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Developing standardized methodology to allow efficient and cost-effective ecological data
collection, particularly at scale, is of critical importance for understanding species’
declines. Remote camera networks can enable monitoring across large spatiotemporal
scales and at relatively low researcher cost, but manually analysing images and extracting
biologically meaningful data is time-consuming. Citizen science image analysis could
reduce researcher workload and increase output from large datasets, while actively rais-
ing awareness of ecological and conservation issues. Nevertheless, testing the validity of
citizen science data collection and the retention of volunteers is essential before integrat-
ing these approaches into long-term monitoring programmes. In this study, we used data
from a Zooniverse citizen science project, Seabird Watch, to investigate changes in breed-
ing timing of a globally declining seabird species, the Black-legged Kittiwake Rissa tridac-
tyla. Time-lapse cameras collected >200 000 images between 2014 and 2023 across 11
locations covering the species’ North Atlantic range (51.7°N–78.9°N), with over 35 000
citizen science volunteers ‘tagging’ adult and juvenile Kittiwakes in images. Most volun-
teers (81%) classified images for only a single day, and each volunteer classified a median
of five images, suggesting that high volunteer recruitment rates are important for the
project’s continued success. We developed a standardized method to extract colony
arrival and departure dates from citizen science annotations, which did not significantly
differ from manual analysis by a researcher. We found that Kittiwake colony arrival was
2.6 days later and departure was 1.2 days later per 1° increase in latitude, which was
consistent with expectations. Year-round monitoring also showed that Kittiwakes visited
one of the lowest latitude colonies, Skellig Michael (51.8°N), during winter, whereas
birds from a colony at similar latitude, Skomer Island (51.7°N), did not. Our integrated
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time-lapse camera and citizen science system offers a cost-effective means of measuring
changes in colony attendance and subsequent breeding timing in response to environ-
mental change in cliff-nesting seabirds. This study is of wide relevance to a broad range
of species that could be monitored using time-lapse photography, increasing the geo-
graphical reach and international scope of ecological monitoring against a background of
rapidly changing ecosystems and challenging funding landscapes.

Keywords: Cameras, citizen science, phenology, seabirds.

Biodiversity loss is threatening ecosystems, but
there is increasingly limited time and funding for
conservation (Waldron et al. 2013). Developing
methods for cheaper, safer and more efficient eco-
logical data collection is therefore of increasing
importance to understand how and why species
are declining, and to implement effective ecosys-
tem management.

Seabirds are among the most threatened groups
of vertebrates, with almost half of species globally
threatened or near threatened with extinction
(Croxall et al. 2012, Phillips et al. 2023). Although
seabirds are a well-studied faunal group (Richards
et al. 2021), monitoring seabirds on land during
the breeding season and at sea is often challenging
(Edney & Wood 2021). Difficulties accessing,
viewing and disturbing breeding seabirds, as well
as the time and money required to collect detailed
life-history data (e.g. on phenology, breeding suc-
cess, survival and diet) have often limited the scale
of monitoring and precluded a globally standard-
ized methodology (Mitchell & Parsons 2007,
Paleczny et al. 2015, Merkel et al. 2016, Edney
et al. 2023).

Remote photography has a long history in sea-
bird monitoring but has typically been limited to
studies at a single site or conducted over a short
time-period, often observing animals opportunisti-
cally, using handheld or animal-triggered cameras
(Black et al. 2018a, De Pascalis et al. 2018, John-
ston et al. 2019). However, increased affordability,
and continued improvements in power and data
storage solutions, mean that large volumes of digi-
tal imagery can now be collected and stored with
comparative ease (Bolton et al. 2007). This has
seen the field of time-lapse photography (which
records images at predetermined time intervals
regardless of subject presence) rapidly expand in
recent years (Edney & Wood 2021). Remotely
operated camera networks can enable monitoring
across species’ ranges, in remote locations and
harsh conditions, at relatively low researcher cost

and effort, as cameras need generally only be
attended once per year (Southwell & Emmer-
son 2015, Black 2018, Edney & Wood 2021). Col-
lecting data year-round allows measurements of
key breeding parameters, as well as additional vari-
ables such as colony arrival, colony departure and
winter colony attendance, which are not captured
by ‘standard’ fieldwork, which typically focuses on
determining breeding population counts and
breeding success (Walsh et al. 1995, Black
et al. 2017, 2018a). Higher frequency of observa-
tions than traditional fieldwork, which is often lim-
ited to a few repeat visits per season, can also
provide finer temporal resolution data, potentially
allowing dates of phenological events (e.g. chick
hatch, fledge or failure) to be measured more pre-
cisely (Walsh et al. 1995, Black et al. 2018b). This
can improve understanding of factors affecting
chick survival or changes in fledging duration, for
example (Knudson et al. 2020). Nonetheless, ana-
lysing images and extracting biologically meaning-
ful data takes time, resulting in researcher
workload being moved from the field to the desk
(Merkel et al. 2016, Pascalis et al. 2018). One
potential solution to prevent image collection
exceeding researchers’ processing capabilities is
crowd-sourcing.

Citizen science engages non-professionals in sci-
entific research (Dickinson et al. 2012) and has a
long-standing history in ecology and conservation
(Kobori et al. 2016, Swanson et al. 2016). Volun-
teers are primarily motivated to contribute to sci-
ence, and citizen science projects can be effective
in raising public awareness of ecological issues and
increasing environmental stewardship (Raddick
et al. 2010, Swanson et al. 2016, Viola
et al. 2022). Despite this, citizen science projects
often suffer criticism from professional researchers
about the validity of data derived from non-
experts, which can lower publication rates and
grant funding (Foster-Smith & Evans 2003, Dick-
inson et al. 2010, Bonter & Cooper 2012, Swanson
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et al. 2016). It is therefore important that studies
using citizen science data test that data’s robust-
ness before use (Hertzog et al. 2021, Gorleri
et al. 2022, J€ackel et al. 2023). Citizen science
projects have used a range of methods to improve
the quality of volunteer data, including training
volunteers before participation, requiring volun-
teers to pass a competency test, or aggregating the
results of multiple users to form a consensus
(Dickinson et al. 2010, Swanson et al. 2016).
Recruiting enough volunteers to meet project
workload is a further consideration for citizen sci-
ence projects, and retaining volunteers can help to
ensure project longevity, as well as minimizing the
need for frequent training and/or testing of new
participants.

When testing any new methodology, it is essen-
tial that it is ground-truthed against a well-
understood phenomenon, but one which is of fun-
damental importance. Changes in the timing of
key life cycle events (phenology) are one of the
best-documented responses to rising global tem-
peratures (Møller et al. 2008). Phenology of spe-
cies occupying higher trophic levels, such as
seabirds, may be less responsive to temperature-
driven environmental change than those occupying
lower trophic levels (Thackeray et al. 2010, 2016,
Burthe et al. 2012, Keogan et al. 2018), making
seabirds particularly sensitive to trophic mismatch
(Hipfner 2008, Shultz et al. 2009, Regular
et al. 2014). This effect may be greater at higher
latitudes, where Arctic amplification means Arctic
ecosystems are being disproportionately affected
by warming; yet, harsh abiotic conditions severely
limit the time window that is favourable for sea-
bird breeding and migration (Descamps
et al. 2019, Sauve et al. 2019, Whelan
et al. 2022). The timing of breeding is expected to
be later at higher latitudes, driven by physical con-
ditions (such as snow/ice cover on nest-sites)
delaying the onset of breeding and/or by the tim-
ing of food availability near the colony (Moe
et al. 2009, Burr et al. 2016). Investigating pheno-
logical changes across species’ latitudinal breeding
range is therefore important to assess which popu-
lations may be most at risk from trophic mismatch
in a changing climate.

In this study, we investigated the potential for
citizen science analysis of images collected from a
time-lapse camera network, to measure breeding
phenology of a globally declining seabird species
(BirdLife International 2023), the Black-legged

Kittiwake Rissa tridactyla (hereafter Kittiwake).
Many bird phenology studies focus on a single spe-
cies and site, while those spanning large spatial
and temporal scales often rely on varying methods
within the same study (Frederiksen et al. 2004,
Moe et al. 2009, Wanless et al. 2009, Keogan
et al. 2022) to obtain measures of breeding phe-
nology across different sites and years (e.g. using
both observed and estimated dates; using a combi-
nation of first, mean or median dates; changes in
frequency and/or intensity of nest checks over
time) meaning results are not always directly com-
parable and there is a clear need for standardiza-
tion. We collected images at 11 colonies spanning
an extensive latitudinal gradient (51.7°N–78.9°N),
providing a non-invasive, standardized technique
for collecting data in remote locations that are vis-
ited infrequently by humans and often previously
unmonitored (Edney & Wood 2021). To process
the large volume of imagery collected, we asked
volunteers from the Zooniverse citizen science pro-
ject, Seabird Watch, to classify adult and chick Kit-
tiwakes in these images (www.seabirdwatch.org).
We tested the validity of citizen science data when
images were classified by multiple volunteers and a
consensus value was used, and predicted that such
techniques would yield similar results to ‘expert’
image annotation by a researcher. Using this stan-
dardized method would then enable assessment of
spatiotemporal patterns of colony attendance, and
we predicted that Kittiwake arrival and departure
would be delayed per degree increase in latitude,
corresponding to the delayed egg-laying and hatch-
ing observed in previous studies (Burr et al. 2016,
Keogan et al. 2022). We further considered the
overall cost-effectiveness (both time and money)
of the citizen science camera network. We pre-
dicted a monotonic relationship between the
length of time volunteers participated in the pro-
ject and the number of images they classified, in
support of the idea that volunteer retainment is
key to the system’s long-term capacity to answer
advanced ecological questions pertaining to seabird
ecology and demography, in a standardized way.

METHODS

Study sites and camera set-up

We used a network of 11 time-lapse cameras
across eight countries that span the latitudinal
breeding range of the Black-legged Kittiwake

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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(Fig. 1). The time-lapse cameras were most often
commercially available Reconyx Hyperfire or
Reconyx Ultrafire (Reconyx Inc., Holmen, WI,
USA) mounted on either a pre-made camera tri-
pod or a custom-built tripod (e.g. with scaffold
poles), although some sites had specialist, custom-
built cameras (Table 1, Fig. 2). Tripods were
weighed down with ballast stones or attached to
the ground/nearby rock to prevent movement.
Each Reconyx camera contained a 16–64 GB SD
card and 12 Ultimate Lithium batteries, or at UK
sites, 12 rechargeable Eneloop batteries. Most
cameras captured between 30 and 130 nests and
were programmed to take one image per hour
year-round, although at high latitudes this was
sometimes reduced to four photos per day to max-
imize battery lifespan at sites that were infre-
quently visited (e.g. in Alkefjellet, Svalbard, a
Reconyx Ultrafire captured four images per day
from 2018 to 2022, before its retrieval in 2022).
Typically, batteries and SD cards only need to be
changed once every 1–2 years for Reconyx cam-
eras taking hourly images. The total cost of setting
up one Reconyx camera is in the region of £800
(excluding travel expenses), depending on the
camera model and mount used, and quantities
ordered (e.g. c.£500–£600 per Reconyx camera;
c.£200 per tripod; c.£20–£30 for batteries and SD

cards). Cameras were visited once every 1–4 years
depending on access and logistical constraints, to
replace SD cards and batteries.

Camera data extraction

Image annotation and processing
Images were annotated by volunteers on the Sea-
bird Watch citizen science project (www.
seabirdwatch.org), hosted on the Zooniverse plat-
form (www.zooniverse.org). The Seabird Watch
project contains multiple ‘workflows’ (sequences
of tasks, which volunteers are asked to complete)
for analysing different image sets. Each workflow
shows users a tutorial before being given their first
image, which explains how to complete each task
and provides examples of how birds appear in
images. There is also a field guide of animals likely
to be seen, a Frequently Asked Questions page
and a discussion forum moderated by scientists, to
answer volunteer questions and help ensure they
understand the tasks to complete. For this analysis,
the ‘Timelapse’ workflow (launched on 19 Octo-
ber 2017) was used to click on birds and classify
them as either adult or chick Kittiwakes. Each
image was viewed by multiple volunteers to
increase data reliability. Specifically, four people
were initially shown each image, and if any of
them classified a bird, then the image was shown
to 10 people in total. If the first four volunteers
classified zero birds, the ‘blank’ image was retired,
meaning it was removed from the active dataset
and not seen by further volunteers. As the pres-
ence of birds was easy to detect, recording four
negatives was sufficient to be confident no birds
were present and retire an image. Participants did
not have to classify every bird in images, to help
prevent loss of interest when photographs con-
tained a large number of individuals, but at the
end of each image, they were asked to select ‘Yes’
or ‘No’ for whether they had marked every bird
(Jones et al. 2018). Previous research showed that
for five colonies sampled, > 99% of images were
classified by four or more volunteers who marked
all birds, and > 47% were classified by seven or
more volunteers who marked all birds
(Edney 2020). This suggests that across at least 10
independent viewers almost every bird should be
classified.

As each image was classified by multiple volun-
teers, a clustering algorithm was used to aggregate
raw classifications to generate one ‘consensus
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Figure 1. Locations of cameras included in this study. Key:
1 = Ossian Sarsfjellet, 2 = Kapp Waldberg, 3 = Alkhornet,
4 = Midterhukfjellet, 5 = Apparsuit, 6 = Kippaku, 7 = Elliðaey,
8 = Hv�ıtabjarnarey, 9 = Mykines, 10 = Skellig Michael,
11 = Skomer. Closely spaced colonies are illustrated using
upward and downward triangles to avoid complete overlap.
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classification’ for each object (i.e. bird) using Cae-
sar software (Jones et al. 2018, Krawczyk
et al. 2022). Classifications made by the same user
in a single image (i.e. because they classified more
than one bird) were placed in separate clusters,
and consensus classifications had to be formed
from at least three raw classifications to limit erro-
neous clicks (Jones et al. 2018, Krawczyk
et al. 2022). The number of consensus classifica-
tions per image for each category (adult Kittiwake,
chick Kittiwake) was summed to give an image
count.

Images taken at ‘night’ were removed from the
dataset post-clustering, using the ‘suncalc’ package
in R to either identify images taken after sunset
but before sunrise, or at high latitude, to identify
images without sunrise or sunset between October
and February. This was important because the
cameras do not have night vision, and so a count
of zero birds in completely dark images is not nec-
essarily a true zero (i.e. there might have been

birds present, but they could not be observed);
this is particularly relevant at high latitudes in win-
ter when the sun does not rise.

For this analysis, we used counts from the
1:00 PM image, or the time closest to 1:00 PM, for
each day. This was because different camera set-
ups and image times processed in Seabird Watch
across sites and years meant not all hours were
available for every camera.

Changes in arrival and departure with latitude
Count data for adult Kittiwakes were smoothed
using a 3-, 5- and 7-day moving average to remove
noise in the data. Smoothing was necessary
because counts may be lower than expected
(sometimes zero) as a result of the camera view
being obscured, such as by snow, or a bird in the
foreground partially obscuring the nests behind.
The moving average chosen (i.e. 3, 5 or 7 days)
was determined by comparison with researcher
dates (see Citizen science data validation).

Table 1. Type of camera installed at each location used in this study.

Site (colony code) Latitude, longitude Year Camera type

Skomer Island, Wales (SKOM) 51.74, �5.30 2017 Reconyx UltraFire
2018, 2019, 2020 Reconyx HC500 Hyperfire

Skellig Michael, Ireland (SKEL) 51.77, �10.54 2014, 2015, 2016 Reconyx HC500 Hyperfire
2018, 2019, 2020, 2021 Reconyx Ultrafire

Mykines, Faroes (MYBR) 62.1, �7.66 2014, 2015 Reconyx HC500 Hyperfire
2018 Reconyx Hyperfire 2 Covert
2019, 2020 Reconyx HF2 Pro Convert
2021 Reconyx Ultrafire

Elliðaey Island, Iceland (ELLI) 65.09, �22.49 2015, 2016, 2017 Reconyx HC500 Hyperfire
Hv�ıtabjarnarey Island, Iceland (HVIT) 65.08, �22.68 2016, 2017 Reconyx HC500 Hyperfire

2018, 2019, 2020, 2021 Bushnell
Kippaku Island, Greenland (KIPP) 73.72, �56.63 2016, 2017, 2018, 2019 Canon EOS 60D mounted in

weatherproof box (see Merkel
et al. 2016)

Apparsuit Island, Greenland (APPA) 73.79, �56.72 2017, 2018, 2019 Canon EOS 70D mounted in
weatherproof box (see Merkel
et al. 2016)

2020 Canon EOS 80D mounted in
weatherproof box (see Merkel
et al. 2016)

Midterhukfjellet, Svalbard (MITT) 77.66, 14.88 2014, 2015 Reconyx HC500 Hyperfire
2016, 2017 Reconyx SC950 Security
2019, 2020, 2021 Reconyx UltraFire

Alkhornet, Svalbard (ALKE) 78.21, 13.78 2015, 2016 Reconyx HC500 Hyperfire
Kapp Waldberg, Svalbard (KAPW) 78.27, 21.92 2017, 2018, 2019, 2020,

2021, 2022
Reconyx Ultrafire

Ossian Sarsfjellet, Svalbard (OSSI) 78.94, 12.49 2015, 2016, 2017, 2018,
2019, 2020, 2021

Reconyx HC500 Hyperfire

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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We defined an observation period as starting on
1 January and ending on 31 December with arrival
occurring between January and May and departure
between July and December. Using these criteria,
the available dataset for measuring colony arrival
and departure was identified by removing years
where the first image in the dataset was taken after
May and where the last image in the dataset
occurred before July (Table S1). Although we
expected that Kittiwakes would not depart until
August, we included July in the departure dataset
to potentially identify colonies where all breeding
attempts failed and Kittiwakes might leave early
(Coulson 2011). This could facilitate further inves-
tigation on the effect of extreme events (e.g.
severe predation, food shortage, bad weather) on
Kittiwake breeding. Additional years were also
removed where breaks in image capture (e.g. due
to camera failure) meant arrival and/or departure
were missed. Overall, 64% of possible arrival and
departure dates were able to be used for analysis
(Table S1).

Colony arrival was measured as the first day of
X consecutive days of increase in the number of
adult Kittiwakes, and colony departure was mea-
sured as the last day of X consecutive days of
decrease in the number of adult Kittiwakes, where

X took values from 2 to 7 days. The value of X
used for analysis was chosen by comparison with
researcher dates (see Citizen science data valida-
tion) and thus provides a standardized method to
measure arrival and departure, as the same value
of X could be used if the method were applied
again in other studies. We used a consecutive days
approach, rather than the first and last day an
adult Kittiwake was recorded, to capture the grad-
ual increase/decrease in colony abundance and
reduce the likelihood of citizen science misclassifi-
cations recording too-early/too-late arrival/depar-
ture dates. For example, incorrectly classifying
another bird species (such as a Herring Gull Larus
argentatus, which may be present year-round in
UK images) as a ‘kittiwake’ on 2 February, would
give arrival as 2 February if this was the first day
of the year a ‘kittiwake’ was seen. In comparison,
the misclassified Herring Gull would be ignored
using the consecutive days method, as it is unlikely
that Herring Gull numbers would increase for
multiple days in February.

We tested the relationship between latitude and
arrival and departure dates using linear mixed-
effects models, with either arrival or departure
date as the response variable, latitude as a fixed
effect and colony as a random effect, and

Figure 2. (a) Example time-lapse camera set-up on Skomer Island, Wales. This camera is mounted on a pre-made tripod typically
used for spotting scopes, whereas other cameras are mounted on custom-built tripods made from scaffolding poles. Tripods are
attached to the ground/nearby rock or weighed down with ballast. (b) Image taken at Skellig Michael, Ireland, in winter (12 November
2016), with Kittiwakes present on the cliffs.

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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computed P values using a Wald t-distribution
approximation (Bates et al. 2015).

Citizen science data validation
We compared arrival and departure dates calcu-
lated from 2 to 7 days of consecutive increase/
decrease using 3-, 5- and 7-day moving averages of
Seabird Watch consensus classifications, with
arrival and departure dates from manual researcher
analysis. The researcher looked at the 1:00 PM

images to identify the first time an adult Kittiwake

was seen in an image (arrival) and the last time an
adult Kittiwake was seen in an image (departure)
for the season. Wilcoxon signed-rank tests tested
for significant differences in Seabird Watch and
researcher arrival and departure dates, for each
combination of moving averages and consecutive
days increase/decrease.

Citizen scientist participation and retention
To determine the long-term capacity of the
camera–citizen science system to measure seabird

Figure 3. (a) The number of images classified using the Seabird Watch ‘Timelapse’ workflow (19 October 2017 to 2023) has steadily
accumulated across time, with high initial uptake when the project launched, and another notable increase during the COVID-19 pan-
demic in 2020. (b) There is a positive correlation (r = 0.26, P < 0.001) between the number of images classified by each volunteer
and the length of time between the first and last image they classified (n = 36 889). Points show raw data and transparency has
been used to show density in areas of overlap. Black dots represent the median number of images classified, when binned into sets
of 250, with whiskers showing the interquartile range. (c) Volunteer contribution pattern, showing the length of time (in days) between
the first and last image each volunteer (individual ID) classified (n = 36 889).

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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demographic parameters, we extracted informa-
tion on the number of images classified and vol-
unteer contribution, for the ‘Timelapse’
workflow, from 19 October 2017 to 19 October
2023 (excluding April to June 2023 when the
workflow was inactive). Specifically, we mea-
sured the median number of images classified
per month, the median number of volunteers
who classified at least one image per month, the
number of images each volunteer classified in
total and the time period over which these
images were classified. A Spearman’s rank corre-
lation test tested for a correlation between the

number of images each volunteer classified and
the time period over which they classified these
images. All analyses were conducted in R, ver-
sion 4.2.2 (R Core Team 2022).

RESULTS

Citizen scientist participation and
retention

From 19 October 2017 to 19 October 2023,
799 917 images were classified using the Seabird
Watch ‘Timelapse’ workflow, which equates to

*****nsns***

*****nsns**

**nsnsns***

m
a03

m
a05

m
a07

2 3 4 5 6 7

0

50

100

150

0

50

100

150

0

50

100

150

Ar
riv

al
 d

at
e 

(d
ay

 o
f y

ea
r)

(a)

********************

*************ns****

*******nsns****

m
a03

m
a05

m
a07

2 3 4 5 6 7

200

250

300

350

400

200

250

300

350

400

200

250

300

350

400

D
ep

ar
tu

re
 d

at
e 

(d
ay

 o
f y

ea
r)

(b)

Consecutive days

Figure 4. Boxplots comparing the median (a) arrival and (b) departure dates derived from citizen science consensus classifications
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87 046 unique camera images (because each
unique image was classified four to ten times by
different volunteers). The median number of
images classified per month was 3846 (interquar-
tile range (IQR) 2003–9576) and the maximum
number of images was 296 921, in October 2017
(Fig. 3a). The total number of unique volunteers
who classified an image was 36 889 (identified by
their IP address or account login), of which
14 077 were logged into a registered account on
the Zooniverse platform. The median number of
unique volunteers participating per month was
193 (IQR 123–431), although the maximum was
far higher (22 694 in October 2017). We found a
positive correlation between the number of images
classified by each volunteer and the length of time
between the first and last image they classified
(r = 0.26, P < 0.001; Fig. 3b), despite 81% of vol-
unteers classifying images for only a single day
(Fig. 3b,c). The median number of days between a
volunteer’s first and last classification was 0 (IQR
0–0) and the median number of images each vol-
unteer classified during this time was 5 (IQR 2–
12).

Citizen science data validation

Comparing arrival and departure dates derived
from citizen science and researcher analysis, we
found that the 5-day moving average was the
smallest moving average that gave similar estimates
for both arrival and departure, for at least one
value of consecutive days increase/decrease (Fig. 4;
Table S2, Fig. S1). The 5-day moving average was
chosen to smooth the citizen science data going
forward, as stronger smoothing using larger moving
averages (e.g. 7 days) might reduce the ability to
detect the timing of key breeding season events
more precisely (e.g. the Kittiwake incubation
period is typically 25–29 days; Coulson 2011).
Using this 5-day moving average, arrival and
departure dates were both similar when 3 days of
consecutive increase/decrease were used to identify
arrival/departure respectively (Fig. 4, Table S2,
Fig. S1), and so arrival was measured as the first
day of three consecutive days of increase, and
departure as the last day of three consecutive days
of decrease. For all combinations of moving aver-
ages and consecutive days, the departure dates for
one colony, Skellig Michael, were outliers (depar-
ture date > q0.75 + 1.5*IQR; where q0.75 is the
third quartile) (Fig. 4).

Changes in arrival and departure with
latitude

Colony arrival and departure dates were deter-
mined by smoothing Seabird Watch consensus
classification data using a 5-day moving average,
and then determining the first day of 3 days of
consecutive increase in number of adult Kittiwakes
(arrival) and the last day of 3 days of consecutive
decrease in the number of adult Kittiwakes
(departure) (Fig. 5). Plotting the number of adult
Kittiwakes (smoothed using a 5-day moving aver-
age) counted from consensus classification data
showed that birds visited the Skellig Michael col-
ony during winter, resulting in skewed ‘departure’
dates in December that did not reflect colony
departure post-breeding (Fig. 5). Most Kittiwakes
left the colony by mid-September and then
returned in January before the start of the next
breeding season, with small numbers of Kittiwakes
present in between. Consequently, we excluded
winter attendance and re-defined departure as
occurring from July to 15 September for Skellig
Michael (compared with July to December for all
other colonies), and measured departure as the
last day of three consecutive days of decrease
within this time period. When all available Seabird
Watch data were used, arrival was 2.6 (standard
error (se) = �0.71) days later per 1° increase in
latitude (t(18) = 3.66, P < 0.01), and departure
was 1.2 (se = �0.49) days later per 1° increase in
latitude (t(36) = 2.42, P < 0.05) (Fig. 6; arrival
and departure data are provided in Tables S3
and S4).

DISCUSSION

Using images from the Seabird Watch time-lapse
camera network, we demonstrate that citizen sci-
ence can provide estimates of seabird colony
arrival and departure that are comparable to
‘expert’ data extraction. This method has several
advantages over traditional field methods, includ-
ing reduced cost, less disturbance, potential to
cover a much larger geographical area, provision of
standardized estimates across regions and increase
in societal engagement in seabird monitoring. We
found that at higher latitudes, adult Kittiwakes
return to the colony to breed later and depart later
at the end of the breeding season, in line with pre-
vious studies. However, at one site, birds appeared
to return to the colony during winter – an

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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observation not previously detected there because
of observer visits only occurring in the breeding
season – suggesting regional differences in Kitti-
wake over-winter behaviour.

Camera set-up

The Kittiwake camera network has allowed the col-
lection of an enormous quantity of data (> 200 000
images) from 2014 to the present. Time-lapse cam-
eras have enabled monitoring at a large spatiotem-
poral scale, in infrequently monitored locations, and
harsh environments, applying a standardized meth-
odology to facilitate comparison across sites.

Maintaining such an extensive camera network
is not without its challenges, especially in coastal
environments in winter, where strong winds,
waves and precipitation can knock cameras over,
obscure camera lenses or cause camera failure (e.g.
water ingress; Merkel et al. 2016). As a result, the
network contains gaps in data, where either cam-
eras have failed or images are unusable, for exam-
ple because they are blurred or the birds are
obscured (e.g. condensation, precipitation on the
lens). Furthermore, problems arising in winter are
rarely identified until the following spring when
fieldwork resumes. Remote image transmission
could help overcome this problem, as images
would be viewable online year-round, and issues
with data capture could be identified and priori-
tized. Installing two cameras per colony could also
increase the network’s resilience, as if one camera
fails, images would still be available from the other
camera. Although this would increase cost in the
short-term, cameras are comparatively cheap
(c.£800 per camera and mount) compared with
in-person field monitoring, especially when travel
to remote islands is required and fieldworkers must
be present regularly throughout the breeding sea-
son (Huffeldt & Merkel 2013, Merkel et al. 2016).
Although this study only tested the use of citizen
science image analysis for measuring colony arrival
and departure, the camera network also has the
potential to answer questions about the possible
drivers of change in seabird breeding phenology,
success and chick survival, provided data can be
efficiently analysed (Hinke et al. 2018, Black
et al. 2018b, Youngflesh et al. 2021).

Citizen science data validation

The Zooniverse platform engages > 1.6 million regis-
tered users worldwide, who can participate in over
50 active projects that span a range of disciplines,
from astronomy to ecology, to help analyse large
datasets (Cox et al. 2015). Creating a Zooniverse
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project is free of cost, as development of the plat-
form is funded by awards and grants (e.g. from the
Alfred P. Sloan Foundation) (www.zooniverse.org).
This makes the total monetary cost of the combined
camera and citizen science system greatly reduced
compared with other seabird monitoring tech-
niques, such as traditional field observations and
tagging, for the number of birds monitored.

When appropriate clustering andmoving averages
were applied, citizen science and ‘expert’ data
showed no significant differences in phenological
parameters routinely used to determine responses to
environmental change. This demonstrates how large
citizen science datasets can answer important ecolog-
ical questions with similar confidence to ‘expert’
analysis, but at greater scales. Measuring colony-level
arrival and departure with moving averages, rather
than recording arrival and departure of birds at indi-
vidual nests, removes the need for citizen science
consensus classifications to accurately identify every
bird in each image, provided the general trends of
increase and decrease are present.

This study did not compare citizen science mea-
sures of phenology with those measured using ‘tra-
ditional’ field methods. This is because fieldworkers
are rarely present when adult Kittiwakes first arrive
at the colony (median arrival date 12 March) or
when they leave (median departure date 29

August), as most fieldwork programmes are focused
on the core breeding season, from egg-laying to
chick fledging (Walsh et al. 1995). Future Seabird
Watch studies aiming to measure additional breed-
ing parameters, such as breeding success, will need
to compare citizen science, ‘expert’ image analysis
and fieldworker identification of chicks and resul-
tant metrics, where possible. Validation is crucial in
the development of all novel and emerging technol-
ogies, to show that resultant data are equivalent to
(or better than) the existing approach.

Citizen scientist participation and
retention

For citizen science data to be integrated into moni-
toring programmes, it must reduce researcher
workload and be capable of consistently collecting
data in the long-term. The time required by volun-
teers to annotate images depends on the number
of birds per image (affected by camera location/
position, time of year, time of day), number of
species present and the number of life-stages pre-
sent (e.g. adults and/or chicks). Seabird Watch
images are presented to users at random, meaning
that these factors should vary across a series of
images examined, which can help to retain volun-
teer interest. When two researchers annotated a
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random selection of images, they averaged 1.2 min
per image (researcher 1 completed 42 images in
60 min; researcher 2 completed 60 images in
60 min). This means that volunteers have saved
c.1740 h (over 10 months, if working a 40-h
week) of researcher image processing time, for the
c.87000 images classified using the ‘Timelapse’
workflow to date.

However, to provide long-term monitoring solu-
tions, citizen science projects also need to have
enough volunteers in the long-term. Over the past
6 years, the ‘Timelapse’ workflow has maintained
sufficient volunteer effort (median number of
images classified per month was 3700, IQR 2003–
9576) to process the new images collected each
year. Volunteer participation was highest during
the first month of the project (Fig. 3a), when
it was featured on the UK TV programme
Autumnwatch (https://www.bbc.co.uk/programmes/
b0079t1) and peaked again during the COVID-19
pandemic, like many other Zooniverse projects
(Ibrahim et al. 2021). Although participation has
been sustained, the retention of individual volun-
teers was far less than expected. Most volunteers
classified fewer than 10 images (median 5, IQR 2–
12) in a single day (median number of days 0,
IQR 0–0), and subsequently did not participate
again. Similar volunteer patterns have been found
for other Zooniverse projects, suggesting that it is
much harder to maintain volunteer interest than it
is to recruit new volunteers (Sauermann & Fran-
zoni 2015, Crall et al. 2017). In the long-term, this
could affect the accuracy of data generated, as vol-
unteers do not have time to learn and improve
their classifications; although for this study, high
turnover does not appear to have been an issue, as
citizen science and ‘expert’ phenology dates were
comparable.

Hosting our project on a well-known and long-
established citizen science platform has probably
helped maintain a steady flow of new volunteers,
particularly when Seabird Watch was ‘featured’ on
the Zooniverse homepage (different projects are
chosen to be featured each week, by the Zooniverse
team) (Crall et al. 2017). Equally, promoting the
project on other platforms, such as SciStarter
(https://scistarter.org/) and Twitter/X (https://
twitter.com), has helped recruit people (Crall
et al. 2017). Rewarding volunteers for their efforts
might encourage long-term participation (West &
Pateman 2016), and Seabird Watch already pro-
vides volunteer certificates for a range of

community engagement recognition programmes.
Introducing competitive elements between volun-
teers, such as ranking and badging systems, can be
rewarding (Robinson et al. 2021), as can receiving
personal feedback from the project (e.g. via
system-generated, but editable, emails) (Pecl
et al. 2019). Regular project updates, and the
opportunity to interact with the researchers, as
well as other volunteers, can likewise ensure that
volunteers know their contributions are valued and
allow them to feel part of a wider community
(West & Pateman 2016, Robinson et al. 2021).
Increased use of the Seabird Watch Talk function
by both researchers and volunteers could
promote this.

Increasingly, machine learning and artificial
intelligence are being used for image object detec-
tion to reduce image processing time and provide
long-term data processing solutions (Christin
et al. 2019, Borowiec et al. 2022, Pichler & Har-
tig 2023). Large training datasets are typically
needed to train a model to recognize the objects
of interest, and citizen science image annotations
can provide such datasets, given that they are suffi-
ciently accurate (Jones et al. 2020).

To date, artificial intelligence has predominantly
been used to identify adult seabirds in drone and
time-lapse images, but very few studies have
attempted to identify seabird chicks (Jones
et al. 2020, Hayes et al. 2021, Kellenberger
et al. 2021, Weinstein et al. 2022). This might be
because small chicks are difficult to detect when
they first hatch, as they are often brooded by a
parent (Coulson 2011). Chick appearance then
changes significantly as they grow-up, until they
often look completely different just before fledg-
ing, which might make it hard to recognize the
variable appearance of a (e.g. Kittiwake) chick as
the same ‘object’ across time. Hentati-Sundberg
et al. (2023) developed a video surveillance system
combined with automated image processing to
identify Common Guillemot Uria aalge adults,
chicks and eggs and has been able to look at some
aspects of nest attendance, breeding activity and
phenology. The system was installed in a previ-
ously constructed artificial breeding cliff and uses
five mains-powered cameras, mounted on five
ledges to monitor c.23 pairs of Guillemots. As a
result, the system is unlikely to be easily scalable,
particularly in remote areas where reliable power
is lacking. Specific camera set-ups can also impede
the generalizability of neural networks, as models

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.

12 A. J. Edney et al.

 1474919x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ibi.13317 by U

niversity O
f G

loucestershire, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.bbc.co.uk/programmes/b0079t1
https://www.bbc.co.uk/programmes/b0079t1
https://scistarter.org/
https://twitter.com
https://twitter.com


trained on a particular image set may not be able
to make accurate predictions when faced with
novel image sets (such as a different study site),
even if they contain the same species. This means
that models might have to be re-trained on new
datasets, which increases computational time and
costs, and requires further training data (Lamba
et al. 2019). Citizen science annotations could pro-
vide such training data, which reiterates how citi-
zen science and machine learning might
complement each other to provide efficient and
cost-effective image analysis techniques in the
long-term.

Changes in arrival and departure with
latitude

Using time-lapse cameras and citizen science anno-
tations, we showed that Kittiwake colony arrival
was 2.6 days later per 1° increase in latitude from
51.7°N to 78.9°N. This is in line with previous
research using traditional in-person monitoring
showing that seabird breeding (namely average lay
and/or hatching date) occurs later with increasing
latitude at both the global (Keogan et al. 2018,
2022) and regional (Wanless et al. 2009, Burr
et al. 2016) scale. Baker (1939) predicted a 2- to
3-day delay in egg-laying for every 1° increase in
latitude, and Burr et al. (2016) found Kittiwake
hatching was delayed by 2.3 days per latitudinal
degree from 65°N to 79°N. Importantly, our result
fits into this range of a 2- to 3-day delay per
degree of latitude, showing that the novel method-
ology used here can detect known ecological pat-
terns. The methodology can further be used to
measure inter-annual variation in phenology, as
cameras can provide long time-series of data. This
is important for trying to understand the drivers of
phenological change, and how environmental con-
ditions can affect populations through breeding
success and/or adult survival. The timing of arrival
is of particular importance because it may affect
the timing of breeding and subsequent reproduc-
tive success, and departure to the wintering
grounds may consequently affect adult survival or
cause potential carry-over effects the following
breeding season.

In our study, we also expected departure to be
delayed with latitude (because a later start should
mean a later finish) and found this to be true, with
a delay of 1.2 days per 1° latitudinal increase. The

smaller magnitude delay in departure (1.2 days)
relative to arrival (2.6 days) supports studies show-
ing that breeding season length is shorter at latitu-
dinal extremes, although we did not have
sufficient data to test this directly (Hodum 2002,
Burr et al. 2016). At one of the lowest latitude
sites, Skellig Michael, small numbers of Kittiwakes
were present between October and December,
despite most of the colony leaving by mid-
September, post-breeding. This supports previous
studies showing that Kittiwakes breeding around
the Celtic–Biscay shelf (Rathlin, 55°N and Skomer
52°N; Frederiksen et al. 2012) (Rockabill 54°N;
SEAPOP 2023) tend to remain near the colony
year-round, and do not necessarily migrate to the
West Atlantic during winter like most other Kitti-
wake populations (Frederiksen et al. 2012). Never-
theless, we did not observe Kittiwakes in 1:00 PM

images from Skomer between September 2019
and February 2020, suggesting that birds remain-
ing near the colony do not always visit breeding
sites during winter. Further research is needed on
the occurrence and reasons for over-winter colony
attendance in Kittiwakes. Winter visitors might be
young birds practising at establishing nests, adults
maintaining a pair bond (Harris & Wanless 1989)
or adults competing for nests, with winter atten-
dance being more likely at locations where compe-
tition for high-quality nest-sites is intense (Bennett
et al. 2022). Our time-lapse camera and citizen
science system represents a powerful tool to study
such attendance patterns, given the lack of tradi-
tional field observations during winter.

CONCLUSIONS

In this study, we demonstrate how large-scale
camera networks can measure phenological
changes at remote colonies over a large geographi-
cal range, in a species of high conservation con-
cern, and that this could be applied to cliff-nesting
seabirds more widely. The potential to measure
additional phenological parameters (such as chick
hatch and chick fledge dates), nest survival and
productivity, at comparatively low cost
(Black 2018) is high. Long-term maintenance of
such camera networks and robust methods for ana-
lysing large quantities of images, such as citizen
science, are essential if we hope to address tempo-
ral trends and explore how reproduction is
affected by key drivers of environmental change.

© 2024 The Authors. Ibis published by John Wiley & Sons Ltd on behalf of British Ornithologists' Union.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Figure S1. Boxplots and paired dot plots com-
paring the (a) arrival and (b) departure dates
derived from citizen science consensus classifica-
tions (grey) and researcher analysis (white).

Table S1. Available Seabird Watch data that
have been annotated on the Zooniverse platform,
for sites used in this analysis.

Table S2. Results of paired samples Wilcoxon
tests comparing the arrival and departure dates
derived from citizen science consensus classifica-
tions and researcher analysis.

Table S3. Kittiwake colony arrival dates mea-
sured for each colony using citizen science consen-
sus classifications.

Table S4. Kittiwake colony departure dates
measured for each colony using citizen science
consensus classifications.
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