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Abstract

Background: Students usually encounter stress throughout their academic path. Ongoing stressors may lead to chronic stress,
adversely affecting their physical and mental well-being. Thus, early detection and monitoring of stress among students are
crucial. Wearable artificial intelligence (AI) has emerged as a valuable tool for this purpose. It offers an objective, noninvasive,
nonobtrusive, automated approach to continuously monitor biomarkers in real time, thereby addressing the limitations of traditional
approaches such as self-reported questionnaires.

Objective: This systematic review and meta-analysis aim to assess the performance of wearable AI in detecting and predicting
stress among students.

Methods: Search sources in this review included 7 electronic databases (MEDLINE, Embase, PsycINFO, ACM Digital Library,
Scopus, IEEE Xplore, and Google Scholar). We also checked the reference lists of the included studies and checked studies that
cited the included studies. The search was conducted on June 12, 2023. This review included research articles centered on the
creation or application of AI algorithms for the detection or prediction of stress among students using data from wearable devices.
In total, 2 independent reviewers performed study selection, data extraction, and risk-of-bias assessment. The Quality Assessment
of Diagnostic Accuracy Studies–Revised tool was adapted and used to examine the risk of bias in the included studies. Evidence
synthesis was conducted using narrative and statistical techniques.

Results: This review included 5.8% (19/327) of the studies retrieved from the search sources. A meta-analysis of 37 accuracy
estimates derived from 32% (6/19) of the studies revealed a pooled mean accuracy of 0.856 (95% CI 0.70-0.93). Subgroup
analyses demonstrated that the accuracy of wearable AI was moderated by the number of stress classes (P=.02), type of wearable
device (P=.049), location of the wearable device (P=.02), data set size (P=.009), and ground truth (P=.001). The average estimates
of sensitivity, specificity, and F1-score were 0.755 (SD 0.181), 0.744 (SD 0.147), and 0.759 (SD 0.139), respectively.

Conclusions: Wearable AI shows promise in detecting student stress but currently has suboptimal performance. The results of
the subgroup analyses should be carefully interpreted given that many of these findings may be due to other confounding factors
rather than the underlying grouping characteristics. Thus, wearable AI should be used alongside other assessments (eg, clinical
questionnaires) until further evidence is available. Future research should explore the ability of wearable AI to differentiate types
of stress, distinguish stress from other mental health issues, predict future occurrences of stress, consider factors such as the
placement of the wearable device and the methods used to assess the ground truth, and report detailed results to facilitate the
conduct of meta-analyses.

Trial Registration: PROSPERO CRD42023435051; http://tinyurl.com/3fzb5rnp
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Introduction

Background
Students’ mental health is now of significant concern in the
domain of public health. The academic environment, composed
of rigorous curriculum structures, exams, assignments,
evaluative metrics, deadlines, and an undercurrent of peer
comparisons, not only requires a high cognitive effort but can
also be a basis for psychosocial risks [1-3]. Being immersed in
such scholarly endeavors at different levels, students become
inadvertently vulnerable to mental health issues (eg, anxiety,
depression, and stress [3,4]). This can negatively affect a
student’s life in general and, specifically, their academic
performance. Research has revealed that students who are
constantly under high levels of stress are more inclined to
underperform academically when compared with their peers
who are less stressed [5]. Recent studies suggest that failure to
manage academic-related stress is detrimental to the well-being
of students [6-8].

The psychobiological literature defines stress, including
academic stress, as a syndrome of responses combining
interactions between the neurocognitive, endocrine, and affective
systems [9-11]. Stress manifests when exposed to conditions
that present a physical and psychological challenge or threat
[11]. Stress is also defined as the result of incompatibility in
relation to an individual’s ability to handle the burden placed
on them by their environment [12]. Stress can be classified
based on its duration into 2 forms: chronic and acute stress.
Acute stress is a short-term stress response to an immediate
situation and usually subsides soon after symptoms first appear,
whereas chronic stress is a long-term stress response to ongoing
stressors [13]. Typically, acute stress is the most common and
does not impose a health burden on young and healthy
individuals. In contrast, chronic stress can have a negative
impact on both physical and mental health [14,15]. Potential
biological risks include inflammation, diabetes, and heart disease
[16,17]. Furthermore, studies have shown an association with
cognitive dysfunctions because of excessive and chronic
stressors [18,19]. Chronic stress can also have negative effects
on social behavior, which leads to antisociality [20]; depression;
or, in extreme cases, suicide [21,22]. Worldwide, it has been
reported that, for every 5 visits by college students to their
physician, 3 are for stress-related problems [23]. In addition,
most college students who have problems with stress also have
sleep-related disorders (76%), are prone to headaches (58%),
experience difficult relationships with family and friends (85%),
and tend to be short-tempered (70%) [23]. The American
Institute of Stress reveals that, in the United States, a combined
US $300 billion is spent on treating stress-related ailments and
diseases [13].

Given the aforementioned complications of stress, the detection
and monitoring of stress in early stages are crucial. Subjective
and objective assessments can be used to evaluate stress levels.

Subjective assessments of stress can involve 2 different means:
standard self-reported questionnaires designed by field experts
(eg, the Perceived Stress Scale and Depression, Anxiety, and
Stress Scale–21 Items) or clinical interviews with psychologists
[15,24]. Beyond this, objective assessments of stress include
physical observations and physiological measures. For physical
observations, visible changes in the appearance of the human
body are noted, such as any facial expressions, the rate of
blinking, and any noticeable dilation of the pupils. For
physiological measures, blood, urine, or saliva samples can be
collected to measure the level of specific hormones (adrenaline
and cortisol) that are released as a response to a stressor
[10,14,16]. Relying only on subjective assessments is
insufficient to accurately detect and monitor stress as they are
highly subjective, usually irreproducible, time-consuming, and
entangled with other body responses not related to stress [25,26].
Although the aforementioned objective assessments can be
deterministic in capturing stress status, they require invasive or
obtrusive tests that are commonly deployed in a highly
controlled laboratory environment and do not reflect stress in
real-life scenarios [13,27]. Therefore, there is a critical need for
alternative assessments of stress that are objective, noninvasive,
nonobtrusive, and automatic and can continuously monitor
biomarkers in real time.

Changes in biomarkers (eg, heart rate [HR], HR variability
[HRV], and electrodermal activity [EDA]) can be used to
objectively detect stress [15,28]. Real-time and continuous
monitoring of these biomarkers must be supported by
computational frameworks to automate the process of stress
detection, thereby overcoming the aforementioned limitations
of the current tools. Wearable artificial intelligence (AI) is a
promising solution that has been used to address the issue of
assessing stress [29-31]. Wearable AI is an advanced technology
that depends on AI techniques to analyze a large amount of data
(eg, HR, HRV, EDA, activity level, and skin temperature)
collected by sensors in wearable devices to provide personalized
feedback. Several types of wearable devices can be used to
collect biomarkers: on-body devices, which are fixed directly
on the body or skin; near-body devices, which are fixed close
to the body but do not have direct contact with the skin; in-body
devices, which are implanted in the body; and electronic textiles,
which are fabrics that have integrated electronics [30].

Research Problem and Aim
In the past few years, numerous studies have shed light on the
performance of wearable AI for the detection of stress. Several
reviews of such studies have been conducted, but they have the
following limitations. First, none of the previous reviews have
focused on students [13,15,24,28,32-35]. Second, none of the
previous reviews have used statistical techniques (eg,
meta-analysis) to analyze the results of previous studies
[13,15,24,28,32-35]. Third, most of the previous reviews have
been literature reviews rather than systematic reviews
[13,15,24,28,33,34]. Fourth, the search sources in the previous
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reviews have not included the main databases in the field, such
as MEDLINE [28], ACM Digital Library [28,32,33,35], Scopus
[28,32,33,35], Embase [32,35], and IEEE Xplore [32,33,35].
Finally, several previous reviews have focused on wearable and
nonwearable devices instead of on wearable devices only
[13,15,24,32]. Therefore, this review sought to bridge this gap
by assessing the capability of wearable AI to detect and forecast
stress among students. Our research question is as follows: what
is the effectiveness of wearable AI in diagnosing and predicting
stress among students?

Methods

Overview
The authors undertook and reported this review in line with the
guidelines set forth by the PRISMA-DTA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for
Diagnostic Test Accuracy) [36]. The PRISMA-DTA checklist
for this review is presented in Multimedia Appendix 1 [36].
The protocol for this review was registered with PROSPERO
(ID: CRD42023435051).

Search Strategy
To identify suitable studies, the primary author conducted a
comprehensive search across 7 electronic repositories on June
12, 2023: MEDLINE (via Ovid), Embase (via Ovid), PsycINFO
(via Ovid), ACM Digital Library, Scopus, IEEE Xplore, and
Google Scholar. Using an automated search methodology,
biweekly notifications were configured over a span of 3 months,
concluding on September 12, 2023. Given the large number of
results returned by Google Scholar, the first 100 results
(equivalent to 10 pages) were subjected to scrutiny for this
review. To find more studies, we checked the lists of sources
referenced in the studies that we had already included (backward
reference list checking), and we also looked at studies that had
cited the ones we had already included (forward reference list
checking).

The compilation of search terms for the review was informed
by consultations with 2 digital mental health experts and scrutiny
of relevant literature reviews. The resultant search query was
composed of four distinct categories of terms: (1) terms
associated with AI, such as “artificial intelligence,” “machine
learning,” and “deep learning”; (2) terms linked to wearable
devices, comprising “wearable*,” “smartwatch*,” and
“smartband*”; (3) terms related to stress; and (4) terms relevant
to students, including “student*,” “postgraduate*,” and
“undergraduate*.” The Boolean OR operator was used to
combine terms in the same category, whereas the Boolean AND
operator was used to combine terms between categories. The
precise search formulations are presented in Multimedia
Appendix 2 for reference.

Study Eligibility Criteria
This review analyzed research articles centered on the creation
or application of AI algorithms for the detection or prediction
of stress among students using data from wearable devices. The
standards for determining which articles to include and exclude
were jointly established through the collaborative expertise of
the authors. To be eligible for consideration in this review,

studies needed to collect data from students regardless of their
educational level, age, gender, and ethnicity. Furthermore, to
be included in this review, studies had to assess the effectiveness
of AI algorithms in identifying or foreseeing stress. They were
also required to present the confusion matrix or performance
metrics (such as accuracy, sensitivity, and specificity). Studies
that used AI to predict the outcomes of stress interventions or
treatments were excluded.

Eligible studies were required to use noninvasive wearable
devices (eg, smartwatches, smart glasses, and smart rings) for
data collection. This review encompassed studies that used
various methods for data collection (such as nonwearable
devices, interviews, and questionnaires) in addition to wearable
devices. In contrast, studies that solely used the following
devices for data collection were excluded: nonwearable devices,
handheld devices (eg, mobile phones), near-body wearable
devices, in-body wearable devices, wearable devices wired to
nonwearable devices, and wearables requiring expert oversight
(such as those requiring precise electrode placement).

The inclusion criteria covered peer-reviewed journal articles,
conference papers, preprints, and dissertations irrespective of
the study setting, reference standard (ie, ground truth), or the
country of study. Given the emphasis on contemporary
technology and the continuous growth in the field of wearable
AI, only articles from 2015 onward were included. Articles not
in English or structured as review pieces, editorials, conference
abstracts, posters, protocols, and research highlights were all
excluded. We included only prospective and retrospective
experimental studies; however, studies that used publicly
available data sets (eg, Wearable Stress and Affect Detection
[WESAD]) or data sets from previous studies were excluded.

Study Selection
The study selection process involved 3 main steps. First,
duplicate studies were removed using EndNote X9 (Clarivate
Analytics). Then, 2 reviewers independently evaluated the titles
and abstracts of the remaining articles. Finally, the reviewers
independently assessed the full texts of the remaining articles.
Any disagreements were discussed and resolved. The agreement
between the reviewers was high, with a κ score of 0.87 for
evaluating titles and abstracts and 0.92 for reading full texts.

Data Extraction
The data extraction form was developed and tested with 3
studies first (Multimedia Appendix 3). Using Microsoft Excel
(Microsoft Corp), 2 reviewers independently extracted the
studies’ metadata, features of the wearable devices, features of
the AI algorithms, and the study results. Any disagreements
between the reviewers were resolved through discussion. For
studies that provided raw data or confusion matrices, we
calculated performance measures such as accuracy, specificity,
and sensitivity. If this information was not available, we reached
out to the first and corresponding authors of those studies to try
to obtain it. We did not include results based only on
nonwearable device data (eg, data from smartphones or surveys).
As many studies conducted multiple experiments with different
features, data types, validation methods, and AI algorithms,
they reported several results for the same performance measure.
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In these cases, we obtained the best result in each performance
measure for each algorithm.

Risk-of-Bias and Applicability Appraisal
To assess the quality of the included studies, we tailored the
established Quality Assessment of Diagnostic Accuracy
Studies–Revised (QUADAS-2) [37] tool to suit the objectives
of our review. We made adjustments by replacing certain
nonapplicable criteria with more relevant ones from the
Prediction Model Risk of Bias Assessment Tool [38]. Our
adjusted QUADAS-2 tool includes 4 primary categories:
“Participants,” “Index Test” (pertaining to AI algorithms),
“Reference Standard” (denoting the ground truth), and
“Analysis.” We formulated 4 specific questions within each
category to align with the aims of our review. In addition to
examining the potential biases within these 4 categories, we
assessed the real-world applicability of the findings for the first
3 categories. To optimize our adjusted tool, we first trialed it
on 3 studies to fine-tune it. In total, 2 reviewers independently
assessed the included studies using the adapted QUADAS-2
tool (Multimedia Appendix 4). Discrepancies between their
evaluations were discussed and resolved through consensus.

Data Synthesis
The data from the studies were combined using narrative and
statistical methods. In the narrative synthesis, we used text and
tables to provide an overview and describe the key features of
the included studies (study metadata, wearable devices, and AI
techniques). A statistical approach was used when at least 2
different studies presented sufficient data to conduct
meta-analyses. We did not consider the study design when
selecting studies for meta-analysis. When estimates (eg,
accuracy, sensitivity, and specificity) in the analysis were
extracted from different unique studies (ie, independent effect
sizes), DerSimonian-Laird random-effects models [39] using
the Freeman-Tukey double arcsine transformation [40,41] were
conducted to pool the extracted estimates. This approach
considers the fluctuations arising from sampling and the
heterogeneity in estimates. The analysis was executed using the
meta toolkit in R (version 4.2.2; R Foundation for Statistical
Computing) [42]. However, when there were estimates in the
analysis extracted from the same study (ie, dependent effect

sizes), we used a multilevel meta-analysis technique [39,43] to
account for this dependency in effect sizes, thereby reducing
the likelihood of type-I errors. Multilevel meta-analyses were
conducted using the metafor toolkit in R (version 4.2.2) [40].

Where appropriate, we performed subgroup multilevel
meta-analyses to investigate potential relationships between
performance estimates and various factors [39,43]. These factors
included AI algorithms, number of stress classes, type of
wearable device, location of the wearable device, data set size,
data sources, data types, stress inducers, ground truth, and
validation methods. The difference in estimates between
subgroups was considered statistically significant when the P
value was <.05.

The Cochrane Q statistic was used to examine between-study
heterogeneity, with a P value of <.05 indicating the presence
of heterogeneity. The degree of between-study heterogeneity

was evaluated using I2 [40,44], where it was deemed

insignificant when I2 ranged from 0% to 40%, moderate when
it ranged from 30% to 60%, substantial when it ranged from
50% to 90%, or considerable when it ranged from 75% to 100%
[45].

Results

Search Results
As shown in Figure 1, a total of 327 studies were retrieved when
the databases identified previously were searched. Of the 327
retrieved studies, 59 (18%) duplicates were removed using
EndNote X9, leaving 268 (82%) studies. Furthermore, 71.3%
(191/268) of the studies were removed after we screened the
titles and abstracts. After retrieving and reading the full texts
of the remaining 77 studies, it was determined that 59 (77%)
were ineligible for inclusion. The main reasons for exclusion
were that they used a public data set, did not use wearable
devices, did not use AI algorithms, did not focus on stress, or
were irrelevant publication types. We identified an additional
study relevant to this review through backward reference list
checking. In total, 19 studies were included in this review
[46-64], and 6 (32%) were eligible for the meta-analyses
[46,52,53,55,62,63].
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Figure 1. Flowchart of the study selection process. AI: artificial intelligence.

Characteristics of the Included Studies
The key characteristics of the studies included in this review
are presented in Table 1. The included studies were published
between 2015 and 2023. The year in which the largest number
of included studies was published was 2019 (5/19, 26%). The
included studies were conducted in 10 distinct countries (Table
1), wherein the United States contributed to over a third of the
studies (7/19, 37%). More than half (10/19, 53%) of the studies
were conference papers, whereas the remaining studies were
journal articles (8/19, 42%) and a preprint (1/19, 5%). The

number of participants in the included studies ranged from 5 to
652, with an average of 77 (SD 149.5). The mean age of the
participants was reported in 42% (8/19) of the included studies
and ranged from 19.8 to 27.5 years, with an average of 22.8
(SD 2.5) years. A total of 58% (11/19) of the studies reported
the proportion of female participants, which ranged from 14.3%
to 76.8%, with an average of 47.3% (SD 21.5%). Participants
in most of the studies (17/19, 89%) were undergraduate students.
The characteristics of each included study are presented in
Multimedia Appendix 5 [46-64].
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Table 1. Characteristics of the included studies (N=19).

ReferencesValuesFeature

Year of publication, n (%)

[47,54]2 (11)2023

[46,53,63]3 (16)2021

[49,56,62,64]4 (21)2020

[48,52,55,57,58]5 (26)2019

[50,60,61]3 (16)2018

[51]1 (5)2017

[59]1 (5)2015

Publication type, n (%)

[46,51-53,55,57-59,61,64]10 (53)Conference paper

[48-50,54,56,60,62,63]8 (42)Journal article

[47]1 (5)Preprint

Country of publication, n (%)

[47,51,53-56,60]7 (37)United States

[57,58,63]3 (16)India

[49,59]2 (11)United Kingdom

[46,48,50,52,61,62,64]1 (5) eachOthers

[46-64]77 (149.5; 5-652)Number of participants, mean (SD; range)

Age (y)

[47-49,54,56,61,62,64]22.76 (2.53; 19.8-27.5)Values, mean (SD; range)

[46,50-53,55,57-60,63]11 (58)NRa, n (%)

Female participants

[47-49,52-54,56,60-62,64]47.3 (21.5; 14.3-76.8)Values (%), mean (SD; range)

[46,50,51,55,57-59,63]8 (42)NR, n (%)

Educational level, n (%)

[48]1 (5)High school

[47-60,62-64]17 (89)Undergraduate

[49,61,63]3 (16)Postgraduate

[46]1 (5)NR

aNR: not reported.

Features of the Wearable Devices
As depicted in Table 2, although 89% (17/19) of the studies
used commercial wearable devices, 5% (1/19) used
noncommercial wearable devices. The included studies used
16 different wearable devices. The wearable devices that were
used by the largest number of studies were Empatica E4 (3/19,
16%) and Galaxy (Watch Active2 and Gear S, S2, and S3; 3/19,

16%). The most common type of wearable device used in the
included studies was smart bands (12/19, 63%). The wearable
devices were placed on 7 different parts of the body; however,
the wrist was the most common (16/19, 84%). The periods for
which the devices were worn in the included studies ranged
from 10 minutes to 365 days. The features of the wearable
devices in each included study are presented in Multimedia
Appendix 6 [46-64].
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Table 2. Features of the wearable devices (N=19).

ReferencesValuesFeature

Status of WDa, n (%)

[46-54,57-60,62-64]17 (89)Commercial

[51]1 (5)Noncommercial

[55,56]2 (11)Not reported

Name of WD, n (%)

[48,61,64]3 (16)Empatica E4

[47,48,54]3 (16)Galaxy (Watch Active2 and Gear S, S2, and S3)

[53,58]2 (11)Fitbit (Charge 2)

[50,62]2 (11)Microsoft Band 2

[46,49,51,52,54,59,60,63]1 (5) eachOthers

[55,56]2 (11)Not reported

Type of WD, n (%)

[48-51,55,56,58-62,64]12 (63)Smart bands

[46-48,51-54,63]6 (32)Smartwatches

[52,63]2 (11)Electrodes

[54,57]1 (5) eachOthers

Placement of WD, n (%)

[46-51,53-56,58-62,64]16 (84)Wrist

[51,52,63]3 (16)Chest

[54,59,63]3 (16)Finger

[52,63]2 (11)Palm

[57,63]1 (5) eachOthers

Duration of wearing WD

N/Ab10 min to 365 dRange

[46,50-52,57,62]6 (32)Not reported, n (%)

aWD: wearable device.
bN/A: not applicable.

Features of the AI
The AI algorithms in most of the included studies (18/19, 95%)
were used to solve classification problems (Table 3). Most
studies (15/19, 79%) used AI algorithms to categorize the
sample into 2 classes (stressed vs not stressed). Among the
included studies, 22 different algorithms were used, but the
most commonly used algorithms were support vector machine
(14/19, 74%) and k-nearest neighbor (13/19, 68%). All the
included studies used AI to detect the current stress status,
whereas none of them used AI to predict the occurrence of stress
in the future. The data set size was reported in 47% (9/19) of
the studies and ranged from 30 to 1178, with an average of
517.9 (SD 409). Data were collected using wearable devices
(19/19, 100%), self-reported questionnaires (11/19, 58%), and
nonwearable devices (eg, smartphones; 6/19, 32%). The
included studies used 17 types of data to develop the models.
However, the most common data types used to develop the

models were HR data (eg, HR, HRV, and interbeat interval;
16/19, 84%), EDA data (10/19, 53%), and physical activity data
(eg, step counts, calories, and metabolic rate) (8/19, 42%). The
number of features extracted from the data varied between 4
and 498, with an average of 52.2 (SD 115.1). Stress inducers
were used in 63% (12/19) of the studies, and the most common
method used to induce stress among participants was arithmetic
tasks (7/19, 37%). The ground truth was identified using
self-reported questionnaires (eg, Perceived Stress Scale; 11/19,
58%), the context of the experiment (eg, stress exposure period
and non–stress exposure period; 9/19, 47%), or unsupervised
algorithms (1/19, 5%). The most common method used to
validate the performance of the models was k-fold
cross-validation (11/19, 58%). The most common measure used
in the included studies to evaluate the performance of AI
algorithms was accuracy (16/19, 84%). The features of the AI
in each included study are described in Multimedia Appendix
7 [46-64].
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Table 3. Features of the artificial intelligence (AI; N=19).

ReferencesValuesFeature

Problem-solving approaches, n (%)

[46-63]18 (95)Classification

[50]1 (5)Regression

[64]1 (5)Clustering

Number of stress classes, n (%)

[46,47,49,51,53-62,64]15 (79)2

[48,50,52,57,61]5 (26)3

[55,63]2 (11)>3

AI algorithms, n (%)

[46,48,50-57,59,60,62,63]14 (74)Support vector machine

[46,47,50,52-57,61-63]13 (68)K-nearest neighbor

[47,50,51,54,55,61-63]8 (42)Random forest

[46,48,51,53,62,63]6 (32)Logistic regression

[50,52,55,58,61]5 (26)Decision tree

[46,50,51,58,62]5 (26)Naïve Bayes

[53,55,62,63]4 (21)Artificial neural network

[46,48,54,56]4 (21)Multilayer perceptron

[46-50,52,55,56,60-64]<4Others

Aim of AI algorithms, n (%)

[46-64]19 (100)Detection

[46,47,52,53,55,61-64]518 (409; 30-1178)Data set size, mean (SD; range)

Data sources, n (%)

[46-64]19 (100)Wearable devices

[47,49,51,53-55,58,60,62,63]11 (58)Self-reported questionnaire

[47,53,54,58,60,61]6 (32)Nonwearable devices

Data types, n (%)

[46-54,56,58,59,61,63,64]16 (84)Heart rate data

[48,50-52,54,59-61,63,64]10 (53)Electrodermal activity data

[47,48,53-55,58,60,61]8 (42)Activity data

[53-55,58,60]5 (26)Sleep data

[48,50,60]3 (16)Skin temperature

[47,54,60]3 (16)Smartphone use data

[47,54,60]3 (16)Location

[47,54,61]3 (16)Respiratory rate data

[47,53,54,57,58,60,61]<3Others

Number of features

[46-64]52.2 (115.1; 4-498)Values, mean (SD; range)

[55]1 (5)Not reported, n (%)

Stress-induction methods, n (%)

[46,50,51,56,59,61,63]7 (37)Arithmetic tasks

[49,50,52,62]4 (21)Exams

[50,51,56,63]4 (21)Stroop test
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ReferencesValuesFeature

[50,51,56]3 (16)Physical stress

[48,50-52,56,59,61,64]<3Others

[47,53-55,57,58,60]7 (37)No stress induction

Ground truth, n (%)

[47-49,51,53-55,57,58,60,62]11 (58)Self-reported questionnaire

[48,50-52,56,59,61,63,64]9 (47)Context

[46]1 (5)Unsupervised algorithm

Types of validation, n (%)

[46-48,50-54,56,57,63]11 (58)K-fold

[46,49,55,57,59,62]6 (32)Training-test split

[51,61]2 (11)Leave-one-out cross-validation

[60]1 (5)Nested

[58]1 (5)Not reported

[64]1 (5)Not applicable

Performance measures, n (%)

[46,48-50,52-61,63,64]16 (84)Accuracy

[46-48,51,55,56,60,61,64]9 (47)F1-score

[48,51,55,56,58,59,64]7 (37)Precision

[48,55,56,58,62,64]6 (32)Sensitivity

[46,50,51]3 (16)κ

[46,50,51,58,62,64]<4Others

Results of the Risk-of-Bias Appraisal
All studies (19/19, 100%) reported comprehensive details to
determine whether an appropriate consecutive or random sample
of eligible patients was used, and none of the studies had
inappropriate exclusions. Nearly half (8/19, 42%) of the studies
ensured a balanced number of patients across subgroups. Only
a third (6/19, 32%) reported a sufficient sample size, leaving

ambiguity regarding the adequacy of the sample size in most
of the studies (13/19, 68%). As a result, only a little over half
(11/19, 58%) of the studies were assessed as having a low risk
of bias from the “selection of participants” domain (Figure 2).
In terms of matching participants to the predefined requirements
in the review question, a low level of concern was identified in
most of the studies, accounting for 68% (13/19).
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Figure 2. Results of the assessment of risk of bias in the included studies.

All studies in our review (19/19, 100%) comprehensively
detailed the AI models, clearly reported the features (predictors)
used, and ensured that these features were sourced without
previous knowledge of the outcome data. For nearly every study
(18/19, 95%), the features were consistently assessed across
participants. Therefore, for the vast majority of the studies

(18/19, 95%), the potential for bias in the “index test” was
assessed as low (Figure 2). Consistently, all studies (19/19,
100%) were found to have minimal concerns regarding the
match between the model’s predictors and the review question’s
criteria (Figure 3).

Figure 3. Results of the assessment of applicability concerns in the included studies.

In all the reviewed studies (19/19, 100%), the outcome of
interest, specifically the stress level, was consistently assessed
using appropriate methodologies. Similarly, outcomes were
defined uniformly for participants across studies and determined
without access to predictor data, and an appropriate time gap
was ensured between the index test and the reference standard.
As a result, the potential for bias regarding the “reference

standard” domain was deemed low for all studies (19/19, 100%;
Figure 2). In addition, all studies (19/19, 100%) showed minimal
concerns over discrepancies between the outcome’s definition,
timing, or determination and the review question’s criteria
(Figure 3).
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Finally, two-thirds of the studies (12/19, 63%) ensured that all
the enrolled participants were factored into the data analysis.
Over half (10/19, 53%) of these studies executed proper data
preprocessing, whereas in 68% (13/19), there was an appropriate
split between training, validation, and test sets. The same
proportion of studies (13/19, 68%) adopted suitable measures
to evaluate the performance of their models. However,
considering all these factors, only a minority (8/19, 42%) were
deemed to have a minimal “analysis” domain risk of bias (Figure
2). A detailed breakdown of the “risk of bias” and “applicability
concerns” for every domain in each study is available in
Multimedia Appendix 8 [46-64].

Results of the Studies

Overview
Accuracy, sensitivity, specificity, and F1-score were reported
in 89% (17/19), 32% (6/19), 11% (2/19), and 53% (10/19) of
the studies, respectively. Accuracy values were synthesized
using both narrative and statistical methods, whereas the values
of the remaining measures were synthesized solely through
narrative methods. This distinction arises from the fact that 35%
(6/17) of the studies that assessed accuracy reported enough
data to conduct meta-analyses, whereas none of the studies

evaluating the other measures had sufficient data for such
analyses. The results related to accuracy and other measures
are presented in the following subsections.

Accuracy
Wearable AI accuracy was assessed in 89% (17/19) of the
studies. From these studies, we extracted the highest accuracy
for each algorithm in each study; therefore, we identified 71
accuracy estimates. The estimates of accuracy ranged from 0.48
to 1.00, with an average of 0.822 (SD 0.135). We conducted
meta-analyses of 37 estimates derived from 11,425 participants
across 35% (6/17) of the studies (Table 4). The pooled mean
accuracy of these estimates was 0.856 (95% CI 0.698-0.934).
The meta-analyzed evidence exhibited considerable statistical

heterogeneity (P<.001; I2=98.8%). Furthermore, subgroup
meta-analyses were conducted to assess the performance of
wearable AI based on different factors. As shown in Table 4,
there was a statistically significant difference in pooled accuracy
between subgroups in the number of stress classes group
(P=.02), type of wearable device group (P=.049), location of
wearable device group (P=.02), data set size group (P=.009),
and ground truth group (P=.001), whereas no statistically
significant difference was found in the pooled accuracy between
subgroups in the remaining groups.
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Table 4. Pooled mean estimates of accuracy by several factors (N=19).

Test for subgroup
differences (P value)

Heterogeneity measuresPooled mean
accuracy
(%), mean
(95% CI)

Accuracy
(%), range

Sample size,
n

Number of

studiesa
Group

I2 (%)Q (P value)τ2

.98Algorithm

96.5143.0
(<.001)

0.02760.796 (0.67-
0.90)

0.65-0.9420396Support vector ma-
chine

94.896.2 (<.001)0.03260.834 (0.71-
0.93)

0.58-0.9820396K-nearest neighbor

85.520.7 (<.001)0.01080.768 (0.67-
0.86)

0.66-0.8715454Logistic regression

94.958.3 (<.001)0.04360.811 (0.63-
0.94)

0.66-0.9916864Artificial neural net-
work

95.443.1 (<.001)0.04560.829 (0.61-
0.97)

0.71-0.9812153Random forest

96.629.6 (<.001)0.03190.762 (0.52-
0.94)

0.64-0.864942Decision tree

94.116.9 (<.001)0.06720.841 (0.50-
1.00)

0.68-0.979902Naïve Bayes

.02bNumber of stress classes

97.2173.4
(<.001)

0.08730.773 (0.61-
0.87)

0.58-0.979222252

98.2302.8
(<.001)

0.21100.944 (0.77-
0.99)

0.86-0.99220312>2

.049Type of WDc

96.691.6 (<.001)0.14660.836 (0.53-
0.95)

0.66-0.97209411Smartwatches

85.469.2 (<.001)0.00500.695 (0.63-
0.75)

0.58-0.77712814Smart bands

98.2302.8
(<.001)

0.21100.944 (0.77-
0.99)

0.86-0.99220312Electrodes

.02Location of WD

97.2173.4
(<.001)

0.08730.773 (0.61-
0.87)

0.58-0.97922225Wrist

98.2302.8
(<.001)

0.21100.944 (0.77-
0.99)

0.86-0.99220312Nonwrist

.009Data set size

94.1166.7
(<.001)

0.17040.947 (0.81-
0.99)

0.80-0.9978914≤100

97.4485.3
(<.001)

0.07580.769 (0.62-
0.86)

0.58-0.9110,62723>100

.57Data source

60.529.9 (<.001)0.00000.895 (0.87-
0.91)

0.80-0.97182512WD-based

99.4968.9
(<.001)

0.37080.830 (0.50-
0.95)

0.58-0.99960025WD-based data+other
data

.21Data type

98.6115.4
(<.001)

0.15940.832 (0.52-
0.95)

0.65-0.97597013Heart rate data
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Test for subgroup
differences (P value)

Heterogeneity measuresPooled mean
accuracy
(%), mean
(95% CI)

Accuracy
(%), range

Sample size,
n

Number of

studiesa
Group

I2 (%)Q (P value)τ2

98.2302.8
(<.001)

0.21100.944 (0.77-
0.99)

0.86-0.99220312Heart rate data+EDAd

data

.10Stress inducers

98.91137.8
(<.001)

0.22920.902 (0.75-
0.96)

0.65-0.99817325Yes

80.651.4 (<.001)0.00600.697 (0.62-
0.76)

0.58-0.80325212No

.001Ground truth

96.3320.2
(<.001)

0.12660.933 (0.84-
0.97)

0.80-0.99241319Objective

85.195.0 (<.001)0.00310.706 (0.66-
0.75)

0.58-0.80901218Subjective

.16Validation method

99.0784.7
(<.001)

0.33240.904 (0.64-
0.98)

0.66-0.99408716K-fold

85.469.2 (<.001)0.00500.695 (0.63-
0.75)

0.58-0.77712814Training-test split

N/Ae98.81318.2
(<.001)

0.24020.856
(0.698-
0.934)

0.58-0.9911,42537All studies

aMany studies were included more than once in all meta-analyses except for the meta-analysis related to algorithms given that the studies assessed the
performance of more than one algorithm.
bItalics indicate statistical significance (P<.05).
cWD: wearable device.
dEDA: electrodermal activity.
eN/A: not applicable.

Other Measures
The sensitivity of wearable AI in detecting stress was reported
in 32% (6/19) of the studies. From these studies, 27 sensitivity
estimates were identified given that we extracted the highest
sensitivity for each algorithm in each study. The estimates of
sensitivity varied between 0.42 and 0.97, with an average of
0.755 (SD 0.181). From the 11% (2/19) of studies that reported
specificity, 8 estimates of specificity were extracted given that
more than one algorithm was assessed in these studies. The
estimates of specificity ranged between 0.475 and 0.95, with
an average of 0.744 (SD 0.147). We identified 46 estimates of
F1-score from 53% (10/19) of the studies. The estimates of the
F1-score ranged from 0.514 to 0.979, with an average of 0.759
(SD 0.139).

Discussion

Principal Findings
This review assessed the performance of wearable AI in
detecting stress among students. Our analyses showed that
wearable AI has an acceptable performance in detecting stress
among students, but there is still room for improvement.

Specifically, our meta-analyses revealed that wearable AI was
able to correctly classify students with and without stress in
85.6% of cases. Furthermore, our narrative synthesis showed
that the performance of wearable AI in detecting students with
stress (75.5%) is comparable with its performance in detecting
students without stress (74.4%). We considered that the
performance of wearable AI in detecting stress among students
is suboptimal given that many previous reviews have shown a
higher performance of AI in detecting other diseases or
disorders, such as cancers [65-68], heart diseases [69,70], ear
diseases [71], and ophthalmic disorders [72,73]. Moreover,
relying solely on pooled mean accuracy is insufficient for
drawing definitive conclusions regarding the performance of
wearable AI; thus, we considered sensitivity and specificity
when evaluating its performance, which were lower than the
pooled accuracy.

The subgroup analyses in this review demonstrated that the
performance of wearable AI is moderated by 5 factors. The first
factor is the type of wearable device used to collect digital
biomarkers. To be more precise, electrodes have higher accuracy
(94.4%) in detecting stress than smartwatches (83.6%) and smart
bands (69.5%). This can be explained by the practice of typically
positioning electrodes on the most suitable areas of the body
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for gathering specific biomarkers, thereby collecting more
accurate data, as opposed to most commercial and fashionable
popular devices being restricted to wrists.

The second moderator identified in this review is the placement
of wearable devices on the body. To elaborate, studies that used
wrist-worn devices exhibited lower accuracy in detecting stress
among students compared with those that used wearable devices
placed on other parts of the body (94.4% vs 77.3%). This can
be attributed to 4 factors. First, all studies that used
non–wrist-worn devices collected data from more than one area
of the body (eg, chest, fingers, and palm) and used electrodes,
whereas all studies that used wrist-worn devices collected data
from only one area (ie, wrist) and used smartwatches or smart
bands. Second, the placement of wearable devices on the wrist
may lead to less accurate data collection because of the frequent
arm movements. Third, all studies that used non–wrist-worn
devices collected EDA data, whereas none of the studies that
used wrist-worn devices collected EDA data. Finally, the ground
truth in all studies that used non–wrist-worn devices was
assessed objectively, whereas the ground truth in approximately
half of the studies that used wrist-worn devices was identified
subjectively.

The third moderator identified in this review is the number of
stress classes that wearable AI endeavors to detect. Surprisingly,
our analysis revealed that wearable AI exhibits greater accuracy
in classifying more than 2 stress levels (94.4%) as opposed to
just 2 stress classes (77.3%). This may be attributed to the same
4 aforementioned factors given that the estimates used in the
subgroup meta-analysis to assess the performance of wearable
AI in classifying more than 2 stress levels were the exact
estimates used in the meta-analysis to evaluate the performance
of non–wrist-worn devices.

The fourth moderator found in this review is the ground truth.
Specifically, the efficacy of wearable AI in stress detection
tends to be superior when the ground truth is determined through
objective assessments (eg, the experimental context), in contrast
to when it relies on subjective assessments (ie, self-reported
questionnaires; 93.3% vs 70.6%). This is expected as objective
assessments are generally more reliable and accurate than
subjective assessments.

The last moderator identified in this review is the data set size.
Unexpectedly, our subgroup meta-analyses demonstrated that
the accuracy of wearable AI in detecting stress is higher when
using a data set size of ≤100 (94.7%) as opposed to data sets
with sizes of >100 (76.9%). Although this seems odd at first
glance, the reason could be that the ground truth in all studies
that used a data set size of ≤100 was examined objectively,
whereas the ground truth in approximately half of the studies
that used a data set size of >100 was identified subjectively.

As mentioned in the Introduction section, none of the previous
reviews statistically synthesized the results of previous studies.
Thus, we calculated the traditional average of accuracy estimates
reported in the studies included in these reviews. We noticed
comparable findings despite the differences between our review
and these reviews. To elaborate, although the pooled mean in
this review was 85.6%, the average accuracy estimates in the
previous reviews were 87.6% (50%-100%) [28], 87%

(70.8%-99%) [34], 86% (60%-100%) [15], 85.4%
(64.5%-98.3%) [35], 84.2% (51.2%-100%) [24], and 82.9%
(53%-99%) [13]. Furthermore, this review showed findings
comparable with those of previous studies on the performance
of wearable AI in detecting depression [74] and anxiety [75].
Specifically, the pooled mean accuracies of wearable AI in
detecting depression and anxiety were 89% [74] and 82% [75],
respectively.

Research and Practical Implications
This review found that wearable AI holds promise as a valuable
tool for detecting stress among students. Nonetheless, we are
unable to endorse the immediate integration of wearable AI into
clinical and academic practices for the following reasons: (1)
its efficiency in detecting stress among students is currently
suboptimal, (2) the number of participants was small (≤50) in
74% (14/19) of the studies, (3) the accuracy estimates included
in all meta-analyses were extracted from a few studies (≤6), and
(4) only 21% (4/19) of the studies were judged to have a low
risk of bias in all domains. Hence, it is advisable to use wearable
AI in conjunction with other clinical assessments such as
self-report questionnaires to detect stress among students.

Most of the studies included in this review (17/19, 89%) targeted
undergraduate students, although students at other educational
levels are vulnerable to stress. Hence, future research endeavors
should recruit students at different educational levels, such as
postgraduate and high school students. This review primarily
focused on stress among students even though there is a
substantial body of research on the effectiveness of wearable
AI in identifying stress in other demographic groups. Thus,
further systematic reviews are needed to consolidate and
synthesize the evidence on the performance of wearable AI in
detecting stress across diverse populations.

In this review, all the included studies evaluated the
effectiveness of wearable AI in detecting current stress levels
rather than predicting the occurrence of stress in the future.
Anticipating the onset of stress in the future is equally if not
more crucial than identifying the current stress state as this can
facilitate the development and implementation of more efficient,
timely, and tailored interventions. For this reason, we urge
researchers to conduct further studies on the potential of
wearable AI for predicting future occurrences of stress.

None of the studies included in this review evaluated the
effectiveness of wearable AI in differentiating stress from other
mental health conditions such as depression and anxiety, nor
did they assess its ability to distinguish between different types
of stress (eg, acute stress, chronic stress, emotional stress,
physical stress, eustress, distress, and posttraumatic stress
disorder). In clinical practice, health care professionals often
rely on complex and error-prone diagnostic methods to make
distinctions among various patient groups rather than merely
distinguishing them from individuals without health issues.
Consequently, it is imperative for researchers to investigate how
well wearable AI can differentiate between different types of
stress and distinguish individuals with stress from those who
have other mental disorders exhibiting signs and symptoms
similar to those of stress.
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Although previous studies have examined the performance of
wearable AI based on different factors (eg, algorithms, data
types, and number of stress classes), they did not assess its
performance based on the placement of the wearable device
(eg, wrist, chest, or fingers), the methods used to induce stress
(eg, Stroop test, arithmetic tasks, and physical exercises), or the
methods used to assess the ground truth (eg, subjective and
objective assessments). We strongly encourage researchers to
consider these factors in future studies. Furthermore, none of
the previous studies have used biological samples as the ground
truth, although they are considered as the gold-standard test of
stress. For example, elevated cortisol levels in blood, saliva, or
urine samples can be indicative of chronic stress. Such
gold-standard tests, especially those that can be measured easily
and noninvasively, should be considered in future studies.

Even though this review included 19 studies, we were able to
include results from only 6 (32%) in our meta-analyses as the
remaining studies did not provide sufficient details essential for
conducting meta-analyses (eg, confusion matrices, number of
cases, and number of controls). In addition, these studies did
not present multiple performance measures such as accuracy,
sensitivity, specificity, and F1-score, which are necessary for
us to estimate the required details. Hence, researchers should
include the aforementioned details in their reports to facilitate
the conduct of meta-analyses by others.

A total of 74% (14/19) of the studies had a limited number of
participants, with ≤50 individuals involved. This could have
posed challenges in identifying potential performance
differences in wearable AI when conducting subgroup
meta-analyses. In addition, this could have acted as a hindrance
for the development of algorithms that rely on a substantial
amount of data. To address these issues, it is essential for
researchers to recruit a larger number of participants, ensuring
robust statistical power and enabling the use of more advanced
and efficient algorithms.

Limitations
This review excluded studies that assessed the performance of
(1) nonwearable devices, handheld devices, near-body wearable

devices, in-body wearable devices, wearable devices wired to
nonwearable devices, and wearables requiring expert oversight;
(2) wearable AI in detecting other mental disorders (eg,
attention-deficit/hyperactivity disorder, bipolar disorder, and
schizophrenia); (3) wearable AI in detecting stress among
populations other than students; and (4) wearable AI in
predicting outcomes of stress treatment. Consequently, the
generalizability of our findings to such devices, disorders,
populations, and outcomes is limited.

This review could not draw definitive conclusions based on the
results of the meta-analyses for several reasons. First, it is
probable that we overlooked some studies as we excluded
studies that were published in non-English languages and before
2015 and used publicly available data sets (eg, WESAD) or
data sets from previous studies. Second, the accuracy estimates
included in all meta-analyses were drawn from a limited number
of studies (≤6), primarily as the remaining studies lacked the
necessary information required for conducting meta-analyses.

Conclusions
Wearable AI holds promise as a valuable tool for detecting
stress among students. However, it is not sufficiently ready to
be integrated into clinical and academic practices given its
suboptimal performance. Until further evidence demonstrates
an ideal performance of wearable AI, it should be used in
conjunction with other clinical assessments to help detect stress
among students. Given the limitations of the current evidence,
researchers should investigate how well wearable AI can
differentiate between different types of stress and distinguish
individuals with stress from those who have other mental
disorders exhibiting signs and symptoms similar to those of
stress. Furthermore, future research should recruit students at
different educational levels, such as postgraduate and high
school students. There is also a need to conduct studies on the
potential of wearable AI for predicting future occurrences of
stress. Future studies should compare the performance of
wearable AI based on the placement of the wearable device, the
methods used to induce stress, and the methods used to assess
the ground truth. Finally, researchers should provide detailed
results to facilitate the conduct of meta-analyses by others.
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