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Abstract

Introduction. Shiga toxin-producing Escherichia coli (STEC) belong to a diverse group of gastrointestinal pathogens. The patho-
genic potential of STEC is enhanced by the presence of the pathogenicity island called the Locus of Enterocyte Effacement 
(LEE), including the intimin encoding gene eae.

Gap statement. STEC serotypes O128:H2 (Clonal Complex [CC]25), O91:H14 (CC33), and O146:H21 (CC442) are consistently in 
the top five STEC serotypes isolated from patients reporting gastrointestinal symptoms in England. However, they are eae/LEE-
negative and perceived to be a low risk to public health, and we know little about their microbiology and epidemiology.

Aim. We analysed clinical outcomes and genome sequencing data linked to patients infected with LEE-negative STEC belonging 
to CC25 (O128:H2, O21:H2), CC33 (O91:H14) and, and CC442 (O146:H21, O174:H21) in England to assess the risk to public health.

Results. There was an almost ten-fold increase between 2014 and 2022 in the detection of all STEC belonging to CC25, CC33 
and CC442 (2014 n=38, 2022 n=336), and a total of 1417 cases. There was a higher proportion of female cases (55–70 %) and 
more adults than children, with patients aged between 20–40 and >70 most at risk across the different serotypes. Symptoms 
were consistent across the three dominant serotypes O91:H14 (CC33), O146:H21 (CC442) and O128:H2 (CC25) (diarrhoea >75 %; 
bloody diarrhoea 25–32 %; abdominal pain 64–72 %; nausea 37–45 %; vomiting 10–24 %; and fever 27–30 %). Phylogenetic analy-
ses revealed multiple events of acquisition and loss of different stx-encoding prophage. Additional putative virulence genes 
were identified including iha, agn43 and subA.

Conclusions. Continued monitoring and surveillance of LEE-negative STEC infections is essential due to the increasing burden 
of infectious intestinal disease, and the risk that highly pathogenic strains may emerge following acquisition of the Shiga toxin 
subtypes associated with the most severe clinical outcomes.

INTRODUCTION
Shiga toxin-producing Escherichia coli (STEC) are a diverse group of zoonotic, foodborne gastrointestinal pathogens defined by the 
presence of a bacteriophage encoded Shiga toxin gene (stx) [1]. Analysis of the population structure of STEC has revealed that stx 
is found in a wide range of E. coli clonal complexes, seven gene multi-locus sequence types (MLST) and serotypes [2–4]. Certain 
STEC have the potential to cause haemolytic uraemic syndrome (HUS), a systemic condition characterised by microangiopathic 
haemolytic anaemia, thrombocytopenia, and renal failure, and can be fatal [5]. Historically, these highly pathogenic STEC have 
been identified by their serotype, for example, STEC O157:H7 and STEC O26:H11. However, more recently it has been established 
that the key factor determining pathogenic potential is the stx subtype [6].
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There are two types of Stx, Stx1 and Stx2, and these are further divided into subtypes, stx1a,c-d, stx2a-stx2o [6–12]. Although 
all the established stx subtypes appear to have the potential to cause gastrointestinal symptoms in humans, certain subtypes are 
associated with more severe clinical outcomes [6]. A higher proportion of patients infected with STEC harbouring stx1a, stx2a 
and stx2d report bloody diarrhoea and hospitalisation, and those patients that develop HUS are more commonly infected with 
STEC that have Stx subtypes stx2a and activatable-stx2d [6, 13, 14, 15]. The pathogenic potential of STEC is further enhanced 
by the presence of a pathogenicity island called the Locus of Enterocyte Effacement (LEE) [1, 6]. The LEE encodes a cassette of 
pathogenicity genes (including the intimin encoding gene eae) involved in attachment of E. coli to the gut mucosa of humans 
and animals, thus establishing colonisation and, in certain hosts notably humans, facilitating infection [16].

The introduction of commercial PCR for the direct detection of gastrointestinal pathogens in faecal specimens has improved 
diagnoses and surveillance of STEC, and detection of foodborne outbreaks [2, 17–20]. Prior to the implementation of PCR, STEC 
serotype O157:H7 was the only serotype of STEC routinely sought in England. The majority of STEC O157:H7 are non-sorbitol 
fermenting and resistant to cefixime and tellurite and can be cultured on cefixime tellurite sorbitol MacConkey (CT-SMAC) media. 
Most other STEC ferment sorbitol and/or are sensitive to tellurite and therefore CT-SMAC is not a suitable selective medium for 
non-O157 STEC. The PCR target gene for STEC is stx, the defining virulence factor for the STEC group and potentially all STEC 
serotypes, with the exception of stx2f in certain assays, can be detected using this approach [2, 21, 22].

Recent analysis of data held by the UK Health Security Agency (UKHSA) revealed that that the three most frequently reported 
LEE-negative STEC serotypes causing infectious intestinal disease (IID) in England were O128:H2, O91:H14, and O146:H21 
[2, 23]. These three serotypes belonged to E. coli CC25, CC33 and CC442, respectively. Previous studies have shown that LEE-
negative STEC belonging to the serogroup O91, including O91:H14 (CC33) and O91:H21 (CC442), were among the most 
common non-O157 STEC serogroups associated with human illness in Europe [24, 25]. Nüesch-Inderbinen et al. [26] analysed 48 
clinical STEC O91 isolates collected during 2003–2019 in Switzerland and identified the Locus of Adhesion and Autoaggregation 
pathogenicity island (LAA-PAI) carrying iha and other putative pathogenicity genes, such as hes, tspA or agn43 [26–28]. Other 
non-LAA-PAI virulence factors have been described in LEE-negative isolates, including the subtilase cytotoxin gene subA, colicin 
genes (cba, cia, cib and cma) or microcin genes (mcmA, mchB, mchC and mchF) [28–30].

Although known to cause a high proportion of STEC infection, little is known about the LEE-negative STEC in England [2, 23]. 
In this study, we reviewed the genome sequencing data from LEE-negative STEC belonging to CC25, CC33 and CC442 held 
in the UK Health Security Agency (UKHSA) archives. We linked the sequencing data to patient demographics and clinical 
outcomes to determine the association between virulence profile and symptoms severity, and to gain a better understanding of 
the populations most at risk of infection.

METHODS
Microbiology
In England, all stool samples from hospitalised patients and community acquired gastrointestinal (GI) infections are tested for STEC 
O157:H7 using CT-SMAC agar, and non-sorbitol fermenting colonies agglutinating with E. coli O157 antisera are referred to the 
Gastrointestinal Bacteria Reference Unit (GBRU), UKHSA for confirmation and typing. Where local diagnostic laboratories have 
implemented a commercial gastrointestinal PCR assay that include primers targeting stx, all faecal specimens are tested for stx to 
confirm the presence of STEC. Stx-positive faecal specimens are cultured on CTSMAC and/or CHROMagar STEC, and colonies 
exhibiting characteristics indicative of STEC may be referred to GBRU [31]. Alternatively, the stx-positive faecal specimen may be 
referred to GBRU for PCR and culture as described previously [21, 31]. All isolates of STEC are sequenced, including those that are 
referred to GBRU from local diagnostic laboratories, and those that are cultured at GBRU from referred faecal specimens.

DNA extraction and genomic processing
Genomic DNA was extracted and sequenced on Illumina HiSeq 2500 and NextSeq 1000 platforms at UKHSA and held in the 
in-house data repository. Post whole genome sequencing (WGS), data are processed through an in-house pipeline that deter-
mines serotype using GeneFinder (https://github.com/phe-bioinformatics/gene_finder) [32]. The Stx subtype was determined 
by aligning putative reads to stx reference genes and detection of unique stx-subtype SNP positions [33]. Multilocus sequence 
typing (MLST) was performed using Metric Orientated Sequence Typer (https://github.com/phe-bioinformatics/MOST) [34].

Additional in silico gene profiling of isolates was performed to investigate the presence of putative virulence factors and genes asso-
ciated with the LAA. The region 385 984–472 336 bp of Escherichia coli O91:H21 str. B2F1 strain (contig 25) (AFDQ01000026.1) 
was downloaded from the NCBI nucelotide database [27, 35]. Bakta (v1.6.1) was used to annotate this genome region and the 
genes from the .ffn file were made into a custom database following previous studies [27]. Virulence genes previously described 
[26–30] were extracted from the Centre for Genomic Epidemiology VirulenceFinder E. coli database (v.2022.12.02) and curated 
into a custom database for genefinder. Read mapping was conducted using Illumina short reads, depth coverage was set to 5 % 
and homology/coverage values set to >85 to indicate detection.

https://github.com/phe-bioinformatics/gene_finder
https://github.com/phe-bioinformatics/MOST
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SnapperDB v0.2.8 is the UKHSA in-house database that holds called variant data, achieved from genomic DNA sequencing, 
relative to an appropriate reference for E. coli CCs [36]. SnapperDB v0.2.6 was employed to generate a whole genome alignment 
of isolates representing the t:250 level of CC33 and CC442, and strain level for CC25, based on a variant alignment to reference 
strains E. coli O91:H14 (SRR3581435), E. coli O146:H21 (JASR01000001.1) and E. coli O128:H2 (SRR3578969) respectively. 
Gubbins v2.0.0 [37] was used on the whole genome alignment to identify recombinant regions, which were then masked during 
the building of a second alignment of genomes within this study, where a variant position belongs to a minimum of 80 % of strains 
in the alignment. This alignment was examined by IQTree v2.0.4 [38] under the best-fit model which produced a maximum-
likelihood phylogeny that was visualised in ITOL v5.7 [39].

Epidemiological data collection
The UKHSA STEC Operational guidance [40] recommends that the STEC Enhanced Surveillance Questionnaires (ESQ) is 
administered to all cases, however, cases of STEC O157, and patients infected with STEC harbouring stx2 and eae or aggR, and/
or children under the age of six are prioritised. The collected data includes travel and food histories, environmental and animal 
exposures and clinical symptoms. These epidemiological data are stored in the National Enhanced STEC Surveillance System 
(NESSS) is paired with genomic and microbiological data for each case. Patient data, including age, sex, clinical presentation, 
and travel history, was reviewed. Cases are defined as an individual patient and an isolate is defined as a strain originating from a 
case, whereby a case can have multiple isolates. Multiple isolates can arise where a strain is unique at the t5 level or with differing 
stx profiles, per case.

Data deposition
All isolates reviewed in this study are deposited under Bioproject PRJNA315192 as part of routine surveillance at UKHSA. Strain 
metadata is found in Table S1, available in the online version of this article.

RESULTS
Clonal complex microbiology and typing data
There were 1451 isolates belonging to either CC25 (n=323), CC33 (n=538) or CC442 (n=590) submitted to GBRU between 2014 
and 2022 from 1417 individual cases (CC25 n=315; CC33 n=528; CC442 n=574). With the exception of CC33 in 2020, there has 
been a year-on-year increase in notifications of each CC, with nearly ten times more notifications in 2022 (n=336 in total; CC25 
n=81; CC33 n=122; CC442 n=133) than in 2014 (n=38 in total; CC25 n=8; CC33 n=14; CC442 n=16) (Fig. 1).

Fig. 1. Notifications of STEC infections belonging to CC33 (n=538), CC442 (n=590) and CC25 (n=323). Number of notifications is represented using 
cumulative counts of unique isolates each year from 2014 to 2022 from the patient sample date. An isolate is unique at the t5 level or with differing 
stx subtype per case. CC33 represented as the left figure, CC442 in the middle and CC25 as the right.
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All three CCs exhibit an increase in case numbers during late summer, however the rise is steeper for CC33 and CC442 (Fig. 2). As 
observed with other non-O157 STEC CCs in England [17–19], London (CC25 n=103/315, 33 %, CC33 n=189/528, 36 %, CC442 
n=184/574, 32 %) and the South East of England (CC442 n=200/574, 35 %; CC33 n=180/528, 34 %, CC25 n=118/315, 37 %) were 
the two regions reporting the highest numbers of cases of LEE-negative STEC (Fig. 3).

Although each clonal complex comprised more than one serotype, each were characterised by a dominant type. The domi-
nant STEC serotype in CC25 was O128:H2 (n=291/323, 90 %), followed by O21:H2 (24/323, 7 %), O unidentifiable (7/323, 
2 %) and O8:H2 (1/323, 0.3 %). Serotype O91:H14 was most frequently detected in CC33 (n=518/538, 96 %), followed by O 
unidentifiable:H14 (15/538), O117:H14 (4/538) and O91:H unidentifiable (1/538). In CC442, serotype O146:H21 (n=553/590, 
94 %) was most common, followed by O174:H21 (18/590), O unidentifiable:H21 (16/590), O91:H21 (2/590) and O156:H21 (1/590) 
(Figs 4–6). The isolates within CC33 and CC442 almost exclusively belonged to ST33 (537/538, 99.8 %) and ST442 (570/590, 
97 %) respectively, whereas in CC25, ST25 (239/323, 74 %) and ST4748 (60/323 19 %) were the most frequently detected sequence 
types (Figs 4–6).

Within CC33, the majority of isolates had the stx subtypes stx1a and/or stx2b either together (stx1a, stx2b n=404/538, 75 %), or 
alone (stx1a only n=33/538, 6 %; stx2b only n=94/538, 17 %) (Fig. 5). The most common stx profiles detected in CC442 were stx1c 
(n=271/590, 46 %), stx1c, stx2b (n=224/590, 38 %) or stx2b (n=56/590, 9 %) (Fig. 6). Like CC442, most isolates in CC25 had stx1c 
(n=25/323, 8 %), stx2b (n=85/323, 26 %) or both stx1c, stx2b (n=210/323, 65 %) (Figs 4–6).

Epidemiology of LEE-negative STEC serotypes
To determine serotype specific epidemiological signals within these complexes, data was extracted for O128:H2 and O21:H2 
(CC25), O91:H14 (CC33), and O146:H21 and O174:H21 (CC442). All key serotypes associated with all three CCs had a higher 
proportion of female cases (O128:H2 n=174/283, 61 %; O21:H2 n=16/23, 70 %; O91:H14 n=300/506, 59 %; O146:H21 n=295/540, 

Fig. 2. Seasonality of STEC infections belonging to CC33 (n=538), CC442 (n=590) and CC25 (n=323). Seasonality is represented using cumulative counts 
of unique isolates per month from 2014 to 2022, from the patient sample date. An isolate is unique at the t5 level or with differing stx subtype, per case.
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55 %, O174:H21 n=12/18, 67 %) and adults were more often infected than children, with patients aged 20–40 and over 70 years 
old seemingly most at risk (Table 1 and Fig. 7).

Of the 1374 cases infected with serotypes O146:H21, O91:H14, O128:H2, O174:H21 and O21:H2, data on clinical outcomes 
were available for 463/1374 (34 %) symptomatic cases (O128:H2 n=92/285, 33 %; O21:H2 n=10/23, 43 %; O91:H14 n=168/508, 
33 %; O146:H21 n=184/540, 34 %; O174:H21 n=9/18, 50 %) (Table 2). Diarrhoea was reported by over 75 % of cases in all three 
CCs regardless of serotype. The proportion of cases reporting bloody diarrhoea (25–32 %), abdominal pain (64–72 %), nausea 
(37–45 %), vomiting (10–24 %) and fever (27–30 %) were also consistent across the three main serotypes (O146:H21, O91:H14, 
O128:H2). Serotype O174:H21 (CC442) presented more atypical with no bloody diarrhoea, reduced abdominal pain (44 %). 
Additionally, there were two cases of HUS (2/9, 22 %) associated with STEC O174:H21; both were males (aged 5 months and 
62 years old) harbouring stx2c with or without stx2d. Although the literature has demonstrated the pathogenicity of STEC O91:H21 

Fig. 3. Geographical distribution of cases of CC442, CC33 and CC25 STEC cases in England based on patient postcodes. Where postcode was not 
available, no data for that case was added.
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[24], in this study STEC O91:H21 (n=2) was not associated with bloody diarrhoea, hospitalisation or HUS, despite the isolates 
harbouring stx2a and stx2d.

Travel data
Of the CC25 cases with travel data (n=116), there were 14 cases (12 %) reporting recent travel outside of the UK, with destinations 
where stated included Spain (n=3), France (n=2), Italy (n=2) or Turkey (n=2). There were 14/183 (8 %) cases of CC33 reporting 
recent travel outside the UK to Europe (n=10), Asia (n=1), North America (n=2) and Oceania (n=1), and 15/199 cases of CC442 
(8 %) determined to be travel associated (Europe n=12; North Africa n=3). Isolates from the majority of travel-associated cases 
of CC25 (n=9/14, 64 %) were located within a clade within ST25 characterised by the presence of stx2b (Fig. 4), whereas cases of 
CC33 and CC442 with confirmed travel were dispersed across the phylogeny (Figs 5 and 6).

Phylogenetic analysis and virulence of isolates
To gain context on the relatedness and genomic differences of isolates in this study, per-CC phylogenetic analyses were performed. 
The population structure of CC25, CC33 and CC442 revealed multiple events of acquisition and loss of stx-encoding prophage across 
the phylogenies. CC25 comprised five different STs, although 90 % of isolates belonged to serotype O128:H2 despite variation in ST 
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Fig. 4. Clonal Complex 25. Phylogenetic analysis of STEC isolates belonging to CC25 in England. Figure was generated using Snapper DB, IQTree2 and 
visualised in ITOL. The phylogeny Is rooted at midpoint and the alignment was length 26074 bp. Annotations are ST, serotype, stx subtype and travel 
association (where available).
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(Fig. 4). Isolates of STEC O21:H2 belonged to ST25, which was also the ST of the majority of isolates of serotype O128:H2. Most 
isolates within CC25 had stx1c, stx2b or both (Fig. 4). CC33 comprised two main clades, one characterised by the presence of stx1a 
and the other by mainly stx1a, stx2b, or stx2b only (Fig. 5). There was evidence of limited, sporadic O or H antigen gene switching, but 
for the most part the isolates belonged to serotype O91:H14 (Fig. 5). The two main clades of CC442 were characterised by different 
serotypes, O174:H21 and O146:H21 (Fig. 6). The stx subtypes across CC442 were variable but for STEC O174:H21 most had stx2c, 
with or without stx2d, and for STEC O146:H21, like CC25, most had stx1c, stx2b or both (Fig. 6).

In this study, gene presence is described within each CC to identify key differences between CC25, CC33 and CC442. Further serotype 
specific and enhanced gene detection data is listed in Table S2. Previous studies have shown that iha is found on a pathogenicity island 
called the LAA [27, 28, 30]. The complete LAA comprised four modules and iha is found on module 2, and genes found on other 
modules include hes, tpsA and agn43 [27, 28, 30]. Most isolates across all three CCs had iha (CC25 316/320, 99 %; CC33 533/536, 
99 %; CC442 586/586, 100 %) and agn43 (CC25 313/320, 98 %; CC33 460/536, 86 %; CC442 379/586, 65 %) whereas the presence tpsA 
varied depending on CC and was most prevalent in CC442 (CC25 60/320, 19 %; CC33 20/536, 4 %; CC442 500/586, 85 %) and hes was 
rarely detected (CC25 2/320, 1 %; CC33 32/536, 6 %; CC442 22/586, 4 %) (Table S2 and Figs S1, S2 & S3).
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visualised in ITOL. The phylogeny Is rooted at midpoint and the alignment was length 30614 bp. Annotations are ST, serotype, stx subtype and travel 
association (where available).
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The subtilase toxin gene subA was present across CC33, CC442 and CC25, (505/536, 94 %; 560/586, 96 %; 318/320, 99 % respectively), 
whereas the enterohaemolysin gene ehxA was most commonly found in CC442 (567/586, 97 %) and CC25 (264/320, 83 %) compared 
to CC33 (301/536, 56 %) (Table 2, Figs S1, S2 & S3). Although subA and ehxA were detected in most isolates within CC442, neither 
of these genes were detected in the two STEC O174:H21 isolated from the two cases diagnosed with HUS (Table S2 and Figs S1, S2 & 
S3). Of the three CCs described here only CC442 consistently had genes (terB, terC, terD, terE, terF) encoding resistance to tellurite 
(526/586, 90 %) compared to CC25 (8/320, 3 %) and CC33 (0/536, 0 %).

DISCUSSION
In England, STEC surveillance strategies focus on the detection of cases infected with STEC that have enhanced virulence, specifically 
the presence of stx2a or stx2d and eae, a marker for the LEE locus [40]. This is to ensure that where resources are limited, clinical and 
public health investigations prioritise patients reporting symptoms at the more severe end of the clinical spectrum [41]. However, 
all faecal specimens that are PCR positive for STEC and referred to UKHSA, are cultured for all STEC serotypes [21, 31]. Previous 
studies and routine surveillance activities have identified LEE-negative STEC belonging to CC25, CC33 and CC442, as causing a high 
proportion of STEC infections in England [2, 23].
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Like STEC O157:H7 (CC11) and STEC O26:H11 (CC29), STEC belonging to CC25, CC33 and CC442 are prevalent in ruminants 
and transmitted to humans via direct contact with animals or consumption of contaminated food. Strains of STEC O91:H14 
(ST33) are frequently isolated from cattle (dairy and beef) [28] and sheep [42], and have been isolated from retail meats [25, 28] 
and raw pet food [43]. STEC O146:H21 and O91:H21 (ST442) have been found in a variety of animal reservoirs including roe 
deer [29, 44, 45], fox, wild boar [44, 45], sheep [46], and in raw pet food [43] and shellfish [47]. STEC O128:H2 (CC25) have 
been isolated from sheep, deer and calves [48–51].

Unlike other STEC CCs we have reviewed [19, 52, 53], there were no travel associated clades. However, it should be noted that 
travel data was poorly captured because of the lack of public health follow-up of cases infected with LEE-negative STEC. Where 
travel histories were available, most cases were associated with domestic acquisition, suggesting that STEC O128:H2, O91:H14 
and O146:H21 are endemic in the ruminant populations in the UK.

Like other STEC CCs in England [17–19, 54], we identified a higher proportion of females cases of CC25, CC33 and CC442 than 
male (~55–70 %), and historically this has been attributed to the increased risk of exposure to STEC during food preparation and 
childcare, although these are no longer regarded as traditionally female roles. Unlike other STEC CCs we have studied, more 
notifications of CC25, CC33 and CC442 occur in adults than children [17–19, 54]. We cannot be certain why but we can speculate 
that it may be due to different environmental exposures, different diet, waning immunity and/or changes in the gut microbiome 
with age.

In common with other non-O157 STEC clonal complexes in England [17–19], notifications of STEC belonging to CC25, CC33 and 
CC442 have increased every year since 2014, most likely due to the increasing number of frontline diagnostic laboratories implementing 
commercial PCR assays that target stx [2]. However, it is possible that this change in the diagnostic algorithm is masking a true increase 
in non-O157 STEC in England. We noted a decrease in notifications of CC33 in 2020 that may have been the result of social distancing 
measures during the COVID-19 pandemic, however, this decrease was not observed in notifications of STEC belonging to CC25 or 
CC442. This may reflect differences in the source and/or transmission route of CC33, compared to CC25 and CC442, although it is 
unclear what these differences might be. Travel abroad was restricted during the pandemic but based on available data the propor-
tion of cases reporting travel were similar for CC33 and CC442. Previous studies have shown that CC442 may be associated with 
colonisation of a broad range of animal hosts and may be ubiquitous in the environment [29, 43–46, 55]. Survival in the environment 
and persistence in the animal reservoir and the food chain have been linked to the presence of genes conferring resistance to tellurite 
[56, 57]. However, it is unclear whether these factors contributed to the ability of isolates belonging to CC442 to continue to cause 
infections in humans during the pandemic.

The LEE-negative CCs described in this study exhibited a similar seasonal pattern to other STEC serotypes we have reviewed 
[17–19, 54]. The increase in notifications of CC442 and CC33 in late summer/early autumn is typical of STEC. CC25 exhibits 
less pronounced seasonality and, again, this may reflect bespoke source and/or transmission routes specific to this type. Other 
studies have reported an association between isolates belonging to CC25 and prevalence in the ovine reservoir, whereas CC442 
has a wider host range [29, 43–46, 48–51, 55]. However, even if this association was confirmed, it is unclear how this might 
impact on seasonality patterns.

Table 1. Age and sex of cases of key serotypes of CC33: STEC O91:H14 (n=506), CC25: STEC O128:H2 (n=283) and STEC O21:H2 (n=23) and CC442: 
STEC O146:H21 (n=540) and STEC O174:H21 (n=18). Age (was determined from sample date or receipt date) and sex of the patient (where both were 
available) was used on a per case basis

Clonal complex 33 Clonal complex 442 Clonal complex 25

 �  STEC O91:H14 STEC O146:H21 STEC O174:H21 STEC O128:H2 STEC O21:H2 Total

 �  M F Total M F Total M F Total M F Total M F Total Total %

70 + 32 47 79 46 55 101 1 4 5 13 38 51 2 1 3 239 17

60–69 16 27 43 26 26 52 1 1 2 14 12 26 1 3 4 127 9

50–59 28 39 67 36 32 68 2 0 2 14 10 24 3 1 4 165 12

40–49 25 38 63 23 27 50 0 2 2 15 24 39 0 2 2 156 11

30–39 32 48 80 37 46 83 0 4 4 12 35 47 0 3 3 217 16

20–29 19 60 79 27 45 72 0 1 1 14 30 44 0 6 6 202 15

10–19 30 27 57 24 33 57 1 0 1 8 10 18 1 0 1 134 10

0–9 24 14 38 26 31 57 1 0 1 19 15 34 0 0 0 130 9

Total 206 300 506 245 295 540 6 12 18 109 174 283 7 16 23 1370 100
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The population structure of all three CC reviewed in this study showed multiple examples of acquisition and loss of a variety of stx 
subtypes across each phylogeny. Most isolates belonging to CC33 had stx1a and/or stx2b, and most isolates belonging to CC25 and 
CC442 had stx1c and/or stx2b. Previous studies have shown that patients infected with LEE-negative STEC are less likely to develop 
HUS that those infected with LEE-positive STEC [6]. In our dataset of 463 cases, only two were diagnosed with HUS, both belonged 
to O174:H21 within CC442. This serotype has been previously described as having enhanced pathogenic potential, perhaps because 
of the associated stx subtypes [58, 59]. Unlike most isolates in CC442, STEC O174:H21 had stx2c and/or stx2d, both subtypes that 
have been associated with progression to HUS. Other putative virulence factors that were consistently detected across all three CCs 
were the LAA encoded genes iha and agn43, thought to be involved in adherence of the bacteria to the host gut mucosa, and the 
subtilase toxin subA [26–28, 30]. Both of the STEC O174:H21 isolated from the two HUS cases had iha but not subA or ehxA. The 
putative adherence factors located on the LAA, hes, tpsA, and the haemolysin ehxA, were present in certain CCs and serotypes but 
not in others, demonstrating the modular appearance of the LAA as described by Montero et al. [27].

Over the last decade, UKHSA surveillance systems have detected a ten-fold increase in notifications of STEC belonging to CC25, CC33 
and CC442. These LEE-negative strains exhibit the same seasonality patterns and share the same animal reservoirs and transmission 
routes as the LEE-positive STEC CCs we have reviewed to date [17–19, 54]. However, unlike the LEE-positive STEC, the LEE-negative 
strains are more commonly detected in adults than children and are rarely detected in cases of HUS, possibly because most isolates do 
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Fig. 7. Age-sex of cases infected with key serotypes from the three CCs. CC32: STEC O128:H2 (n=283) and STEC O21:H2 (n=23), CC442: STEC O146:H21 
(n=540) and STEC O174:H2 (n=18), and CC33: STEC O91:H14 (n=506). Age (was determined from sample date or receipt date) and sex of the patient 
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Serotypes are labelled under the clonal complexes vertically. Male indicated as green on the left of the pyramid and females indicated as red on the 
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not carry the stx subtypes known to be associated with progression to HUS [60]. Although STEC CC25, CC33 and CC442 lack the 
LEE pathogenicity island, they may have alternative mechanisms for adhering to the host gut mucosa [26–28, 30]. We identified two 
cases of HUS linked to a small clade within CC442, characterised by the acquisition of stx2c and/or stx2d-encoding bacteriophage, 
and it appears that this event may have been sufficient to enhance the pathogenic potential of the LEE-negative strains. The follow 
up data collection rate for STEC without the virulence profile eae+/stx2+ is low as demonstrated in this study (approximately 34 %), 
meaning a potential bias could be associated with the clinical presentation data. However, highly pathogenic strains may emerge 
following acquisition of the Shiga toxin subtypes associated with the most severe clinical outcomes. Therefore, continued monitoring 
and surveillance of LEE-negative STEC infections is essential to fully uncover the true burden of infectious intestinal disease caused 
by these zoonotic, foodborne pathogens.
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Table 2. Clinical presentation of symptomatic cases of CC33: STEC O91:H14 (n=168), CC442: STEC O146:H21 (n=184) and STEC O174:H14 (n=9), CC25: 
STEC O128:H2 (n=92) and STEC O21:H2 (n=10). Table indicates where patient self-reported clinical symptom or outcome in the ESQ

Clonal complex 33 Clonal complex 442 Clonal complex 25

O91:H14
(n=168)

O146:H21 (n=184) O174:H21
(n=9)

O128:H2
(n=92)

O21:H2 (n=10)

Clinical Presentation Yes % Yes % Yes % Yes % Yes %

Diarrhoea 127 76 155 84 8 89 77 84 8 80

Abdominal pain 121 72 119 64 4 44 64 70 5 50

Nausea 75 45 68 37 4 44 37 40 2 20

Fever 46 27 49 27 4 44 28 30 2 20

Vomiting 40 24 42 23 2 22 9 10 2 20

Blood in stool 45 27 46 25 0 0 29 32 3 30

Admitted to hospital 20 12 22 12 3 33 12 13 1 10

HUS 0 0 0 0 2 22 0 0 0 0

Died 0 0 0 0 0 0 0 0 0 0
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