basically works on the principle of mass 

separation. In TOF-MS, an ion source is used to generate ions which are accelerated towards 

a detector by applying high voltage. The ions are then made to travel in a field free region 

based on their mass to charge ratio. Since the ions traverse in a field-free time of flight tube, 

the velocity of the ions remains the same. The time taken by the ions to travel to the detector, 

also called the time of flight, depends on the mass to charge ratio of the ions [40]. This can 

be seen by the equations below: 

The potential energy Ep (Joules, J) of the ion when a high voltage V (Volts, V) is applied to 

it is given by: 

Ep = qV      Equation 2 

where q is charge of the ion (Coulomb, C) and V is voltage (Volts, V) applied. 

When a voltage V (V) is applied to the ion, it accelerates in a time-of-flight tube and gains 

kinetic energy Ek (Joules, J) which is expressed by: 

Ek = 1/2 mv2     Equation 3 

where m is the mass of the ion (Kg), and v is the velocity of the ion (m/s). 

Since the potential energy of the ion is converted into kinetic energy, we can equate, 

Ep = Ek      Equation 4  

qV =1/2 mv2     Equation 5  

Also, we know, velocity can be expressed in terms of distance d cm and time t in sec as: 

  v= d/t       Equation 6 

Substituting these equations, we get, 
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  qV =1/2 m(d/t)2     Equation 7 

  t2 = 2md2/qV     Equation 8 

Since we know that the distance and voltage applied are constants, we can say, 

  t α $𝑚/𝑞     Equation 9 

where t represents time of flight of the ion and m/q is the mass to charge ratio. 

3.2.2. TRACE 1300 GC - BenchTOF-HD TOF-

MS:  

The GC-TOF-MS system used is a combination of a TRACE 1300 GC (Thermo Fisher 

Scientific, Loughborough, UK) and a BenchTOF-HD TOF-MS (Markes Intl., Llantrisant, 

UK) shown in Figure 3.2-1. GC-TOF-MS provides high acquisition rates and high-

resolution capabilities. The high-resolution power allows the user to generate more precise 

peaks and more accurate mass. The data from GC-TOF-MS analysis were identified using 

the National Institute of Standards and Technology (NIST) list (2011 and 2020). 

TRACE 1300 GC is a user-friendly, fully programmable GC which is highly sensitive and 

capable of detecting analytes at very low concentrations, even at trace levels. This sensitivity 

allows for the identification and quantification of compounds present in the sample at 

extremely low concentrations, making it an ideal tool for trace-level analysis in complex 

samples. BenchTOF-HD TOF-MS provides a high definition, high sensitivity, high 

productivity, and good analytical performance. It offers selective elimination of 

interferences through its high mass resolution and accurate mass measurement capabilities 

[41]. 

By resolving closely spaced peaks in the mass spectra, TRACE 1300 GC and BenchTOF-

HD TOF-MS can distinguish between different compounds with similar m/z values, 

reducing the risk of false identifications. Additionally, the accurate mass measurement 
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allows for the precise determination of the elemental composition of the ions, which aids in 

the identification of target analytes while discriminating against interferences [42]. 

 

Figure 3.2-1: TRACE 1300 GC - BenchTOF-HD TOF-MS with ULTRA-xr and UNITY-xr 

a. Principle of Operation: Time – of – Flight – MS (TOF-MS) 

System: 

In TOF-MS, analytes are ionised using Electron Ionisation (EI). The EI source consists of a 

heated chamber and a heated filament. The heated filament emits electrons which are 

accelerated to 70 eV. The heated chamber is maintained under a high vacuum where analytes 

are introduced through a sample hole after passing through the GC. The acceleration of the 

electrons in the proximity of the analytes results in the collision between them and formation 

of a charged ion [43]. Figure 3.2-2 illustrates the working principle of EI. 
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Figure 3.2-2: Electron Ionisation. 

These charged ions then pass through a two-stage reflectron as shown in Figure 3.2-3. The 

reflectron consists of a set of circular shaped electrodes with increasing potential placed 

outside the field-free area at the end of analyser tube. When the ions reach the electrodes, 

they decelerate and reflect at a relevant angle due to the electric field applied at the input 

and end plate of the reflectron [44]. The ions then accelerate again towards the detector. The 

ions with same mass-to-charge ratio, but higher kinetic energies spend more time in the field 

free area than the ions with the same m/z values with lower energies. 

 

Figure 3.2-3: Reflectron mode for TOF operation. A and B are the two ions with the same m/z 

value but with different kinetic energy. 

These ions are then extracted to the detector. The detector used in the TOF-MS is Micro-

channel Plate Detector. A micro-channel plate detector consists of thousands of channel 
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multipliers in the form of tiny tubes connected to a plate detector. When an ion hits a channel 

detector, it removes electrons from the outer most shell of the ion resulting in an electron 

current. Emerging electrons travel and hit multiple channels leading to electron cascade. 

Every miniaturised channel result in a high signal-to-noise ratio for the detection of ions. 

The amplified electron current is then collected and converted into a mass spectrum, which 

provides information about the mass-to-charge ratios of the ions detected in the sample [45, 

46]. A basic Micro-channel Plate Detector operation is shown in Figure 3.2-4. 

 

Figure 3.2-4: Micro-channel Plate Detector for BenchTOF-HD TOF-MS. 

b. Parameter Settings for TRACE 1300 GC - BenchTOF-HD TOF-

MS: 

GC-TOF-MS uses a high throughput autosampler and thermal desorption unit ULTRA-xr 

and UNITY-xr, respectively (both from Markes Intl.). The autosampler allows 100 tubes to 

be analysed with recollection of both tube and trap desorption repetitively. The injector used 

for the TRACE 1300 GC is a Split/Splitless Injector (SSL). It consists of an injector body, 

a heater body, a split and purge vent valve, filters, digital pneumatics for the control of the 

carrier gas, and fittings for the connection to the analytical column. 

The column used in the TRACE 1300 GC was a 20 m, 0.18 mm ID, Rxi-624Sil MS column 

(Thames Restek, Saunderton, UK). Temperature control and flow control can be set in 

TRACE 1300 GC by programming the oven temperature, from an initial temperature of 
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40oC to a final temperature of 280oC. The analytical run time for the GC was 25 minutes 

with a temperature ramp of 20oC per minute.  

c. Sample Preparation: 

This study was approved by Coventry and Warwickshire and North-East Yorkshire NHS 

Ethics Committees (Ref 18717 and Ref 260179). For the analysis of samples by GC-TOF-

MS, a 5 mL sample was transferred from the universal sample containers in a 20 mL glass 

vial from a sample bottle which is sealed with a crimp cap. The headspace of a sample was 

adsorbed onto a thermal desorption (TD) sorbent tube (C2-AXXX-5149, Markes Intl., 

Llantrisant, UK). The sorbent biomonitoring tube shown in Figure 3.2-5 was inserted into 

the septum of a glass vial and heated at 40°C for 20 minutes. 

 

Figure 3.2-5: Biomonitoring Tube. 

After this, a pump was attached to the tube whilst still heated to 40°C. The headspace VOCs 

were then pulled onto the tubes at 20mL/minute for a further 20 minutes. The sorbent tubes 

were then placed in an ULTRA-xr autosampler for analysis. The analysis began with 

ULTRA-xr with a stand-by split set to 150°C. Each sample was pre-purged and then 

desorbed, with the trap purge time set to 1 min. These traps were then cooled at -30°C and 

the trap was then purged for 3 min at a temperature of 300°C. The data from the GC-TOF-

MS analysis were identified using the National Institute of Standards and Technology 

(NIST) list (2011). The configuration settings are given in Table 3.2-1. 
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Table 3.2-1: Configuration setting for TRACE 1300 GC - BenchTOF-HD TOF-MS 

S. No. Parameter Parameter Setting 

1 GC run time 25 min 

2 Temperature Ramp 40°C to 280°C at 20°C/min 

3 Pre-purge time 1 min 

4 Desorption temperature & time 250°C for 10 min 

5 Temperature of transfer line 250°C 

6 Temperature of ion source 250°C 

d. Qualitative and Quantitative Analysis: 

GC-TOF-MS data are analysed using TOF-DS software (SRA Instruments, Via alla 

Castellana, Italy). A typical output for a urine sample from GC-TOF-MS is shown in Figure 

3.2-6 where the x-axis represents the retention time produced by the GC column (in 

minutes), and the y-axis represents the abundance of the chemicals with each peak 

representing the concentration. The TOF-DS software helps in optimising the quantitative 

and qualitative analysis. TOF-DS supports dynamic baseline correction, which helps to 

eliminate chromatographic interferences and optimises spectral purity and compound 

identification [47]. 
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Figure 3.2-6: Output from the GC-TOF-MS from urine sample. Here, the x-axis refers to the 

retention time, and the y-axis, the total ion count. 

The data analysis pipeline utilized in this study to analyse raw data from GC-TOF-MS 

includes several essential steps, as depicted in Figure 3.2-7. The process commences with 

pre-processing, data splitting, cross-validation, feature selection, classification, and 

eventually leads to the calculation of performance metrics and the generation of ROC 

curves. 

The pre-processing stage for GC-TOF-MS data encompasses three distinct phases. Initially, 

vital information is extracted from the data, such as a list of identified chemicals along with 

their corresponding peak area and height. Subsequently, a new spreadsheet is generated, 

where each row represents an individual sample, and the columns correspond to the 

chemicals detected in each sample. This organized representation facilitates subsequent 

analyses and data interpretation. In the final pre-processing step, a data cleansing procedure 

is applied to eliminate chemicals that are present in only a few samples. This selective 

removal streamlines the dataset, making it more manageable for further analysis. By 

reducing the number of chemicals from thousands to hundreds, the data become more 

concise and amenable to subsequent analyses. The removal of rare chemicals allows for a 

focus on the most relevant and frequently occurring components in the samples, thereby 

enhancing the efficiency and interpretability of subsequent analyses, and facilitating the 

identification of meaningful patterns [48]. 

The subsequent steps in the data analysis pipeline employ the bespoke R program (version 

3.6.2) for both qualitative and quantitative analysis in GC-TOF-MS which were identical to 

those applied in GC-IMS. An R package for automating common tasks can be found at 

GitHub (https://github.com/JimSkinner/toftools). These steps encompass data processing, 

feature extraction, statistical analysis, and model construction. In qualitative analysis, the 

primary objective is to successfully identify and distinguish different classes of sample sets. 

On the other hand, quantitative analysis aims to quantify the concentration of the identified 

chemical compounds. 

GC-TOF-MS utilizes TOF-DS software to effectively identify the chemical compounds 

corresponding to the VOCs’ signal peaks. TOF-DS software employs a linear Total Ion 

https://github.com/JimSkinner/toftools
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Chromatogram (TIC) for 2D acquisitions and performs real-time deconvolution, resulting 

in a comprehensive representation of peak intensities and capturing reference spectra and 

essential peak features. This software also enables seamless feature selection by comparing 

VOCs peaks from the chromatogram with mass spectra [49]. During the feature selection 

process for GC-TOF-MS data, a rigorous criterion is applied, requiring a p-value of less than 

0.05 to retain peaks as significant features. This stringent approach ensures that only the 

most relevant and statistically significant VOCs peaks are selected, enhancing the accuracy 

and precision of subsequent analysis [50]. 

Leveraging TOF-DS software for peak identification and deconvolution, GC-TOF-MS 

enables the extraction of valuable chemical information from complex chromatograms, 

facilitating a comprehensive characterization of VOCs present in the samples. The real-time 

deconvolution process streamlines data processing and analysis, expediting the 

identification of key compounds and their respective features. The strict p-value-based 

feature selection ensures that only robust and reliable VOCs’ peaks are considered, 

promoting the generation of high-quality analytical results, and supporting the exploration 

of meaningful trends and patterns within the data. 
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Figure 3.2-7: Data analysis pipeline for the TRACE 1300 GC - BenchTOF-HD TOF-MS 

3.3. Electronic Nose: 

3.3.1. Introduction: 

An Electronic Nose (eNose) is based on the human olfactory system and consists of an array 

of different sensors combined to identify different organic chemicals. An eNose system 

typically consists of a sensor array, a signal conditioning and data processing unit and pattern 

recognition unit. These units combined helps in the recognition of volatile organic 

compounds present in a sample [51, 52]. When a sample is introduced to an eNose, it induces 

chemical/physical changes in the sensor array which further causes electrical changes which 

are detected and used to identify a chemical profile comprising multiple biomarkers. Each 

sensor in the sensor array responds to different chemicals [53]. 
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3.3.2. AlphaMOS FOX 4000 (Toulouse, 

France): 

The AlphaMOS Fox 4000 is an eNose that uses 18 commercial metal MOS sensors 

distributed in three temperature-controlled chambers. The FOX 4000 system comprises of a 

CombiPAL HS100 autosampler, sensor chambers, a mass flow controller, and an acquisition 

board with a microcontroller. The function of each sensor is shown in Table 3.3-1. 

Table 3.3-1: Description of sensors of the AlphaMOS FOX 4000 

The AlphaMOS Fox 4000 is shown in Figure 3.3-1. 

S. No. Sensor Name Description 

1 LY2/LG Oxidising gas 

2 LY2/G Ammonia, Carbon Monoxide 

3 LY2/AA Ethanol 

4 LY2/GH Ammonia/ Organic Amines 

5 LY2/gCTL Hydrogen Sulphide 

6 LY2/gCT Propane/ Butane 

7 T30/1 Organic Solvents 

8 P10/1 Hydrocarbons 

9 P10/2 Methane 

10 P40/1 Fluorine 

11 T70/2 Aromatic Compounds 

12 PA/2 Ethanol, Ammonia/ Organic Amines 

13 P30/1 Polar Compounds (Ethanol) 

14 P40/2 Heteroatom/Chloride/Aldehydes 

15 P30/2 Alcohol 

16 T40/2 Aldehydes 

17 T40/1 Chlorinated Compounds 

18 TA/2 Air quality 
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Figure 3.3-1: AlphaMOS FOX 4000 (Toulouse, France) with CombiPAL HS100 autosampler 

a. Principle of operation: 

The AlphaMOS Fox 4000 uses metal oxide-based sensors out of which there are 6 p-type 

sensors and 12 n-type sensors. The sensing material in the MOX sensors is typically made 

of metal oxide nanoparticles that adsorb gas molecules, causing changes in the electrical 

conductivity of the material [54-57]. However, they may suffer from some limitations, such 

as poor selectivity and sensitivity to changes in temperature and humidity. N-type sensors 

are more popular than p-type sensors due to their high sensitivity to oxidizing gases, good 

stability and reproducibility, lower power consumption, and longer lifetime. However, they 

suffer from low selectivity. On the other hand, p-type sensors have their own advantages, 

such as high humidity tolerance, good selectivity, and high temperature tolerance [58]. 

The output from the MOS sensors is measured in terms of the change in the resistance caused 

by the presence of a VOCs given by equation below: 

R = (R0 - RT)/ R0    Equation 10 

where R (Ω) is the value of the resistance at the end of the measurement, R0 (Ω) is the initial 

resistance of the sensor at time 0 and RT (Ω) is sensor’s conductance value.  
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b. Parameter settings: 

AlphaMOS Fox 4000 is combined with CombiPAL HS100 autosampler which is fitted with 

a 2.5 mL gas syringe, an agitator and two trays with 60 samples capacity (30 per tray). All 

the samples are placed in the autosampler tray. Every sample is transferred to the agitator 

where it is heated and agitated. The headspace was then injected into the eNose into a zero-

air controlled by mass flow controller. Each sample was analysed for 180 seconds by all of 

the 18 MOS sensors. The parameter settings for the AlphaMOS FOX 4000 for the analysis 

of each urine sample are presented in Table 3.3-2. 

Table 3.3-2: Configuration setting for the AlphaMOS Fox 4000. 

S. No. Parameter Parameter Setting 

1 Agitator heating time 10 mins 

2 Temperature of agitator 40°C 
3 Flow rate of sample injection 200 mL/min 

4 Flow rate of zero air 150 mL/min 

5 Temperature of transfer line 250°C 

6 Temperature of ion source 250°C 

7 Injection speed 150 ul/s 

8 Acquisition time 180 s 

c. Quantitative and qualitative analysis for AlphaMOS Fox 4000: 

The output from the AlphaMOS Fox 4000 system to a urine sample is shown in Figure 3.3-2. 

The x-axis in the graph represents the time elapsed in seconds during the measurement, 

while the y-axis displays the dimensionless response generated by each individual sensor in 

the eNose upon exposure to the VOCs present in the analysed sample. As each sensor is 

sensitive to specific chemical compounds, their responses offer valuable insights into the 

chemical composition of the sample. 
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Figure 3.3-2: Output from the FOX 4000 eNose where each curve represents the response of a 

sensor to a BCa urine sample. Here the sensor response is defined as intensity, which is the change 

in resistance from the baseline divided by the baseline resistance and therefore, is dimensionless. 

The sensor's responses were extracted using AlphaSoft (AlphaMOS v12.36). Once the raw 

sensor signals are acquired, AlphaSoft performs signal processing to enhance the quality of 

the data. This includes noise reduction, filtering, and other techniques to improve the 

accuracy and reliability of the sensor responses. Raw sensor signals can be influenced by 

noise and unwanted fluctuations originating from various sources, such as electronic 

interference or environmental factors. To address this, AlphaSoft applies noise reduction 

algorithms to remove or minimize these unwanted variations, resulting in a clearer 

representation of the true sensor responses [59]. 

In addition to noise reduction, filtering techniques are employed to eliminate unwanted 

frequency components from the sensor signals. Various types of filters, such as low-pass 

filters or band-pass filters, can be applied to retain the relevant information while removing 

unwanted artifacts. Furthermore, eNose sensor responses may drift over time due to changes 

in ambient conditions or instrument calibration. To rectify this issue, AlphaSoft performs 

baseline correction to adjust the sensor signals and bring them back to a consistent reference 

level. This step improves the comparability and consistency of the data, ensuring reliable 

analysis [60]. 

Another consideration is that different sensors in the eNose may have varying sensitivities 

or response ranges. To enable meaningful comparison and analysis, AlphaSoft normalizes 
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the sensor signals, ensuring they are on a consistent scale across different sensors. Moreover, 

AlphaSoft implements signal averaging techniques to enhance the reliability of the sensor 

responses. By averaging multiple measurements of the same sample, the software reduces 

random variations and provides more robust data, enhancing the signal-to-noise ratio [60]. 

After obtaining enhanced data from AlphaSoft, the next step involves feature extraction. 

Each measurement data set contains the complete response of all sensors to one sample. 

However, the complete response curve may contain redundant information, which can be 

problematic for many pattern recognition algorithms, leading to increased processing time. 

Therefore, it is desirable to significantly reduce the amount of data to be processed, and this 

goal was accomplished using a MultiSens Analyzer (JLM Innovation GmbH, Germany) 

[61]. 

A MultiSens Analyzer achieves data reduction by extracting specific characteristics (e.g., 

the maximum of the response curve) from the raw signal. These characteristics are referred 

to as "features" within the MultiSens Analyzer software. The collection of all these features 

forms the "feature vector," which consists of a set of values extracted from the sensors' 

reactions to one sample. The MultiSens Analyzer software employs several different 

methods for feature extraction, which are listed in Table 3.3-3. 

Table 3.3-3: List of the MultiSens Analyzer’s Feature Extraction Methods used in this research. 

Feature Description 

Area Calculates the area of the response curve above the baseline (= value of first 

measurement point). 

AreaAt Calculates the area of the response curve above a baseline. Allows the user 

to set the start point, end point, and base line determination for the 

calculation. 

Base Returns the baseline = value of the first measurement point. 

Base3 Returns the baseline = average of the first 3 measurement points. 

FindSig Returns the maximum deviation to the baseline that is found between the 

start point and the end point. 

Start point, end point and the point where to determine the baseline can be 

set. 
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Max Returns the maximum of the response curve. 

Max-Min Returns the span of the response curve. 

MaxDev Returns the maximum derivative found in the response curve. The derivative 

is calculated by subtracting the predecessor point for each measurement 

point. 

Min Returns the minimum of the response curve. 

Sig/Base Returns the Signal divided by the baseline. 

Signal is determined as the maximum deviation to the baseline in the 

response curve. 

Baseline is determined as the value of the first measurement point. 

Sig/Base3 Same as Sig/Base, but averages over 3 measurement points to determine 

signal and baseline. 

Sig-Base Sig-Base is determined as the maximum deviation to the baseline in the 

response curve. 

Baseline is determined as the value of the first measurement point. 

Sig-Base3 Same as Sig-Base, but averages over 3 measurement points to determine 

signal and baseline. 

The feature vectors, representing measurements in a multi-dimensional feature space, are 

subjected to evaluation using either PCA or LDA techniques. The PCA (Principal 

Component Analysis) or LDA (Linear Discriminant Analysis) results are employed for 

projection, and these outcomes are presented in a scores plot [62]. In a score plot, the 

different samples are displayed in relation to two principal components (PCs), typically the 

first and second PCs. The first principal component delineates the direction of maximum 

variance within the data, while the second principal component captures the second-largest 

variance orthogonal to the first component, and so forth for subsequent components [63]. 

The spread of data points along each principal component axis indicates the amount of 

variance explained by that particular component. Consequently, the greater the spread 

observed, the higher the contribution of that principal component to the overall variance 

present in the data. By examining the positioning and distribution of samples, one can gain 

insights into the underlying structure and variability of the data. This aids in identifying 

patterns, clusters, or discrimination between groups in the data, thus facilitating data 

exploration, classification, and other analytical tasks. 
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The feature matrix was also exported and further processed using a custom analysis pipeline 

created using a custom R program (version 3.6.2) tailored to the specific requirements of the 

study and can be found at GitHub (https://github.com/JimSkinner/toftools). This analysis 

procedure was identical to those applied in GC-IMS and discussed in the section e 

Qualitative and Quantitative Analysis:. From the resultant probabilities, statistical 

parameters were calculated including Receiver Operator Characteristic (ROC) curves, area 

under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV). 

3.3.3. PEN3 Electronic Nose (Airsense 

Analytics GmbH, Schwerin, Germany): 

The PEN3 eNose (Airsense Analytics GmbH, Schwerin, Germany) is a portable (92 × 190 

× 255 mm) olfactory system used for the identification of chemicals and gases. It is a 

combination of a gas sampling unit and a sensor array. In our case, the PEN3 eNose is fitted 

with an autosampler (HT2000H Dynamic Headspace Auto-sampler, Italy), which interfaces 

directly with the PEN 3 software (WinMuster PEN v 1.6.2.18). The PEN3 system is shown 

in Figure 3.3-3. 
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Figure 3.3-3: PEN3 Electronic Nose (Airsense Analytics GmbH, Schwerin, Germany). 

The sensor arrays consist of 10 different n-type metal oxide sensors listed in Table 3.3-4. 

The selectivity of each sensor depends upon several factors, such as the sensing material, 

the dopant material, the geometry of the sensor and the working temperature. The 

description of the sensors within PEN3 eNose are described in Table 3.3-4. 

Table 3.3-4: Description of the sensors in the PEN3 eNose. 

Sensor No. Sensors Name Substances for sensing 

S1 W1C Aromatic Compounds 

S2 W5S Broad Range 

S3 W3C Aromatic Compounds 

S4 W6S Hydrogen 

S5 W5C Aromatic and Aliphatic Compounds 

S6 W1S Methane in the Environment, With Broad Range 

S7 W1W Sulphur And Organic Compounds 

S8 W2S Alcohol and Broad Range 

S9 W2W Sulphur Compounds 



 
89 

S10 W3S Methane and Aliphatic Compounds 

 

a. Principle of operation: 

The PEN3 eNose consists of two pumps, one of which is used for pulling the sample gas 

through the sensor array and the other transfers filtered reference air or zero air into the 

sensor array. The zero air is also used to clean the system. Before the samples are introduced, 

the PEN3 system starts with the flushing time. During that period the sensors are rinse with 

zero gas and their signals move back to the baseline (G/G0=1). This is followed by sample 

introduction where the air containing the VOCs enters the device, and the sensors in the 

array come into contact with the gas molecules. When the VOCs interact with the sensor's 

surface, they cause changes in the sensor's electrical conductivity. The interaction between 

the gas molecules and the sensor's surface led to the alteration of electrical resistance in the 

sensors. Zero air is used as a baseline or reference gas, and the sensor responses from the 

sample gas are measured in comparison to the reference gas. 

b. Parameter Settings: 

A HT2000H Dynamic Headspace Auto-sampler consists of a sample tray with 42 sample 

capacity, a 2.5 mL headspace syringe, an oven with 6 sample capacity and orbital shaking 

capability. The samples are placed in the autosampler tray and transferred one by one from 

the sample tray to an internal oven and heated to increase concentration above the detection 

limit of the eNose. After heating up the sample, the headspace was sampled by a syringe. 

The sample was then analysed for 5 min. The configuration details for the PEN3 eNose are 

presented in Table 3.3-5. 
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Table 3.3-5: Configuration setting for the PEN3 eNose. 

S. No. Parameter Parameter Setting 

1 Oven temperature 80°C 

2 Shaker on/off time 4 mins/4mins 

3 Sample injection volume 2.5 mL 

4 Sample injection pressure 5 bars (max) 

c. Quantitative and qualitative analysis for PEN3 eNose: 

The output from the PEN3 device for a typical urine sample is shown in Figure 3.3-4. 

 

Figure 3.3-4: Output from the PEN3 device. Output from PEN3 device contains sensor output from 

each of the sensors to a urine sample. Each coloured line in the output represents the response 

curve of one of the sensors. 

The data obtained from PEN3 eNose were analysed using a MultiSens Analyzer (v2.0.0.22, 

JLM Innovation GmbH, Germany) and an R program (version 3.6.2) which can be found at 

GitHub (https://github.com/JimSkinner/toftools). This analysis procedure was identical to 

those applied in the GC-IMS analysis and discussed in the previous section c (Quantitative 

and qualitative analysis for AlphaMOS Fox 4000:). 
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The MultiSens Analyzer was used to evaluate measurement data from multi sensor 

instrument, such as electronic noses. The MultiSens Analyzer classified the data into 

different groups and then performed feature extraction. The feature used was the maximum 

deviation of the signal from the baseline to the response which was used to generate a radar 

plot. The resultant data matrix was then analysed using a 10-fold cross-validation, 

undertaken using a bespoke R program (version 3.6.2). From the resultant probabilities, final 

statistical results including a Receiver Operator Characteristic (ROC) curve, sensitivity, 

selectivity, specificity, a positive predictive value (PPV), and a negative predictive value 

(NPV) were calculated. An R package for automating the common tasks can be found at 

GitHub (https://github.com/JimSkinner/toftools). 

The AlphaMOS FOX 4000 and PEN3 systems are both electronic nose devices used for gas 

sensing and analysis. However, there are some key differences between the two devices. 

Firstly, the AlphaMOS FOX 4000 eNose is equipped with 18 sensors compared to the 10-

sensor array in the PEN3 eNose.  Secondly, the modular design of the AlphaMOS FOX 

4000 gives users the flexibility to choose the sensors that are best suited for their application, 

making it a highly versatile device. 

Thirdly, the AlphaMOS Fox 4000 is known for its high sensitivity and is capable of 

detecting low concentrations of VOCs in the ppb range whereas the limit of detection for 

the PEN3 eNose is 0.1 to 5ppm, limiting its sensitivity. However, the PEN3 eNose is 

portable, easy to use and less expensive in comparison to the bulkier size and higher cost of 

an AlphaMOS FOX 4000. 

3.4. Conclusion: 

The detection of volatile organic compounds has been used in many industries such as 

beverages, environmental, chemical industries etc. There are various different analytical 

instruments available which are used for this purpose. The GC-IMS and GC-TOF-MS in 

this study are two analytical tools based on gas chromatography and mass spectrometry (GC-

MS). These two instruments are highly sensitive, selective and have enhanced separation 

abilities. However, these instruments have various disadvantages such as they are not 

portable, are slow, expensive and require highly trained professionals to operate them. The 
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other two instruments used in this study were eNoses (AlphaMOS Fox 4000 and PEN3). 

ENoses overcome the shortcomings of GC-MS based instruments. They are cost-effective, 

easily operable and can perform real-time data analysis. 
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Chapter 4. Analysis of Cancer Samples 

using GC-IMS and GC-TOF-MS 

This chapter presents the experimental outcomes that have been achieved from the analytical 

instruments, namely, GC-IMS and GC-TOF-MS, used during the course of this research. 

The experiments were carried out utilizing urine samples of four different types of cancers 

with the objective of obtaining the biomarker fingerprint and understanding the ability of 

these instruments to be able to distinguish cancer samples from healthy controls with high 

sensitivity and specificity. Comparative analyses were conducted between the samples 

obtained from cancerous and healthy individuals, as well as between distinct categories of 

cancers. Additionally, the statistical performances of several analytical instruments were 

evaluated and compared. 

4.1. Introduction: 

As discussed in chapter 2, cancer remains a leading cause of death worldwide, with 

approximately 19.3 million new cases and 10 million deaths in 2020 [1]. However, the rate 

of survival depends highly on the detection of cancer in its early stages. Most of the current 

diagnostic methods do not provide high sensitivity or specificity towards the detection of 

early stages of the cancer [2]. As stated earlier, one of the potential methods that could 

support cancer diagnosis is through the measurement of Volatile Organic Compounds 

(VOCs) that reflect the biological process of disease. These bodily VOCs are the reflection 

of the physiological effects and metabolism of the individual and the environment 

surrounding them. Cancer causes changes in these biological pathways leading to the 

emission or omission of specific VOCs [3-5]. 

The cancers included in this study were Colorectal cancer (CRC), Bladder cancer (BCa), 

Prostate cancer (PCa) and Hepatocellular carcinoma (HCC). Urine is a common biological 

source of VOCs, as the components present are either the intermediate products or end 

products of metabolic activities occurring inside the human body [6]. In this research, we 
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aimed to evaluate the use of GC-IMS and GC-TOF-MS as potential analytical instruments 

for the detection and discrimination between cancer groups and healthy controls [7, 8].  

4.2. Materials and methods: 

4.2.1. Urine samples: 

A total of 186 patients were recruited after providing informed consent at University 

Hospital Coventry & Warwickshire NHS Trust, UK, between July 2013 and November 

2019. Patients were recruited prior to anti-cancer treatment. This study was approved by 

Coventry and Warwickshire and North-East Yorkshire NHS Ethics Committees (Ref 18717 

and Ref 260179).  Urine samples were collected in standard universal sterile specimen 

containers and frozen within 2 hours at -80°C for subsequent batch analysis and according 

to standard operating procedures compliant with tissue bank requirements under Human 

Tissue Act 2004. No chemicals were added to the urine before freezing, as we have 

previously shown that urine samples remain stable for extended periods of time at this 

temperature [9]. Prior to analysis the samples were transferred to the University of Warwick 

and briefly stored at -20°C. The samples were defrosted in a laboratory fridge at 4°C and 

aliquoted into 20mL glass sample vials with a crimp cap. 5mL of each urine sample was 

used for the analysis. Of the 186 urine samples collected, 15 patients had confirmed BCa, 

55 were confirmed PCa, 20 patients had confirmed HCC, 58 patients had confirmed CRC 

and 38 patients were non-cancerous controls. The mean age of the BCa patients was 70 

years, for PCa patients was 72 years, for CRC patients was 74 years and the mean age for 

HCC patients as 72 years. The demographic data of the subjects are illustrated in Table 

4-4.2-1. 
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Table 4-4.2-1: Demographic data for subject groups. 

N= 186 BCa CRC (Early 
& Late stage) PCa HCC 

Non-Cancer 
(Fibrosis & 

Non-Fibrosis) 
Number 15 58 (24-34) 55 6 38 (7-31) 

Mean Age (max-min) 
years 70.0(95-51) 74.3(92-46) 71.9(90-47) 71.9(89-48) 62.5(90-32) 

Sex: M/F 12:3 2.33:1 All Male 4.83:1 2:1 
Avg. BMI 24.4 28.6 27.5 25.8 30.9 

Current Smoker (% 
of whole population) 1 (6.7%) 3 (5.2%) 6 (10.9%) 0 (0%) 3 (8.3%) 

Controls were recruited from two sources to decrease bias. The first source was healthy 

individuals without liver disease. The second source was patients with different stages of 

NAFLD, the advantage here is that these patients represent those at risk of becoming HCC 

cases in the future. Controls were then further divided into 31 non-fibrotic and 7 

fibrotic/cirrhotic cases. Exclusion criteria were pregnancy and age <18 years. All 

participants were recruited prior to any anticancer treatment. The study did not take into 

consideration the various covariates mentioned in Table 4-4.2-1 such as age, smoking, sex, 

and BMI (Body Mass Index), during the research process. 

58 CRC samples were further distributed into 24 early-stage CRC samples and 34 late-stage 

CRC samples based on TNM (tumour/node/metastasis) staging. We assigned T1 and T2 

stages as early-stage and T3 and T4 as late-stage samples. 

4.2.2. Analytical Devices and Setup: 

a. G.A.S. FlavourSpec GC-IMS: 

The G.A.S FlavourSpec (Germany) uses a GC-IMS measurement technique to analyse 

VOCs. The operation and working principle of GC-IMS is discussed in detail in chapter 3. 

GC-IMS is a method used in various applications, such as detection of explosives and 

chemicals [10, 11], air quality [12], health and disease detection [7, 13] and food [14, 15]. 

The sample preparation methods that were utilized for the analysis have been explained in 

detail in Chapter 3, section d (Sample Preparation:, pg.:61). 
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b. Markes GC-TOF-MS: 

GC-TOF-MS operates by analysing the time of flight of ions and analyse them according to 

their mass-to-charge ratio. The operation and working principle of GC-TOF-MS is discussed 

in detail in chapter 3. The GC-TOF-MS system used is a combination of TRACE 1300 GC 

(Thermo Fisher Scientific, Loughborough, UK) and BenchTOF-HD TOF-MS (Markes Intl., 

Llantrisant, UK). The sample preparation methods that were utilized for the analysis have 

been explained in detail in Chapter 3, section c (Sample Preparation:, pg.: 76).  

4.3. Results: 

4.3.1. G.A.S. FlavourSpec GC-IMS: 

The results of the statistical analysis of the GC-IMS represents results between different 

cancer groups and the non-cancerous group are given in Table 4.3-1, Table 4.3-2, Table 

4.3-3, and Table 4.3-4. Figure 4.3-1 shows the chromatogram obtained from the GC-IMS 

FlavourSpec output, which displays the raw data. The chromatogram illustrates the output 

generated by GC-IMS for bladder cancer samples and control samples. 
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Figure 4.3-1: Chromatogram generated by GC-IMS. 

The results demonstrate high sensitivity and specificity, indicating that there are significant 

differences between the VOCs profiles of the different groups.  

Table 4.3-1, Table 4.3-2, Table 4.3-3 and Table 4.3-4 show that output generated by a 

bespoke R-program. The tables present the classifiers that achieved the highest level of 

separation among the six classifiers introduced in the Chapter 3 in section e (Qualitative and 

Quantitative Analysis:, pg.: 62) that generated the highest level of separations to distinguish 

between two classes for each comparison. Each of these classifiers was carefully selected to 

distinguish between two classes for each comparison. The outputs in the tables highlight the 

specific classifiers that demonstrated the maximum separation capabilities, indicating their 

effectiveness in accurately differentiating between the classes compared. Similarly, 

sensitivity and specificity obtained from the classifiers show the proportion of cancer groups 

that were correctly classified and the proportion of the non-cancerous groups that were 
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correctly classified. The detailed analysis process is discussed in Chapter 3, section e 

(Qualitative and Quantitative Analysis:, pg.: 62). 

The underlined entries in the tables represent the outputs that stood out, either showing 

remarkably high separation or, conversely, extremely poor separation. These specific entries 

signify exceptional performance or challenges faced by the classifiers in distinguishing 

between the classes being compared. The underlining draws attention to these critical points 

of interest, indicating instances of high success or areas where further improvement may be 

required. Further discussion regarding the underlined outputs in the tables can be found at 

the end in the "Discussion" section. 

GC-IMS was able to distinguish between bladder cancer and hepatocellular cancer and 

bladder cancer and fibrosis disease with 100% sensitivity and 100% specificity. This 

signifies that FlavourSpec was able to identify all bladder cancer cases, hepatocellular 

cancer cases and fibrosis samples correctly. For BCa in comparison with CRC, logistic 

Regression reported 14 true positive cases out of 15 and 56 true negative cases out of 58. 

BCa vs PCa reported 9 true positive cases out of 15 and 53 true negative cases out of 55. 

Table 4.3-1: GC-IMS Output for the comparison of BCa with different cancers and non-cancerous 

urine samples (presenting the most significant results) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

BCa vs non-

Cancerous 

Logistic 

Regression 

0.95 

(0.9-0.99) 

0.87 

(0.70-1.00) 

0.92 

(0.84-0.98) 

0.81 

(0.64-0.95) 

0.95 

(0.88-1) 

BCa Vs CRC 
Logistic 

Regression 

0.99 

(0.99-1) 

0.93 

(0.81-1) 

0.98 

(0.95-1) 

0.93 

(0.81-1) 

0.98 

(0.95-1) 

BCa vs PCa 
Logistic 

Regression 

0.94 

(0.88-0.98) 

0.60 

(0.38-0.81) 

0.96 

(0.92-1) 

0.81 

(0.6-1) 

0.9 

(0.8-0.97) 

BCa Vs HCC 
Extreme Gradient 

Boosting 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

BCa Vs 

Fibrosis 

Extreme Gradient 

Boosting 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

BCa Vs Non-

Fibrosis 

Logistic 

Regression 

0.86 

(0.76-0.94) 

0.87 

(0.71-1) 

0.77 

(0.65-0.89) 

0.65 

(0.48-0.82) 

0.92 

(0.83-1) 
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Table 4.3-2: GC-IMS Output for the comparison of CRC with different cancers and non-cancerous 

urine samples. 

 

  

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

CRC Vs non-

cancerous 

Logistic 

Regression 

0.83 

(0.75-0.89) 

0.84 

(0.76-0.92) 

0.68 

(0.56-0.81) 

0.80 

(0.72-0.89) 

0.74 

(0.62-0.86) 

CRC Vs PCa 
Logistic 

Regression 

0.99 

(0.98-0.99) 

0.91 

(0.84-0.97) 

0.95 

(0.89-0.98) 

0.95 

(0.89-0.98) 

0.92 

(0.85-0.97) 

CRC Vs HCC 
Extreme Gradient 

Boosting 

0.94 

(0.87-0.99) 

0.97 

(0.92-1) 

0.75 

(0.57-0.91) 

0.92 

(0.85-0.97) 

0.88 

(0.73-1) 

CRC Vs 

Fibrosis 

Extreme Gradient 

Boosting 

0.71 

(0.49-0.89) 

0.98 

(0.95-1) 

0 

(0-0) 

0.89 

(0.82-0.95) 

0 

(0-0) 

CRC Vs Non-

Fibrosis 

Logistic 

Regression 

0.87 

(0.79-0.93) 

0.93 

(0.87-0.98) 

0.74 

(0.61-0.87) 

0.87 

(0.79-0.94) 

0.85 

(0.73-0.96) 
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Table 4.3-3: GC-IMS Output for the comparison of PCa with different cancers and non-cancerous 

urine samples. 

Table 4.3-4: GC-IMS Output for the comparison of HCC with non-cancerous urine samples. 

The ROC curves obtained from GC-IMS data comparing different groups are shown in 

Figure 4.3-2. The results indicate that among BCa patients and HCC patients, the AUC (area 

under the curve) was 1 (1-1) with sensitivity and specificity of 1 (1-1) and 1 (1-1) 

respectively. Also, the separation between BCa and Fibrosis samples was high with a 

sensitivity 1 (1-1), specificity 1 (1-1) and 1 (1-1). Similarly, for CRC and BCa sample 

comparison using GC-IMS, the separation was significant with sensitivity 0.93 (0.81-1), 

specificity 0.98 (0.95-1) and AUC 0.99 (0.99-1). 

Comparisons Classifiers AUC Sensitivity Specificity PPV NPV 

PCa vs non-

Cancerous 

Extreme Gradient 

Boosting 

0.89 

(0.83-0.94) 

0.76 

(0.64-0.88) 

0.88 

(0.80-0.95) 

0.81 

(0.69-0.91) 

0.85 

(0.76-0.92) 

PCa Vs HCC 
Extreme Gradient 

Boosting 

0.89 

(0.80-0.97) 

0.6 

(0.4-0.78) 

0.96 

(0.92-1) 

0.86 

(0.69-1) 

0.87 

(0.80-0.94) 

PCa Vs 

Fibrosis 

Logistic 

Regression 

0.84 

(0.65-0.99) 

0.43 

(0-0.75) 

0.98 

(0.95-1) 

0.75 

(0.32-1) 

0.93 

(0.88-0.98) 

PCa Vs Non-

Fibrosis 

Extreme Gradient 

Boosting 

0.86 

(0.78-0.93) 

0.65 

(0.5-0.79) 

0.93 

(0.87-0.98) 

0.83 

(0.69-0.95) 

0.83 

(0.75-0.91) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

HCC Vs non-

Cancerous 

Extreme Gradient 

Boosting 

0.78 

(0.67-0.88) 

0.65 

(0.47-0.82) 

0.84 

(0.74-0.93) 

0.68 

(0.5-0.86) 

0.82 

(0.72-0.91) 

HCC Vs 

Fibrosis 

Extreme Gradient 

Boosting 

0.97 

(0.91-1) 

0.43 

(0.13-0.74) 

0.95 

(0.86-1) 

0.75 

(0.33-1) 

0.83 

(0.68-0.95) 

HCC Vs NON-

Fibrosis 

Extreme Gradient 

Boosting 

0.62 

(0.48-0.76) 

0.6 

(0.41-0.78) 

0.74 

(0.61-0.87) 

0.6 

(0.42-0.78) 

0.74 

(0.61-0.88) 

Fibrosis Vs 

Non-Fibrosis 

Logistic 

Regression 

0.63 

(0.36-0.89) 

0.29 

(0-0.6) 

0.9 

(0.81-0.97) 

0.4 

(0-0.83) 

0.85 

(0.74-0.94) 



 
105 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Figure 4.3-2: ROC curves obtained from the R-Program using GC-IMS for different cancer groups 

where (a) Bladder cancer Vs non-cancerous; (b) Bladder cancer Vs colorectal cancer; (c) Bladder 

cancer Vs prostate cancer; (d) Bladder cancer Vs hepatocellular cancer; (e) Bladder cancer Vs 

fibrosis; (f) Bladder cancer Vs non-fibrosis; (g)Colorectal cancer Vs non-cancerous group; (h) 

Colorectal cancer Vs prostate cancer; (i) Colorectal cancer Vs hepatocellular cancer; (j) 

Colorectal cancer Vs fibrosis; (k) Colorectal cancer Vs non-fibrosis; (l) Prostate cancer Vs non-

cancerous; (m) Prostate cancer Vs hepatocellular cancer; (n) Prostate cancer Vs fibrosis; (o) 

Prostate cancer Vs non-fibrosis;(p) Hepatocellular cancer Vs non-cancerous; (q) Hepatocellular 

cancer Vs fibrosis; (r) Hepatocellular cancer Vs non-fibrosis; and (s) Fibrosis Vs non-fibrosis. 
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4.3.2. Markes GC-TOF-MS: 

The results of the statistical analysis between different cancer groups for GC-TOF-IMS are 

given in Table 4.3-5, Table 4.3-6, Table 4.3-7 and Table 4.3-8. The results demonstrate high 

sensitivity and specificity. GC-TOF-MS was successfully able to distinguish between 

different cancer groups and diseases. The highest sensitivity and specificity were reported 

with CRC and PCa group with 100% sensitivity and specificity. Also, the separation 

between bladder cancer and CRC samples were high with GC-TOF-MS analysis. It correctly 

reported 11 out of 15 true positive cases and 58 out of 58 negative cases. 

Table 4.3-5: GC-TOF-MS Output the comparison of BCa with different cancers and non-cancerous 

urine samples. 

Table 4.3-6: GC-TOF-MS Output the comparison of CRC with different cancers and non-cancerous 

urine samples. 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

BCa vs non-

Cancerous 
Random Forest 

0.82 

(0.69-0.89) 

0.07 

(0-0.19) 

0.94 

(0.88-1) 

0.33 

(0-1) 

0.71 

(0.6-0.81) 

BCa Vs CRC 
Logistic 

Regression 

0.99 

(0.98-1) 

0.73 

(0.53-0.9) 

1 

(1-1) 

1 

(1-1) 

0.94 

(0.88-0.98) 

BCa vs PCa Random Forest 
0.87 

(0.79-0.93) 

0.33 

(0.13-0.55) 

0.91 

(0.84-0.97) 

0.5 

(0.22-0.75) 

0.83 

(0.75-0.91) 

BCa Vs HCC 
Logistic 

Regression 

0.97 

(0.89-1) 

0.93 

(0.81-1) 

0.67 

(0.33-1) 

0.88 

(0.72-1) 

0.8 

(0.5-1) 

BCa Vs 

Fibrosis 
Random Forest 

0.96 

(0.88-1) 

0.93 

(0.81-1) 

0.43 

(0.13-0.8) 

0.78 

(0.6-0.94) 

0.75 

(0.33-1) 

BCa Vs Non-

Fibrosis 
Random Forest 

0.81 

(0.69-0.91) 

0.4 

(0.19-0.6) 

0.77 

(0.64-0.89) 

0.46 

(0.23-0.7) 

0.72 

(0.58-0.85) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

CRC Vs non-

cancerous 
Neural Network 

0.95 

(0.91-0.98) 

0.88 

(0.81-0.95) 

0.89 

(0.79-0.97) 

0.93 

(0.86-0.98) 

0.82 

(0.72-0.92) 

CRC Vs PCa Random Forest 
1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 
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Table 4.3-7: GC-TOF-MS Output the comparison of PCa with different cancers and non-cancerous 

urine samples. 

Table 4.3-8: GC-TOF-MS Output the comparison of HCC with non-cancerous urine samples.  

The ROC curves obtained from GC-TOF-MS data comparing different groups are shown in 

Figure 4.3-3. The results indicate CRC and PCa urine samples had the highest sensitivity 

and specificity of 1 (1-1) and 1 (1-1) respectively. Also, for CRC and BCa samples 

comparison using GC-TOF-MS, the separation was high with sensitivity 0.73 (0.53-0.9), 

CRC Vs HCC Neural Network 
0.70 

(0.46-0.91) 

0.9 

(0.93-1) 

0.29 

(0-0.6) 

0.92 

(0.85-0.97) 

0.5 

(0-1) 

CRC Vs 

Fibrosis 
Neural Network 

0.81 

(0.66-0.94) 

0.91 

(0.85-0.97) 

0.43 

(0.11-0.78) 

0.93 

(0.87-0.98) 

0.38 

(0.1-0.67) 

CRC Vs Non-

Fibrosis 
Neural Network 

0.95 

(0.9-0.98) 

0.88 

(0.8-0.95) 

0.87 

(0.76-0.96) 

0.93 

(0.86-0.98) 

0.79 

(0.67-0.9) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

PCa vs non-

Cancerous 
Random Forest 

0.93 

(0.89-0.97) 

0.72 

(0.59-0.84) 

0.88 

(0.80-0.95) 

0.81 

(0.69-0.91) 

0.82 

(0.73-0.91) 

PCa Vs HCC Neural Network 
0.87 

(0.75-0.97) 

0.5 

(0-0.86) 

1 

(1-1) 

1 

(1-1) 

0.94 

(0.89-0.98) 

PCa Vs 

Fibrosis 
Neural Network 

0.96 

(0.91-0.99) 

0.29 

(0-0.6) 

1 

(1-1) 

1 

(1-1) 

0.92 

(0.85-0.97) 

PCa Vs Non-

Fibrosis 
Random Forest 

0.93 

(0.89-0.97) 

0.73 

(0.59-0.86) 

0.91 

(0.83-0.96) 

0.82 

(0.69-0.93) 

0.85 

(0.77-0.93) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

HCC Vs non-

Cancerous 
Neural Network 

0.52 

(0.32-0.73) 

0 

(0-0) 

0.94 

(0.88-1) 

0 

(0-0) 

0.85 

(0.76-0.93) 

HCC Vs 

Fibrosis 
Neural Network 

0.67 

(0.36-0.91) 

0.57 

(0.25-0.88) 

0.5 

(0.14-0.83) 

0.57 

(0.22-0.86) 

0.5 

(0.14-0.83) 

HCC Vs Non-

Fibrosis 

Gaussian Process 

classifier 

0.48 

(0.21-0.73) 

0 

(0-0) 

0.93 

(0.85-1) 

0 

(0-0) 

0.85 

(0.74-0.94) 

Fibrosis Vs 

Non-Fibrosis 

Logistic 

Regression 

0.65 

(0.41-0.87) 

0.43 

(0.11-0.78) 

1 

(1-1) 

1 

(1-1) 

0.88 

(0.79-0.97) 
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specificity 1 (1-1) and AUC 0.99 (0.98-1). However, some of the groups showed poor 

sensitivity for example, both HCC and the non-fibrosis group with HCC and non-cancerous 

group showed zero sensitivity. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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(j) (k) (l) 
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Figure 4.3-3: ROC curves obtained from the R-Program using GC-TOF-MS for different cancer 

groups where (a) Bladder cancer Vs non-cancerous; (b) Bladder cancer Vs colorectal cancer; (c) 

Bladder cancer Vs prostate cancer; (d) Bladder cancer Vs hepatocellular cancer; (e) Bladder 

cancer Vs fibrosis; (f) Bladder cancer Vs non-fibrosis; (g)Colorectal cancer Vs non-cancerous 

group; (h) Colorectal cancer Vs prostate cancer; (i) Colorectal cancer Vs hepatocellular cancer; 

(j) Colorectal cancer Vs fibrosis; (k) Colorectal cancer Vs non-fibrosis; (l) Prostate cancer Vs 

non-cancerous; (m) Prostate cancer Vs hepatocellular cancer; (n) Prostate cancer Vs fibrosis; (o) 

Prostate cancer Vs non-fibrosis;(p) Hepatocellular cancer Vs non-cancerous; (q) Hepatocellular 

cancer Vs fibrosis; (r) Hepatocellular cancer Vs non-fibrosis; and (s) Fibrosis Vs non-fibrosis. 

In addition, data obtained from the GC-TOF-MS were used to identify the unknown VOCs 

in urine samples for each group. TOF-DS software identified the chemicals based on a NIST 

list using a criterion of p-value<0.05. We were able to identify 46 VOCs significant for all 

the cancer groups based on selection criteria, different studies, and PubChem, we found 13 

VOCs which were relevant to BCa as shown in Table 4.3-9. For colorectal cancer, 17 VOCs 

were identified as significant VOCs leading to CRC as shown in Table 4.3-10. GC-TOF-

MS was able to identify 9 VOCs which may be biomarkers for Prostate cancer as shown in 

Table 4.3-11. There were 7 chemicals reported in this study found relevant to HCC shown 

in Table 4.3-12. 

Table 4.3-9: A list of possible biomarkers from the analysis of urine samples by GC-TOF-MS 

identified using PubChem, NIST and publications significant to Bladder Cancer. 

S. No. Chemicals p-value Molecular weight (g/mol) 
1 Biphenyl* <0.01 154.21 
2 Nonanal* <0.01 142.24 
3 Tetradecane* <0.01 198.39 

4 Pentadecane, 2,6,10,14-
tetramethyl- 0.012 268.5 

5 2-Pentanone 0.012 86.13 
6 Undecane 0.014 156.31 
7 4-Heptanone 0.018 114.19 
8 Dodecane 0.025 170.33 
9 Hexadecane 0.026 226.44 
10 Heptanal 0.026 114.19 
11 Methyl Isobutyl Ketone 0.045 100.16 
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12 Naphthalene 0.046 128.169 
13 Benzoic acid 0.049 122.12 

*Indicates the biomarkers that did not overlap with any previous study and may be 
indicators of Bladder cancer 

Table 4.3-10: A list of possible biomarkers from the analysis of urine samples by GC-TOF-MS 

identified using PubChem, NIST and publications significant to Colorectal Cancer. 

Table 4.3-11: A list of possible biomarkers from the analysis of urine samples by GC-TOF-MS 

identified using PubChem, NIST and publications significant to Prostate Cancer. 

S. No. Chemicals p-value 
Molecular weight 

(g/mol) 

1 Toluene <0.01 92.14 

S. No. Chemicals p-value 
Molecular weight 

(g/mol) 
1 Octanal <0.001 128.21 

2 Nonanal <0.001 142.24 

3 Decanal <0.001 156.26 

4 Heptanal <0.001 114.19 

5 Hexanal <0.001 100.16 

6 Acetone <0.001 58.08 

7 Acetic acid <0.001 60.05 

8 2-Pentanone 0.001 86.13 

9 Toluene 0.00219 92.14 

10 2-Heptanone 0.00429 114.19 

11 4-Heptanone 0.00307 114.19 

12 Ethylbenzene 0.00499 106.16 

13 Nonane 0.01102 128.25 

14 p-Xylene 0.01478 106.16 

15 Methyl Isobutyl Ketone 0.01602 100.16 

16 Undecane 0.02246 156.31 

17 Naphthalene 0.02613 128.17 
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2 Phenol <0.01 325.4 

3 Acetic acid <0.01 60.05 

4 Ethylbenzene <0.01 106.16 

5 1-Hexanol, 2-ethyl- 0.011 130.229 

6 Disulfide, dimethyl 0.012 94.2 

7 Cyclopentanone, 2-methyl- 0.017 98.14 

8 Naphthalene 0.029 128.17 

9 Pyrrole 0.033 67.09 

Table 4.3-12: A list of possible biomarkers from the analysis of urine samples by GC-TOF-MS 

identified using PubChem, NIST and publications significant to Hepatocellular Cancer. 

4.4. Discussion: 

The use of volatile organic compounds (VOCs) for the detection of cancer has garnered 

considerable attention due to its non-invasive nature and potential cost-effectiveness. In this 

research, we employed two different methods, namely GC-IMS and GC-TOF-MS to 

distinguish various cancer and disease groups from one another, as well as from the non-

cancerous group. By analysing the VOCs profiles of urine samples through GC-MS-TOF 

data, we were able to identify the chemical compounds involved in the process. 

S. No. Chemicals p-value 
Molecular weight 

(g/mol) 

1 
4-Methyl-2,4-bis(p-hydroxyphenyl) pent-1-

ene, 2TMS derivative 
<0.01 412.7 

2 2-Butanone 0.03637 72.11 

3 2-Hexanone 0.04309 100.16 

4 Benzene, 1-ethyl-2-methyl- 0.04183 120.19 

5 3-Butene-1,2-diol, 1-(2-furanyl)- 0.03247 154.16 

6 Bicycloheptane, 3,7,7-trimethyl 0.03553 138.25 

7 Sulpiride 0.04369 341.4 
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The study aimed to assess the effectiveness of several methods in distinguishing between 

cancer and non-cancerous groups in urine samples. Results obtained from GC-IMS are 

presented in Table 4.3 1, Table 4.3 2, Table 4.3 3 and Table 4.3 4, with the underlined entries 

representing the data that stood out. For instance, Table 4.3-1 shows a comparison between 

Bladder Cancer (BCa) and Colorectal Cancer (CRC) using the Logistic Regression 

classifier, achieving an AUC of 0.99, indicating excellent discrimination power. The 

sensitivity for the Logistic Regression model is 0.93, with a 95% confidence interval ranging 

from 0.81 to 1. This means that the model correctly identified 93% of the BCa cases in the 

dataset. Similarly, the specificity for the Logistic Regression model is 0.98, with a 95% 

confidence interval ranging from 0.95 to 1. This means that the model correctly identified 

98% of the CRC cases in the dataset. 

In Table 4.3-2, another comparison is presented, involving colorectal cancer and fibrosis 

disease, using the Extreme Gradient Boosting (XGBoost) classifier. The XGBoost model 

demonstrated relatively good discrimination ability, with an AUC value of 0.71. However, 

it showed a high sensitivity of 0.98 but a low specificity of 0, indicating that it had a higher 

tendency to correctly identify CRC cases but struggled to correctly identify Fibrosis cases. 

The observed high variation in the data may be attributed to the imbalanced distribution of 

samples between the CRC class (consisting of 58 samples) and the Fibrosis class (consisting 

of only 7 samples). When the dataset is imbalanced, the classifier may become biased 

towards the majority class (in this case, CRC) and may not perform as well on the minority 

class (Fibrosis). Another reason for the high variation in the data could be the technique used 

for data splitting, which was 10-fold cross-validation. In this technique, the dataset was 

divided into 10 equal-sized subsets, and the classifier was trained and evaluated 10 times, 

with each fold serving as the test set once, while the remaining 9 folds served as the training 

set. With an imbalanced dataset and 10-fold cross-validation, it is crucial to ensure that each 

fold contains a proportional representation of both classes to prevent any bias. However, due 

to the small number of Fibrosis samples, maintaining this balance in every fold was 

challenging, which could further affect the performance estimates of the classifier [16, 17]. 

Table 4.3-8 presents similar findings, focusing on the comparison between HCC and Non-

Fibrosis samples. For this comparison, we utilized the Gaussian Process classifier, and the 

values in parentheses indicate the 95% confidence interval for each metric. The AUC value, 
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with a confidence interval of (0.21-0.73), reveals some uncertainty about the classifier's 

performance. Moreover, the sensitivity and PPV values have confidence intervals of (0-0), 

indicating that the classifier failed to correctly identify any HCC samples or make any 

accurate positive predictions. On the other hand, the specificity and NPV values have 

confidence intervals of (0.85-1), suggesting some uncertainty in the classifier's ability to 

correctly identify non-fibrosis samples. Overall, the GP classifier exhibited limited 

capability to distinguish between HCC and Non-Fibrosis samples, but it demonstrated better 

performance in accurately identifying non-fibrosis samples. 

Conversely, we observed a perfect score of 1 for all metrics achieved using the XGBoost 

classifier when distinguishing between BCa and HCC, as well as between BCa and fibrosis. 

Perfect classification indicates that the classifier makes no errors and successfully separates 

all samples into their respective classes. Nevertheless, it is essential to recognize that the 

GC-IMS data may contain inherent noise, measurement errors, and variations resulting from 

various factors. Additionally, the complexity and heterogeneity of biological samples can 

present challenges in achieving perfect classification. Moreover, GC-IMS data often involve 

high-dimensional feature spaces, and some samples may exhibit overlapping characteristics, 

making it difficult for any classifier to achieve perfect separation. Several potential reasons 

could account for obtaining a perfect score. For instance, if the dataset is small or heavily 

imbalanced, with one class significantly outnumbering the others, a classifier may achieve 

high accuracy by merely predicting the majority class for all samples [18]. Another factor 

to consider is overfitting, where the classifier becomes overly specialized to the specific data 

points in the training set, leading to exceptional performance on the training data but poor 

generalization to new, unseen data. Overfitting can inflate performance metrics artificially 

and may not accurately reflect the classifier's true performance on real-world data. Similar 

patterns were observed in GC-TOF-MS results when differentiating between CRC samples 

and PCa samples [19]. 

Figure 4.3-2 and Figure 4.3-3 displays the ROC curves obtained from GC-IMS and GC-

TOF-MS data, respectively. These ROC curves illustrate the performance of the classifiers 

for various comparison groups. Among BCa patients and PCa patients, the AUC (area under 

the curve) was found to be 0.97 (with a confidence interval of 0.93 to 1.00). This suggests 

that the classifier exhibits a moderate level of discrimination power for distinguishing 
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between these two groups. The ROC curve graphically represents the performance of the 

classifier across various classification thresholds. The AUC serves as a comprehensive 

metric, ranging from 0 to 1, with higher values indicating better discrimination ability. A 

value of 1 represents a perfect classifier, while 0.5 signifies a random classifier. For the BCa 

and PCa comparison, the AUC of 0.97 indicates that the classifier has a high probability of 

accurately classifying positive instances (sensitivity) and negative instances (specificity). 

The 95% confidence interval (0.93 to 1.00) suggests a relatively high likelihood that the true 

AUC value falls within this range. On the other hand, the comparison between HCC and 

non-fibrosis shows an AUC of 0.62, indicating that the classifier's ability to distinguish 

between HCC samples and non-fibrosis samples is only slightly better than random chance. 

This suggests that the classifier's performance in correctly classifying data into their 

appropriate categories may not be very reliable. 

It is important to interpret these results carefully, considering the classifier's performance in 

differentiating between distinct groups. While the AUC of 0.97 for BCa and PCa indicates 

a reasonably good discrimination power, the AUC of 0.62 for HCC and non-fibrosis 

indicates that the classifier's performance in this specific comparison is modest. These 

findings highlight the importance of assessing the classifier's performance across various 

datasets and conditions to obtain a comprehensive understanding of its discriminatory 

capabilities [20]. 

Comparing our results with previous studies, we found that GC-IMS can be used for 

detection of different disease groups. A study conducted by Gasparri et al [21] analysed 

urinary VOCs for the early diagnosis of lung cancer with a gas chromatography-ion mobility 

spectrometer (GC-IMS) and an electronic nose (e-nose) made by a matrix of twelve quartz 

microbalances complemented by a photoionization detector. They showed that GC-IMS 

identified lung cancer with respect to the control group with a diagnostic AUC of 91%, 

sensitivity of 85%, and specificity of 90. Another study conducted by Liu et al. [22] showed 

that GC-IMS was able to detect VOCs in urine samples from 66 patients with PCa and to 

comparatively analyses samples from 87 patients with non-cancerous controls (NCs) with 

an AUC for the RF and SVM model were 0.955 and 0.981, respectively. Similarly, we found 

that Gao et al [23] calculated an AUC of 0.92 (0.96 sensitivity and 0.80 specificity) for 

urinary VOCs analysis of PCa while Lima et al [24] reported an AUC of 0.83 (84% 
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sensitivity and 80% specificity) using PLS-DA for PCa detection. GC-TOF-MS was also 

highly effective in separating colorectal cancer (CRC) and PCa groups with an accuracy of 

0.99 and sensitivity and specificity of 0.97 and 0.98. The highest accuracy obtained by GC-

TOF-MS for CRC and the non-cancerous group was 0.93 and 0.94 for PCa and the non-

cancerous groups. These high values indicate that GC-TOF-MS was able to accurately 

recognize and separate CRC, PCa, and non-cancerous urine samples. 

In this study, we developed urinary VOCs profiles for different cancer groups using GC-

TOF-MS data. Table 4.3-9 consists of the chemicals that have been identified in our study 

and have been cross verified using PubChem, NIST and previously published research, 

which may have relevance to BCa diagnosis. Similarly, Table 4.3-10 consists of chemicals 

that may indicate the presence of Colorectal cancer. Chemicals present in Table 4.3-11 

represent the biomarkers which may represent the possibility of Prostate cancer. Lastly 

Table 4.3-12 contains the chemicals that may have relevance to HCC diagnosis. 

Out of 13 VOCs found noteworthy to BCa, Biphenyl, Heptanal, and 2, 6, 10, 14-tetramethyl- 

Pentadecane were the three distinct biomarkers found in our study that did not overlap with 

other studies. Biphenyl has been identified as the most significant biomarker in our study. 

Biphenyl has been linked to various diseases, including carcinoma. It has been proven that 

Biphenyl is a promoter of BCa in rats [25]. Nonanal, Tetradecane, Dodecane, Hexadecane, 

Naphthalene, and Methyl Isobutyl Ketone have been suggested by Rodrigues et al. [26] in 

their study using GC-MS on BCa cell lines, whereas 2-pentanone and 4-Heptanone overlap 

with the findings of Cauchi et al. [27]. Benzoic acid was another chemical found in our study 

that overlapped in both Rodrigues et al. [26] and Cauchi et al. [27] studies. 

Table 4.3-10 illustrates 17 chemicals relevant for CRC detection. Octanal is a human 

metabolite present in the membrane and generally reported in saliva or faeces inside the 

human body [28]. It was reported by Batty et al. [29] on analysis of faecal samples of CRC 

with PLS-DA following feature selection with Wilcoxon T test. Nonanal is another VOC 

found in our study. It is a toxic compound and has been found related with several diseases 

[28]. Nonanal has frequently been reported as a breath biomarker for CRC in different 

studies [30-32]. Decanal is another important biomarker observed in our study, which has 

been reported as a CRC biomarker in several studies as a breath biomarker [30, 32] and 
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VOCs in cell culture studies [33-35]. Both 2-Pentanone and 4-Heptanone have been reported 

as CRC biomarkers by Arasaradnam et al. [36] in their study of colorectal cancer using 

urinary samples. 2-Heptanone exists at the membrane level inside living species including 

humans, and outside, it can be found in milk, corns, and peppermints. It has been identified 

as a significant CRC biomarker using cell culture in two different studies [33, 35]. It is 

reported as a CRC VOCs in three different studies [30, 32, 37]. Nonane can be found in 

breath, saliva and faeces and is in membrane inside the human body [28, 38]. It has been 

found as a CRC biomarker in plasma samples using GC x GC-MS by Kim et al. [39]. Methyl 

Isobutyl Ketone is a human metabolite and found in urine, saliva, and faeces. It is found in 

several diseases and causes weak effects on the central nervous system and causes memory 

impairment [40]. It has been reported as a breath biomarker of CRC [30, 32]. Ethylbenzene 

is a human metabolite present in subcellular level (membrane) in the human body. It is 

present in tobacco smoke and is a water and air pollutant [28]. De Vietro et al. [31] found 

that ethylbenzene was present in 4 out of the 7 and toluene in 6 out of 7 CRC patient’s breath 

samples and tissue samples. Also, a study conducted by Altomare et al. [41] showed that 

ethylbenzene and toluene were associated with a chemical fingerprint of CRC. 

Table 4.3-11 consists of the list of chemicals that were reported by our study as PCa 

biomarkers. In our study, we found toluene as the most significant chemical for PCa. 

Toluene has been published previously as a significant biomarker for PCa [42]. In addition, 

it has been reported that toluene has been found to be associated with testicular diseases [43, 

44]. Toluene was suggested as a PCa biomarker by Peng et al. [42] in their study of detection 

of different cancers using sensor arrays. Phenol is a toxic compound and is used as a 

disinfectant and can cause dizziness, uraemia, hypotension, confusion, headache, diarrhoea 

etc. Struck-Lewicka et al. [45] found Phenol and acetic acid as a significant biomarker for 

prostate cancer in their study of urine metabolic fingerprinting using LC-MS and GC-MS. 

Ethylbenzene was also demonstrated as PCa biomarker in a study conducted with urine 

samples using GC-MS (Gas Chromatography-Mass Spectrometry) [46]. Lima et al. [47] 

demonstrated in their work that 2-methyl-Cyclopentanone does not naturally occur in the 

human body. It is found to be present in urine as a potential biomarker for prostate cancer. 

They also suggested Naphthalene as a PCa biomarker. 
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In this research, two analytical instruments, GC-IMS, and GC-TOF-MS, were utilized to 

assess their respective abilities to distinguish between various cancer groups and a non-

cancerous group. The results obtained from the GC-IMS demonstrated superior statistical 

performance, indicating its effectiveness in differentiating between the cancerous and non-

cancerous samples. On the other hand, GC-TOF-MS was employed specifically for VOC 

pattern generation. 

The reason why GC-IMS generated better statistical results can be attributed to its capability 

to provide more precise and sensitive measurements of volatile organic compounds (VOCs). 

GC-IMS is known for its high sensitivity, rapid response, and excellent resolution, enabling 

it to detect and quantify subtle differences in VOC profiles, which are crucial for accurate 

classification. The advanced ion mobility technique utilized by GC-IMS facilitates the 

separation and identification of various VOCs present in the samples, enhancing the 

discriminatory power of the instrument. 

Conversely, GC-TOF-MS was chosen for VOC pattern generation due to its ability to 

capture the comprehensive profile of VOCs in the samples. This analytical technique excels 

in detecting a wide range of VOCs, thereby allowing researchers to create detailed VOC 

patterns that can provide valuable insights into the molecular composition and variations 

among different cancer groups. GC-TOF-MS, with its high-resolution mass spectrometry, 

is capable of identifying numerous VOCs simultaneously, enabling the construction of 

comprehensive VOC profiles for in-depth analysis. 

By leveraging the strengths of both GC-IMS and GC-TOF-MS, this research aimed to 

achieve a comprehensive understanding of the VOC profiles associated with various cancer 

groups. While GC-IMS excelled in generating statistically significant results for 

classification, GC-TOF-MS complemented the study by providing detailed VOC patterns, 

contributing to a more comprehensive characterization of the volatile compounds present in 

the cancer samples. This combination of analytical instruments allowed for a holistic 

approach in studying the VOC signatures of different cancer types, thereby advancing our 

understanding of their unique metabolic profiles and potential diagnostic applications. 

The use of urinary VOCs analysis is an attractive option due to the non-invasive nature. It 

also has the potential to be used in early cancer and disease diagnosis with further validation 
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studies. This approach may also prove to be efficient, whilst lowering the cost per patient, 

and increasing patient compliance due to its non-invasive nature. We believe that using 

VOCs to analyse human waste will be an important diagnostic tool for the future. Cancer 

may well be one area of focus and be used as part of the UK two-week wait screening 

programme to help reduce the number of un-needed procedures. However, the success of 

this approach depends on conducting larger studies targeting various cancers and having 

tools that are CE marked or equivalent for cancer diagnosis. 

This thesis chapter highlights several limitations of the study results. Firstly, the study did 

not account for the various contributory factors that can lead to abnormal metabolism and 

subsequent excretion of various concentrations of these chemicals in urine, including stress, 

alcohol, smoking, certain food products, medicines, and environmental factors. Several 

studies have reported the effects of smoking on VOCs [48, 49]. A study conducted by A. 

McWilliams et al. [50] showed that active smoking had an impact on urinary VOCs profiles 

associated with current smokers and ex-smokers. Secondly, the study lacked a healthy 

control group, as it compared different cancer groups with a non-cancerous group consisting 

of patients with a history of different diseases and was conducted at a single site. Thirdly, 

urine was used as a sample, which can be easily influenced by exogenous sources, 

potentially leading to biased results. Finally, the study did not undertake chemical 

identification with calibration standards, nor did it attempt to quantify the identified 

chemicals, although many of these chemicals were previously reported in other studies, 

which indicates that these VOCs can be potential indicators of these diseases. Future 

research should aim to address these limitations by utilizing a larger sample set, including a 

healthy control group, and accounting for the various contributory factors that may impact 

on the excretion of VOCs in urine. 

4.5. Conclusion: 

In this research, GC-IMS and GC-TOF-MS were used to identify VOCs fingerprints using 

urine headspace and establish an interdependence between different cancer groups, disease 

groups and non-cancerous samples. It was found that all these analytical devices have the 

potential to differentiate between different cancer groups. A total of 46 VOCs were found 

to be relevant for identifying these cancer groups, with several VOCs distinct to each cancer. 
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These VOCs profiles for each cancer group may support the use of VOCs for the screening 

of cancer and confirm clinical diagnostic assessments. This will help in avoiding the 

inefficient analytical methods currently used for screening and give better, cheaper, and non-

invasive approaches for cancer and disease diagnosis and detection. In the future, these 

VOCs profiles obtained from these analytical devices could be used as a reference for 

developing low-cost devices. It is plausible that VOCs profiles can be used as an adjunct to 

diagnosis perhaps selecting only high-risk groups to undergo cystoscopy examinations 

which will be widely beneficial considering their limited capacity and cost. 
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Chapter 5. Analysis of Cancer Samples 

using eNoses 

This chapter focuses on the application of two eNose systems, namely, the AlphaMOS FOX 

4000 and PEN3, in the analysis of urinary cancer samples. eNoses were used to analyse 

urine samples obtained from cancer patients as well as healthy controls. The chapter 

discusses the analysis as well as the results obtained from the eNose analysis. It also explores 

the potential of eNose technology for cancer diagnosis and its possible implications for 

distinguishing cancer samples from healthy controls. 

5.1. Introduction: 

As discussed in the chapters before, the eNose is capable of detecting VOCs present in 

biological samples, which potentially can differ between cancerous and healthy individuals. 

Studies have reported that the eNose can distinguish between cancer and healthy samples 

with high sensitivity and specificity. For instance, in a study using urine samples, the eNose 

could differentiate between bladder cancer patients and healthy controls with an accuracy of 

94% [1]. Similarly, in another study using breath samples, the eNose showed a high accuracy 

of 86% in distinguishing lung cancer patients from healthy individuals [2]. Therefore, eNose 

has demonstrated a promising ability to differentiate cancer samples from healthy controls, 

highlighting its potential as a non-invasive diagnostic tool for cancer. 

In this research, we aimed to evaluate the use of the AlphaMOS FOX 4000 eNose and PEN3 

eNose as potential analytical instruments for the detection and discrimination between 

cancer groups and healthy controls. 
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5.2. Materials and Methods: 

5.2.1. Urine Samples: 

The details about the urine sample collection, storage, analysis, and demography have been 

discussed in chapter 4. 

5.2.2. Analytical devices and setup: 

a. The Alpha-MOS electric Nose - FOX 4000 with HS100 

Autosampler: 

The AlphaMOS Fox 4000 is an electronic nose that comprises 18 commercial metal oxide 

sensors (MOS), 6 p-type sensors and 12 n-type sensors, distributed in three temperature-

controlled chambers. The output of the sensors is measured in terms of change in resistance.  

The change of resistance measured refers to the quantitative electrical resistance values 

obtained from the gas sensors during exposure to samples. These values are subsequently 

used to generate the VOC profiles and facilitate the classification of different samples. The 

resistance measurements are fundamental for the AlphaMOS Fox 4000’s functionality and 

its ability to differentiate between various cancer samples and non-cancerous samples. A 

comprehensive explanation of the working principles of the AlphaMOS FOX 4000 can be 

found in Chapter 3 in section 3.3.2 (AlphaMOS FOX 4000 (Toulouse, France):, pg.: 81). 

The data analysis methods that were utilized in this research have been explained in detail 

in Chapter 3 in section c (Quantitative and qualitative analysis for AlphaMOS Fox 4000:, 

pg.: 83). 

b. The PEN3 Electronic Nose (Airsense Analytics GmbH, 

Schwerin, Germany): 
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The PEN3 eNose (Airsense Analytics GmbH, Schwerin, Germany) is a portable (92 × 190 

× 255 mm) olfactory system used for the identification of chemicals and gases. It is a 

combination of a gas sampling unit and a sensor array. In our case the PEN3 eNose is fitted 

with an autosampler (HT2000H Dynamic Headspace Auto-sampler, Brescia (BS), Italy), 

which interfaces directly with the PEN 3 software (WinMuster PEN v 1.6.2.18). A 

comprehensive explanation of the working principles of the AlphaMOS FOX 4000 can be 

found in Chapter 3 in section 3.3.3 (PEN3 Electronic Nose (Airsense Analytics GmbH, 

Schwerin, Germany):, pg.: 87). 

The data analysis methods that were utilized in this research have been explained in detail 

in Chapter 3 in section c (Quantitative and qualitative analysis for AlphaMOS Fox 4000:, 

pg.: 83). 

5.3. Results: 

5.3.1. AlphaMOS electronic Nose- FOX 4000 

with HS100 Autosampler: 

The AlphaMOS FOX 4000 used 18 sensors to evaluate the urine samples and data were 

analysed using the MultiSens Analyzer and RStudio program. The initial analysis performed 

on the features vectors extracted by the MultiSens Analyzer was PCA (Principal Component 

Analysis). An example of the output from the PCA is shown in Figure 5.3-1. 
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Figure 5.3-1:  Principal Component Analysis of AlphaMOS Fox 4000 results where green dots 

represent the features extracted from the bladder cancer samples and yellow dots represent the 

features extracted from the colorectal cancer samples. 

The results from the statistical analysis are shown in Table 5.3 1, Table 5.3 2, Table 5.3-3 

and Table 5.3-4. The tables present the top-performing classifiers among the six introduced 

in Chapter 3, section e (Qualitative and Quantitative Analysis:, pg.: 62). These classifiers 

were carefully selected to effectively distinguish between two classes for each comparison. 

A detailed analysis of this process is discussed in Chapter 3, section c (Quantitative and 

qualitative analysis for AlphaMOS Fox 4000:, pg.: 83). The underlined entries in the tables 

highlight the output that stand out, representing outputs with either remarkably high 

separation or, on the contrary, extremely poor separation. These specific entries highlight 

exceptional performance or challenges faced by the classifiers in distinguishing between the 

compared classes. The underlining emphasizes these crucial points of interest, showcasing 

instances of remarkable success or areas where further improvement may be needed. For 
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more in-depth discussions about the underlined outputs in the tables, refer to the 

"Discussion" section at the end. 

Table 5.3-1: AlphaMOS FOX 4000 Output for the comparison of BCa with different cancers and 

non-cancerous urine samples. 

Table 5.3-2: AlphaMOS FOX 4000 Output for the comparison of CRC with different cancers and 

non-cancerous urine samples. 

  

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

BCa vs non-

Cancerous 

Random 

Forest 

0.86 

(0.76-0.95) 

0.67 

(0.44-0.86) 

0.85 

(0.76-0.94) 

0.63 

(0.41-0.83) 

0.88 

(0.78-0.95) 

BCa Vs CRC 
Neural 

Network 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

BCa Vs PCa 
Random 

Forest 

0.88 

(0.81-0.94) 

0.47 

(0.25-0.69) 

0.90 

(0.83-0.96) 

0.54 

(0.29-0.78) 

0.87 

(0.79-0.94) 

BCa Vs HCC 
Logistic 

Regression 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

BCa Vs 

Fibrosis 

Random 

Forest 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

BCa Vs Non-

Fibrosis 

Random 

Forest 

0.85 

(0.75-0.93) 

0.6 

(0.38-0.8) 

0.84 

(0.73-0.94) 

0.64 

(0.41-0.86) 

0.82 

(0.71-0.93) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

CRC Vs non-

cancerous 
Neural Network 

0.67 

(0.57-0.75) 

0.78 

(0.69-0.86) 

0.34 

(0.22-0.47) 

0.63 

(0.53-0.72) 

0.52 

(0.36-0.67) 

CRC Vs PCa Neural Network 
1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

1 

(1-1) 

CRC Vs 

HCC 
Neural Network 

0.99 

(0.98-1) 

0.8 

(0.67-0.92) 

1 

(1-1) 

1 

(1-1) 

0.92 

(0.86-0.97) 

CRC Vs 

Fibrosis 

Support Vector 

Machine 

0.9 

(0.79-0.99) 

0.98 

(0.95-1) 

0.33 

(0-0.63) 

0.9 

(0.84-0.97) 

0.75 

(0.33-1) 

CRC Vs 

Non-Fibrosis 
Neural Network 

0.93 

(0.86-0.98) 

0.93 

(0.88-0.98) 

0.88 

(0.77-0.97) 

0.93 

(0.87-0.98) 

0.88 

(0.77-0.97) 
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Table 5.3-3: AlphaMOS FOX 4000 Output for the comparison of PCa with different cancers and 

non-cancerous urine samples. 

Table 5.3-4: AlphaMOS FOX 4000 Output for the comparison of HCC with different non-cancerous 

urine samples. 

The ROC curves for these comparisons are shown in Figure 5.3-2. These ROC curves show 

that AlphaMOS FOX was able to discriminate between cancer and fibrosis patients from the 

non-cancerous group with high sensitivity and specificity. The sensitivity, specificity and 

AUC for colorectal cancer and hepatocellular cancer were 0.8 (0.67-0.92), 1 (1-1) and 0.99 

(0.98-1). The separation between prostate cancer and fibrosis groups were high AUC at 0.99 

(0.99-1), sensitivity 0.78 (0.5-1) and high specificity 1 (1-1). Similarly, the ROC curves for 

BCa and CRC, BCa and HCC, BCa and Fibrosis, CRC and PCa showed that AlphaMOS 

FOX was able to identify all these cancer groups correctly. These comparisons reported a 

sensitivity of 1 (1-1), specificity of 1 (1-1) and AUC of 1 (1-1). 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

PCa vs non-

Cancerous 
Random Forest 

0.93 

(0.88-0.97) 

0.78 

(0.67-0.88) 

0.89 

(0.81-0.96) 

0.84 

(0.73-0.94) 

0.85 

(0.76-0.92) 

PCa Vs HCC Neural network 
0.97 

(0.94-0.99) 

0.84 

(0.71-0.96) 

0.98 

(0.95-1) 

0.95 

(0.87-1) 

0.94 

(0.88-0.98) 

PCa Vs 

Fibrosis 
Neural network 

0.99 

(0.99-1) 

0.78 

(0.5-1) 

1 

(1-1) 

1 

(1-1) 

0.97 

(0.92-1) 

PCa Vs Non-

Fibrosis 
Random Forest 

0.91 

(0.84-0.96) 

0.81 

(0.7-0.91) 

0.88 

(0.81-0.95) 

0.79 

(0.67-0.91) 

0.89 

(0.83-0.96) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

HCC Vs non-

Cancerous 

Random 

Forest 

0.69 

(0.58-0.8) 

0.52 

(0.35-0.69) 

0.66 

(0.52-0.78) 

0.48 

(0.31-0.64) 

0.69 

(0.57-0.82) 

HCC Vs 

Fibrosis 

Gaussian 

Process 

0.65 

(0.48-0.8) 

0.72 

(0.57-0.86) 

0.44 

(0.14-0.75) 

0.78 

(0.64-0.92) 

0.36 

(0.12-0.6) 

HCC Vs NON-

Fibrosis 

Neural 

Network 

0.78 

(0.67-0.88) 

0.64 

(0.48-0.79) 

0.75 

(0.62-0.88) 

0.67 

(0.5-0.83) 

0.73 

(0.59-0.85) 

Fibrosis Vs 

Non-Fibrosis 

Random 

Forest 

0.7 

(0.48-0.89) 

0.44 

(0.17-0.73) 

0.97 

(0.91-1) 

0.8 

(0.5-1) 

0.86 

(0.76-0.95) 
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(a) (b) (c) 

   

(d) (e) (f) 

 
  

(g) (h) (i) 

   

(j) (k) (l) 
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(m) (n) (o) 

   

(p) (q) (r) 

 
(s) 

Figure 5.3-2:  ROC curves obtained from the R-Program using GC-TOF-MS for different cancer 

groups where (a) Bladder cancer Vs non-cancerous; (b) Bladder cancer Vs colorectal cancer; (c) 

Bladder cancer Vs prostate cancer; (d) Bladder cancer Vs hepatocellular cancer; (e) Bladder 

cancer Vs fibrosis; (f) Bladder cancer Vs non-fibrosis; (g) Colorectal cancer Vs non-cancerous 

group; (h) Colorectal cancer Vs prostate cancer; (i) Colorectal cancer Vs hepatocellular cancer; 

(j) Colorectal cancer Vs fibrosis; (k) Colorectal cancer Vs non-fibrosis; (l) Prostate cancer Vs 

non-cancerous; (m) Prostate cancer Vs hepatocellular cancer; (n) Prostate cancer Vs fibrosis; (o) 
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Prostate cancer Vs non-fibrosis; (p) Hepatocellular cancer Vs non-cancerous; (q) Hepatocellular 

cancer Vs fibrosis; (r) Hepatocellular cancer Vs non-fibrosis and (s) Fibrosis Vs non-fibrosis. 

The responses generated by all the sensors for different urine samples can be seen in  Figure 

5.3-3. 

 

Figure 5.3-3:  Response of AlphaMOS Fox 4000 sensors for different urine samples. 

The radar plot show that each sensor in the Fox 4000 system responded to specific VOCs 

that were present in the different cancer urine samples. Analysis of the plot revealed that the 

sensors in the Fox 4000 exhibited the highest responses to the bladder cancer and the 

colorectal cancer samples, when compared to the other types of cancer samples. Among the 

sensors, LY2/GH, T30/1, P10/1, T70/2, PA/2, P30/1, and T40/1 demonstrated the most 

significant responses to the VOCs present in these cancer urine samples. 
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5.3.2. PEN3 Electronic Nose (Airsense 

Analytics GmbH, Schwerin, Germany): 

The output of the statistical analysis for the data obtained from PEN3 system was analysed 

using MultiSens Analyzer and RStudio.  The PCA plot obtained is shown in Figure 5.3-4. 

 

Figure 5.3-4:  Principal Component Analysis of PEN3 eNose results where the green dots 

represent the features extracted from the prostate cancer samples and the yellow dots represent the 

features extracted from the control samples. 

The output show that the PEN3 system was successfully able to distinguish different cancer 

and disease groups from each other. The statistical results are represented in Table 5.3-5, 

Table 5.3-6, Table 5.3-7 and Table 5.3-8. These tables display the top-performing classifiers 

out of the six introduced in Chapter 3, section e (Qualitative and Quantitative Analysis:, pg.: 

62). Each of these classifiers was meticulously chosen to effectively distinguish between the 

classes for every comparison. To better understand the analysis pipeline, a thorough 

description is provided in Chapter 3, section  c (Quantitative and qualitative analysis for 

AlphaMOS Fox 4000:, pg.: 83). The underlined entries in the tables draw attention to outputs 

that are particularly noteworthy, either exhibiting remarkably high separation or, conversely, 



 
135 

extremely poor separation. These specific entries highlight instances of exceptional 

classifier performance or challenges faced in differentiating between the compared classes. 

The underlining serves to emphasize these critical points of interest, indicating both 

remarkable successes and areas where further improvement may be necessary. For more 

comprehensive discussions about the underlined outputs in the tables, please refer to the 

"Discussion" section at the end of the chapter. 

Table 5.3-5: PEN3 eNose Output for the comparison of BCa with different cancers and non-

cancerous urine samples. 

Table 5.3-6: PEN3 eNose Output for the comparison of CRC with different cancers and non-

cancerous urine samples.  

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

BCa vs non-

Cancerous 
Random Forest 

0.92 

(0.83-0.99) 

0.83 

(0.64-1) 

0.92 

(0.84-0.98) 

0.77 

(0.56-0.94) 

0.95 

(0.88-1) 

BCa Vs CRC Random Forest 
0.96 

(0.91-0.99) 

0.67 

(0.43-0.9) 

0.98 

(0.95-1) 

0.89 

(0.69-1) 

0.99 

(0.88-0.98) 

BCa vs PCa Random Forest 
0.75 

(0.63-0.86) 

0.17 

(0-0.38) 

0.89 

(0.81-0.96) 

0.25 

(0-0.5) 

0.83 

(0.75-0.91) 

BCa Vs HCC Random Forest 
0.82 

(0.68-0.93) 

0.67 

(0.43-0.89) 

0.79 

(0.62-0.94) 

0.67 

(0.43-0.89) 

0.79 

(0.63-0.98) 

BCa Vs 

Fibrosis 

Gaussian Process 

classifier 

0.76 

(0.56-0.98) 

0.75 

(0.55-0.93) 

0.38 

(0.11-0.67) 

0.64 

(0.43-0.86) 

0.5 

(0.17-0.86) 

BCa Vs Non-

Fibrosis 
Random Forest 

0.89 

(0.76-0.98) 

0.83 

(0.64-1) 

0.93 

(0.85-1) 

0.83 

(0.64-1) 

0.93 

(0.85-1) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

CRC Vs non-

cancerous 
Random Forest 

0.75 

(0.65-0.83) 

0.81 

(0.72-0.89) 

0.58 

(0.44-0.71) 

0.75 

(0.66-0.83) 

0.67 

(0.52-0.81) 

CRC Vs PCa Random Forest 
0.97 

(0.94-0.99) 

0.95 

(0.89-0.99) 

0.94 

(0.88-1) 

0.95 

(0.89-1) 

0.94 

(0.89-0.98) 

CRC Vs HCC Random Forest 
0.87 

(0.78-0.95) 

0.95 

(0.89-0.98) 

0.58 

(0.39-0.75) 

0.87 

(0.80-0.94) 

0.79 

(0.58-0.94) 

CRC Vs 

Fibrosis 

Logistic 

Regression 

 

0.87 

(0.78-0.95) 

0.95 

(0.89-0.98) 

0.58 

(0.39-0.75) 

0.87 

(0.8-0.94) 

0.79 

(0.58-0.94) 



 
136 

Table 5.3-7: PEN3 eNose Output for the comparison of PCa with different cancers and non-

cancerous urine samples. 

Table 5.3-8: PEN3 eNose Output for the comparison of CRC with non-cancerous urine samples. 

The PEN3 system shows promising results in discriminating the cancer groups, disease 

groups and non-cancerous groups. The ROC curves for the eNose are shown in Figure 5.3-5. 

The results indicate that BCa, and non-cancerous group had a sensitivity and specificity of 

0.83 (0.64-1) and 0.92 (0.84-0.98) respectively indicating that the PEN3 system recognised 

13 BCa samples correctly out of 15 and 35 non-cancerous samples out of 38. Similarly, for 

the comparison of the PCa and the non-fibrosis group, the PEN3 system was able to 

recognise 48 out of 55 PCa samples and 13 out of 38 non-fibrosis samples. 

CRC Vs Non-

Fibrosis 
Random Forest 

0.74 

(0.64-0.83) 

0.88 

(0.8-0.95) 

0.43 

(0.29-0.59) 

0.75 

(0.66-0.83) 

0.65 

(0.47-0.82) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

PCa vs non-

Cancerous 
Random Forest 

0.89 

(0.83-0.94) 

0.66 

(0.53-0.79) 

0.87 

(0.79-0.94) 

0.78 

(0.66-0.89) 

0.78 

(0.69-0.87) 

PCa Vs HCC Random Forest 
0.89 

(0.82-0.96) 

0.37 

(0.19-0.56) 

0.98 

(0.95-1) 

0.88 

(0.67-1) 

0.82 

(0.74-0.89) 

PCa Vs 

Fibrosis 
Random Forest 

0.86 

(0.74-0.97) 

0.13 

(0-0.33) 

0.98 

(0.95-1) 

0.5 

(0-1) 

0.88 

(0.81-0.95) 

PCa Vs Non-

Fibrosis 
Random Forest 

0.87 

(0.80-0.93) 

0.57 

(0.42-0.71) 

0.87 

(0.79-0.94) 

0.71 

(0.55-0.85) 

0.78 

(0.69-0.87) 

Comparisons 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

HCC Vs non-

Cancerous 

Logistic 

Regression 

0.65 

(0.51-0.77) 

0.0 

(0-0) 

0.95 

(0.88-1) 

0.0 

(0-0) 

0.65 

(0.55-0.75) 

HCC Vs 

Fibrosis 

Gaussian Process 

classifier 

0.4 

(0.18-0.65) 

0.13 

(0-0.33) 

0.95 

(0.85-1) 

0.5 

(0-1) 

0.72 

(0.58-0.87) 

HCC Vs NON-

Fibrosis 

Gaussian Process 

classifier 

0.71 

(0.59-0.83) 

0.68 

(0.5-0.86) 

0.63 

(0.48-0.78) 

0.54 

(0.38-0.71) 

0.76 

(0.61-0.89) 

Fibrosis Vs 

Non-Fibrosis 
Neural Network 

0.68 

(0.51-0.84) 

0 

(0-0) 

0.97 

(0.91-1) 

0 

(0-0) 

0.78 

(0.66-0.89) 
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Figure 5.3-5: ROC curves obtained from the R-Program using the PEN3 system for different 

cancer groups where (a) Bladder cancer Vs non-cancerous; (b) Bladder cancer Vs colorectal 

cancer; (c) Bladder cancer Vs non-fibrosis; (d) Colorectal cancer Vs non-cancerous group; (e) 

Colorectal cancer Vs prostate cancer; (f) Colorectal cancer Vs non-fibrosis; (g) Prostate cancer 

Vs non-cancerous; (h) Prostate cancer Vs non-fibrosis; (i) Hepatocellular cancer Vs non-

cancerous; (j) Hepatocellular cancer Vs fibrosis; (k) Fibrosis Vs non-fibrosis. 

The response generated by the senor array of the PEN3 system is represented in Figure 5.3-6 

as radar plot. 
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Figure 5.3-6:  Radar plot for the response of PEN3 eNose sensors for different urine samples. 

The output generated by the PEN3 eNose in response to urine samples from patients with 

bladder, prostate, colorectal and hepatocellular cancer was visualized using the radar plot 

shown above. The plot showed that the PEN3 eNose sensors exhibited the highest reactivity 

to BCa and CRC urine samples. Specifically, the sensors with the greatest intensity readings 

were W5S, W1S, W1W, and W2S. These results suggest that the PEN3 eNose has the 

potential to detect differences in the chemical composition of urine samples from patients 

with different types of cancer, which may be useful for diagnostic or screening purposes. 

5.4. Discussion: 

The study aimed to evaluate the diagnostic potential of eNoses namely, the AlphaMOS FOX 

4000 and PEN3 system, in discriminating between the cancer patients and healthy controls 

based on the VOCs detected in the urine samples. The results suggest that the eNose could 

be a promising tool for non-invasive cancer diagnosis, although further studies are needed 

to validate these findings. The limitations of the study include a small sample size and 

potential confounding factors such as age and gender. 
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In the comprehensive study undertaken that focused on distinguishing between cancerous 

and non-cancerous conditions, it was observed that the Random Forest classifier consistently 

yielded the most favourable results. This outcome can be attributed to several intrinsic 

characteristics of the Random Forest algorithm that contribute to its superior performance 

in this context. Random Forest operates by constructing an ensemble of decision trees, where 

each tree is trained on a random subset of the dataset and makes its predictions 

independently. This approach addresses the issue of overfitting, which can be prevalent 

when dealing with complex and high-dimensional medical datasets. The ensemble nature of 

Random Forest reduces the risk of capturing noise or idiosyncrasies present in individual 

samples, thereby enhancing its generalization capability to new, unseen data  [28]. 

The application of PCA on the AlphaMOS FOX 4000 eNose data, shown in Figure 5.3-1, 

has provided valuable insights into the variance and patterns present in the sensor responses. 

The PCA analysis results obtained from the AlphaMOS FOX 4000 eNose, shown in Figure 

5.3-1, reveal that PC1 accounted for 77.6% of the total variance in the data, while PC2 

explained 17.3% of the variance. PCA is a powerful statistical technique used to reduce the 

dimensionality of high-dimensional data while retaining as much variability as possible. In 

our study, we utilized the AlphaMOS FOX 4000 eNose to differentiate between BCa 

samples and CRC samples. 

The high PC1 value of 77.6% indicates that the first principal component captured the most 

significant discriminatory features in the VOC profiles of the samples. This suggests that 

the FOX 4000 eNose successfully distinguished between BCa and CRC samples based on 

the dominant patterns in the VOC data, contributing significantly to the separation of these 

two groups. Additionally, the PC2 value of 17.3% reveals that the second principal 

component identified additional discriminatory information in the VOC profiles, further 

aiding in the differentiation of BCa and CRC samples. 

When considering the cumulative variance explained by PC1 and PC2 (94.9%), it becomes 

evident that these two principal components contain the majority of the discriminatory 

power in the VOC data. This indicates that the FOX 4000 eNose demonstrated high accuracy 

in distinguishing between BCa and CRC samples based on the VOC profiles of the urine 

samples. 
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The radar plot shown in Figure 5.3-3 provides valuable insights into the sensitivity of each 

sensor to specific VOCs associated with different cancer types. Upon analysing the radar 

plot, we observed that the sensors in the FOX 4000 system exhibited varying responses to 

the VOCs present in the different cancer urine samples. Notably, the sensors showed the 

highest responses to the Bladder Cancer (BCa) and Colorectal Cancer (CRC) samples 

compared to other types of cancer samples and the non-cancerous group. Specifically, the 

sensors LY2/GH, T30/1, P10/1, T70/2, PA/2, P30/1, and T40/1 demonstrated the most 

significant responses to the VOCs present in the BCa and CRC urine samples. These sensors 

appeared to be highly sensitive to the specific chemical compounds or VOCs profiles 

associated with these cancer types, leading to distinguishable and robust responses in the 

radar plot. The sensitivity of the identified sensors to BCa and CRC urine samples 

underscores the importance of sensor selection in eNose analysis. The modular design of the 

FOX 4000 system allows for flexibility in choosing the most appropriate sensors, which 

proved beneficial in capturing the unique VOCs patterns associated with specific cancer 

types. A study conducted by Saary et al. showed the importance of visualising the multi-

variate data and delivering its meaning using radar plots [3]. 

 Table 5.3-1 displays the outcomes of various classifiers employed to assess the capability 

of VOCs in distinguishing between different cancer types and healthy controls. The 

performance of the classifiers was evaluated based on different parameters such as AUC, 

sensitivity, specificity, PPV, and NPV. 

Interestingly, some comparisons achieved perfect results as 100%, such as the Neural 

Network classifier for the comparison between BCa and CRC, BCa and HCC, and the 

comparison between BCa and fibrosis that meant that the classifier achieved a perfect 

performance. When both sensitivity and specificity were reported as 100%, this means that 

the classifier had correctly identified all true positives and true negatives, respectively.  

However, perfect classifier performance can be influenced by the distribution of samples 

across different classes. When the dataset is imbalanced, as observed in the BCa and CRC 

sample comparison, one class may significantly outweigh the others. Consequently, the 

classifier might become biased towards the majority class, leading to high accuracy, 

specifically for that class [4, 5]. Additionally, when dealing with a relatively small dataset, 
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there is a higher risk of overfitting. If the dataset is limited in size and contains only a few 

samples for each class, then the classifier may memorize the training data and exhibit 

exceptional performance on it. Nevertheless, it might struggle to generalize effectively to 

new, unseen data [6, 7]. This situation might potentially account for the 100% results 

achieved in the comparison of BCa and HCC samples, as well as in the comparison between 

BCa and fibrosis samples. 

Similarly, in the case of CRC vs non-cancerous, the neural network classifier achieved an 

AUC of 0.67, indicating moderate performance, while sensitivity was relatively high at 0.78, 

suggesting that the classifier correctly identified a significant proportion of positive cases as 

shown in Table 5.3-2. However, specificity was low at 0.34, meaning that the classifier had 

a relatively high false positive rate. In contrast, for CRC vs PCa, the neural network classifier 

achieved perfect performance across all parameters, including AUC, sensitivity, specificity, 

PPV, and NPV, indicating excellent discrimination between the two conditions. Similarly, 

in CRC vs HCC, the neural network classifier achieved an AUC of 0.99, and a sensitivity of 

0.8, but with perfect specificity and PPV, indicating that it could distinguish between these 

two conditions with high accuracy. For PCa vs HCC and Fibrosis as shown in Table 5.3-3, 

the Neural Network achieved an AUC of 0.97 and 0.99, respectively, indicating excellent 

diagnostic ability. The sensitivity, specificity, PPV, and NPV values were all high for these 

comparisons, suggesting that the model was effective in identifying PCa from HCC and 

Fibrosis samples. Finally, as shown in Table 5.3-4, HCC and non-fibrosis comparison 

resulted in an AUC of 0.78, along with a sensitivity of 0.64 and specificity of 0.75. A similar 

study conducted by Esfahani et al. [8] found that the AlphaMOS FOX 4000 eNose had an 

accuracy of 86.4% in discriminating between urine samples from 69 diabetes patients and 

67 healthy controls. 

Similarly, Figure 5.3-4 shows the PCA plot obtained for identifying the most significant 

patterns and variations in the data obtained from the PEN3 eNose. The PCA analysis of the 

PEN3 eNose with PC1 explaining 51.5% of the variance and PC2 explaining 31.3% of the 

variance provides valuable insights into the ability of the PEN3 eNose instrument to 

distinguish between PCa samples and non-cancerous samples based on their VOCs patterns.  
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The PC1 value of 51.5% indicates that the first principal component captured 51.5% of the 

total variance in the data. PC1 represents the direction in the data with the highest variance. 

Therefore, this means that the PEN3 eNose was able to extract key information from the 

VOC profiles of the samples, allowing it to differentiate between different PCa and non-

cancerous samples, as reflected by the variance captured by PC1. Similarly, the PC2 value 

of 31.3% indicates that the second principal component captured 31.3% of the total variance 

in the data. PC2 represents a direction orthogonal to PC1 that explains the second-highest 

amount of variance in the data. The fact that PC2 captures a substantial portion of the 

variance suggests that the PEN3 eNose was able to further discriminate between different 

PCa samples and non-cancerous samples using additional features from the VOC profiles. 

The cumulative variance explained by PC1 and PC2 (51.5% + 31.3% = 82.8%) suggests that 

these two principal components contain the majority of the discriminatory information 

present in the VOC data. This implies that the PEN3 eNose has the capability to differentiate 

between PCa samples and non-cancerous samples with a significant level of confidence, as 

evidenced by the variance captured by the first two principal components. The remaining 

17.2% of the variance may encompass less influential variations or noise that are not as 

critical in distinguishing between PCa samples and non-cancerous samples. While not as 

influential as PC1 and PC2, still contributes to the overall characterization of the data and 

might contain some subtler patterns or variations. This remaining variance represents 

information that is orthogonal to (i.e., not aligned with) the PC1-PC2 plane. 

Overall, the PCA analysis results showed that the AlphaMOS FOX 4000 eNose exhibited 

higher variance in the first and second principal components (PC1: 77.6% and PC2: 17.3%) 

in comparison to the PEN3 eNose (PC1: 51.5% and PC2: 31.3%). This suggests that the 

AlphaMOS eNose was able to capture more significant discriminatory features in the VOC 

data compared to the PEN3 eNose, which might have lower variance in its PCA analysis. 

The results for the statistical analysis shown in Table 5.3-5, Table 5.3-6, Table 5.3-7, and 

Table 5.3-8 represent output obtained by the PEN3 system from distinguishing between 

various types of cancer and non-cancerous samples. In the case of distinguishing between 

BCa and non-cancerous conditions, the Random Forest classifier achieved an AUC of 0.92, 

with a sensitivity of 0.83 and specificity of 0.92. However, in the comparison of BCa vs PCa 
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samples, the Random Forest classifier demonstrated a moderate level of discrimination 

ability in distinguishing between BCa and PCa samples, with an AUC value of 0.75. The 

sensitivity value of 0.17 indicates that the Random Forest classifier had a relatively low 

ability to correctly identify BCa samples among all the BCa samples present in the dataset, 

while the specificity value of 0.89 suggests that the classifier had a high ability to correctly 

identify PCa samples among all the PCa samples in the dataset. This discrepancy in 

performance could be attributed to the imbalanced distribution of samples between the two 

classes (BCa and PCa). Such an imbalance can lead to biased model training, causing the 

classifier to become more specialized in the majority class (PCa) and perform poorly on the 

minority class (BCa). Another possible reason is that the BCa and PCa samples in the dataset 

might have overlapping distributions in the feature space, presenting a challenge for the 

classifier to establish clear boundaries between the two classes. This overlap can hinder the 

classifier's sensitivity, making it difficult to correctly identify samples from the minority 

class. Therefore, these factors could collectively contribute to the observed limitations in the 

Random Forest classifier's performance in the BCa vs PCa comparison. 

Meanwhile, the PEN3 system showed strong performances in distinguishing between CRC 

samples and other cancers as well as non-cancerous samples, as evidenced by high 

sensitivity, specificity, PPV, NPV, and AUC values shown in Table 5.3-6. However, we can 

see in Table 5.3-7, that when distinguishing between PCa vs HCC samples and PCa vs 

Fibrosis samples, the Random Forest classifier demonstrated a relatively moderate 

discrimination ability. Although the high values of AUC of 0.89 and 0.86 for both PCa vs 

HCC samples, and PCa vs Fibrosis samples, respectively, suggested relatively good 

discrimination ability, the low sensitivity values of 0.37 and 0.13, respectively, indicated 

that that the Random Forest classifier had only a moderate ability to correctly identify 

Prostate Cancer (PCa) samples among all the PCa samples present in the dataset. 

The performance metrics for two different comparisons: HCC vs. Non-Cancerous samples, 

and Fibrosis vs. Non-Fibrosis samples presented in Table 5.3-8 indicate that both the 

Logistic Regression and Neural Network classifiers exhibited poor performance in 

distinguishing between HCC and Non-Cancerous samples and between Fibrosis and Non-

Fibrosis samples. The classifiers had low sensitivity, which means they failed to detect 

positive cases correctly. The high specificity indicates that they performed well in 
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identifying true negatives. The low PPV and NPV values indicate a high number of false 

positives and false negatives, respectively, leading to the classifiers' limited ability to 

accurately classify samples into their respective categories. Additionally, the 95% 

confidence intervals provide a range of likely values for each metric, considering the 

uncertainty in the estimates due to the limited sample size. In a similar study, the PEN3 

eNose was used to analyse breath samples from patients with colorectal cancer and healthy 

controls, and achieved a high sensitivity of 93.33%, which means that it correctly identified 

most of the CRC patients. However, the specificity was very low at only 10%, which means 

that the PEN3 eNose had a high false-positive rate, misidentifying many healthy individuals 

as CRC patients [9]. 

The findings of the research demonstrate the ability of eNose system to distinguish between 

different cancer types and healthy controls using urinary VOCs. The perfect performance 

achieved for certain comparisons is particularly significant, indicating that it correctly 

identified all true positives and true negatives. While the classifier's performance was only 

moderate or low for the other comparisons. There are several factors that can influence the 

performance of an eNose system for distinguishing between cancer samples and healthy 

controls. One possible factor is the variability in the composition of the VOCs in different 

cancer types, which can affect the ability of the eNose to accurately detect and differentiate 

between them. Additionally, the size and diversity of the sample population used to train 

and test the classifiers can also impact their performance. If the sample size is too small, the 

classifiers may not have enough data to accurately learn the patterns in the VOCs detected 

by an eNose, resulting in lower performance [10, 11]. Overall, the performance of the eNose 

depends on a range of factors and may vary depending on the specific cancer type and the 

characteristics of the sample population. 

However, the AlphaMOS FOX 4000 and PEN3 eNose systems, both employed for gas 

sensing and analysis, exhibit distinctive features that set them apart. Notably, the AlphaMOS 

FOX 4000 features a significantly larger sensor array comprising 18 sensors, as opposed to 

the PEN3's 10-sensor array. This augmented sensor array confers a greater capacity for 

detecting and analysing a diverse range of volatile organic compounds (VOCs), thereby 

enhancing its potential for comprehensive gas sensing and analysis. Moreover, the modular 

design inherent to the AlphaMOS FOX 4000 endows users with the flexibility to selectively 
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choose and customize sensors tailored to their specific application requirements. This 

adaptability amplifies the eNose's versatility, enabling it to cater for a broad spectrum of 

analytical needs with precision. 

Another notable distinction is the substantial difference in sensitivity levels between the two 

devices. The AlphaMOS FOX 4000 exhibits exceptional sensitivity, capable of detecting 

minute VOC concentrations within the parts per billion (ppb) range. In contrast, the PEN3 

eNose displays limited sensitivity, with a lower limit of detection ranging from 0.1 to 5 parts 

per million (ppm). This discrepancy in sensitivity confers a considerable advantage to the 

AlphaMOS FOX 4000, rendering it better suited for applications necessitating high 

sensitivity and accurate detection of low-concentration VOCs. 

In summary, the comprehensive data analysis supports the contention that the AlphaMOS 

FOX 4000 eNose surpasses the PEN3 eNose in various critical aspects, including sensor 

array size, versatility, and sensitivity. Consequently, the AlphaMOS FOX 4000 emerges as 

the superior choice for applications wherein extensive gas sensing and analysis capabilities 

are essential for precise and reliable results. 

Overall, these results indicate that the AlphaMOS FOX 4000 and PEN3 systems have high 

potential for use for the identification of cancer samples and offer several advantages for 

cancer detection, including non-invasiveness, rapid detection, portability, high sensitivity 

and specificity, and the ability to detect cancer at an early stage. While the high specificity 

and sensitivity methods achieved in some comparisons are promising, it is important to 

continue to refine and optimize the technology for more accurate and reliable results. These 

findings suggest that VOCs analysis combined with machine learning algorithms, 

particularly neural networks, may have a promising potential for the diagnosis and 

discrimination of different cancer types from healthy controls. Overall, the study highlights 

the potential of eNose technology in cancer diagnosis and warrants further research in this 

area. 
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5.5. Conclusion: 

In conclusion, our findings suggest that these methods have the potential to be developed as 

non-invasive and cost-effective tools for the detection of various cancers and diseases. It 

should be noted that this is the first study to utilize the AlphaMOS FOX 4000 to compare 

bladder cancer urine samples with non-cancerous samples and the first to employ a PEN3 

eNose for testing urine samples from patients with CRC and PC. 
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Chapter 6. Analysis of Infectious 

Disease VOCs: 

This chapter includes the analysis of urine samples of infectious disease subjects, namely 

Urinary Tract Infections (UTIs). The chapter gives detailed information on the background 

of UTI diseases and the effects of UTI on the population, especially women. The present 

chapter explains the methodology of the process, as well as the analytical instruments 

utilized in the course of this study. Specifically, the investigation employed two GC-IMS 

instruments - the G.A.S. FlavourSpec GC-IMS and the Silox GC-IMS (IMSPEX, U.K.) - as 

well as two electronic noses (eNose), namely the AlphaMOS FOX 4000 and PEN3. 

Moreover, this chapter incorporates the outcomes of statistical analyses based on data 

gleaned from the aforementioned instruments, culminating in a comprehensive discussion. 

6.1. Introduction: 

Urinary Tract Infections (UTIs) are bacterial infections of the urinary tract and are 

considered to be amongst the most prevalent infections. It has been observed that the 

incidence of UTIs is higher in women as compared to men, with an estimated 50% to 60% 

of adult women experiencing a UTI at least once during their lifetime [1, 2]. UTI infections 

can be divided into two categories: uncomplicated and complicated UTIs. Uncomplicated 

UTIs occur in healthy patients with properly functioning urinary tracts whereas complicated 

UTIs result from abnormal functioning of urinary tract [3-5]. UTI treatment is known to be 

financially demanding and can impose significant social and personal burdens [6]. At 

present, commonly employed diagnostic techniques for UTI detection include Dipstick 

urinalysis, urine culture, among others. Despite its low cost, Dipstick urinalysis has been 

found to exhibit a low level of specificity[7]. On the other hand, urine cultures demonstrate 

high specificity. However, the analysis time can be up to 24 to 48 hours [8, 9]. The analysis 

of VOCs can be used for the identification and diagnosis of the disease but due to its 

complicated and complex nature, it is important that the analysis is precise and efficient. 
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In this chapter, we aim to analyse the UTI samples with two different GC-IMS instruments 

and two different electronic nose devices and investigate the use of VOCs for the diagnosis 

and detection of UTIs in comparison to healthy controls. 

6.2. Materials and methods: 

6.2.1. Sample design: 

The samples for this study were collected and cultured at University Hospital Coventry and 

Warwickshire (UHCW) to confirm the disease. The samples were stored at -80°C in 

universal sample containers according to standard operating procedures compliant with 

tissue bank requirements under Human Tissue Act 2004 and were transferred to the 

University of Warwick in three batches where they were stored at -20°C. The samples were 

then defrosted at room temperature in a fume cupboard before testing. 5 ml of each sample 

was then transferred into 20 ml glass vials which were sealed with Blue BiMetal Seal, 3mm 

Thick PTFE/Blue Silicone, Ultra Low Bleed crimp caps (Thames Restek, FI5150BMUL-

20B) using an appropriate crimp tool. These samples were then analysed by different 

analytical instruments as discussed in this study. The demographic data of the subjects are 

illustrated in Table 6.2-1. 

Table 6.2-1: Demographic data for subject groups. 

N= 81 
Positive 

Samples 

Negative 

Samples 

Samples with 

<10 CFU/ml 
Mixed Growth 

No. of samples 9 56 13 3 

6.2.2. Analytical instruments: 

The analytical instruments used in this study were a G.A.S. FlavourSpec GC-IMS, Silox 

GC-IMS, an AlphaMOS FOX 4000 and a PEN3 system. The working and the data analysis 

methods for the FlavourSpec, AlphaMOS FOX 4000 and PEN3 device are presented in 

chapter 3. The details for the Silox GC-IMS are discussed below. 
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a. Silox GC-IMS (IMSPEX, UK): 

The operating principle of a Silox GC-IMS device is similar to the FlavourSpec. The Silox 

GC-IMS contained a 30 m long column which provides better selectivity for light molecules. 

The Silox GC-IMS consist of an integrated temperature and flow controller which generates 

better separation of highly volatile compounds and a shorter run time.  

For analysis, the samples were collected and analysed at the hospital within hours after 

collection. After collecting the samples from the patients, they were stored in a fridge at 4oC. 

The samples were then transferred to 20 ml glass vials each containing a 5 ml sample. The 

sample was heated for 10 minutes at 40°C using a dry-block heater. The urine samples for 

analysis were introduced to the Silox device using a 21g needle which was attached to the 

input port of the Silox. The needle was then inserted into the headspace of a glass vial 

containing the urine sample at least 1 cm above the urine. The needle was held in place for 

6 seconds. This allowed the VOCs present in the headspace of the urine sample to enter and 

be analysed by the GC-IMS. The carrier gas used for the Silox was nitrogen, the carrier gas 

flowrate was set to 150 ml/min and the sample flowrate was 20 ml/min. The Silox was set 

to run for 5 min for every sample with a heating temperature set to 80oC. 

6.2.3. Result: 

a. GC-IMS Results: 

The urine samples were characterised as negative and positive UTI samples based on the 

confirmation obtained after culturing them. These samples were analysed using two GC-

IMS instruments and the output from the two GC-IMS instruments used in this study. Figure 

6.2-1 shows the chromatogram obtained from the GC-IMS FlavourSpec, which displays the 

raw data. The chromatogram acquired from a negative UTI sample exhibits a relatively flat 

baseline, with minimal or no significant peaks that suggest the absence of UTI-causing 

VOCs. In contrast, a chromatogram obtained from a positive UTI sample reveals several 

prominent peaks that indicate the presence of UTI-causing VOCs. These peaks are believed 

to correspond to the specific VOCs produced by the bacteria responsible for the infection. 
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Figure 6.2-1: represents the output of the GC-IMS and its ability to differentiate between negative 

UTI samples and positive UTI samples. 

The output was further quantified using the data analysis process as described in chapter 3 

(Qualitative and Quantitative Analysis:) and this is shown in Table 6.2-2 for negative UTI 

sample and positive UTI samples.  

Table 6.2-2: Statistical output from the FlavourSpec GC-IMS and the Silox GC-IMS for the 

comparison between negative UTI samples and positive UTI samples. 

Instruments 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

FlavourSpec 

GC-IMS 

Extreme 

Gradient 

Boosting 

0.571 

(0.459-0.681) 

0.947 

(0.907-0.981) 

0.076 

(0-0.179) 

0.789 

(0.726-0.851) 

0.286 

(0-0.615) 

Silox GC-

IMS 

Extreme 

Gradient 

Boosting 

0.885 

(0.819-0.945) 

0.968 

(0.935-0.99) 

0.5 

(0.345-0.667) 

0.876 

(0.821-0.927) 

0.813 

(0.643-

0.952) 

The statistical analysis showed that the Silox GC-IMS was able to differentiate between 

negative and positive samples with much better accuracy in comparison to the FlavourSpec 

GC-IMS. Though the sensitivity achieved from FlavourSpec GC-IMS was much higher with 

94.7%, it failed identify positive urine samples and resulted in poor specificity of only 7.6%. 
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On the other hand, the Silox GC-IMS showed remarkably high sensitivity with 96.8% and 

it successfully identified 50% of the positive samples. Overall, the results obtained from the 

Silox showed an AUC of 88.5% whereas the FlavourSpec resulted in 57.1% for the AUC 

value. 

The ROC curves generated by the bespoke R program from the two instruments are shown 

in Figure 6.2-2. 

  
(a) (b) 

Figure 6.2-2: represents the output of the GC-IMS to differentiate negative UTI samples and 

positive UTI samples. (a) represents the output generated by the FlavourSpec GC-IMS and, (b) 

represents the output generated by the Silox GC-IMS. 

b. eNose Results: 

There were two eNoses used in this study and the outputs obtained from the two eNoses, the 

AlphaMOS FOX 4000 and PEN3, were analysed using the data analysis process described 

in chapter 3 (Quantitative and qualitative analysis for AlphaMOS Fox 4000: and 

Quantitative and qualitative analysis for PEN3 eNose:). The statistical output generated is 

shown in Table 6.2-3 for the comparison of negative and positive UTI samples. 
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Table 6.2-3: Statistical output from the AlphaMOS FOX 4000 eNose and the PEN3 eNose for the 

comparison between negative UTI samples and positive UTI samples. 

Instruments 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

AlphaMOS 

FOX 4000 

Random 

Forest 

0.885 

(0.769-0.978) 

0.982 

(0.946-1) 

0.667 

(0.375-0.909) 

0.948 

(0.896-0.983) 

0.857 

(0.6-1) 

PEN3 
Random 

Forest 

0.675 

(0.433-0.905) 

1 

(1-1) 

0.444 

(0.167-0.727) 

0.911 

(0.842-0.965) 

1 

(1-1) 

 Out of the two eNoses, the results show that FOX 4000 was able to distinguish between the 

two UTI groups much better than PEN3 eNose. The results obtained from FOX 4000 showed 

remarkably high sensitivity of 98.2% and high specificity of 66.7%, whereas the PEN3 

eNose showed 100% sensitivity but low specificity of 44.4%. Overall, the FOX 4000 

demonstrated a high AUC of 88.5% and PEN3 eNose demonstrated a moderate AUC of 

67.5%. Further discussion regarding the comparison between different outputs in the tables 

can be found at the end in the "Discussion" section. 

The ROC curves for the two eNose statistical output are shown in Figure 6.2-3.  

  
(a) (b) 

Figure 6.2-3: represents the output of the two Electronic Noses to differentiate negative UTI 

samples and positive UTI samples. (a) represents the output generated by the AlphaMOS FOX 

4000 device and, (b) represents the output generated by the PEN3 device. 
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c. AlphaMOS FOX 4000 Results: 

The AlphaMOS FOX 4000 consists of 18 MOS gas sensors which represent the presence of 

VOCs in terms of change in resistance [10]. The typical output of the FOX 4000 eNose is 

shown in Figure 6.2-4.  Each colour in the figure represents the response of the different 

MOS sensors to a positive UTI sample. 

 
 

Figure 6.2-4: Output of the FOX 4000 for positive UTI sample. 

Figure 6.2-5 is a bar graph generated by the FOX 4000 device for positive UTI samples 

where each graph represents the response of the sensors to the sample. The graph shows that 

the most responsive sensors were P30/1, P10/1, P10/2, PA/2, T30/1, and TA/2. 
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Figure 6.2-5: Bar graph representation of the output generated by the FOX 4000 in response to a 

positive UTI sample (Orange) and a Negative UTI sample (Blue).  

The data generated from the FOX 4000 was then analysed. The UTI samples were divided 

into positive UTIs, negative UTIs, samples with less than 10 CFU (colony forming units) 

and mixed growth samples. These groups were then analysed using an R program and the 

MultiSens Analyzer. The output generated from the R program is shown in Table 6.2-4. The 

table presents the classifiers that achieved the highest level of separation among the six 

classifiers outlined in Chapter 3 in section e (Qualitative and Quantitative Analysis:, pg.: 

62) that generate the highest level of separations to distinguish between two classes for each 

comparison. 

Table 6.2-4: Statistical Output of UTI urine Samples using the AlphaMOS FOX 4000. 

Groups 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

Negative Vs 

Positive 
Random Forest 

0.886 

(0.769-0.978) 

0.982 

(0.946-1) 

0.667 

(0.375-0.909) 

0.948 

(0.896-0.984) 

0.857 

(0.6-1) 

Negative Vs 

Mixed Growth 

Neural 

Network 

0.643 

(0.477-0.778) 

1 

(1-1) 

0 

(0-0) 

0.949 

(0.898-0.983) 

NA 

(NA) 

Negative Vs 

<10 CFU 
Random Forest 

0.563 

(0.437-0.685) 

0.077 

(0.0-0.22) 

0.911 

(0.845-0.965) 

0.167 

(0.0-0.5) 

0.809 

(0.725-0.889) 

Negative Vs 

Positive and 

Mixed Growth 

Random Forest 
0.859 

(0.747-0.958) 

0.964 

(0.914-1) 

0.5 

(0.25-0.733) 

0.9 

(0.836-0.962) 

0.75 

(0.454-1) 

Negative Vs 

Positive and 

<10 CFU 

Random Forest 
0.743 

(0.629-0.841) 

0.892 

(0.82-0.96) 

0.454 

(0.275-0.631) 

0.806 

(0.721-0.885) 

0.625 

(0.417-0.818) 

Negative Vs 

Positive and 

mixed growth 

and <10CFU 

Random Forest 
0.734 

(0.632-0.831) 

0.857 

(0.79-0.92) 

0.44 

(0.28-0.608) 

0.774 

(0.688-0.861) 

0.578 

(0.388-0.762) 

 The ROC curves for the data analysis for the AlphaMOS FOX 4000 eNose output can be 

seen in Figure 6.2-6.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.2-6: ROC curves for UTI urine samples using the AlphaMOS FOX 4000 eNose where (a) 

ROC curve for Negative Vs Positive UTI samples; (b) ROC curve for Negative Vs Mixed growth 

UTI samples; (c) ROC curve for Negative Vs <10 CFU growth UTI samples; (d) ROC curve for 

Negative Vs Positive and Mixed growth UTI samples; (e) ROC curve for Negative Vs Positive and 
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<10 CFU growth UTI samples; and (f) ROC curve for Negative Vs Positive, <10 CFU growth and 

mixed growth UTI samples. 

Figure 6.2-6 shows the different ROC curves for the comparison of the different categories. 

The R program analysis showed that the best result was generated by the random forest 

classification algorithm for comparison between negative and positive UTI samples. Out of 

the 56 negative samples, the FOX 4000 eNose was able to identify 55 samples correctly 

whereas out of the 9 positive UTI samples, it was able to identify 6 samples correctly. 

However, for the comparison of negative UTI samples with mixed growth samples, the 

neural network showed the best results where it showed that the FOX 4000 eNose identified 

all samples as negative samples. The reason for this could be the small set size of mixed 

growth samples. Similarly, for the comparison between negative samples and samples with 

infection less than 10 cfu/ml of urine, the neural Network classification algorithm showed 

that the FOX 4000 eNose was able to identify 51 negative samples out of 56 samples 

correctly and just one sample for the samples with infection less than 10 cfu/ml of urine. 

d. PEN3 eNose Results: 

Figure 6.2-7 illustrates the graphical representation of the measurement of relative sensor 

values on the y-axis versus time on the x-axis for the gas sensors within the PEN3 eNose. 

Each coloured curve corresponds to the response of different sensors in the PEN3 device to 

a positive UTI sample. 
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Figure 6.2-7: represents the output of the PEN3 device to UTI urine sample. 

A radar plot was created to represent the response of each sensor towards the positive and 

negative UTI sample as shown in Figure 6.2-8. The radar plot compared the sensor’s 

response for a positive UTI sample (blue line) and a negative UTI sample (orange line). It 

was observed that the sensors W2S, W1W and W1S showed the most promising response 

to the two UTI samples. 

 

Figure 6.2-8: The output from the sensors of the PEN3 eNose for positive UTI urine samples and 

Negative UTI urine samples. 

The R program was used to analyse the different UTI sample groups. The 81 UTI samples 

were divided into four groups, namely, Positive UTI samples, samples with less than 10 

CFU (colony forming units), mixed growth samples and negative samples which were used 

as controls for this study. The results obtained are shown in Table 6.2-5. The statistical 

analysis between the different UTI groups and the controls showed that the PEN3 device 

was able to discriminate between UTI samples and controls. The table presents the 

classifiers that achieved the highest level of separation among the six classifiers mentioned 
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in the Chapter 3 in section e (Qualitative and Quantitative Analysis:, pg.: 62) that generate 

the highest level of separations to distinguish between two classes for each comparison. 

Table 6.2-5: Statistical Output of UTI urine Samples using PEN3eNose. 

Groups 
Training 

Strategies 
AUC Sensitivity Specificity PPV NPV 

Negative Vs 

Positive 

Random 

Forest 

0.66 

(0.43-0.91) 

1 

(1-1) 

0.44 

(0.17-0.73) 

0.91 

(0.84-0.97) 

1 

(1-1) 

Negative Vs 

Mixed 

Growth 

Neural 

Network 

0.77 

(0.54-0.94) 

0.00 

(0.00.00) 

0.98 

(0.94-1) 
0.00 (0.00.00) 

0.94 

(0.89-0.98) 

Negative Vs 

<10 CFU 

Random 

Forest 

0.48 

(0.32-0.65) 

0.00 

(0.00.00) 

0.94 

(0.88-0.98) 
0.00 (0.00.00) 

0.879 

(0.69-0.87) 

Negative Vs 

Positive and 

Mixed 

Growth 

Random 

Forest 

0.69 

(0.51-0.87) 

0.98 

(0.94-1.00) 

0.42 

(0.18-0.67) 

0.88 

(0.80-0.95) 

0.83 

(0.50-1) 

Negative Vs 

Positive and 

<10 CFU 

Random 

Forest 

0.66 

(0.54-0.78) 

0.86 

(0.78-0.94) 

0.41 

(0.24-0.59) 

0.77 

(0.68-0.86) 

0.56 

(0.35-0.77) 

Negative Vs 

Positive and 

mixed growth 

and <10CFU 

Random 

Forest 

0.73 

(0.63-0.83) 

0.86 

(0.78-0.93) 

0.44 

(0.28-0.61) 

0.77 

(0.69-0.86) 

0.58 

(0.39-0.76) 

The ROC curves generated by the R program is shown in Figure 6.2-9. 

  

(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 6.2-9: ROC curves for the UTI urine samples using the PEN3 eNose where (a) ROC curve 

for Negative Vs Positive UTI samples; (b) ROC curve for Negative Vs Mixed growth UTI samples; 

(c) ROC curve for Negative Vs <10 CFU growth UTI samples; (d) ROC curve for Negative Vs 

Positive and Mixed growth UTI samples; (e) ROC curve for Negative Vs Positive and <10 CFU 

growth UTI samples; and (f) ROC curve for Negative Vs Positive, <10 CFU growth and mixed 

growth UTI samples. 

These curves represent the accuracy of the classification models to correctly classify the 

different UTI samples and the non-UTI samples. The ROC curves for the negative UTI 

samples in comparison to mixed growth resulted in 0.77 AUC, whereas the AUC for positive 

UTI samples and negative UTI samples was 0.68. The lowest AUC obtained was for the 

negative UTI samples and samples with <10 CFU and these showed that the PEN3 eNose 

was not able to accurately distinguish between these groups. 



 
161 

6.3. Discussion: 

Urinary tract infections remain the cause of high medical expenditure and morbidity with 

infrequent occurrence among 2- to 13-year-old girls and leading to multiple episodes for 

young and adult females [11, 12]. UTIs have been regarded as a consistent disease that 

affects 1% to 3% of all consultations [13]. The most challenging aspect of UTIs is diagnostic 

delays. Any delays in the diagnosis or detection of UTIs can lead to loss of renal function 

and damaged kidneys. The currently available diagnostic methods include urinalysis and 

urine cultures. These methods are considered gold standard for the detection of UTIs and 

can detect the presence of pathogens in the urine [14]. Urinalysis is a quick and non-invasive 

method, but it has low sensitivity and selectivity whereas urine culture is more specific, but 

the diagnosis through culture takes a long time. Though these are non-invasive methods, 

they have their own limitations [15, 16]. Therefore, it would be beneficial to have a fast, 

cheap, and non-invasive diagnostic method. 

As observed in Chapter 5, consistent outcomes were evident in this study, aligning with the 

Random Forest classifier yielding the most favourable results. The Random Forest algorithm 

is an ensemble learning technique that merges multiple decision trees to render robust 

predictions.  The algorithm's proficiency in capturing non-linear correlations, 

accommodating feature interactions, and curbing overfitting through its ensemble approach 

collectively contribute to its heightened performance. The ensemble nature of the algorithm 

guarantees stability, diminishing the likelihood of model bias or variance, thereby 

engendering a well-balanced predictive efficacy. The observed supremacy of Random 

Forest in distinguishing between disease samples and healthy controls instances underscores 

its relevance and potential for enhancing medical diagnostic endeavours. 

Table 6.2-2 and Table 6.2-3 represent the results obtained from the comparison between 

negative UTI samples and positive UTI samples using four different analytical instruments, 

namely, the AlphaMOS FOX 4000, the PEN3 eNose, the FlavourSpec GC-IMS, and the 

Silox GC-IMS. Comparing these instruments, we observed that the AlphaMOS FOX 4000 

and the Silox GC-IMS exhibited higher Area Under the Curve (AUC) values of 0.885, 

indicating their superior overall ability to discriminate between negative and positive UTI 

samples. These instruments demonstrated better separation power by capturing the essential 



 
162 

discriminatory features present in the VOC profiles of the samples. The AlphaMOS FOX 

4000 exhibited excellent sensitivity (0.982) and NPV (0.857), implying its ability to 

correctly identify positive and negative UTI samples, respectively. On the other hand, the 

Silox GC-IMS showed high sensitivity (0.968) and PPV (0.876), signifying its effectiveness 

in distinguishing between the two groups by correctly detecting positive UTI samples and 

maintaining a high level of confidence in its positive predictions. 

Conversely, the FlavourSpec GC-IMS exhibited relatively low specificity (0.076) and NPV 

(0.286), indicating its challenges in correctly identifying negative UTI samples. This 

suggests that the instrument may have faced difficulties in achieving a strong separation 

between the two groups, particularly with respect to correctly identifying true negatives and 

maintaining confidence in its negative predictions. The PEN3, although achieving an AUC 

of 0.675, demonstrated perfect sensitivity (1.0) and NPV (1.0) along with low specificity 

(0.444) and PPV (0.911). This implies that the instrument was successful in correctly 

identifying all positive UTI cases while exhibiting some misclassifications in negative UTI 

samples, leading to a compromised specificity and PPV. While achieving a sensitivity of 1.0 

(100%) and a negative predictive value (NPV) of 1.0 (100%) might seem impressive, it 

could potentially indicate overfitting of the model to the training data, data imbalance, 

generalizability, validation, noise, and clinical relevance. 

In conclusion, the AlphaMOS FOX 4000 and the Silox GC-IMS instrument demonstrated 

superior performance in distinguishing between negative and positive UTI samples. 

However, the evaluation of these results should be considered in the context of the 

imbalanced dataset to ensure that the classifier's performance is not biased towards the 

majority class, and further validation on more balanced datasets would be beneficial to 

assess the robustness and generalizability of these findings. 

Detection of UTIs using volatile organic compounds have been investigated over the years. 

The analysis of urine for the detection of bacteria was used by Hayward et al. [17] in his 

study of diagnosis of UTIs using gas-liquid headspace. They found that HS-GC-MS was 

able to detect all the infected urine samples correctly and reported chemical biomarkers such 

as ethanol, methyl mercaptan or dimethyl sulphide for the detection of UTIs. In this study, 

we found that the GC-IMS was able to distinguish between different UTI sample categories 
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with high success. The FlavourSpec GC-IMS showed very high sensitivity, i.e., 94.7% 

whereas the specificity achieved was very low, i.e., 7.6%. In comparison to the FlavourSpec 

GC-IMS, the Silox GC-IMS resulted in high AUC value. The Silox GC-IMS was able to 

differentiate between negative samples to the infected samples at high rates. The sensitivity 

obtained by the Silox was 96.8% and specificity was 50%. The result generated through an 

R program showed that the FlavourSpec was able to correctly identify 51 negative UTI 

samples out of 56 negative samples, whereas it was only able to identify 2 samples with 

positive UTIs. It was observed that there was a wide difference between the sensitivity and 

specificity of the Silox GC-IMS and the FlavourSpec GC-IMS devices. These discrepancies 

can be attributed to the fact that the samples for the Silox GC-IMS device were collected 

and used directly for analysis within a few hours of collection, while it was reported that the 

urine samples used in the analysis of the FlavourSpec GC-IMS were mishandled and not 

refrigerated properly. This mishandling resulted in the degradation of the chemical 

biomarkers present in the samples. A number of studies have shown that the mishandling of 

samples can lead to the potential degradation of the quality of the sample. The study 

conducted by Esfahani et al. [18] showed that the urinary metabolite degradation caused by 

the storage and mishandling of samples led to a loss of chemical information from the urine 

headspace for gas analysis at −80 °C. The disadvantages of the GC-IMS technologies are 

that they cannot be used in real time, they require trained personal and are very expensive. 

Therefore, the focus has moved to an eNose device. eNoses analyse data in real-time and 

are an inexpensive technology. 

Figure 6.2-5 is a bar graph obtained from the AlphaMOS FOX 4000 eNose, representing the 

response of the sensors to positive UTI samples and negative UTI samples. Each bar in the 

graph corresponds to a specific sensor in the eNose, and the height of the bar indicates the 

magnitude of the response exhibited by the sensor to the respective sample. The graph 

reveals that certain sensors demonstrated significant differences in their responses between 

positive and negative UTI samples. These sensors, namely P30/1, P10/1, P10/2, PA/2, 

T30/1, and TA/2, exhibited notably higher responses to positive UTI samples compared to 

negative UTI samples. This disparity in response of these specific sensors to positive UTI 

samples indicates their potential significance in discriminating between positive and 

negative UTI cases. The ability of the eNose to detect such discriminatory patterns offers 

valuable insights into the VOC profiles associated with UTI infections, which can aid in the 
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development of diagnostic tools and contribute to better disease classification and 

management. 

There is limited research on the use of eNoses for UTI diagnosis and detection. Roine et al. 

[19] conducted a study on 101 samples of different UTI pathogens, namely, Escherichia 

coli, Staphylococcus saprophyticus, Klebsiella species, Enterococcus faecalis, and healthy 

controls. They used a commercially available eNose (ChemPro 100i, Environics Inc., 

Mikkeli, Finland) and analysed the samples using Linear discriminant analysis (LDA) and 

logistic regression (LR) classification models. In their study, they found out that eNose was 

able to achieve a sensitivity and specificity of 95% and 97% respectively, using logistic 

regression and a sensitivity of 90% and specificity of 96% using linear discriminant analysis. 

In this study, we compared the performance of two electronic nose devices, the AlphaMOS 

FOX 4000 eNose and the PEN3 eNose, for their ability to discriminate between different 

sample groups based on volatile organic compounds (VOCs). The statistical outputs 

obtained from the two eNoses were analysed to evaluate their separation capabilities and 

discriminatory power. For the comparison between negative and positive urinary tract 

infection (UTI) samples, the AlphaMOS FOX 4000 eNose exhibited an AUC of 0.886 with 

a sensitivity of 0.982 and a specificity of 0.667. On the other hand, the PEN3 eNose achieved 

an AUC of 0.66 with a sensitivity of 1 and a specificity of 0.44. These results indicate that 

both eNoses showed some level of discriminatory ability, but the AlphaMOS FOX 4000 

eNose demonstrated a slightly better performance in distinguishing between positive and 

negative UTI samples. 

Similarly, when comparing negative UTI samples with samples showing mixed growth, the 

AlphaMOS FOX 4000 eNose achieved an AUC of 0.643 with a sensitivity of 1 and a 

specificity of 0, whereas the PEN3 eNose obtained an AUC of 0.77 with a sensitivity of 0 

and a specificity of 0.98. In this case, the PEN3 eNose showed higher specificity, while the 

AlphaMOS FOX 4000 eNose had perfect sensitivity. Furthermore, for the comparison 

between negative UTI samples and samples with a bacterial count of less than 10 colony-

forming units (CFU), the AlphaMOS FOX 4000 eNose obtained an AUC of 0.563 with a 

very low sensitivity of 0.077 and a specificity of 0.911. The PEN3 eNose achieved an AUC 

of 0.48 with a sensitivity of 0 and a specificity of 0.94. Here, the AlphaMOS FOX 4000 
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eNose showed higher specificity, while the PEN3 eNose had lower sensitivity. The results 

suggest that the classifiers had no ability to differentiate negative samples from samples with 

mixed growth, resulting in a specificity value of 0. This could be due to the imbalanced 

distribution of samples, with a larger number of negative samples (56 samples) and a smaller 

number of mixed growth samples (3 samples) as well as samples with a bacterial count of 

less than 10 CFU (13 samples), and this could also contribute to the skewed performance of 

the classifier. 

When considering the comparisons involving combinations of different sample groups, both 

eNoses generally demonstrated reasonable discriminatory capabilities, but their 

performances varied depending on the specific sample groups being compared. The 

AlphaMOS FOX 4000 eNose often exhibited higher AUC values and sensitivity in 

comparison to the PEN3 eNose, while the PEN3 eNose showed higher specificity in some 

cases. In conclusion, the AlphaMOS FOX 4000 eNose and the PEN3 eNose showed varying 

levels of separation capabilities in distinguishing between different sample groups based on 

VOC profiles. The AlphaMOS FOX 4000 eNose generally demonstrated slightly better 

discriminatory performance in comparison to the PEN3 eNose in most cases. 

The foremost limitation of this study was that the urinary samples used during this study 

specifically for the analysis using the FlavourSpec GC-IMS, the AlphaMOS FOX 4000 

eNose and the PEN3 eNose were reported to have been mishandled during storage which 

may have resulted in the decay of the metabolic characteristics of the samples. The 

mishandling of the samples may have led to substantial contamination, degradation, or 

cross-contamination of the samples which could have significantly impacted on the integrity 

of the data and compromised the data to the extent that the results may be unreliable for 

making any meaningful conclusions. In such cases, the analysis may be deemed null and 

void, and the data should not be used for making any scientific or clinical decisions [20]. 

Another limitation of this study was the unbalanced sample set sizes for the different 

categories of the samples. Due to this, the classification algorithm may be unable to factor 

in the unbalanced classes and this invariance may affect the results [21]. 

In this research, we have explored the statistical analysis of several GC-IMS devices, such 

as, the FlavourSpec GC-IMS and the Silox GC-IMS, and eNose devices, particularly the 
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AlphaMOS FOX 4000 and PEN3, for distinguishing between various sample groups based 

on VOCs. The success of the statistical analysis discussed relies on several key criteria. First 

and foremost, the analysis should exhibit a high discriminatory power, effectively 

distinguishing between different groups or classes based on the VOC profiles detected by 

the eNose devices. For instance, in one of the comparisons, the AlphaMOS FOX 4000 eNose 

demonstrated an AUC of 0.886 (with a 95% confidence interval of 0.769 to 0.978) when 

differentiating between negative and positive UTI samples. This suggests that the eNose has 

a relatively high ability to correctly identify positive UTI samples among all the UTI 

samples present in the dataset [22]. 

Another essential criterion is the specificity of the analysis, ensuring that the classifier can 

accurately identify negative instances, thereby minimizing false positives. In the same UTI 

example, the specificity of the AlphaMOS FOX 4000 eNose was reported as 0.667 (with a 

95% confidence interval of 0.375 to 0.909), indicating that it had a moderate ability to 

correctly identify negative UTI samples among all the negative samples in the dataset. 

Confidence intervals also play a critical role in providing a measure of uncertainty around 

the estimated performance metrics. Wider confidence intervals, such as in the case of the 

FlavourSpec GC-IMS, with an AUC of 0.571 (with a 95% confidence interval of 0.459 to 

0.681), signify higher uncertainty regarding the classifier's performance. 

Moreover, consistency and reproducibility of such results are crucial for reliable analysis. 

For instance, in the comparison between negative and mixed growth samples using the 

Neural Network classifier, the AUC of the PEN3 eNose was 0.77 (with a 95% confidence 

interval of 0.54 to 0.94). This suggests that the classifier consistently performed well in 

distinguishing between these two groups in repeated runs. The consideration of data 

imbalance is also critical. For example, in the comparison between Negative and Positive 

UTI samples, the dataset was imbalanced with 56 negative samples and 9 positive samples. 

The analysis should address such imbalanced data to prevent biases [23]. 

By meeting these key criteria, the statistical analysis can provide meaningful insights into 

the performance of the devices used in this research. These insights can thus potentially aid 

in clinical diagnosis, disease classification, and monitoring, with potential applications in 

various healthcare settings [24]. 
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The use of an eNose for the detection of bacteria looks promising and a large amount of 

research has been done for the detection of bacteria specially using urinary headspace. The 

early detection of UTIs using an eNose has shown inadequate results due to the low 

sensitivity and specificity of the sensors. Improvements are required in the sensors’ 

sensitivity and pattern recognition in order to offer an effective clinical implementation. 

6.4. Conclusion: 

The use of VOCs to understand the chemical fingerprint of diseases and use them for the 

early diagnosis and prognosis has revealed significant potential for a very long time. UTI 

infections remain the reason for higher medical costs and high mortality with low sensitivity 

and time on using current diagnostic methods. It is important to develop a highly sensitive, 

cheaper, and fast solution to this problem. In conclusion, the results found in our study 

showed the potential of urinary VOCs for the discrimination of UTI samples from healthy 

controls. Both the GC-IMS technology and the eNose technologies were able to differentiate 

between negative UTI samples and positive UTI samples but the sensitivities obtained from 

these instruments were not high enough to confirm that they are reliable enough for early 

UTI diagnosis. However, an eNose can deliver a solution to these limitations over the GC-

IMS technologies as eNoses are fast, cheap, and portable devices. They provide a 

considerable cost reduction solution required currently for the detection and diagnosis of 

UTIs as well as possibly helping in the early detection of UTIs which in turn would result 

in further cost reductions. However, more research is required for the development of eNose 

sensors to improve in the sensitivity for the early detection of UTIs. 
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Chapter 7. Development of enhanced 

Photoionisation Detector 

Chapter 7 of this thesis presents a comprehensive overview of the Photoionization Detector 

(PID) technology and outlines the design approaches taken to develop three in-house 

prototypes: PID+ version 1, version 2, and version 3. The chapter commences with a brief 

introduction to PID technology, followed by a detailed description of the principle of 

ionization operation. Subsequently, the chapter delves into the approaches adopted for 

prototype development, including a comprehensive account of the faults and errors 

encountered. Furthermore, this chapter and the following chapter present detailed 

information on the results obtained during device development. The comprehensive and 

detailed information provided in this section facilitates the reproducibility of the study by 

other researchers. 

7.1. Introduction: 

The presence of Volatile Organic Compounds (VOCs) beyond a threshold value has an 

adverse effect on human health and on other living organisms. VOCs are toxic gases that 

may cause disease or eventually death [1]. VOCs originate everywhere around us in the form 

of alkanes, alkenes, aromatic hydrocarbons, ketones, aldehydes, nitrogenous compounds, 

etc. [2]. The analysis of VOCs has attracted attention in recent years and with the 

development in the scientific research technologies, the monitoring of the VOCs associated 

with various issues such as medical diagnosis [3], indoor/outdoor air pollution [4], climate 

changes [5], changes in soil microbiology [6] etc. 

The most successful analytical tools available for the analysis of VOCs are GC-MS, IMS, 

PID, eNose, chemical sensors such as Conducting Polymer sensors, SAW sensor arrays, 

MOS sensors, etc. and these have been discussed in detail in chapter 3. 

The PID is comprised of an ionization chamber and a high voltage detecting unit, with a UV 

lamp situated inside the ionization chamber to generate UV light used to ionize gaseous 
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compounds. When the ionization energy produced by the lamp is more than the ionization 

energy of the compounds, they ionise into charged molecules. These ionised analytes are 

then detected by the high voltage detectors [7]. With developments in technology, the 

demands for accurate, improved, simple and sensitive devices have increased in recent years. 

Conventional methods for the detection of the VOCs are costly, bulkier, and heavier, time-

consuming and involve limited sampling. Technologies such as GC-IMS and IMS have high 

sensitivity and high selectivity [8]. GC and MS have become especially useful analytical 

methods within the last few years. However, the main disadvantages of GC–MS are that 

they have a long analysis time, a demand for qualified technicians, excessive cost, and 

bulkier size, whereas eNoses are cost-effective, easily portable and have shorter analysis 

time. The major drawbacks of eNose systems are that since they use an array of sensors, 

every sensor has its own advantages and drawbacks. eNose sensors require regular 

calibration to maintain accuracy and may experience drift over time, affecting their 

reliability. Environmental factors, such as temperature, humidity, and the presence of other 

odours, can interfere with eNose performance, compromising the accuracy of VOCs’ 

detection. Moreover, different types of eNose sensors may exhibit varying sensitivities and 

response ranges, making it challenging to achieve consistent and comparable results across 

different sensor types [9-11]. 

The PID was initially reported in 1960 as a means of detecting gases and vapours. At the 

time, it was already known that ionization of gases and vapours was an effective method for 

measuring their concentrations. However, the use of UV radiation for ionization proved to 

be a more stable process than previous methods, as it did not require the use of inert gases 

and eliminated problems associated with coatings and column bleed that were observed with 

PID using flowing inert gases. The introduction of UV radiation in PID technology allowed 

for the creation of more reliable and efficient devices for the detection of VOCs. The use of 

UV radiation in PID also made the devices more cost-effective, portable, and easier to use 

[12]. Since the development of the first PID, there have been many advancements in the 

technology, including the development of in-house versions, which have improved upon the 

original design to make them more efficient, accurate, and sensitive. The first PID with a 

sealed UV source was developed at HNU Systems, Inc. (Newton Upper Falls, 

Massachusetts). The PID developed at HNU consisted of two parts, a power supply to 

provide high voltages and a detector module. The detector consisted of a sealed UV chamber 
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which enclosed an UV bulb with potential energy of 10.2 eV emitting UV radiations through 

a magnesium fluoride window into the chamber resulting in the photoionization of all the 

molecules with potential energy equal or less than 10.2 eV. The ionised molecules were then 

collected at the detecting electrodes and measured using the FID electrometer in the Tracer 

Model 550 gas chromatograph. They found that the PID showed sensitivity towards the 

organic compounds and some inorganic compounds with potential energy less than 10.2 eV. 

They also found that the PID showed a 30-fold increase in sensitivity compared to an FID 

[13]. After this, several studies were conducted to evaluate the strength of PID using 

different chemicals. The study conducted by Marsha et al. [14, 15] used an HNU systems 

PID using a 10.2 eV lamp with different standards. They found that the PID was more 

sensitive to the chemicals with higher carbon number, functional groups, and bonding types 

of the chemicals [14, 15]. Studies done on the PID show the capabilities of the use of a PID 

for the detection of gases/chemicals. 

7.2. Theory: 

The PID operates on the basic principle of photoionization, which involves the use of 

photons to generate ions. However, it is crucial to note that not all photons can produce 

ionization, as the energy of the photon must be higher than that of the gas molecules or 

atoms for ionization to occur. The energy required to displace an electron from VOCs 

molecules is referred to as the ionization energy, and the larger the molecule, the less energy 

is required for the detection. The PID utilizes UV radiation to ionize gas samples into 

charged molecules that can be detected by electrodes. UV radiation has a short wavelength 

and higher frequencies, which implies higher energy. Therefore, the PID's detection 

capability is based on the energy of the photons, making it selective and sensitive to low 

concentrations of VOCs. The ionization process transpires within an ionization chamber, 

which is visually demonstrated in Figure 7.2-1. 
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Figure 7.2-1: Ionization Process 

Photons emitted by the UV bulb are absorbed by the sample molecules resulting in the 

formation of a charged molecule. When the photoionization energy emitted by the lamp is 

more than the photoionization energy of the sample molecules, it results in the generation 

of charged molecules and free electrons. 

hv + Molecule -> Molecule* (charged molecule) + e-  Equation 11 

The ions generated are collected by the electrodes by applying a bias voltage of a few 

hundred Volts. The design of the chamber is one of the crucial factors affecting the 

sensitivity, selectivity, response time and linearity of the device. 

The core components of a PID design are the main circuitry, the ionisation chamber and the 

source, and electrodes. 

7.2.1. Ionisation source: 

The ion source or ionisation source used in a PID is typically a UV lamp. The UV lamp is 

comprised of a glass lamp body and a crystal window, where the crystal window serves as 

the exit window for the UV photons essential for the photoionization process. The level of 

selectivity exhibited by the ionization source is reliant on the photoionization energy of the 

photons, which can vary depending on the gas and window crystal utilized. For instance, 

krypton emits radiation at 123.9 nm and 116.9 nm. Commercial ionization sources currently 

available on the market are capable of producing ionization energies ranging from 8.3 eV to 
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11.8 eV [16, 17]. The ionization process that takes place in the UV lamp is a function of the 

energy produced by the gas discharge, which excites the inert gas molecules and leads to the 

emission of photons. These photons then enter the crystal window and interact with the gas 

sample in the ionization chamber, ionizing it into charged molecules that can be detected by 

electrodes. The selection of the appropriate gas and crystal window combination plays a 

significant role in enhancing the sensitivity and selectivity of the ionization source, which 

is essential for effective gas detection. Table 7.2-1 contains the list of material used for the 

fill gas and window crystal. Transmission windows combined with gases filled in the lamps 

also determine the life of the lamp and the selectivity. The average life of UV lamps can 

vary depending on the specific manufacturer, model, and usage conditions. Some lamps may 

last around 500 to 1000 hours, while others designed for more heavy-duty or industrial 

applications may last up to 2000 to 4000 hours. The most common lamp is the 10.6 eV lamp 

as it is the strongest and longest-lived lamp. It uses krypton as fill gas and a magnesium 

fluoride window [18]. The UV lamp used is in this research is a 10.6 eV Heraeus UV lamp 

shown in Figure 7.2-2. 

 

Figure 7.2-2: Heraeus UV lamp 

Table 7.2-1: Transmission Window and fill gas  

Nominal lamp 

Photon Energies (eV) 
Fill Gas 

Window 

Crystal 

Crystal Transmittance 

wavelength range (nm) 

11.7-11.8 Ar LiF 105-5000 

10.6 Kr MgF2 115-7000 

10.2 H2 MgF2 115-7000 

9.8-10.0 Kr CaF2 125-8000 

9.5-9.6 Xe BaF2 135-9900 

9.5 O2 CaF2 135-9900 
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8.4 Xe Al2O2 145-4500 

8.4 Xe SiO2 145-2300 

The lamps can be driven by either a DC or RF mode, with the RF mode being particularly 

advantageous for miniaturisation. In the RF mode, the lamp is excited by the voltage applied 

to the conductors present external to the lamp. The RF excited UV lamps consist of a 

cylindrical conductor placed concentric to the lamp cavity, which is used for RF coupling to 

the external conductors. The lamp does not require internal electrodes, and hence can be 

miniaturised. A high voltage is applied to the external conductors, which excites the gas 

inside the lamp. The excited gas absorbs all the energy corresponding to the frequency of 

the UV light and transmits the light out through the transmission window. These transmitted 

photons enter the UV chamber where they ionise the gas molecules.  

The RF mode has a higher energy efficiency and a longer lamp lifetime than the DC mode. 

The increased lamp life is primarily attributed to the more efficient and gentler ionization 

process that occurs in the RF mode. 

In RF excitation mode, the UV lamp operates at a higher frequency, typically in the radio 

frequency range (e.g., 13.56 MHz). The RF power is applied to the lamp using a high-

frequency oscillator, which creates an oscillating electric field within the lamp. This 

oscillating electric field induces rapid ionization and recombination of the gas molecules 

inside the lamp, producing UV photons. On the other hand, in DC mode, the lamp operates 

at a constant direct current, which does not provide the same level of efficient ionization and 

recombination as RF excitation. The lower efficiency in DC mode can result in a lower UV 

light output for the same electrical power input. 

The rapid and efficient ionization and recombination processes in RF mode cause less wear 

and tear on the lamp components compared to the continuous ionization and recombination 

processes in DC mode. As a result, the RF mode can significantly extend the lifespan of the 

UV lamp. In some cases, the lamp life can be extended to thousands of hours in RF mode, 

while in DC mode, it might only last for hundreds of hours [19, 20]. 
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7.2.2. Ionisation chamber: 

The ionisation chamber is a crucial component in the operation of the PID and serves as the 

location for the detection and measurement of ionised chemicals. It is equipped with two 

inlets for the gas to pass through, a cavity where the gas is contained, a hole for the placement 

of the UV bulb, and two electrodes (anode and cathode) for the measurement of ionised 

chemicals.  

The gas enters the chamber through one of the inlets, where it comes into contact with UV 

radiation emitted by the lamp. When the UV radiation strikes a gaseous molecule, it results 

in the emission of a free electron, which is then collected at the detector. This generates an 

ionisation current, which is measured by the electrodes. 

The size of the ionisation chamber is an important factor that affects the performance of the 

PID. The size of the chamber plays a role in determining the sensitivity, response time, and 

signal-to-noise ratio of the device. Several studies have shown that a larger ionisation 

chamber leads to a lower response time, whereas an excessively small chamber can result in 

lower sensitivity. Therefore, the size of the ionisation chamber must be chosen carefully to 

optimize the performance of the PID [21-23]. 

7.2.3. Detector: 

When UV light with sufficient energy strikes a molecule, it ionizes it by knocking off an 

electron, leaving behind a positively charged ion and a free electron. These free electrons 

are collected by two parallel conducting plates, which are maintained at a high voltage, 

creating an electric field that attracts the electrons towards the detector plates and repels the 

positively charged ions. This movement of electrons towards the plates leads to the 

generation of a current, which is directly proportional to the concentration of the gas sample. 
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7.3. Materials and Methodology: 

7.3.1. Design of first-generation prototype of 

PID+: 

The main elements of the first-generation prototype of PID+ are the power supply module 

for the UV lamp, the detection and amplification circuit, and an embedded signal processing 

circuit. Figure 7.3-1 illustrates the fundamental block diagram of the first generation PID+ 

prototype. The power circuit or power supply unit takes power from an external DC supply 

and regulates it and powers the device. A microcontroller is used to control, operate, and 

convert the various signals used for the operation of the PID+ and to convert the signal 

produced by the PID+ in to a readable format. The bulb circuit powers up the UV lamp used 

for the ionization. The output from the lamp photo-ionises gaseous molecules. The bulb used 

is a 10.6 eV Heraeus Photoionization lamp. The circuit uses an H-bridge and a step-up 

transformer. The transformer is used to produce a high voltage to turn on the UV bulb. The 

detector unit is used to detect the ionised gases and convert them into current. This generated 

current is amplified using an amplifier unit and read using a data logger. 

 

Figure 7.3-1: illustrates the fundamental block diagram of the first generation PID+ prototype. 

a. Power Supply and microcontroller unit: 
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The main function of the power supply unit was to deliver the power to the different 

components/ ICs on the device. Figure 7.3-2 shows a schematic diagram of the power supply 

and microcontroller unit of the first generation PID+ prototype. The main components of 

the power supply unit were voltage regulators. The voltage regulators were used to generate 

a stable and constant +/- 5V DC and +/- 3.3V supply from an external 12V DC power supply 

and deliver it to the different components populated on the board. The microcontroller used 

in this board was an Arduino M0. The Arduino M0 is powered by an Atmel SAMD21 MCU, 

featuring a 32-bit ARM Cortex® M0 core. The microcontroller was used to control the 

operation of the sensor and interpret the output of the sensor. 
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Figure 7.3-2: Power Supply and Micro-controller Unit 
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b. Bulb circuit and UV lamp/UV chamber: 

The bulb circuit consisted of the power supply required for the excitation of UV lamp. The 

power supply required for the UV lamp was high frequency (around 100 KHz) and high 

voltage (around 1000V). It was required to have a stable frequency and stable voltage to 

maintain and prolong the life cycle of the UV lamp. The bulb circuit comprised of an H-

bridge and a step-up transformer. The H-bridge was used to take the DC voltage supply from 

the power supply unit and use internal flip-flops to convert the DC voltage into 50% duty 

cycle supply which was further fed to the primary of a step-up transformer. The output signal 

generated by the bulb circuit is used for the excitation of the UV lamp which was placed in 

a resin printed UV chamber which was sealed so that there was no leakage of UV light as 

well as no contamination of the gaseous samples.  

The bulb circuit powers up the UV lamp used for the ionization. The output from the lamp 

photo-ionises the gaseous molecules. The bulb used is a 10.6 eV Heraeus Photoionization 

lamp. The circuit uses an H-bridge and a step-up transformer. The transformer was used to 

produce a high voltage to turn on the UV bulb. Figure 7.3-3 shows the ionisation chamber 

with two inlets for the passage of the sample and represents the pictures and CAD drawings 

of the first version of the UV chamber. 

The ionisation chamber used for this research was 3D printed and measured 

43.81*17.75*8.07 mm. The dimensions of the ionization chamber were carefully selected 

to achieve a compact and lightweight design. A smaller size was chosen to minimize the 

overall footprint of the PID+ device, making it more portable and convenient for various 

applications. Two 1/8th tube fittings were screwed into threads on the sides to serve as inlets 

and outlets. This chamber extends to cover the electrode plates, guiding the ions from inlet 

to the outlet. The chamber was designed so that it assured leakage free flow of the test gas. 

The UV bulb is placed inside the photoionization chamber in such a way that the high energy 

photons travelled perpendicular to the flow of test gas. The placement of the UV bulb inside 

the photoionization chamber was strategically chosen to optimize the ionization process. By 

positioning the UV bulb in such a way that high-energy photons travelled perpendicular to 

the flow of the test gas, maximum interaction between the gas molecules and UV photons 
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was ensured. This configuration enhanced the efficiency of ionization, leading to better 

sensitivity and detection capabilities of the PID+ device. 

The rationale behind these design choices was to create an efficient, reliable, and compact 

ionization chamber for the PID+ device. The combination of 3D printing technology, precise 

measurements, and thoughtful design allowed for a leak-free gas flow and optimized 

interaction between the UV bulb and the test gas. These features were crucial in enhancing 

the overall performance and sensitivity of the PID+ device, making it a valuable tool for gas 

detection and analysis in various applications. 

Top View 

of the resin 

printed UV 

Chamber   

Bottom 

View of 

the resin 

printed UV 

Chamber 
  

Side View 

of the resin 

printed UV 

chamber   

Figure 7.3-3: first version Ionisation chamber 

c. Detector unit and Amplifier stage: 

The detectors used were two parallel plates of conductor placed perpendicular to the UV 

lamp inside the UV chamber. The main purpose of these conducting plates was to collect 
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the ionised molecules/free electrons generated after becoming ionised by the UV radiation. 

An extremely high voltage was applied at the detectors to generate a high electric field. The 

high electric field was used to attract the free electrons or ions towards the detector plates. 

Figure 7.3-4 shows a picture of the detector plates. 

 

Figure 7.3-4: pictorial representation of the detector plates. 

The detection unit consisted of a DC voltage (5V) to a High Voltage DC converter (500V). 

This high electric field was used to deflect the ions towards the electrode detectors where 

one of the electrode plates is supplied with the HV DC and the other one was grounded. The 

HV DC was altered by programming the microcontroller to study the effect of changing the 

bias voltage to the sensitivity of the electrodes. The program used to change the bias voltage 

can be found in Appendix A. The signal generated by the electrodes was fed to a two-stage 

amplifier to amplify the ion current obtained from both the electrodes. 

In the first stage, the transimpedance amplifier was utilized to convert the current output 

from the electrodes into a corresponding voltage signal and the second stage was used for 

amplification of the signal to meaningful voltage levels. This approach was advantageous in 

providing high sensitivity to detect even the slightest changes in gas concentrations. By 

accurately converting the weak current signals to voltage, the PID+ could achieve precise 

measurements and respond effectively to low-level gas concentrations, making it a reliable 

gas sensor. 

One of the primary considerations in selecting the amplifier components was to ensure low-

noise performance. Low-Noise Op Amps were employed in the circuit design to minimize 

electrical noise and interference. This resulted in an improved signal-to-noise ratio, ensuring 

the accuracy and reliability of the PID+ output. The reduction of unwanted electrical noise 

further enhanced the PID+'s ability to detect gas concentrations accurately, especially in 
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environments with potential electromagnetic interferences. Another critical aspect of the 

amplifier strategy was the utilization of MOS-Input Op Amps. The MOS technology 

provided high input impedance, reducing the current drawn from the electrodes and 

minimizing signal loading effects. This characteristic was instrumental in preserving the 

sensor's electrical properties and maintaining the stability of the sensor's response. 

Additionally, considering the PID+ device's intended use in various settings, the choice of 

Low-Power Op Amps was essential to optimize power consumption. These op amps were 

designed to be energy-efficient, allowing the amplifier stage to operate with minimal power 

consumption. As a result, the PID+ device could be used in portable and battery-operated 

applications, maximizing its operational time, and reducing the need for frequent battery 

replacements. 

The outputs generated by the two electrodes were measured and illustrated as output 1 and 

output 2 during measurement. Figure 7.3-5 shows a schematic of the bulb circuit and 

detector circuit. 
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Figure 7.3-5: Schematic of the main circuitry 
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d. Hardware setup: 

Figure 7.3-6 shows the hardware setup clearly illustrating all the main elements of the first 

generation PID+ prototype. 

 

Figure 7.3-6: Hardware Setup 

e. Experimental setup 

The first generation PID+ prototype was tested using isobutylene (ISB). Isobutylene (ISB) 

had been used as the primary VOCs to test the performance of the first generation PID+ 

prototype. ISB is a common gas used for testing because it is inexpensive, readily available, 

has average sensitivity and is non-toxic [30]. 

To understand the sensitivity of the prototype, it was tested under various conditions. The 

testing conditions included changing the flow rates of the ISB, the concentrations of ISB 
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and the biasing of the electrodes. An API Dilution calibrator- Model 700 was used to 

generate the desired concentrations and flow rates of the gas and regulate them into the PID. 

The circuit was powered up with a power supply of 12 Volts and consumed 64 mA current. 

The output was visualised using a Pico ADC24 Data logger. 

The results obtained from the various tests are described in chapter 8. 

7.3.2. Design of second generation PID+ 

prototype: 

The second generation PID+ prototype followed the same building blocks as the first 

generation PID+ prototype. The main fundamental changes were made to increase the 

sensitivity of the prototype which included integrating the microcontroller within the design, 

a change in the bulb circuit for the excitation of the UV lamp and some updates to the 

detector circuit.  

a. Power Supply and microcontroller unit: 

Figure 7.3-7 shows the schematic of the power supply and microcontroller unit. The second 

generation PID+ prototype was powered using either a USB or a DC power supply. USB-B 

connectors were connected to the PCB as well as to interface the PCB with a PC. 5V voltage 

applied to the board which was regulated to +/- 3.3 V for the different components on the 

PCB. Instead of an Arduino M0 board, a low-power, high performance ATSAMD21G18 

ARM® Cortex®-M0+ based flash microcontroller was used. This helped in decreasing the 

size of the board and to simplify the board design. The main functions of the 

ATSAMD21G18 microcontroller were to control the functionality of the bulb circuit, 

control the bias voltage of the detector electrodes and stream the data generated by PID+ to 

the PC. A 10 position SMD header was populated on the board to boot load the 

microcontroller. The microcontroller was flashed using a SEGGER J-Link BASE JTAG/ 

SWD Debugger. Another important change made in this prototype was that an additional 

ADC (Analog-to-Digital Converter) was added to the outputs of the detecting electrodes. 
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The ADC was used to convert the analogue signal detected by the electrodes and convert it 

into digital form and process it using the microcontroller. 

The idea of integrating the microcontroller directly onto the PCB in the second version of 

the PID+ device was to bring several benefits and improvements to the system. By 

eliminating the need for an external Arduino board, the overall size and footprint of the PID+ 

device were reduced, making it more compact and lightweight. This miniaturization proved 

to be advantageous for applications where space was limited, such as portable or handheld 

gas detectors. The direct integration of the microcontroller minimized the risk of loose 

connections or signal interruptions that could have occurred with an external board. 

Additionally, integrating the microcontroller on the PCB contributed to cost savings in the 

manufacturing process, as it reduced the number of external components required and 

streamlined the assembly steps. The ADC added to the circuit enabled the PID+ to record 

and store the digitized measurement data, facilitating data logging capabilities. This was 

especially valuable for monitoring gas concentrations over time and for capturing data 

during specific events or conditions. 
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Figure 7.3-7: Schematics for Power Supply Unit and Microcontroller unit. 
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b. Bulb circuit and UV lamp/UV chamber: 

The main changes to the bulb circuit were made in the circuit design for the excitation of 

the UV lamp. The main aim for the development of the bulb circuit was to generate a stable 

high frequency sine wave to drive the primary side of the transformer. Different concepts 

were applied for the sine-wave circuit, some of which are explained below: 

1. Pulse Width Modulation-Low pass filter: 

The main concept behind the circuit shown in Figure 7.3-8 is to generate a Pulse 

Width Modulation (PWM) wave using the microcontroller and use an external RC 

(Resistor-Capacitor) low-Pass filter to generate the sine wave. When a PWM signal 

is passed through a low pass filter, it removes the high frequency component and 

converts the digital PWM signal into an analogue signal. A passive filter was used 

for this circuit. The passive filter has an advantage over an active filter as it offers 

low cost and reduced complexity. However, they can suffer from impedance loading 

issues and high distortions as can be seen in Figure 7.3-9. 

 

 

Figure 7.3-8: RC Filter for sine wave generation 
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Figure 7.3-9: output of the Pulse Width Modulation-Low pass filter circuit 

2. H-Bridge using mosfet ICs: 

An H-bridge with an RC filter is a circuit which consists of four switches with a load in the 

centre and a DC supply connected at the top and ground at the bottom. These switches were 

individually controlled in such a way that the voltage across the load changed polarity after 

each half cycle of the control signal which was being used to sequentially drive the switches. 

This control signal was a PWM signal generated by an Arduino. To generate a sine wave, 

two pins of the Arduino were used, one for the positive cycle and the other for the negative 

half cycle. 

Figure 7.3-10 shows the circuit diagram for the H-Bridge circuit. The PWM generated by 

one pin (A) of the Arduino was applied to one p-channel mosfet (IRF4905) using a driver 

IC TC4421A which outputs an inverted signal and one n-channel mosfet (IRLZ34N) using 

a driver IC TC4422A and PWM generated by another pin (B) of the Arduino was applied to 

another p-channel mosfet (IRF4905) using a driver IC TC4421A and another n-channel 

mosfet (IRLZ34N) using driver IC TC4422A. When a high PWM signal was applied, the 

mosfet M1 (pmos) and M3 (nmos) turned on and when a low PWM signal was applied, the 

mosfet M2 (pmos) and M4 (nmos) turned on. The output generated by the H-Bridge was 

made to pass through a low pass filter which generated a sine wave. The output generated 
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through the circuit was not stable and could not produce a smooth sine wave. The output 

generated using this circuit is illustrated in Figure 7.3-11. 

 

Figure 7.3-10: H-Bridge Schematics. 

  
(a) (b) 

Figure 7.3-11: (a) output from the H-bridge before the Filter, and (b) output of the H-bridge 
circuit after the filter 

3. Sine wave generation using Common Cathode Florescent Lamp (CCFL) inverter: 

CCFL inverters are devices that transform a DC voltage into an AC voltage using a resonant 

mode power supply called the Royer circuit, which comprises of two transistors and a centre 

trapped transformer. When an input voltage is applied to the base of one of the transistors, 

it enters the saturation region and causes the other transistor to enter the cut-off region as it 

is connected to the collector of the first transistor. The first transistor then enters the cut-off 
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region, while the second transistor turns on, generating a continuous output that is applied 

to the primary side of the transformer. Figure 7.3-12 shows the schematic for the CCFL 

inverter used in this approach, while the experimental setup is shown in Figure 7.3-13, where 

a neon bulb was used instead of a UV bulb to prove the concept. However, the drawback of 

the CCFL inverter is that, in order to extend the lifetime of the UV bulb, it is necessary to 

generate a stable voltage and resonance frequency, which changes during the bulb’s lifetime, 

making the CCFL inverter non-adjustable. 

 

Figure 7.3-12: Schematic for the CCFL inverter 
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Figure 7.3-13: Experimental setup for the CCFL inverter 

4. Sine wave generation using an AD5932: 

The AD5932 is a programmable frequency generator, which can be used to generate 

sinusoidal wave, triangular wave, or square wave. The AD5932 was powdered by a 3.3V 

external power supply which was separated into digital power and analogue power. Some 

inductors and capacitors were used at the supplies in order to remove the noise and ripples. 

The AD5932 was programmed using an Arduino M0. The code for the AD5932 can be 

found in Appendix A. The AD5932 was programmed for a range of the frequencies from 

90KHz to 130KHz. The schematic for the circuit and the experimental setup is shown in 

Figure 7.3-14 and Figure 7.3-15. The output generated was a sine wave as shown in Figure 

7.3-16. 

The key innovation of this circuit was to leverage the inherent property of the UV bulb, 

where it generates a frequency equal to its resonance frequency when powered up. As the 

UV bulb degrades over time, its resonance frequency shifts. Exploiting this phenomenon, 

an AD5932 integrated circuit was incorporated into the circuit design. The AD5932 was 

programmed to conduct a frequency scan from 90 KHz to 130 KHz at every power-up 

sequence of the PID. At each 1 KHz interval, the AD5932 measured the voltage produced 

by the UV bulb. By correlating the resonance frequency of the UV bulb with the 

corresponding voltage measurements, the AD5932 effectively determined the lowest 

voltage value during the frequency scan. This approach allowed the circuit to automatically 
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set the appropriate operating frequency for the UV bulb, ensuring optimal performance. A 

bespoke firmware was written to control the circuit's operation effectively.  

The aforementioned measures were implemented with the primary objective of prolonging 

the operational lifespan of the UV bulb while concurrently optimizing its efficiency, thereby 

effectively reducing the recurrent costs associated with frequent bulb replacements. In 

summary, the developed circuit and firmware offered a novel and automated method to 

monitor and adjust the operating frequency of the UV bulb based on its resonance 

characteristics. This adaptive approach aimed to maximize the efficiency and longevity of 

the UV bulb, optimizing its performance as a vital component of the in-house PID.  

 

Figure 7.3-14: Schematics for the AD5932 sine wave generation circuit. 
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Experimental setup for 

the AD5932 

 

Setup to test the AD5932 

with a UV lamp 
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Visualisation of the UV 

bulb using an inspection 

camera 

Figure 7.3-15: Experimental setup from AD5932 sine wave generation. 

 

Figure 7.3-16: Output from the AD5932 sine wave generation. 
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Figure 7.3-17 shows the schematic for the bulb circuit. As discussed above, the AD5932 

was used to generate a sine wave which was programmed using the microcontroller present 

on the PCB. The signal generated by the AD5932 was amplified using an op-amp and fed 

to the primary of a transformer. The output generated by the transformer was used to excite 

the UV bulb. The signal from the primary of the transformer was fed to an amplifier and a 

filter circuit to monitor the stability of the circuit. 
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Figure 7.3-17: Schematic for the bulb circuit 
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c. Detector unit and Amplifier stage: 

There were few changes to the detector circuit. The main changes were that the high voltage 

regulator IC was changed to generate 1000V DC instead of 500V. Also, the feedback 

resistors for the amplifier stage were changed to potentiometers to experiment with the gain 

for the amplifiers to generate better outputs. In the physical design of the board, the detector 

plates and the fencing around the detector plates were increased to avoid electric arc 

generation due to the increase in the bias voltage from 500V DC to 1000V DC. The 

schematic for the detector and amplifier stage are shown in Figure 7.3-18 respectively. 
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Figure 7.3-18: Schematic for detector and amplifier stage for second version PID+ prototype 
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d. Hardware setup: 

Figure 7.3-19 shows the hardware setup for the second generation PID+ PCB. The high 

voltage circuitry was concealed under a 3D printed enclosure. An inspection camera was 

fitted on the side of the UV chamber to visualise the UV lamp. The opening for the camera 

was concealed using rubber stoppers to stop any leakage of UV light. 

 

Figure 7.3-19: Hardware setup for the second generation PID+ prototype 

7.3.3. Design of third generation PID+ 

prototype: 

a. Power Supply and microcontroller unit: 

The main idea behind the changes made in third version PID+ prototype was to make the 

device handheld. Therefore, a rechargeable battery and a battery charger were added to the 

design. The battery charger circuit involved a load sharer circuit using an MCP73871. In the 
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presence of the rechargeable battery, the PID+ prototype was powered through the battery 

and when the battery was discharged and the USB power was connected, the MCP73871 

would stop powering the board with the battery and would power directly through the USB 

while allowing the battery to charge normally. This input power was then used to power the 

whole board through different voltage regulators. Figure 7.3-20 shows the schematic for the 

battery charger circuit and Figure 7.3-21 shows the schematic for the power supply and 

microcontroller unit for the third-generation prototype. 
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Figure 7.3-20: Schematic for the battery charger circuit 
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Figure 7.3-21: Schematic for the power supply and the microcontroller unit. 
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b. Bulb circuit and UV lamp/UV chamber: 

The bulb circuit design consisted of a bulb circuit power supply, which was used to generate 

and separate the analogue and digital power supplied required for the AD5932. An 

integrated code was written to generate the signal using an AD5932, scan resonant frequency 

for the bulb circuit, read the ADC converter and for controlling the bias voltage added to 

Appendix A. The other changes made to the bulb circuit design included changing the 

amplifier and changing the feedback circuit. Figure 7.3-22 shows the schematic for the bulb 

circuit. 
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Figure 7.3-22: schematic for the bulb circuit for third generation PID+ prototype 
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c. Detector unit and Amplifier stage: 

The main changes made to the detector unit and amplification changes included removing 

the optocoupler from the circuit design. A Schottky diode was added to prevent reverse 

current flow from the detector plates to the high voltage IC. The potentiometers were 

removed from the circuit and instead a few fixed resistors were added to the feedback circuit 

of the amplifier with an option to increase or decrease the gain according to the application. 

Figure 7.3-23 shows the schematic for the detector and amplifier stage. 
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Figure 7.3-23: Schematic for Detector and Amplifier stage for third generation PID+ prototype. 



 
209 

7.4. Conclusion: 

In conclusion, this chapter has presented a detailed account of the development of three in-

house Photoionization Detector (PID) prototypes. The chapter commenced with a 

theoretical explanation of a PID and the various components that make up the device. The 

three prototypes were developed using different methodologies, with each version building 

upon the previous one to improve the device's performance. The first version was based on 

an Arduino M0 microcontroller, while the second version integrated a high performance 

ATSAMD21G18 ARM® Cortex®-M0+ based flash microcontroller on a PCB. Different 

techniques were employed to improve the bulb circuit, with the AD5932 generating the most 

stable sine wave to ignite the UV bulb. In the third version, the power system for the circuit 

was improved by including a battery power, making the device portable. An integrated code 

was written to control the bias voltage, scan the resonant frequency for the bulb circuit, and 

read the ADC converter. This chapter provides a comprehensive account of the development 

process, which can serve as a reference for other researchers in this field. The results 

obtained from the three prototypes will be presented in the following chapter. 
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Chapter 8. PID+ Experimental Results 

and Discussion 

Chapter 8 consists of the details about the experiment setup, results, and discussion on the 

performance of the different generations of the PID+ prototype. Chapter 8 starts with a 

detailed description of the experimental procedure followed to analyse and test the 

performance of the different PID+ prototypes. Since the procedure followed for testing the 

different prototypes varied little, it has been described in one section. This is followed by 

the results generated by the different testing methods divided according to each prototype. 

Finally, the chapter is concluded by providing a brief discussion on the results obtained from 

each generation of PID+ prototype and the challenges faced with each prototype which led 

to the development of the next generation of PID+ prototype. 

8.1. Experimental Setup for the first version of 

the PID+: 

The testing and analyses of the PID+ prototypes were divided into two main parts, first was 

a functionality test and performance test. The functionality test was performed on all the 

PCBs to test the operation of the various parts and components of the circuit design and the 

structural integrity of the prototype boards. The first step of the functionality test was visual 

inspection in which the board was visually examined to check for shorts, wrong placement 

of the components, broken traces, or faulty components. Once the board passed the visual 

checks, the board was powered, and the different voltage rails were checked at different 

parts of the board with a multi-meter. Once the board passed these tests, the board was 

flashed with the bootloader using a JTAG/SWD debugger (SEGGER J-Link BASE - 

JTAG/SWD Debugger) and Atmel Studio 7.0 software. When the flashing proved 

successful, the board was flashed with an Adafruit feather M0 bootloader. 

After completing the functionality test, the PID+ was tested for performance. The 

performance test was carried out by testing the responses of the device. To determine the 
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responses of the first prototype, it was tested under various conditions using isobutylene 

(ISB) gas. Isobutylene (ISB) had been used as the primary VOC as it is the gas used for 

calibration and testing of commercial PID sensors. ISB is a common gas used for testing 

because it is inexpensive, readily available, has average sensitivity and low toxicity. The 

testing conditions included changing the flow rates of ISB, concentrations of ISB and 

biasing of the electrodes. An API Dilution calibrator- Model 700 was used to generate the 

desired concentrations and flow rates of the gas and regulate it into the PID. The circuit was 

powered up with a power supply of 12 Volts and consumed 64 mA current. The output was 

visualised using a Pico ADC24 Data logger. 

The methods for testing the performance of the first generation PID+ prototype was executed 

as follows: 

1. The first test included supplying ISB through a 50 ppm ISB cylinder to the dilution 

calibrator which was used to generate a constant flow rate of 1 LPM of zero air with varying 

concentrations of ISB. The process included first subjecting clean air to the PID+ for 20 

minutes followed by continuous flow for 20 minutes of 50 ppb (parts per billion), 20 minutes 

of 100 ppb, 20 minutes of 500 ppb, 20 minutes of 1000 ppb and 20 minutes of 5000 ppb of 

ISB respectively. Finally, the test was concluded with another 20 mins of flow of clean air 

in order to flush out the UV chamber completely. 

2. The second test was conducted in the same manner as the first test except that during the 

second test the flow rate was changed from 1 LPM (Litre Per Minute) to 1.5 LPM. 

3. The third test was also conducted in the same manner as the tests above except that the 

flow rate was changed to 0.5 LPM. 

4. During the fourth test, the bias voltage applied to electrode 1 of the two detector plates 

was changed. The bias voltage was configured to change after every 20 mins via firmware 

and the output generated by the first prototype was observed. A constant flow rate of 1 LPM 

and constant concentration of ISB of 5 ppm (parts per million) was applied to the device 

during this test. 
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5. After observing the output generated by test 4, the same experiment was conducted except 

that instead of applying a continuous bias voltage, a pulse voltage was applied. During this 

test, each bias voltage was applied for 10 mins followed by 10 mins of 0 voltage. 

6. The tests conducted up to that stage indicated that the first generation PID+ prototype was 

most sensitive at a concentration of 5 ppm of ISB at a flowrate of 1 LPM. Therefore, the last 

test was conducted in order to verify this. This test was conducted in three steps. During first 

step, the PID+ was subjected to a constant concentration of 500 ppb of ISB but the flow rate 

of the gas was varied. Similarly, during second step, the PID+ was subjected to a constant 

concentration of 1000 ppb of ISB and finally, the PID+ was subjected to a constant 

concentration of 5 ppm of ISB. 

8.2. Experimental Results: 

The first tests conducted to check the efficiency of the first PID+ prototype included keeping 

the flow rate of ISB constant at a rate of 1 LPM and changing the concentration of ISB. 

Table 8.2-1 illustrates the results obtained from the experiment and Figure 8.2-1 shows a 

pictorial representation of the outcome from the test. The two outputs reported in these 

measurements are the output generated by the detector unit as explained in chapter 7, section 

7.3.1.  

In Table 8.2-1, Output 1 and Output 2 signify the current resulting from the ionized 

molecules of ISB that have been gathered at the electrode plates of the PID+. After 

optimizing the circuit, a bias of 0V was chosen and fixed for the output plate 2. When the 

PID+ was exposed to air, both electrodes produced an output of 4.464 mV and 35.638 mV. 

Conversely, when ISB was passed through the PID+, the signal strength at both electrodes 

increased (indicated by a negative current), with the highest gas concentration being 1 ppm. 

The electrode output generated at a flow rate of 1 LPM and a concentration of 5000 ppb (5 

ppm) demonstrated the most significant voltage level shift, according to the observations. 
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Table 8.2-1: PID+ first prototype result at a flow rate of 1 LPM 

Concentration (ppb) Output 1 (mV) Output 2 (mV) 
Air 4.464 35.638 

158(*50) 4.455 35.549 
158(*100) 4.449 35.329 

500 4.441 35.272 
1000 4.434 34.692 
5000 4.432 32.382 
Air 4.448 35.419 

 

 

Figure 8.2-1: shows the output of the first generation PID+ prototype at a flow rate of 1 LPM with 
different concentrations of ISB. 

After obtaining the results from the first experiment, the second test was conducted during 

which ISB was applied to the PID+ with a flow rate of 1.5 LPM. The outputs generated from 
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test 2 are represented in Table 8.2-2. Figure 8.2-2 shows a pictorial representation of the 

outcome of second test. 

Table 8.2-2: PID+ first prototype result at a flow rate 1.5 LPM 

Concentration (ppb) Output 1 (mV) Output 2 (mV) 
Air 4.454 35.642 

105(*50) 4.446 35.576 
105(*100) 4.445 35.454 

500 4.444 35.434 
1000 4.44 34.909 
5000 4.438 32.992 
Air 4.45 35.933 

The output obtained from the test 2 showed that the output generated by the PID+ for air 

was 4.454 mV and 35.642 mV for output 1 and output 2 respectively, whereas the outputs 

generated during the presence of ISB varied from 4.446 to 4.438 mV for output 1 and 35.576 

to 32.992 mV for output 2. The output generated by the PID+ at a concentration of 5 ppm 

with a 1.5 LPM flow rate generated the most response. 
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Figure 8.2-2: shows the output of the first generation PID+ prototype at a flow rate of 1.5 LPM 
with the different concentration of ISB. 

The results generated by the third test are shown in Table 8.2-3. The third test constituted 

the same experimental procedure as the two tests above except that during the third test, 

flow rate was dropped to 0.5 LPM. Figure 8.2-3 illustrates the outcome of the third test. 

Table 8.2-3: PID+ first prototype result at a flow rate 0.5 LPM 

Concentration (ppb) Output 1 (mV) Output 2 (mV) 
Air 4.464 35.732 

357(*50) 4.451 35.584 
357*100) 4.448 35.555 

500 4.445 35.516 
1000 4.441 35.431 
5000 4.439 33.262 
Air 4.461 35.652 
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The output obtained from the third set of tests showed a similar pattern as the other two tests. 

The output generated by the PID+ when it was subjected to clean air was 4.464 mV and 

37.732 mV respectively. It was shown that the response generated by electrode 1 was highest 

at 5000 ppb. 

 

Figure 8.2-3: shows the output of the first generation PID+ prototype at a flow rate of 0.5 LPM 
with the different concentrations of ISB.  

The results obtained so far demonstrated that the PID+ was moderately capable of sensing 

the gas at concentrations of 500 ppb to 5 ppm at different flow rates. Figure 8.2-4 illustrates 

the response of output 1 for the first generation PID+ prototype at different concentrations 

of ISB at different flow rates generated by a dilution calibrator. Similarly, Figure 8.2-5 

illustrates the response of output 2 of the first generation PID+ prototype. It was observed 

that there was a minimal response from the prototype for 500 ppb. At a concentration of 500 

ppb, the PID+ represented a very low response at different flow rates. The best response was 
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seen at a flow rate of 1 LPM. With an increase in concentration, the response was increasing. 

At a flow rate of 1.5 LPM, the performance of the PID+ was again moderate. 

 

Figure 8.2-4: shows the response generated by electrode 1for the first generation PID+ prototype 
for different concentrations of ISB at flow rates of 0.5 LPM, 1 LPM and 1.5 LPM.  

 

Figure 8.2-5: shows the response generated by electrode 2 for the first generation PID+ prototype 
for different concentrations of ISB at flow rates of 0.5 LPM, 1 LPM and 1.5 LPM.  

As mentioned in chapter 6, out of the two electrodes of the detector, the bias voltage of one 

of the electrodes was controlled via microcontroller and the other electrode was grounded. 

During the first three tests, the bias voltage of the electrode on the detector was set to 0V. 

After observing the response of the PID+ with different flow rates at 0 volts, the bias voltage 

was varied and the responses of the PID+ to different bias voltages were observed. Table 

8.2-4 contains the output generated by the two electrodes of the first generation PID+ 
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prototype when the bias voltage applied to the electrode was changed using the 

microcontroller. The output was noted when the device was at standby followed by 

increasing the bias voltage and finally applying 0 Volts to the device. 

Table 8.2-4: Effect of bias voltage on the PID+ first prototype outputs. 

Bias voltage (V) Output 1 (mV) Output 2 (mV) 
AIR 7.613 33.072 
150 7.502 31.683 
300 7.495 31.863 
450 7.461 32.208 
600 7.432 31.923 
750 7.428 31.519 
900 7.467 31.568 
0 7.552 32.856 

AIR 7.586 33.332 

It was seen that, when there was no flow of gas, the outputs generated by the two electrodes 

were 7.613 mV and 33.072 mV respectively. When the bias voltage across the electrode was 

changed, it was observed there was a decrease in the voltage representing the sensing of the 

presence of the ISB gas. It was observed that the maximum response signal was seen when 

the bias voltage was 750 V. Figure 8.2-6 illustrates the output from the PID+ during test 

four. 
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Figure 8.2-6: shows the response generated by the first generation PID+ prototype for different 
bias voltages. 

Test five was conducted to understand the effect of bias voltage with respect to the ground 

voltage. It was observed that when the bias of the electrode was increased from 0 Volts to a 

higher voltage, it leads to an increase in the response of the detector. Table 8.2-5 contains 

the data recorded during this test. 

Table 8.2-5: Effect of pulsated bias voltage on the PID+. 

Bias voltage (V) Output 1 (mV) Output 2 (mV) 
AIR 7.613 32.978 

0 7.601 31.132 
150 7.588 31.376 
0 7.595 31.324 

300 7.579 31.751 
0 7.581 31.335 
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450 7.569 31.63 
0 7.575 31.153 

600 7.564 31.578 
0 7.569 31.172 

750 7.557 31.714 
0 7.571 31.13 

900 7.585 31.544 
0 7.587 30.966 

AIR 7.601 33.289 

The output generated showed that the voltage decreased with the increase in the bias voltage. 

The highest signal response was observed at the bias voltage of 750 Volts. This signifies 

that the highest amount of ionised chemicals was attracted and absorbed by the electrode’s 

plate at this voltage. Figure 8.2-7 shows the plots of the output responses of the PID+ during 

the test. 
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Figure 8.2-7: Shows the response generated by the first generation PID+ prototype for different 
bias voltages applied as a pulse. 

The sixth experiment was conducted on the first generation PID+ prototype to understand 

the effect of different concentrations of ISB on the device. All the tests performed so far 

indicated that the highest effect of ISB was seen at a concentration of 5 ppm. In order to 

verify this, test 6 was conducted. The results obtained from test 6 are presented in Table 

8.2-6 and Table 8.2-7. 

Table 8.2-6: Output 1 of the PID+ for a changing flowrate at a constant concentration of ISB. 

Flow rates 
(LPM) 

Output 1 (mV) at 
0.5 ppm 

Output 1 (mV) at 1 
ppm 

Output 1 (mV) at 5 
ppm 

Air 4.523 4.483 4.478 
0.2 4.502 4.478 4.461 
0.5 4.486 4.463 4.456 
1 4.478 4.457 4.443 

1.2 4.48 4.469 4.453 
1.5 4.492 4.482 4.462 
2 4.499 4.49 4.467 

Air 4.512 4.489 4.488 
 

Table 8.2-7: Output 1 of the PID+ for a changing flowrate at a constant concentration of ISB. 

Flow rates 
(LPM) 

Output 2 (mV) at 
0.5 ppm 

Output 2 (mV) at 1 
ppm 

Output 2 (mV) at 5 
ppm 

Air 37.862 36.432 35.587 
0.2 37.406 36.054 34.671 
0.5 36.982 35.394 33.466 
1 35.507 33.846 31.893 

1.2 35.957 35.681 31.893 
1.5 36.059 35.124 32.169 
2 36.464 34.909 32.626 

Air 37.967 34.849 33.674 

The results shown in Table 8.2-6 and Table 8.2-7 indicate that the PID+ first generation 

prototype produced the most output to ISB at a concentration of 5 ppm and produced a 

moderate response at 1 ppm. The output generated during this test is shown Figure 8.2-8 and 

Figure 8.2-9. Figure 8.2-10 illustrates the output generated by electrode one of the detectors 

over the time period for different concentrations of ISB at different flow rates. 
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Figure 8.2-8: Shows the response generated by the first generation PID+ prototype for a different 
bias voltage applied as a pulse. 

 

Figure 8.2-9: Shows the response generated by the first generation PID+ prototype for a different 
bias voltage applied as a pulse. 
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Figure 8.2-10: Shows the three concentrations at which the response from the device is maximum, 
i.e., 500ppb, 1 ppm and 5 ppm at three different flowrates of 500 mLPM, 1 LPM and 1.5 LPM with 

respect to the time in seconds. 

8.3. Experimental Setup for the Second Version 

of the PID+: 

The experimental procedure used for testing the performance of the second version of PID+ 

was similar to the first version. The second version of the PID+ prototype was powered up 

with a USB and the data was recorded using a serial monitor. 

The experiments performed on the second generation PID+ are as follows: 

1. The test performed on the second generation PID+ prototype included changing the gain 

of the amplifier used to amplify the signal detected by the detector plates while keeping the 

concentration and the flow rate of ISB constant. The feedback resistor used in the 

amplification stage was a 1 MW potentiometer. The resistance of this resistor was changed 

and hence led to a change in the gain of the amplifier. In this test, the PID+ was exposed for 

20 mins to air, followed by 20 mins to ISB with 1 ppm concentration and lastly, another 20 

mins of air at different gain values of 50, 100 and 150. 

2. After adjusting the gain, further tests were conducted on the second generation PID+ in 

which the gain was kept constant, and the bias of the electrode plates was changed by using 
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a microcontroller. One of the Analog pins of the microcontroller was connected to the input 

of the op-amp and the output generated by the op-amp was used as input to a high voltage 

isolated DC to DC converter. During this test, the flow rate of the gas was kept constant at 

1LPM and the PID+ was exposed to air, followed by 1 ppm of ISB, then 5 ppm of ISB and 

lastly air, each for 20 mins at different bias voltages of 0 V, 500 V, 650 V, 800 V and 1000 

V. 

3.The third test was performed in order to understand the best flow rate required in order to 

generate the most output from the second generation PID+. The procedure used during the 

third test included setting the dilutor to flow rates of 0.5 LPM, 1 LPM, 1.5 LPM and 2 LPM. 

During each flow rate, the PID+ was first exposed to air for 20 mins, then 20 mins exposure 

of ISB with 1 ppm concentration, followed by 20 mins exposure of ISB with 5 ppm 

concentration and finishing up with 20 mins of air. 

4. The fourth test was the final test performed on the second generation of PID+ performed 

to optimise the ability of the PID+ in correspondence to the different concentration of ISB. 

During this test, the concentration of the ISB was varied from 150 ppb to 5 ppm and the 

response of the PID+ to the different concentrations was observed. The test was performed 

as follows. The PID+ was subjected to air for 20 mins, followed by 150 ppb of ISB, 300 ppb 

of ISB, 500 ppb of ISB, 1 ppm of ISB, 2 ppm of ISB, 5 ppm of ISB and air each for 20 mins. 

8.4. Experimental results: 

The best response from the second generation PID+ prototype was characterised using 

different criteria. The first step used to determine the performance of the second generation 

PID+ was to modulate the ability of the amplification of the output signal in the circuit in 

order to maximise the output signal. This was achieved by adjusting the gain of the amplifier 

stage and recording the output signal. The output obtained from the first test performed on 

the second generation PID+ is represented in Table 8.4 1 and Table 8.4 2. 
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Table 8.4-1: Output 1 from the second generation PID+ for different gain settings of the amplifier 
feedback resistor 

PROCESS OUTPUT 1 (V) 
@GAIN=50 

OUTPUT  1 (V) 
@GAIN=100 

OUTPUT 1 (V) 
@GAIN=150 

AIR 0.56248 1.10184 1.64997 
1 PPM ISB 0.56246 1.10274 1.64997 

AIR 0.56241 1.10238 1.64997 
 

Table 8.4-2: Output 2 from the second generation PID+ for different gain settings of the amplifier 
feedback resistor 

PROCESS OUTPUT 2 (V) 
@GAIN=50 

OUTPUT 2 (V) 
@GAIN=100 

OUTPUT 2 (V) 
@GAIN=150 

AIR 0.50063 1.03772 1.50808 
1 PPM ISB 0.50047 1.03882 1.50872 

AIR 0.50071 1.03900 1.50891 
 

The results presented in table above shows that the detector plates generated the highest 

amount of signal when the gain of the amplifiers was set to 100.  The results obtained from 

the test are shown in Figure 8.4-1. It was seen that the outputs generated with a gain value 

of 50 and 150 were not very responsive to the change in the type of gas flow. 
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Figure 8.4-1: Outputs at the different output plates at different amplifier gains. 

The further testing of the second prototype was done by keeping the gain constant at 100 to 

obtain the maximum output and varying the concentration of ISB. After adjusting the gain, 

the PID+ prototype was tested with different bias voltages. The different voltages were 

applied at the electrodes of the detector and the response was generated as shown in Table 

8.4-3 and Table 8.4-4. 

Table 8.4-3: Output 1 from the second generation PID+ for different bias voltage settings at the 
electrode plates. 

Bias Voltage  Output 1 (V) 
with Air 

Output 1 (V) at 
1ppm ISB 

Output 1 (V) at 
5 ppm ISB 

Output 1 (V) 
with Air 

0 V  1.1444 1.1443 1.1440 1.1438 
500 V 1.1686 1.1900 1.1915 1.1712 
650 V 1.1677 1.1888 1.1897 1.1673 
800 V 1.1656 1.1777 1.1810 1.1677 
1000 V 1.1586 1.1577 1.1586 1.1584 
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Table 8.4-4: Output 2 from the second generation PID+ for different bias voltage settings at the 
electrode plates. 

Bias Voltage Output 2 (V) 
with Air 

Output 2 (V) at 
1ppm ISB 

Output 2 (V) at 
5 ppm ISB 

Output 2 (V) 
with Air 

0 V  0.97742 0.97745 0.97730 0.97697 
500 V 0.99255 1.01188 1.01299 0.99020 
650 V 0.99054 0.99891 1.00193 0.99041 
800 V 0.99134 0.99787 0.99948 0.99099 
1000 V 0.99111 0.99000 0.99067 0.99172 

The results obtained from the second test showed that the detector plates generated the 

maximum output when the applied bias voltage was around 500 V to 650 V. The output 

response was recorded for two ISB concentrations, i.e., 1 ppm and 5 ppm and it was observed 

that both for 1 ppm and 5 ppm, the maximum output was generated when the bias voltage 

on the electrode plate was 500 to 650 V as shown in Figure 8.4-2. 
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Figure 8.4-2: Responses at the different output plates at different bias voltages. 

The efficiency of the second generation PID+ prototype was further tested by keeping the 

gain and the bias voltage at 100 and 550 V respectively. In order to optimise the performance 

of the second generation PID+ prototype, further tests were performed. The third test was 

performed with different flow rates of ISB generated by a calibration dilutor at two different 

ISB concentration. The different flow rates used for the test were 0.5 LPM, 1 LPM, 1.5 LPM 

and 2 LPM. The output obtained from the tests are tabulated in Table 8.4-5 and Table 8.4-6. 

Table 8.4-5: Output 1 of the second generation PID+ for different flow rates of ISB. 

Process Output 1 (V) at 
FR=0.5LPM 

Output 1 (V) at 
FR=1 LPM 

Output 1 (V) at 
FR=1.5 LPM 

Output 1 (V) at 
FR=2 LPM 

Air 1.17968 1.17932 1.17892 1.17925 
ISB-1ppm 1.17919 1.17954 1.17923 1.17902 
ISB-5ppm 1.17940 1.17943 1.17921 1.17885 

Air 1.17935 1.17914 1.17915 1.17884 
 

Table 8.4-6: Output 2 of the second generation PID+ for different flow rates of ISB. 

Process Output 2 (V) at 
FR=0.5LPM 

Output 2 (V) at 
FR=1 LPM 

Output 2 (V) at 
FR=1.5LPM 

Output 2 (V) at 
FR=2 LPM 

Air 1.01133 1.01138 1.01131 1.01140 
ISB-1ppm 1.01124 1.01148 1.01137 1.01141 
ISB-5ppm 1.01146 1.01141 1.01135 1.01135 

Air 1.01141 1.01136 1.01129 1.01129 

The results obtained from the third test showed that the second generation PID+ was most 

responsive with the flow rate of 1 LPM and 1.5 LPM. Out of the two flow rates, 1 LPM 

generated the most output. Figure 8.4-3 shows the output generated during test 3. 
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Figure 8.4-3: Sensitivities at the different output plates at different bias voltages. 

The final testing was conducted with a gain of 100, bias of 650V and flow rate of 1 LPM 

for different concentrations of ISB. The lowest concentration obtained using a dilution 

calibrator was 150 ppb. So, the concentration was varied from 150 ppb to 5 ppm.  

The outputs obtained from the tests are shown in Figure 8.4-4 and Figure 8.4-5. The output 

obtained from the PID+ version 2 shows that the second generation PID+ was sensitive to 

the presence of ISB at as low as 150 ppb. The response obtained at low concentration (150 

ppb) and very high concentrations of 2 ppm to 5 ppm was negative which meant that voltage 

decreased below the baseline at these concentrations, whereas the response obtained at 

concentrations from 300 ppb to 1 ppm was positive which means that the voltage increased 

above the baseline at these concentrations. 
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Figure 8.4-4: Response at output plate 1 for different concentrations of ISB. 

 

Figure 8.4-5: Response at output plate 2 for different concentrations of ISB. 

8.5. Discussion: 

Ion mobility is a highly efficient technique used for the detection of volatile organic 

compounds and the mobility of ions depends on its mass and charge [1]. In this research, the 

technique and the benefits of ion mobility were exhibited by the method of photoionization. 

This chapter presents the performance of the different prototypes of the PID+. The output 
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voltages reported in the study were directly proportional to the concentration of the ISB gas. 

The small changes in output voltages in response to varying concentrations demonstrate the 

ability of PID+ to detect and quantify gas concentrations. The impact of flow rate and bias 

voltage on the PID+ output is evident, indicating that these parameters need to be carefully 

controlled and optimized in practical applications. The data suggest that the performance of 

the first version PID+ is most reliable at a concentration of 5 ppm of ISB and a flow rate of 

1 LPM, whereas the performance of the second version PID+ indicates most reliable output 

at a concentration of 1 ppm of ISB. This information is valuable for selecting the appropriate 

operational conditions for accurate measurements. However, replicating each test multiple 

times would have allowed for the calculation of statistical measures such as mean, standard 

deviation, and confidence intervals, providing a clearer understanding of the PID+'s 

performance. 

During the testing of the first prototype of the PID+, different tests were conducted on the 

PID+ in order to understand and enhance the behaviour of the PID+.  The first test was 

conducted in order to understand the response of the PID+ to different concentrations of ISB 

gas at a flow rate of 1 LPM as shown in Figure 8.2-1. The data indicate that as the 

concentration of ISB gas increases, the output voltages from both output1 and output2 

electrodes generally decrease. This suggests that the PID+ is responsive to the presence of 

ISB gas and exhibits changes in its electrical output corresponding to different 

concentrations. The "Air" readings before and after the test runs show the baseline response 

of the PID+ when it is exposed to clean air with no ISB gas. These baseline values can be 

used as reference points for subsequent measurements to isolate the effect of ISB gas. The 

results suggests that the PID+ is capable of detecting ISB gas concentrations ranging from 

50 ppb to 5000 ppb. However, the response becomes less significant at higher 

concentrations, as shown by the relatively small changes in output voltage between 1000 

ppb and 5000 ppb. This shows that the PID+ was able to achieve a better response as low as 

parts per billion. A study conducted by Bilek et. al showed that the output of the PID was 

dependent on the concentrations of the VOCs [2]. 

The second tested conducted was similar to the first test except that now the flow rate was 

changed to 1.5 LPM. The PID+ demonstrated sensitivity to ISB concentrations, but the 

changes in output voltages between different concentrations were slightly smaller compared 
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to the 1 LPM flow rate, suggesting a reduction in sensitivity at this higher flow rate as shown 

in Figure 8.2-2. In order to test this, a third test was conducted in which the flow rate was 

changed to 0.5 LPM. Similar to the previous results, the output voltages from both output1 

and output2 electrodes decreased as the concentrations of ISB gas increased. However, the 

PID+ response at this flow rate seemed to exhibit further reduced sensitivity compared to 

the higher flow rates. The reason for the correlation between the response of the PID+ and 

changes in flow rate can be explained by the relationship between the UV bulb's ionization 

capability and the number of molecules. A lower flow rate of ISB gas results in a lower 

output from the PID+ due to the decreased availability of ionizable molecules. As the flow 

rate increases, the ionization output from the UV bulb increases proportional to the number 

of molecules in the gas. An illustration of this process is shown in Figure 8.5-1.  

 

Figure 8.5-1: Illustration of the impact on ion path with change in the flowrate of the sample. 

However, further increases in the flow rate caused the gas to pass more quickly under the 

UV light, resulting in a lower amount of time for absorption of UV light by the molecules 

contributing to the ionization current. Contrary to our finding, Freedman et al. [3] found in 

their studies that the response of a PID was not dependent on a change in the flow rate of 

the gas with constant concentration. 

The fourth test was carried in order to understand the relationship between the applied 

voltage on the detector to the output. It was found that, as the magnitude of the bias voltage 

increased, the output generated by the first generation PID+ also increased. The output 
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generated was between 600 V to 750 V yielded the highest output response signifying that 

the optimal detector voltage for PID+ was 600V to 750 V. The reason for this is that as the 

voltage across the electrode plates increases, it increases the capability of the plates to collect 

charged particles and the flow of these charged particles collected by the electrodes results 

in the photoionization current. However, it was observed that as the voltage was increased 

above 750 V, then this led to a decrease in the output signal. This was due to the limit of the 

detector or could possibly be stated as the saturation point of the detector voltage. The 

experiment conducted by Mergemeier et al. [4] showed the dependence of photoionization 

currents on the applied voltage. They also showed that an increase in the electrode voltage 

resulted in an increase in the response of the electrodes. 

Another test was conducted to provide insights into the behaviour of the PID+ when 

subjected to pulsating bias voltages. The results are shown in Figure 8.2-7. The table 

revealed that the PID+ responded to changes in bias voltage by exhibiting slight variations 

in output voltages. These variations indicated that the PID+ was sensitive to the applied 

voltage and that the output response could be modulated by adjusting the bias voltage. The 

fact that the output voltages returned to values close to the "AIR" readings during the 

intervals of zero bias voltage suggested that the PID+ had a relatively fast response time and 

could quickly recover its baseline state when the bias voltage was removed. Overall, the 

results demonstrated the PID+'s ability to detect and respond to changes in bias voltage, 

which was an essential characteristic for its operation as a gas sensor. 

The tests conducted so far indicated that the first prototype of PID+ demonstrated the highest 

response at an electrode bias voltage of 600V to 750V and flow rate and concentration of 

1LPM and 5ppm respectively, as shown in Table 8.2-4. In order to conclude the tests and 

verify these finding, a final test was conducted. The findings of this experiment 

demonstrated that the PID+ did not have the capacity to detect ISB gas for 500 ppb and 1 

ppm concentrations at flow rates of 500 mLPM and 1.5 LPM, whereas, at a flow rate of 1 

LPM, the PID+ exhibited a considerable response to the shift in the ionization current. 

However, there were some challenges faced in the course of the testing of the first generation 

of the PID+ prototype. The first initial challenge was the lack of ground around the bulb in 

order to provide resonance. The bulb used during this research was an AC electric field 
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excited UV bulb. For the bulb to emit UV light, it needed ground in order to create the 

resonance. This was solved by placing a ring-shaped conductor connected to the ground 

plane of the PCB. Then the high voltage circuit was not able to produce as much voltage as 

the IC can provide out of the circuit which is needs to be fixed. It has been observed that the 

response was initially increasing with the increase in the bias and then decreasing, which 

implied that the electrode size was not optimal. The results obtained have been affected by 

the problems in high voltage circuits and failures of op-amp ICs in amplifier circuits from 

time to time. Lastly, since the output of the transimpedance amplifier was applied to the 

inverting terminal of the voltage amplifier, this led to a reduction in the signal below the 

baseline signal while detecting ISB. 

These challenges were overcome in the second generation PID+. The goal for the second 

part was to build the next version for the PID+ and test it to increase the response and 

selectivity of the device for the detection of gases. The circuit for the second version of the 

PID+ was edited taking into consideration the outputs reported from the first version of the 

PID+. The changes implemented in the second version included changes to the bulb circuit. 

The reason for the change in this circuit was to provide a more stable signal required for the 

excitation of the UV bulb. The new bulb circuit included a signal generator, amplifiers, and 

a step-up transformer to provide an AC voltage with the ability to match the resonant 

frequency of the UV bulb. Moreover, in the second prototype, the microcontroller unit 

utilized in version 2 was fitted with the SAMD21 ARM® Cortex®-M0+ based 

microcontroller instead of using Arduino micro-controller boards in order to decrease the 

size of the PID+. Furthermore, in order to rectify the negative signal, the output from 

transimpedance signal was applied to the non-inverting terminal of the voltage amplifier. 

The testing of the second generation PID+ began by selecting the optimal gain for the 

amplifier for the output signal as shown in Figure 8.4-1. It was important to select the right 

gain for the amplifier because this directly affected the sensitivity and accuracy of the 

detector. It was observed that the amplifier gain was too low, the signal was too weak to be 

accurately measured and was not able to detect ISB gas. Conversely, if the amplifier gain 

was too high, it resulted in saturating the output signal. In order to achieve the best results, 

the gain of the amplifier was set to 100. 
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Furthermore, the second test was carried out in order to identify the ideal bias voltage that 

would generate the greatest level of output for the electrode. During this test, the bias voltage 

was varied, and it was observed that the highest level of response was obtained at a much 

lower voltage than for the first prototype PID+. In the initial iteration, the optimal voltage 

was determined to be within the range of 600V to 750V, while in the subsequent iteration, 

the optimal voltage range was found to be between 500V to 600V as shown in Table 8.4 1 

and Table 8.4 2. A third test was further conducted by keeping the bias voltage to 500V and 

gain of the amplifier to 100 in order to determine the flow rate at which the second 

generation PID+ showed the highest response. The findings derived from the third 

experiment, as depicted in Figure 8.4-3, demonstrated that the PID+ exhibited the generation 

of photoionization current, which varied in response to the flow rate of the ISB gas. The 

maximum output was observed at a flow rate of 1LPM, which was consistent with the 

outcomes obtained during the first generation PID+ testing. 

Finally, a fourth experiment was carried out with the objective of determining the 

concentration of ISB gas at which the second-generation PID+ yielded the maximum 

photoionization current. The test results shown in Figure 8.4-4 demonstrate that the PID+ 

showed a response to ISB gas with a concentration as low as 150 ppb. The dynamic range 

for the second generation PID+ ranged from 150 ppb to 5 ppm. This proved that the response 

of the second generation PID+ was improved in comparison to the first version of the PID+. 

During the testing of the two versions, the PID+ showed sensitivity to changes in gain 

settings, bias voltage settings, and flow rates, as evidenced by the varying output voltages. 

However, the effect of these factors was not dramatic, as indicated by the relatively small 

changes in output voltages and the presence of overlapping error bars. The error bars 

demonstrated the variability in the data and provided important information about the 

statistical significance of the observed differences. While the PID+ exhibited sensitivity to 

different experimental parameters, the extent of these effects might require further 

investigation and optimization for specific application requirements. While the PID+ 

showed some sensitivity to changes in input values, it could be considered relatively 

insensitive when compared to the wide range of input values tested. This information could 

be useful for further optimization and calibration of the PID+ to achieve the desired 

sensitivity and response characteristics for specific applications. 
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Lastly, some of the limitations faced during the testing of the second generation PID+ were 

that, first, the bootloader was not working properly with the device, so the code was updated. 

Second, there were some faults in the crystal oscillator and voltage regulators of the bulb 

circuit which were rectified. 

The testing of the third version of the PID+ was not able to be conducted due to a fault in 

the PCB design and due to COVID pandemic and related restrictions, my ability to test the 

third version of the PID was significantly impacted. Due to this, the testing of the third 

iteration of the PID+ device was unfeasible. During preliminary testing, the bulb circuit 

functioned correctly and was able to generate a precise signal for the UV bulb excitation, as 

evidenced in Figure 8.5-2. However, complications with the 5V power line resulted in 

amplifier malfunction. Despite replacing the amplifiers and restoring the 5V power supply, 

a subsequent undervoltage issue caused microcontroller brownout. Additional testing is 

therefore required to evaluate the efficacy of the third version of the PID+ device. 

 

Figure 8.5-2: sinewave generated by the AD5932 of the bulb circuit. 

Despite these limitations, our study provides valuable insights into the design and 

optimization of PID+ electronics. By improving the response and accuracy of the PID+ 

prototype, we can enhance their ability to detect low-level VOCs and improve the early 

detection of diseases and other health issues. Moving forward, further research is needed to 

explore the potential of novel electronic components and configurations for improving the 

performance of PID. Additionally, the use of advanced data processing techniques, such as 
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machine learning algorithms, could help to further improve the accuracy and specificity of 

VOCs detection. 

8.6. Conclusion: 

In this chapter, we investigated the electronics of a PID+ device and its impact on response 

and accuracy. Specifically, we tested the performance of two versions of a PID+ prototype 

at different flow rates, different concentrations of ISB gas, different bias voltages of detector 

plates, and different gains for the amplifier circuits. 

Our results have shown that the response and accuracy of the PID are highly dependent on 

these variables. We found that increasing the flow rate of the sample gas improved the 

response of the detector but also that too high of a flow rate led to a decreased response due 

to reduced ion-molecule collision rates. In our study, we found that 1 LPM flow rate 

generated the highest photoionization response.  Additionally, we found that the 

concentration of the target gas, in this case ISB gas, was a crucial factor that affects the 

response of the detector. It was discovered that through the optimization of the PID+ 

performance, the dynamic range of the response was enhanced. The initial generation of the 

PID+ had a dynamic range of 500 ppb to 5 ppm, while the second iteration's dynamic range 

was increased to 100 ppb to 5ppm. 

Furthermore, we found that the bias voltage of the detector plates and the gain of the 

amplifier circuit had significant effects on the response and accuracy of the detector. 

Increasing the bias voltage led to a higher response, but excessive high voltage resulted in 

saturation. This, in turn, caused either a decline in output or no further increase. The gain of 

the amplifier circuit should also be carefully selected to balance the trade-off between 

response and noise. 

Overall, our study provides valuable insights into the design and optimization of ion-

mobility. By carefully selecting the optimal flow rate, concentration, bias voltage, and 

amplifier gain, we can improve the response and accuracy of PID for the early detection of 

diseases and other health issues. However, further research is needed to validate our findings 

across different types of VOCs. Additionally, future studies should explore the potential of 



 
240 

novel electronic components and configurations for improving the performance of PID and 

enhancing their ability to detect low-level VOCs. 
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Chapter 9. Conclusions and Further 

work 

9.1. Conclusions: 

In this research, we examined the potential of VOCs as biomarkers for the diagnosis and 

monitoring of diseases using analytical instruments and developed an in-house point of care 

device based on ion- mobility (PID+). We investigated the potential of analytical techniques, 

such as, gas chromatography-ion mobility spectrometry (GC-IMS) and gas 

chromatography-time of flight mass spectrometry (GC-TOF-MS), and electronic nose 

(eNose) technology for the detection and identification of volatile organic compounds 

(VOCs) in diseases. We also examined the performance and capabilities of the 

photoionization detector (PID+) as an ion mobility technique for the measurement of volatile 

organic compounds (VOCs) and investigated the feasibility of using a PID+ as a diagnostic 

tool for disease detection. Our results suggest that both in-house devices and analytical 

instruments had advantages and disadvantages.  

The first aim of our research was to evaluate the capabilities of the analytical devices, such 

as GC-IMS, GC-TOF-MS, and eNoses, in distinguishing between different disease groups 

as well as healthy controls. In this study, we compared urine samples for different cancers 

patients, such as colorectal cancer, prostate cancer, bladder cancer and hepatocellular cancer 

and patients with urinary tract infection disease with healthy individuals. The devices 

demonstrated their effectiveness in differentiating between the various disease groups and 

healthy individuals based on the VOCs patterns detected in the urine samples. The results 

indicate that these advanced analytical techniques hold promise as potential diagnostic tools 

for early disease detection and differentiation. We found that GC-IMS was able to 

distinguish between BCa samples and healthy control samples with an AUC of 95%, CRC 

samples and healthy control samples with AUC of 83% and PCa and healthy control samples 

with an AUC of 89%. Similarly, eNose PEN3 was able to distinguish between BCa samples 

and healthy control samples with an AUC of 92%, CRC samples and healthy control samples 

with an AUC of 75% and PCa and healthy control samples with an AUC of 89%. Moreover, 
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we found that all the analytical instruments were able to distinguish between cancer and UTI 

patients’ urine samples from healthy controls with high sensitivity proving that these 

techniques can be used as an early diagnosis of cancer or disease. However, during the 

testing of urine samples of UTI disease, these analytical instruments were not as successful 

in distinguishing UTI positive samples from negative samples. Previous research has shown 

much higher sensitivity and specificity [2-5]. The reason behind this was that the urinary 

samples used were reported to be mishandled during storage which may have resulted in the 

dilapidation of the metabolic characteristics of these samples [6]. These findings suggest 

that VOCs analysis has the potential to be a valuable diagnostic tool for a wide range of 

diseases. Both GC-IMS and GC-TOF-MS can be effective techniques for the analysis of 

complex VOCs mixtures. While GC-IMS offered high sensitivity and rapid analysis times, 

GC-TOF-MS provided higher resolution, allowing for more confident compound 

identification. In our study, we found that the GC-IMS, GC-TOF-MS, AlphaMOS FOX 

4000 and PEN3 eNose were able to separate different cancer groups and disease groups from 

each other as well as non-cancerous group. 

The second aim of our research was to generate and produce VOCs fingerprints specific to 

different diseases investigated in the study. By analysing urine samples from patients with 

various diseases and healthy controls using GC-TOF-MS, we successfully identified distinct 

VOCs patterns associated with each disease. We identified and characterised VOCs profiles 

of different cancers and diseases through various analytical techniques and electronic nose 

(eNose) technology. Throughout the course of this research, we conducted an analysis of the 

chemical composition of bladder cancer and detected 13 VOCs out of which we found 3 

noteworthy VOCs, Biphenyl, Heptanal, and 2, 6, 10, 14-tetramethyl- Pentadecane that did 

not overlap with other studies. Biphenyl has been identified as the most significant 

biomarker in our study. Biphenyl has been linked to various diseases, including carcinoma. 

It has been proven that Biphenyl is a promoter of BCa in rats [1]. We also characterized the 

chemical signature of colorectal cancer and detected 17 VOCs during experimentation. All 

17 VOCs were reported before as colorectal cancer biomarkers. A total of 46 VOCs were 

found to be relevant for identifying these cancer groups, with several VOCs distinct to each 

cancer. These VOCs fingerprints served as unique markers for specific diseases, enabling 

accurate differentiation between them. The identification of disease-specific VOCs profiles 

is crucial as it provides valuable insights into the underlying biochemical processes and 
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metabolic changes associated with different health conditions. Moreover, these VOCs 

fingerprints have the potential to enhance disease diagnosis and monitoring, offering a non-

invasive and early detection approach for a wide range of medical conditions. The successful 

generation of disease-specific VOCs fingerprints has opened up new avenues for future 

research and clinical applications, paving the way for the development of innovative 

diagnostic tools and personalized healthcare strategies. Our results demonstrate that the 

analytical techniques used in this study have the potential to detect and identify VOCs 

associated with various diseases, including cancer and other diseases, and that they can be 

valuable diagnostic tools for the early detection and monitoring of these diseases. 

In addition to evaluating existing analytical devices such as GC-IMS, GC-TOF-MS, and 

eNoses, the third and final aim of our research involved the development of an in-house 

device based on ion-mobility techniques. This endeavour aimed to address the limitations 

of the existing analytical instruments and create a more affordable, portable, and efficient 

alternative. The new device leverages ion-mobility technology to analyse VOCs in a highly 

sensitive and selective manner, offering improved detection capabilities compared to 

conventional methods. By designing this device in-house, we had the flexibility to customize 

and optimize its performance according to our specific research needs. We successfully 

achieved accurate and reliable VOCs (ISB) measurements with the PID+ by carefully 

designing and optimizing its electronics, which encompassed the power supply, amplifier, 

and signal processing circuits. Our research revealed that the response of the PID+ could be 

influenced by various factors, such as environmental conditions and the composition of the 

sample under analysis. Recognizing the pivotal role of the PID+'s electronics in its 

performance, we emphasized the importance of meticulous design and optimization to 

ensure precise measurements. Moreover, we identified and implemented several techniques 

that led to significant enhancements in the accuracy and sensitivity of the PID's 

measurements. This achievement marks a significant advancement in VOCs analysis, 

paving the way for improved detection capabilities and broader applications of the PID+ in 

various scientific and industrial settings. The developments achieved in this research have 

paved the way for potential advancements in VOCs analysis and its broader applications. 

The in-house device we worked towards developing effectively overcame some of the 

limitations faced with commercial instruments, such as high costs and limited portability, 

thus enhancing accessibility and versatility for research and potential clinical use. This novel 
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in-house device represents a significant step forward in the field of VOCs analysis, offering 

innovative solutions for diverse research and diagnostic endeavours. The ongoing 

improvement and refinement of this device hold the promise of future breakthroughs in 

VOCs analysis, contributing to the progress of medical diagnostics and disease monitoring. 

By fostering a deeper understanding of volatile organic compounds and their correlations 

with various health conditions, the advancements achieved in this research open new 

possibilities for enhanced disease detection, monitoring, and personalized medical 

interventions. 

However, we identified various challenges and limitations in this study. We identified that 

VOCs tend to be influenced by factors like sampling and analysis protocols, the potential 

for interference from confounding factors, and the need for larger and more diverse patient 

cohorts to validate the diagnostic utility of VOCs. We also found that the analytical 

techniques used for VOCs detection need careful sample preparation and analysis to avoid 

interference from matrix components, the potential for sample degradation or alteration 

during sample handling and collecting these was expensive and needed specialized 

equipment and trained personnel. These limitations suggested that though these analytical 

techniques were highly sensitive, these techniques could not be used as a long-term method 

for VOCs detection. 

On the other hand, we also identified several limitations and challenges associated with the 

use of a PID+. These included the potential for interference from other compounds, 

variations in detector response, and the need for regular calibration and maintenance. These 

limitations suggest that further research is needed to optimize the use of a PID+. 

Despite these limitations, our study has important implications for the future use of VOCs 

as biomarkers for diseases. By identifying the strengths and weaknesses of the techniques 

used for the detection of VOCs, we have contributed to the growing body of research on 

precision medicine and personalized care. Our findings suggest that VOCs analysis has the 

potential to improve disease diagnosis, monitoring, and treatment. Our findings also suggest 

that the PID can be a valuable tool in the identification and measurement of VOCs, and that 

it can help to improve our understanding of the impact of VOCs on public health. 
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Moving forward, we recommend that future studies investigate the use of ion mobility in 

larger patient cohorts and across multiple cancer types. This will allow for a more 

comprehensive evaluation of the technique's diagnostic utility and will help to identify any 

limitations or challenges associated with its implementation in a clinical setting. Further 

research is also needed to optimize the performance and reliability of the PID, and to develop 

strategies for addressing the limitations and challenges associated with its use. We also 

recommend that future research explores new approaches for improving the performance 

and reliability of the PID's electronics, and that they investigate the use of a PID in 

combination with other analytical techniques for more comprehensive VOCs analysis. 

Further research is also needed to optimize the design and performance of the PID's 

electronics for specific applications, and to develop strategies for addressing the challenges 

associated with their use. 

Overall, our study provides important insights into the potential of VOCs as biomarkers for 

diseases and the use of GC-IMS and GC-TOF-MS for the detection and identification of 

VOCs. Furthermore, our study provides important insights into the electronics and signal 

processing of the PID+ for the measurement of VOCs. While further research is needed to 

fully evaluate their diagnostic utility and address any limitations, we believe that our 

findings have important implications for the future of precision medicine and personalized 

care. 

9.2. Further work: 

While the results of this thesis demonstrated the potential of photoionization detectors (PID) 

for the detection of volatile organic compounds (VOCs), there is still much to be done to 

improve their performance and expand their applications. In this section, we will discuss 

several areas for future work that could build upon the research presented in this thesis. 

1. Development of a more sensitive PID+: One of the major limitations of PID is their 

limited sensitivity for certain VOCs. PID are limited by the proton affinity of the 

VOCs and the ionisation capability of the UV source. Therefore, one way of 

achieving a better range of VOCs detection is to use a 11.3 eV bulb over a 10.6 eV. 

However, UV bulbs with a 11.3 eV potential have a relatively short lifespan 
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compared to other types of bulbs, meaning that they will need to be replaced 

frequently, adding to the cost of the equipment. To overcome this, future work could 

focus on the development of a more sensitive PID+. One of the suggestions is to vary 

the form factor of the detector plates in order to develop the high field asymmetric 

electric field that separates gas-phase ions based on their characteristic differences 

in mobility in high and low electric fields. Another suggestion is to increase the 

electric field strength or optimise the geometry of the ionisation chamber in order to 

increase the efficiency of the ionization chamber. In our study, we found that the 

spacing between the electrode plates was smaller than required which led to electric 

arc. This resulted in the use of low voltages which affected the ionization efficiency. 

Therefore, both the electric field and correct detector plates format can result in more 

efficient ionization of the VOCs, which in turn can improve the sensitivity of the 

detector. 

2. Improve the collection and amplification of the signal: The signal generated by the 

ionized VOCs can be amplified using various methods, such as increasing the gain 

of the detector circuit or using a more sensitive operational amplifier.  

3. Reduce background interference: finally, to improve sensitivity it is important to 

minimize interference from background noise and other sources of interference. This 

can be achieved by carefully selecting the operating parameters of the detector, such 

as the flow rate and temperature, use fences around the electrodes to provide proper 

ground and remove humidity resistance, and by using appropriate filters or 

preconcentration techniques to remove interfering compounds. These technologies 

could improve the sensitivity and selectivity of the PID+, making them more 

effective for detecting low-level VOCs.  

4. Improvements in the electronics of the PID+: the PID+ electronics produced in this 

study were tested and experimented by carefully balancing factors such as the UV 

bulb excitation method, the UV lamp energy, signal collection and amplification etc., 

and it was possible to achieve a more sensitive and reliable detection of VOCs. 

Though there were some parts that could be improved such as adding reverse 

polarity, adding a screen to the enclosure of the PID+, adding power switches and 

various voltage monitoring, adding over voltage, under voltage protection to the 

circuit. A new PID+ schematic was created, shown in Figure 9.2 1, Figure 9.2 2, 
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Figure 9.2 3 and Figure 9.2 4 in order to incorporate all the improvements suggested 

in this study and would have been implemented if not for COVID-19. 

 

Figure 9.2-1: Shows the schematics for the rechargeable battery and charger circuit. The IC is 
selected here such that it can be used as load sharer which means when the battery dies, a 5 V bus 
from the micro-USB-B could be used both for charging the battery as well as to power the PID+. 
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Figure 9.2-2: Shows the schematics for the bulb circuit with more stable signal generation and 
noise reduction. 
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Figure 9.2-3: Shows the schematics for the microcontroller, ADC, and flashing circuit. 

 

Figure 9.2-4: Shows the schematics for the various power supplies used in the circuit. The power 
supply was made more resilient to noise by adding extra reverse voltage protection and decoupling 
capacitors to reduce EMI.  Various voltage monitoring circuits were also added in the schematics. 

5. Miniaturization and portability of PID: Another area for future work is the 

development of miniaturized and portable PID. Currently, the PID+ was typically 

bulky and requires external power sources or frequent charging, which limited its 

usage. The development of miniaturized and portable PID could enable their use in 

a wider range of settings, including in point-of-care diagnostics and in remote 

monitoring applications. 

A PID is a versatile device capable of detecting a wide range of VOCs in various applications 

such as disease detection, environmental monitoring, industrial safety, and indoor air 

quality. Its sensitivity and selectivity make it an ideal choice for detecting low-level 

concentrations of VOCs, making it an essential tool for researchers, first responders, and 

industrial professionals. PID can detect VOCs in concentrations as low as parts per billion 

(ppb) and can provide real-time monitoring, making it a valuable asset in identifying and 

mitigating VOCs exposure risks. 
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Appendix A 
Appendix A contains the firmware used for the generation of AC signal for the excitation of 

UV bulb and for data collection. 
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int SDATA = 13; 

int SCLK = 11; 

int FSYNC = 5; 

int STANDBY = 2; 

int INTERRUPT = 12; 

int CTRL = 10; 

int SYNCOUT = 6; 

/*       end of Pin setup for AD5932    */ 

  float out1 = 9; 

  float out2 = 19; 

  float vprim = A3; 

  int vbias = A0; 

 

/*      setting clock and byte configuration for AD5932     
*/ 

void myShiftOut(uint8_t dataPin, uint8_t clockPin, 
uint8_t bitOrder, byte val) 

{ 

  int i; 

  for (i = 0; i < 8; i++)  { 

    if (bitOrder == LSBFIRST) 

      digitalWrite(dataPin, !!(val & (1 << i))); 

    else   

      digitalWrite(dataPin, !!(val & (1 << (7 - i)))); 

    digitalWrite(clockPin, LOW); 

    digitalWrite(clockPin, HIGH);    

  } 

} 

/*      end of clock and byte configuartion for AD5932     
*/ 

 

 

void setup() { 

 

  SerialUSB.begin(19200); 

  analogWriteResolution(10); 

  pinMode(vbias,OUTPUT); //BIAS VOLTAGE 

  pinMode(vprim, INPUT);  //feedback from primary 
transformer CH3 

 

  pinMode(out1 , INPUT); 

  pinMode(out2 , INPUT); 

  pinMode(A3 , INPUT); 

 

 /*  Start of Code for AD5932     */ 

  pinMode(CTRL , OUTPUT); 

  pinMode(SCLK , OUTPUT);   

  pinMode(SDATA , OUTPUT); 

  pinMode(FSYNC , OUTPUT);   

  pinMode(INTERRUPT , OUTPUT);   

  pinMode(STANDBY , OUTPUT);   

 

  digitalWrite(INTERRUPT , LOW); 

  digitalWrite(STANDBY , LOW); 

  digitalWrite(CTRL , LOW); 

  digitalWrite(FSYNC , HIGH); 

  digitalWrite(SCLK , HIGH); 

  delay(10); 

   

  //Control Register 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x0F); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xD3);   

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

   

  //Fstart LSB 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xC8); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0X0B); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

 

 

  //Fstart MSB 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xD0); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x09); 
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  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

  //Fsatrt delta f 24-bit <- input 32-bit (frame4 + frame5) 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x20); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x00); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);     

  delay(10); 

   

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x38); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x00); 

  delay(1); 

  digitalWrite(FSYNC , HIGH); 

  delay(10); 

   

  //Number of Increments 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x10); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x02); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

 

   

  //Increment Interval 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x63); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xE8); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

  digitalWrite(CTRL , HIGH); 

  delay(1); 

  digitalWrite(CTRL , LOW); 

  delay(25); 

/*  END OF CODE FOR AD5932     */ 

 

  /* code for optimum frequency    */ 

 

  float feedback_voltage[40]; 

  int j=0; 

  feedback_voltage[j]=vprim; 

  if(j<40) 

  {if(feedback_voltage[j]!= vprim) 

  {j++; 

  feedback_voltage[j]=vprim; 

  } 

  

   int resonance_freq=0; 

   int lowest_voltage= feedback_voltage[0]; 

  for(j=1;j<40;j++) 

  {if(lowest_voltage > feedback_voltage[j]) 

  {lowest_voltage=feedback_votage[j]; 

   resonance_freq=90+j; 

  } 

  }   

 

 //Control Register 16-bit 

   

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x0F); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xD3);   

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

   

  //Fstart LSB 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xC8); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0X0B); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   
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  delay(10); 

 

 

  //Fstart MSB 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xD0); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x09); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

  //Fsatrt delta f 24-bit <- input 32-bit (frame4 + frame5) 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x20); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x00); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);     

  delay(10); 

   

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x38); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x00); 

  delay(1); 

  digitalWrite(FSYNC , HIGH); 

  delay(10); 

   

  //Number of Increments 16-bit 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x10); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x02); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

 

   

  //Increment Interval 

  digitalWrite(FSYNC , LOW); 

  delay(1); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0x63); 

  myShiftOut(SDATA , SCLK , MSBFIRST , 0xE8); 

  delay(1); 

  digitalWrite(FSYNC , HIGH);   

  delay(10); 

   

  digitalWrite(CTRL , HIGH); 

  delay(1); 

  digitalWrite(CTRL , LOW); 

  delay(25); 

    

 } 

 

 

void loop() { 

   

 SerialUSB.println("PID+ is Ready"); 

  

/*    DAC OUTPUT SETUP      */ 

  int val=0.5; 

  analogWrite(vbias,0); //initalise DAC to zero 

  int i=217;  //control pin minimum value 0.7V 

  while(i<1024) 

  { 

    analogWrite(vbias,i); 

    i++; 

    delay(1000); 

    if(i==1023) 

    {  i==217; 

  } 

  } 

 

 

  SerialUSB.println("PID+ is Ready"); 

  float x= analogRead(out1); 

  float y= analogRead (out2); 

  float z = analogRead (A3); 

  float Vout1 =(x*5)/1023; 

  float Vout2=(y*5)/1023; 

  float fbout=(z*5)/1023; 

  SerialUSB.println( "OUTPUT 1 is:"); 

  SerialUSB.println (Vout1); 
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  SerialUSB.println( "OUTPUT 2 is:"); 

  SerialUSB.println (Vout2);  

  SerialUSB.println( "OUTPUT  from transformer 
feedback is:"); 

  SerialUSB.println (fbout); 

  delay(1000); 

 /* 

   

 /* if(counter > 2000){ 

    Serial.println("counter reset"); 

    digitalWrite(CTRL , HIGH); 

    delay(1); 

    digitalWrite(CTRL , LOW); 

    delay(25); 

    counter = 0;   

  }*/ 

   

  counter++; 

   

   

//  int sensorValue = analogRead(A0); 

//  float voltage = sensorValue * (5.0 / 1023.0); 

//  Serial.println(voltage);*/ 
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Appendix B 
Appendix B contains the link to the GitHub library of the R program used in this study to 

analysis the urine samples. 

https://github.com/JimSkinner/toftools 

 

 


