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Abstract: The electrochemical oxidation of levamisole, a glassy carbon electrode, was investigated
over the pH range 2.0–10.0. Cyclic voltammetric investigations showed a single oxidation process
was recorded, with a peak potential (Ep) shown to be pH-dependent in the range 5.0–8.0; between
pH 2.0 and pH 5.0, and above pH 8.0, the Ep was found to be independent of pH, indicating apparent
pKa values of 5.0 and 8.0. Peak currents were found to increase with increasing pH values. This
voltammetric oxidation process was found to be consistent with a two-electron, two-proton oxidation
to the corresponding sulfoxide. Based on these findings, the development of a of method based on the
high-performance liquid chromatography separation of levamisole, with electrochemical detection
being used for its determination, was explored. The chromatographic conditions required for the
separation of levamisole were first investigated and optimized using UV detection. The conditions
were identified as a 150 mm × 4.6 mm, 5 µm C18 column with a mobile phase consisting of 50%
methanol, and 50%, 50 mM, pH 8.0 phosphate buffer. The technique of hydrodynamic voltammetry
was applied to optimize the applied potential required for the determination of levamisole, identified
as +2.3 V versus a stainless-steel pseudo-reference counter-electrode. Under the optimized conditions,
levamisole exhibited a linear response of 1.00–20 mg/L (R2 = 0.999), with a detection limit of
0.27 mg/L. The possibility of determining levamisole in artificial urine was shown to be possible via
simple dilution in the mobile phase. Mean recoveries of 99.7%, and 94.6%, with associated coefficients
of variation of 8.2% and 10.2%, respectively, were obtained for 1.25 µg/mL (n = 5) and 2.50 µg/mL
(n = 5).
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1. Introduction

Levamisole; (6S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole (i) is com-
monly used to treat parasitic worm infections in both humans and animals [1], and is
listed in the World Health Organisation’s List of Essential Medicines as a safe and effective
treatment of such infections [2]. Early investigation into the development of levamisole
reported improved recovery periods associated with influenza and measles [3]; reports
on its use in the treatment on coronavirus (COVID-19) have shown it to possibly aid in
recovery [4,5]. Levamisole has been used alongside 5-fluorouracil for the treatment of
colorectal cancer, but was withdrawn due to adverse effects [6].
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1. Introduction 
Levamisole; (6S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole (i) is 

commonly used to treat parasitic worm infections in both humans and animals [1], and is 
listed in the World Health Organisation’s List of Essential Medicines as a safe and effective 
treatment of such infections [2]. Early investigation into the development of levamisole 
reported improved recovery periods associated with influenza and measles [3]; reports 
on its use in the treatment on coronavirus (COVID-19) have shown it to possibly aid in 
recovery [4,5]. Levamisole has been used alongside 5-fluorouracil for the treatment of 
colorectal cancer, but was withdrawn due to adverse effects [6]. 
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In the 1970s, reports showed that the administration of tetramisole, a racemate of
levamisole, and its isomer, dexamisole, led to an elevation in mood [7], and also showed
antidepressant properties [8,9]. Studies on the metabolism of levamisole in horses showed
that the drug could be metabolised into pemoline and aminorex. These drugs are both
banned in horseracing due to their possible performance-enhancing effects [10]. It is
believed that these stimulant-like properties of its metabolite, aminorex [11], and the
mode-enhancing properties of levamisole [7–9] have led, at least partly, to its use as an
adulterant for cocaine. Levamisole is also popular as an adulterant due to its general
availability, as it is used prophylactically for the treatment of animals [12]. It is therefore
readily obtainable in large quantities in agrarian-based developing nations where cocaine
is predominantly grown and produced. However, the non-regulated use of levamisole via
the adulteration of cocaine has been shown to result in serious health issues in humans,
such as neutropenia [13], agranulocytosis, and vasculitis [14].

Consequently, there is a need to monitor the use of levamisole in various complex
sample matrices, including food, beverages, and biological samples, and in the forensic
sciences. The UV absorbance maxima of levamisole occurs at a very low wavelength of
around 215 nm [15–17], making its determination by UV-spectroscopy-based approaches
difficult due to potential inferences from other sample components, such as albumin,
creatinine, urea, and uric acid, which strongly absorb at wavelengths between 200 nm and
220 nm [18].

As far as we are aware, only a small number of reports have been made on the electro-
chemical behaviour of levamisole. Electrochemical investigations utilising voltammetry
have also been shown to be problematic, as there is reportedly a marked interference
between levamisole and cocaine [19,20]. Prior to this, early investigations using polarogra-
phy [21] described the determination of levamisole in animal tissue as part of its racemate
mixture, tetramisole hydrochloride. More recently, a potentiometric sensor has been de-
scribed [22] based on a molecularly imprinted polymer. Cyclic voltammetric behaviour has
previously been described on a screen-printed electrode [23] and on a pre-treated, boron-
doped, diamond electrode [24]. These studies proposed that the electrochemical oxidation
of levamisole proceeds through a two-electron, two-proton, oxidation step, leading to the
oxidation of the sulphide group.

The aim of the present investigation was to develop a method based on the high-
performance liquid chromatographic (HPLC) separation of levamisole with electrochemical
detection (ED) for its determination in urine. We believe that this will overcome the
previously reported issues of selectivity recorded by UV-spectrometry-based detection
systems and the inference seen when using voltammetry. This present investigation was
divided into two main sections. In the first part, we explored the voltammetric behaviour of
levamisole on a glassy carbon electrode (GCE). We then optimised the HPLC reverse-phase
separation of levamisole, initially employing UV detection and then using electrochemical
detection, using the technique of hydrodynamic voltammetry to optimise the applied
potential required for the determination of levamisole. The possibility of determining
levamisole in artificial urine using the optimised HPLC ED conditions was explored.

2. Materials and Methods
2.1. Chemicals and Reagents

Unless otherwise stated, all chemicals and reagents were purchased from Fisher Scientific
Ltd. (Loughborough, UK). Stock solutions of levamisole (Sigma-Aldrich, Dorset, UK) were
prepared by dissolving the required mass in deionised water (Purite RO200—Stillplus HP
System, Purite, UK) at a concentration of 1.0 mg/mL. Standards for initial studies were made
via dilution of the stock solution in phosphate buffer or mobile phase.

2.2. Artificial Urine

Artificial urine was prepared following the method described by Khan et al. [25] by
adding 0.1 g of potassium chloride, 4.0 g of sodium chloride, 0.57 g of anhydrous di-sodium
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hydrogen orthophosphate, and 0.1 g of potassium dihydrogen orthophosphate to a 0.5 L
volumetric flask. This was then made up to the mark with deionized water, following
adjustment to approximately pH 6 with sodium hydroxide or hydrochloric acid. The
solution was used immediately after preparation.

2.3. Cyclic Voltammetry

Cyclic voltammetric investigations were performed using a voltammetric cell com-
prising of a 3 mm diameter glassy carbon working electrode (GCE), an Ag/AgCl reference
electrode in a 3.0 M KCl solution, and a platinum wire counter-electrode. Before use, the
GCE was manually polished on a polishing mat modified with an aqueous slurry of 5 µm
aluminium oxide. The GCE was then rinsed with deionised water and dried with a tissue.
The electrodes were connected to a CompactStat potentiostat (Ivium, Eindhoven, The
Netherlands), connected to a computer with an electrochemical system software package,
Ivium software Windows 10 version, for data acquisition and control. Cyclic voltammetric
investigations were then recorded in 0.1 M phosphate buffer, and then in the same solution
containing 2.0 mM levamisole. A starting and end potential of 0.0 V vs. Ag/AgCl was
used, with a switching potential of +2.5 V vs. Ag/AgCl.

2.4. High-Performance Liquid Chromatography

High-performance liquid chromatographic studies were undertaken using an Agilent
1200 infinity II HPLC system with a 150 mm × 4.6 mm Hypersil Gold C18, 5 µm column,
thermostatically controlled at 30 ◦C, connected to a 7125-valve manual injector fitted with
a 20 µL sample loop (Rheodyne, Cotati, CA, USA). Standards and sample extracts were
determined using a mobile phase of 50% methanol (Fischer, Far UV, HPLC grade) 50% pH
8 50 mM phosphate buffer, at a flow rate of 1.0 mL/min.

2.5. Electrochemical Detection

The thin film amperometric detector cell was similar to that which we have previ-
ously described [26]. This consisted of an upper Kel-F block containing a 3 mm diameter
GCE working electrode, which was bolted to a stainless-steel block acting as the pseudo-
reference/counter-electrode. The upper Kel-F-containing GCE section and lower stainless
pseudo-reference/counter-electrode were separated by Teflon gasket (BAS, Congleton,
Cheshire, UK). The inlet for this amperometric thin layer cell was connected to the outlet of
the Agilent 1100 UV detector via a suitable PEEK connector and tubing. The potential of
cell was set at +2.3 V vs. the pseudo-reference/counter stainless-steel electrode (SS) and
controlled by an Ivium CompactStat potentiostat (Ivium Technologies, Eindhoven, The
Netherlands) interfaced with a PC, to ensure instrument control and data acquisition.

2.6. Hydrodynamic Voltammetry

Fixed volumes of a standard solution were injected and the applied potential of the
amperometric thin layer cell varied over the range +1.2 V and +2.5 V (vs. SS) in 0.1 V
steps. The recorded peak current was then plotted against the applied potential and the
resulting hydrodynamic voltammogram was used to identify the optimum potential based
the potential of the plateau of the hydrodynamic wave.

2.7. Analytical Application

Separate artificial urine samples, prepared following the method described in Section 2.2,
were fortified with sufficient levamisole to concentrations of 1.25 µg/mL and 2.50 µg/mL,
respectively, and diluted 1:1 in mobile phase. The resulting solutions were then introduced to
the HPLC system, and the concentration of levamisole were determined using the optimised
amperometric conditions.
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2.8. Limit of Detection and Limit of Quantification

The limit detection and limit of quantification were calculated based on the assumption
that the electrochemical response, y, is linearly related to the standard concentration, x,
over a limited concentration range. This can be expressed using the following Equation (1):

y = mx + c (1)

Therefore, the limit detection and limit of quantification can be expressed as follows:

Limit detection = 3
Sa
m

(2)

Limit of quantification = 10
Sa
m

(3)

where Sa is the standard deviation of the response and m is the slope of the calibration
curve. The standard deviation of the response, y, was then estimated from the standard
deviation of the y-residuals from the calculated regression line.

3. Results
3.1. Cyclic Voltammetric Behaviour of Levamisole

Figure 1a shows typical cyclic voltammograms, recorded in the absence and presence
of 2.0 mM levamisole using a supporting electrolyte of 0.1 M pH 7.0 phosphate buffer. In
the presence of levamisole, the voltammogram shows an oxidation peak at 1.3 V (Ag/AgCl).
This was presumed to be the result of the two-electron, two-proton oxidation of the sulphur
group. Although not a highly sensitive technique, cyclic voltammetry can provide impor-
tant qualitative information about the redox processes of the analyte and its products [27].
Figure 1b shows the cyclic voltammetric behaviour of levamisole from pH 2 to pH 10. At
a low pH, the electrochemical oxidation of levamisole is proposed to proceeds through a
two-electron, two-proton oxidation, leading to the oxidation of the sulphur group [23,24].
However, no reports have been made on the voltammetric behaviour of levamisole un-
der higher pH conditions. As we were interested in developing a reverse-phase HPLC
method for levamisole, we focused our initial cyclic voltammetric studies on the range
pH 2–10, where most reverse-phase columns are stable. In our present investigation, the
cyclic voltammetric behaviour of levamisole was investigated for the pH range 2–10. No
measurable peak could be obtained in our cyclic voltammetric investigations at pH 2. Plots
of peak potential (Ep) vs. pH showed a 30 mV/pH unit slope between pH values 4 and 8
(Figure 2). At pH 8 and above, Ep values were found not to change with increasing pH. This
is consistent with the pKa value of 7 reported for levamisole [28,29]. Above the pH value
of 8, the oxidation of levamisole becomes independent of pH. It is believed that this could
result from the hydrolysis of the thiazole ring, followed by electrochemical oxidation [30]. It
should be noted that reports also cite pKa values of 8 [31,32] and 9.5 [20,33] for levamisole,
which may help to explain why there was a shift in the peak potentials from pH 8 to 10
after the pKa value of 7.0.

In the pH range between 4 and 8, a slope of the 30 mV/pH unit was recorded. The
Nernst equation (Equation (1)) predicts that such a slope is the result of an oxidation process
involving a one-proton, two-electron oxidation.

Ep = E0′ − 2.3 RTp
zF

pH (4)

where Ep, is the peak potential, E0′ is the formal oxidation potential, R is the universal
gas constant, T is the temperature (kelvins), F is the Faraday constant, p is the number
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of hydrogen ions, and z is the number of electrons. If the universal constant values are
substituted into Equation (4), we can obtain Equation (5).

Ep = −0.059
p
z

pH (5)
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Figure 1. (a) Cyclic voltammograms obtained in the presence (solid line) and absence (dotted line)
of 2 mM levamisole in 100 mM pH 7 phosphate buffer; (b) cyclic voltammograms obtained at pH
2, pH 4, pH 6, pH 7, pH 8, and pH 10 for 2 mM levamisole. Scan rate 50 mV/s; starting and end
potential 0.0 V; switching potential +2.5 V. Only the applied potential section from 0.0 V to +2.0 V
is shown.
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(Ip, ▲) of a 2.0 mM levamisole in 0.1 M phosphate buffer solution. Voltammetric conditions as shown
in Figure 1. Levamisole concentration 2 mM.

Consequently, a plot of Ep values against pH for a reaction involving an equal number
of hydrogen ions and electrons would give a slope equal to 0.059 V/pH unit. Reactions
involving a greater number of electrons than hydrogen ions would give slopes that are
fractions of the 0.059 V/pH unit. In this present investigation, plots of Ep in the range
pH 4–8 gave a slope of 0.030 V/pH, indicating a voltammetric oxidation involving one
proton and two electrons.

Studies on the chemical oxidation of levamisole have shown that (ii) is the main
product that is formed [34]. The biological oxidation of levamisole has also led to a number
of different products, including (ii) and its phenolic derivative (iii) [35], and the drugs
aminorex and pemoline [10].
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(iii)

Masui et al. [36] have studied the voltammetric oxidation of a number of different
amines. They postulated that oxidation proceeds via one-proton, two-electron oxidation
to produce the corresponding aldehyde and primary amine. This matches the predicted
behaviour that can be seen in this present study. Figure 3 presents the overall mechanism
we propose for electrochemical oxidation, reported here for levamisole. Amjad et al. [37]
studied the voltammetric behaviour of a number of compounds that are structurally related
to levamisole, showing the voltammetric one-proton, two-electron oxidation of 2-amino-
5-nitrothiazole. The protonated form of levamisole (iv), predominating at low pH values
(pKa = 7), can be oxidised via two-electron, one-proton oxidation (vi). This initial oxidation
reaction results in the formation of free radicals (v); which could lead to the possible
formation of a dimer, as is commonly reported in a number of studies undertaken on
related compounds [37–40].
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3.2. Effect of pH on the Liquid Chromatographic Separation of Levamisole

Studies were first undertaken with a mobile phase comprising 50% methanol and 50%
0.1 M phosphate buffer over the pH range 2–8. The pH of the mobile phase was found to
have a marked effect on the retention time of levamisole, and the relationship of capacity
factor (k′) for levamisole with the pH of the mobile phase is shown in Figure 4. At pH
values below 4, levamisole was found to be unretained, with a k′ below 0.25. This was
considered to result from levamisole being in its polar, ionised form (pKa 7). Increasing
the mobile phase pH resulted in an increase in retention times, with k′ values of 1.5 being
recorded above mobile phase pH values of 6. As the maximum peak currents were recorded
at pH 8, subsequent investigations were undertaken with a mobile phase of 50%, methanol
50%, 100 mM, pH 8 phosphate buffer.
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3.3. Hydrodynamic Voltammetry

We next explored the possibility of utilising the electrochemical oxidation of levamisole
following its HPLC separation using the optimised chromatographic conditions identified
above. The HDV obtained over the potential range +1.2–+2.6 V (vs. SS) for levamisole is
shown in Figure 5. The HDV exhibits two waves for the oxidation of levamisole, unlike the
single oxidation peak recorded previously by cyclic voltammetry (Figure 1). It is believed
that the second oxidation peak also occurred via cyclic voltammetry, but its presence was
masked by the background current resulting from the oxidation of the water that was
present as part of the supporting electrolyte.
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Figure 5. Hydrodynamic voltammogram obtained at flow rate of 1.0 mL/min for a 20 µL injection
volume of 10 mg/L levamisole in 50% methanol, 50 mM, pH 8.0 phosphate buffer. Each point is
the mean of two separate runs. (a) difference between 0 current and the current at first plateau;
(b) distance between the current at first and second plateau. Applied potential (Eapp) = +1.20–+2.50 V
(vs. SS).

We believe that the first hydrodynamic voltammetric wave (a) results from the same
two electron oxidation process that are recorded in the cyclic voltammetric investigations
presented above. The second hydrodynamic voltammetric wave (b) is double the current
magnitude and is consequently believed to result from a further four-electron oxidation.

Previous reports [23,24] have postulated that the voltammetric oxidation of levamisole
progresses via the two-electron, two-proton oxidation of the thiazole sulphur to produce
sulfoxide (vi).

It is possible that this group can be oxidised further, via the loss of two more electrons
to the corresponding sulfone (vii). The overall reaction that forms (viii) would result in a
four-electron oxidation step. This would give the same relative current ratios seen in our
HDV study (Figure 5) if a two-electron oxidation, as predicted by our cyclic voltammetric
investigation, is correct.

The optimum oxidation potentials for the determination of levamisole were considered
to be either +1.8 V or +2.3 V (vs. SS) based on the two wave maxima that were recorded.
Both applied potentials offer possible advantages, with the higher potential offering the
possibility of greater sensitivity, and the lower offering improved selectivity. Consequently,
additional investigations were made into the relative analytical advantages of using either
potential of +1.8 V and +2.3 V (vs. SS).
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3.4. Calibration Plot, Limit of Detection, and Precision

Figure 6 shows the chromatograms obtained for a series of standard solutions of
levamisole, over the range 1.0–20 mg/L, in mobile phase, determined using the optimized
HPLC-ED conditions. A linear response was recorded over the entire investigated range.
The limits of detection, and quantification, based on signal-to-noise ratios of 3 and 10,
respectively, were found to be 0.27 mg/L and 0.72 mg/L.
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3.5. Studies of Possible Interferences

Common drugs reported as cocaine adulterants were investigated using the optimised
HPLC-ED method that we developed (Figure 7). To provide the equivalent of a ten-fold con-
centration ratio compared to that of levamisole, 10 mg/L of paracetamol, aspirin, caffeine,
benzocaine, phenacetin, and lidocaine were investigated as possible interferences. Caffeine
did not show a response under the optimised conditions. All of the investigated compounds
were found to have electrochemical oxidative responses, but were chromatographically
separated from levamisole.

Sci 2024, 6, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. Chromatograms obtained for injections of 1.0, 2.0, 5.0, 10, and 20 mg/L levamisole. Inset: 
calibration curve for standard levamisole solutions. Applied potential E = +2.30 V (vs. SS); mobile 
phase: 50 mM pH 8.0 phosphate buffer solution, methanol (50:50 v/v) at a flowrate of 1.0 mL/min; 
and an injection volume of 20 µL. 

3.5. Studies of Possible Interferences 
Common drugs reported as cocaine adulterants were investigated using the 

optimised HPLC-ED method that we developed (Figure 7). To provide the equivalent of 
a ten-fold concentration ratio compared to that of levamisole, 10 mg/L of paracetamol, 
aspirin, caffeine, benzocaine, phenacetin, and lidocaine were investigated as possible 
interferences. Caffeine did not show a response under the optimised conditions. All of the 
investigated compounds were found to have electrochemical oxidative responses, but 
were chromatographically separated from levamisole. 

 
Figure 7. Chromatogram obtained by HPLC-ECD for 2 ppm mixed standard solutions. Applied 
potential = +2.30 V (vs. SS). Well-defined peaks obtained within the retention times of 0–8 min: (I) Figure 7. Chromatogram obtained by HPLC-ECD for 2 ppm mixed standard solutions. Applied
potential = +2.30 V (vs. SS). Well-defined peaks obtained within the retention times of 0–8 min:
(I) paracetamol at 1.76 min; (II) phenacetin at 4.02 min; (III) benzocaine at 4.28 min; (IV) levamisole at
6.55 min.
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4. Analytical Application

To assess the performance of our optimized-HPLC ED approach, five replicate de-
terminations on artificial urine, fortified with 1.25 mg/L and 2.5 mg/L levamisole, were
undertaken. Aliquots of the samples were placed in artificial urine (Section 2.2). Quantifi-
cation was achieved by external calibration with a mean recovery of 99.6% (%CV = 8.2%.
HorRat = 0.53 [41], n = 5), and a mean recovery of 94.6% (%CV = 10.8%, HorRat = 0.78 [41],
n = 5) was obtained for 1.25 mg/L and 2.50 mg/L, respectively. The data summarized in
Table 1 suggest that similarly good performance characteristics could be achieved in real
human urine samples, as we showed previously for the determination of p-nitrophenol,
using a similar approach [42].

Table 1. Recovery and precision data for levamisole obtained on artificial urine samples.

Sample Native, mg/L Added mg/L %Rec

1 ND 1.25 100.3
2 ND 1.25 100.3
3 ND 1.25 87.5
4 ND 1.25 97.1
5 ND 1.25 113

Mean 99.6
SD 8.14

%CV 8.2
HorRat 0.53

6 ND 2.33 93.0
7 ND 2.13 85.1
8 ND 2.17 86.7
9 ND 2.84 113.7
10 ND 2.37 94.6

Mean 94.6
SD 10.2

%CV 10.8
HorRat 0.78

5. Conclusions

An assay utilising HPLC with amperometric detection was successfully developed for
the determination of levamisole in artificial urine using a C18 reverse-phase column with a
mobile phase of pH 8, phosphate buffer, and methanol. This approach offers advantages
over UV, as its absorbance maxima is at very low wavelength of around 215 nm [15–17],
making its determination by spectroscopy difficult due to the inferences from other sample
components. Direct electrochemical investigations utilising voltammetry, have also been
shown to be problematic, as there is reportedly a marked interference between levamisole and
cocaine [19,20]. The utilisation of a chromatographic separation step, as was developed in this
report, can overcome these issues. Cyclic voltammetric studies showed a 2e−, 2H+ oxidation,
postulated to be the oxidation of the thiazole sulphur of levamisole, which produces sulfoxide.
Hydrodynamic voltammetric studies showed the same oxidation process, as well as a further,
previously unreported oxidation process, which is believed to result from the oxidation of this
species via the loss of two more electrons to the corresponding sulfone.
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