
Computers in Biology and Medicine 172 (2024) 108316

Available online 13 March 2024
0010-4825/© 2024 Published by Elsevier Ltd.

A novel data augmentation approach for influenza A subtype prediction 
based on HA proteins 

Mohammad Amin Sohrabi a, Fatemeh Zare-Mirakabad b, Saeed Shiri Ghidary c, Mahsa Saadat b, 
Seyed-Ali Sadegh-Zadeh c,* 

a Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran 
b Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran 
c Department of Computing, School of Digital, Technologies, and Arts, Staffordshire University, Stoke-On-Trent, UK   

A R T I C L E  I N F O   

Keywords: 
Supervised data augmentation 
Protein data augmentation 
Pre-trained transformer 
NLP 
PreIS 

A B S T R A C T   

Influenza, a pervasive viral respiratory illness, remains a significant global health concern. The influenza A virus, 
capable of causing pandemics, necessitates timely identification of specific subtypes for effective prevention and 
control, as highlighted by the World Health Organization. The genetic diversity of influenza A virus, especially in 
the hemagglutinin protein, presents challenges for accurate subtype prediction. This study introduces PreIS as a 
novel pipeline utilizing advanced protein language models and supervised data augmentation to discern subtle 
differences in hemagglutinin protein sequences. PreIS demonstrates two key contributions: leveraging pre- 
trained protein language models for influenza subtype classification and utilizing supervised data augmenta
tion to generate additional training data without extensive annotations. The effectiveness of the pipeline has 
been rigorously assessed through extensive experiments, demonstrating a superior performance with an 
impressive accuracy of 94.54% compared to the current state-of-the-art model, the MC-NN model, which ach
ieves an accuracy of 89.6%. PreIS also exhibits proficiency in handling unknown subtypes, emphasizing the 
importance of early detection. Pioneering the classification of HxNy subtypes solely based on the hemagglutinin 
protein chain, this research sets a benchmark for future studies. These findings promise more precise and timely 
influenza subtype prediction, enhancing public health preparedness against influenza outbreaks and pandemics. 
The data and code underlying this article are available in https://github.com/CBRC-lab/PreIS.   

1. Introduction 

Influenza, a viral respiratory illness, afflicts millions of individuals 
worldwide annually [1]. Influenza viruses are classified into three 
phylogenetically distinct types: A, B, and C [2]. Influenza C primarily 
affects humans, has relatively few antigenic variations, and does not 
cause severe disease. Influenza B only occurs naturally in humans. In 
contrast, influenza A infects humans and a number of other mammals, 
including pigs, horses, and many poultry species. Influenza A virus (IAV) 
has much greater amino acid sequence variation than influenza B [3]. 
IAVs are the most widespread and virulent, capable of causing pan
demics and major public health disruptions [4]. As a result, the World 
Health Organization (WHO) consistently emphasizes the importance of 
monitoring and tracking virus variations to promptly detect new sub
types, develop vaccines, and prevent catastrophic pandemics. Hence, 
this study specifically focuses on investigating IAV. 

IAVs have 8 RNA segments which encode for the following proteins: 
Polymerase Subunit 1 (PB1), Polymerase Subunit 2 (PB2), Polymerase 
Acidic (PA), Nucleoprotein (NP), Matrix Proteins (which includes M1 
and M2), Non-Structural Proteins (which includes NS1 and NEP), 
Neuraminidase (NA), and Hemagglutinin (HA) [5]. Out of all the seg
ments, the HA and NA proteins are the two surface glycoproteins that 
undergo significant and are the primary targets for immunological 
detection [5]. Continuous antigenic drifts and occasional antigenic shifts 
in viral surface glycoproteins lead to difficulties in predicting and con
trolling epidemics [6]. To date, 18 HA subtypes and 11 NA subtypes 
have been identified [7–10]. 

IAV subtypes are named by combining the numbers H (HA) and N 
(NA), for example, H1N1 and H3N2. These IAV subtypes are currently 
prevalent in humans with varying sensitivities to antiviral drugs, so 
rapid classification of these viruses is becoming increasingly important 
[6]. 
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The Polymerase Chain Reaction (PCR) based approach [11,12] is a 
traditional lab method used for subtyping IVAs. This method utilizes a 
series of oligonucleotide primers in a single reverse transcription-PCR. A 
limitation of current subtyping techniques is that many assays are 
required to cover the broad range of circulating subtypes, making them 
costly and time-consuming. 

With the advancement of sequencing technologies, the sequencing of 
influenza proteins has become the standard practice in influenza studies. 
Databases such as the National Center for Biotechnology Information 
(NCBI) Influenza Viruses database [13] provide convenient access to 
recently sequenced influenza protein sequences. Most computational 
methods for predicting and controlling epidemics focus on either the HA 
or NA protein sequences to predict 18 HA subtypes or 11 NA subtypes, 
respectively [14,15]. However, in the real-world scenarios, subtypes are 
defined based on variations in both HA and NA proteins. This is because 
a host infected with two different viral genotypes can produce a hybrid 
virus progeny with recombinant genotypes [16]. For example, coinfec
tion with strains HxNy and HwNz, where x,w ∈ {1,…,18} and y,z ∈ {1,
…,11}, can produce hybrid strains HxNz and HwNy in addition to the 
parental types. This phenomenon is known as antigenic shift. Although 
the HA protein of IAV is known to mutate at a faster rate than the NA 
protein [17], it is generally recognized that for accurately predicting 
influenza subtypes, both the HA and NA proteins of each strain are 
essential [14]. Specifically, when two subtypes share the same HA 
protein subtype, such as HxNy and HxNz, a notable similarity between 
the HA proteins within these subtypes becomes apparent. Consequently, 
predicting the HxNy subtype of influenza can be particularly chal
lenging, especially given that the NCBI often provides sequences for 
either the HA or NA proteins of a given strain but not both 
simultaneously. 

In this study, our objective is to evaluate the potential of protein 
language models, as defined in protein sequences [18–22], commonly 
referred to as transformer-based approaches, in enhancing the ability of 
predictor models to discern between HxNy and HxNz subtypes. This 
investigation focuses on leveraging the nuanced distinctions within the 
HA protein sequences for subtype differentiation. To achieve this, we 
have designed an innovative pipeline named PreIS (Prediction of 
Influenza Subtype). Given the subtle distinctions between HA sequences 
in HxNy and HxNz subtypes, reflecting antigenic drift, we introduce a 
novel supervised data augmentation technique known as SDA (Super
vised Data Augmentation). The SDA method simulates the antigenic 
drift process during training. By incorporating SDA, the model’s per
formance is significantly enhanced, generating additional training data 
and thereby improving the diversity and quality of the dataset. Notably, 
our pipeline utilizes RITA [23] as a pre-trained protein language model 
for embedding, a model not previously explored for enhancing the ac
curacy and efficiency of IAV subtype prediction. These embedded se
quences are then input into a multi-layer perceptrons (MLP) to predict 
the HxNy subtype. 

We comprehensively evaluate the PreIS pipeline from two distinct 
perspectives. Initially, we present several versions of the PreIS pipeline 
to assess the performance of its individual steps, including data 
augmentation and embedding processes. Notably, the task of classifying 
HxNy subtypes has not been exclusively defined based on the single 
chain of the HA protein, resulting in a lack of previous models available 
for direct comparison. To establish a benchmark, we implement the MC- 
NN approach [14] and train it on our data to evaluate the performance 
of our pipeline. Remarkably, the MC-NN model achieves an accuracy of 
89.6% on the test data, whereas our pipeline excels with an accuracy of 
94.54%. Additionally, we scrutinize the model’s capability to handle 
unknown classes (subtypes absent in the dataset), underscoring the 
importance of identifying new virus classes to preempt the emergence of 
potentially harmful ones. 

2. Materials and methods 

In this section, our objective is to introduce PreIS as an innovative 
pipeline designed to predict HxNy subtypes using only HA protein se
quences. PreIS integrates a pre-trained transformer-based model with 
data augmentation techniques to enhance prediction accuracy. To pro
vide a comprehensive introduction to PreIS, we begin by presenting the 
IAV subtypes utilized in this study. Subsequently, we introduce the 
dataset and define the predicting IAV subtypes problem, followed by a 
detailed explanation of the pipeline’s steps. 

2.1. Influenza A virus subtype 

In this section, we introduce the significant IVA subtypes that form 
the basis of our study. Table 1 shows the importance of H1N1, H3N2, 
H5N1 and H7 subtypes extracted from Refs. [24–31]. 

2.2. Data 

In order to gather the essential data for our study, we obtained the 
HA protein sequences of human, avian, and swine influenza viruses from 
the NCBI database [13]. The inclusion of avian and swine hosts in our 
study is motivated by the fact that these viruses have the potential to 
facilitate the transmission of avian and human influenza, which can lead 
to severe pandemics [32]. The NCBI database currently houses an 
extensive collection of over 900,000 protein sequences associated with 
the influenza virus. The specific query details used to extract the data for 
our study are outlined in Table 2. 

The HA protein sequences are categorized into seven distinct classes 
as specified in Table 3. For each class, we randomly choose 1300 sam
ples, resulting in a combined total of 9100 sequences. For each class, we 
select approximately 60 protein sequences. Given our pipeline’s new 
data augmentation approach simulating antigenic drift, there’s no need 
for additional data for training, validation, and set aside the remaining 
8680 sequences exclusively for evaluating the performance of the 
model. 

2.3. Problem definition 

The problem of predicting IAV subtypes can be formulated as a 
computational problem in the following manner:  

• Input: An HA protein sequence, X = x1…xm, where m represents the 
length of the sequence and xi represents the ith amino acid in 
sequence X. 

Table 1 
The importance of IAV subtypes.  

IAV 
subtype 

The importance of IAV subtypes 

H1N1 The 1918 ′Spanish Flu,’ attributed to the H1N1 subtype, resulted in an 
estimated 50 million deaths [27,31]. 

H1N2 H1N2 features an HA component closely resembling that found in 
recent H1N1 strains and an NA component closely resembling that 
present in the presently circulating H3N2 strains. It seems this novel 
subtype emerged through the reassortment of these two human viruses 
[24–26]. 

H3N2 The 1968 ′Hong Kong Flu’ caused by the H3N2 subtype was relatively 
milder, yet it is estimated to have led to around 100,000 deaths. It’s 
worth mentioning that the H3N2 subtype of influenza A has been the 
predominant cause of human infections and illnesses over the last four 
decades [27]. 

H5N1 The H5N1 subtype of IAV is a worldwide issue with the potential to 
trigger a pandemic [28,30]. 

H7 Instances of H7 avian influenza outbreaks in poultry are required to be 
reported to regulatory agencies due to the fact that specific strains of 
H7 subtypes can result in significant mortality among specific avian 
species and domestic fowl [29,30].  
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• Output: The task is to predict the IAV subtype, which is categorized 
into seven distinct classes as outlined in Table 3. 

2.4. PreIS pipeline 

We have developed a pipeline called PreIS for accurately predicting 
IAV subtypes. Fig. 1 illustrates the PreIS pipeline, outlining each step of 
the process in detail. 

2.4.1. Supervised data augmentation 
In the first step of PreIS pipeline (Fig. 1), after loading a mini-batch 

comprising an HA sequence and its corresponding label, we initiate the 
supervised data augmentation (SDA) function. Our data augmentation 
approach leverages labeled data to guide the generation of augmented 
samples, ensuring that the augmented data aligns more closely with the 
actual distribution of protein sequences. Through supervised control 
over the generation of augmented data, our objective is to maintain the 
antigenic drift characteristics inherent in HA protein sequences. The 
SDA function employs both global and local manipulations on the data, 
ensuring the model’s output avoids the generation of incongruent 
samples (illustrated in Fig. 2). 

To augment sequence X fetched from the training set, we take the 
following steps:  

1. Selecting two random sequences Sg and Sl from the train set which 
have the same label as X.  

2. For the global manipulation, we select a substring from the sequence 
Sg to substitute in the sequence X as follows:  
a. m = min(

⃒
⃒Sg|, |X|);  

b. Selecting randomly a consecutive of indexes from α to α+
⌈

γgm
⌋

where γg is obtained 0.4 by trial and error and α is a random 

integer in range 1 to m −
⌈

γgm
⌋
;  

c. Substituting subsequence of X in the range of α to α+
⌈

γgm
⌋

with 
the corresponding subsequence of Sg. 

3. For local manipulation, we select a subsequence from the sequence 
Sl to substitute in the sequence X as follows:  
a. m = min(|Sl|, |X|);  
b. Selecting ⌊γlm⌋ random integers from 1 to m, where γl is obtained 

0.1 by trial and error;  
c. Substituting items of X in ⌊γlm⌋ randomly selected positions with 

corresponding items in Sl. 

Table 2 
The query used for data retrieval.  

Option Value 

Sequence Type Protein 
Type A 
Host Human, Avian, Swine 
Country All 
Collapse Identical Sequences ✓ 
Subtype H1N1, H1N2, H3, H5, H7  

Table 3 
IAV subtypes are defined into seven distinct 
classes.  

Class Subtype 

0 H1N1 
1 H1N2 
2 H3N2 
3 H3 — H3N2 
4 H5N1 
5 H5 — H5N1 
6 H7  

Fig. 1. The PreIS pipeline is comprised of two main parts: Train (part a) and Test (part b). In part a, an HA protein sequence X is loaded with its corresponding class 
label (y), and passed through the supervised data augmentation function to generate an augmented sequence X′. This augmented sequence is then processed through 
a pre-trained RITA model, producing a vector E(X′) that serves as input for the multi-layer perceptrons (MLP) to perform classification. In part b, an HA protein 
sequence X is loaded, encoded using the RITA model, and given as input to the MLP to predict its corresponding label. 
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2.4.2. RITA as an encoder 
Protein language models hold the potential to revolutionize our 

comprehension of proteins by unveiling the inherent rules that govern 
the language of proteins, relying solely on raw protein sequences [33]. A 
noteworthy recent development in protein representation learning is a 
transformer-based approach known as RITA [23]. In the second step of 
the PreIS pipeline, each augmented sequence generated by the SDA 
function undergoes processing through RITA [23]. As far as we are 
aware, RITA has not been utilized to tackle the IAV subtype problem, 
despite its established effectiveness in protein sequence classification. 
RITA employs a transformer decoder block architecture in an autore
gressive manner and has shown that the model’s capabilities on down
stream tasks are correlated with its size. In our experiments, we use RITA 
as a pre-trained model. For each protein sequence X = x₁...xm of length 
m, we utilize the hidden representation of the final layer of the RITA 
model to generate a token embedding vector for each amino acid xᵢ 
denoted as eᵢ = [eᵢ1, ..., eᵢ⁷⁶⁸]. 

To obtain a vector representation for sequence X in the same 
dimension as token embeddings, we employ global average pooling 
(GAP) as our combination strategy. It can be formulated as follows: 

EX =
[
E1

X , ..,E
768
X

]
,

where Ej
X = 1

m
∑m

i=1ej
i, j = 1…768. 

Using GAP offers several advantages over a flatten layer. It acts as a 
structural regularizer, reducing the risk of overfitting [34], and it han
dles diverse sequence lengths more effectively. 

2.4.3. Using multi-layer perceptrons as a classifier 
In the third step of PreIS pipeline, a two-layer multi-layer 

perceptrons (MLP) is utilized as a classifier for predicting the IAV sub
type (Fig. 3). Within our pipeline, the MLP serves as the classification 
head and is composed of a solitary hidden layer featuring 256 neurons. 
We opted for the Tanh function as the activation function. Our experi
ments have demonstrated that increasing the number of layers and 
neurons does not lead to significant changes in the results. 

To ensure the predicted probability distribution aligns closely with 
the actual distribution, a cross-entropy loss function is defined as fol
lows: 

L(y, p)= −
∑6

k=0
y(k)logp(k),

where k shows the label of IAV subtype, y represents the actual influenza 
subtype, and p displays the predicted influenza subtype. The goal is to 
minimize the difference between the predicted and actual distributions 
through the loss function. 

Finally, we optimize the performance of the pipeline and minimize 
the loss using the stochastic gradient descent (SGD) optimization algo
rithm. SGD is a widely used iterative optimization algorithm that aims to 
find the minimum of a given loss function. It achieves this by updating 
the model’s parameters in the direction of steepest descent, considering 
small batches of training examples at each iteration. This approach en
sures computational efficiency while effectively guiding the model to
wards better performance. 

3. Results 

In this section, we assess the performance of the PreIS pipeline in 
predicting IAV subtypes, taking into account the adjustment of 

Fig. 2. A simple visualization of how SDA function works. Sequence X is augmented by two random training samples, Sl and Sg , with the same label as X, for the local 
and global manipulations, respectively to obtain X′. 

Fig. 3. MLP network architecture as a classifier. Illustration of the 7-dimensional vector p representing the probability distribution of input EX (an embedding of 
protein sequence X) across the 7 classes. 
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hyperparameters. We investigate the impact of supervised data 
augmentation on the model’s performance, along with assessing the 
effectiveness of employing a fine-tuned transformer called RITA instead 
of a pre-trained one. 

3.1. Experimental setup 

In the PreIS pipeline, we employ a compact version of the RITA 
model, consisting of 85 million parameters, along with an MLP-based 
classification head. To optimize model performance, we set the 
dropout probability to 10% and determine that a learning rate of 4e-5, in 
conjunction with a scheduler, yields favourable outcomes. The batch 
size is configured to 8, utilizing 2 accumulation steps, and we select the 
best model based on its performance on the validation set for subsequent 
testing. During training, the PreIS pipeline undergoes 200 epochs while 
concurrently fine-tuning the RITA model. Alternatively, when RITA is 
solely utilized for feature extraction, the pipeline undergoes 400 epochs. 

Accuracy is a prevalent metric in machine learning used to assess the 
performance of a classification model. It measures the proportion of 
correct predictions made by the model out of the total number of pre
dictions. The accuracy score is the percentage of predictions that are 
correct. 

To comprehensively evaluate the performance of the classification 
model, we employ a confusion matrix. This table is utilized to compare 
the predicted labels with the actual labels, offering a detailed break
down of the model’s predictions for each class. By carefully analysing 
the confusion matrix, we can gain insights into the strengths and 
weaknesses of the model and identify areas for improvement. 

3.2. Using RITA as a pre-trained transformer 

In the following, two versions of the PreIS pipeline are introduced 
that utilize the pre-trained RITA to extract an embedding as a feature 
vector (FV) for each protein sequence:  

• FV-SDA: This version includes the SDA function for supervised data 
augmentation.  

• FV-NoSDA: This version relies solely on the real data without any 
data augmentation. 

According to Table 4, the FV-SDA model achieves an accuracy of 
90.70%. On the other hand, the FV-NoSDA model struggles with over
fitting, resulting in a significantly lower accuracy of 45.46%, despite 
achieving a train accuracy of approximately 98%. This disparity in 
performance emphasizes the significance of addressing data scarcity 
when utilizing static sequence embeddings. Without sufficient data and 
fine-tuning of the RITA model, overfitting is likely to occur. However, 
the inclusion of an augmentation strategy like SDA can effectively 
mitigate this issue. 

3.3. Using the fine-tuning RITA 

Here, two versions of PreIS pipeline are defined based on fine-tuning 
(FT) RITA along with the parameters of the MLP:  

• FT-SDA: This version includes fine-tuning the RITA leveraging the 
SDA method.  

• FT-NoSDA: This version fine tunes the RITA without utilizing SDA. 

According to Table 4, the FT-SDA model exhibits a 2.82% increase in 
accuracy compared to the FT-NoSDA model. To gain further insights into 
the performance of both models, we present the confusion matrices in 
Fig. 4, which provide a comprehensive overview of the classification 
results by illustrating the distribution of predicted labels against the true 
labels. As indicated in Table 4, the FT-SDA model achieves an accuracy 
of 94.54%, while the model trained without any data augmentation 
achieves an accuracy of 91.72%. This suggests that fine-tuning the RITA 
model as a pre-trained model can enhance the generalizability of the 
model compared to a feature-based training approach. Additionally, it is 
evident that the incorporation of the SDA method on protein sequences 
has a significant positive impact on the model’s performance within the 
fine-tuning approach. 

Table 4 
The accuracy of test set. FV stands for the feature vector, 
and FT refers to fine-tuning of RITA. We also compare 
different data augmentation methods: NoSDA (without 
supervised data augmentation), LSDA (local supervised 
data augmentation), GSDA (global supervised data 
augmentation), and UnSDA (unsupervised data 
augmentation).  

Versions of PreIS Accuracy (%) 

FV-NoSDA 45.46 
FV-SDA 90.70 
FT - NoSDA 91.72 
FT - SDA 94.54 
FT - UnSDA 90.05 
FT – LSDA 92.44 
FT – GSDA 93.19  

Fig. 4. Confusion matrices for FT-SDA (up) and FT-NoSDA (down). FT refers to 
the fine-tuning of RITA, SDA denotes the absence of supervised data augmen
tation, and NoSDA refers to the condition without any supervised data 
augmentation. 
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3.4. Comparing supervised and unsupervised data augmentation 

In this section, we demonstrate the effective performance of super
vised data augmentation in simulating antigenic drifts in HA protein. 
Based on supervised and unsupervised models for data augmentation 
three versions of PreIS pipeline are defined based on fine-tuning RITA:  

• FT-SDA: This version includes SDA function for supervised data 
augmentation.  

• FT-UnSDA: This version alternates SDA function to augment data 
based on unsupervised function. This function changes step 1 of SDA 
function where Sg and Sl are randomly selected from the training set 
without considering their labels.  

• FT-NoSDA: This version does not augment data. 

Table 4 shows that the FT-UnSDA pipeline exhibits a decrease in 
performance compared to the FT-NoSDA pipeline. This outcome em
phasizes the importance of supervision in the data augmentation pro
cess. This supervision actually simulates the antigenic drifts in the HA 
protein, while the unsupervised mode simulates the antigenic shifts. As 
demonstrated in the results, the lack of supervision in the augmentation 
process resulted in a performance of 90.05%, which is even lower than 
the model without augmentation. These findings highlight the effec
tiveness of preserving the distribution of the data through supervision in 
enhancing the generalizability of the model. 

Fig. 5 showcases the impact of data augmentation and presents the 
outcomes of applying Principal Component Analysis (PCA) to each 
vector EX, where X is derived from the test set. The results indicate that 
even when SDA is employed, the various influenza subtypes remain 
distinguishable. This observation suggests that the augmented data re
tains the distinctive features of each class, indicating that the data 
augmentation technique used is successful in preserving the unique 
characteristics of the different influenza subtypes. 

3.5. Local and global manipulation in data augmentation 

Based on local and global manipulation in SDA function for data 
augmentation three versions of PreIS pipeline are compared based on 
fine-tuning the RITA:  

• FT-SDA: This version includes SDA function for supervised data 
augmentation in local and global manipulation (γg = 0.4, γl = 0.1).  

• FT-LSDA: This version includes SDA that is solely based on the local 
manipulation (γg = 0, γl = 0.1).  

• FT-GSDA: This version includes SDA that is solely based on the global 
manipulation (γg = 0.4, γl = 0). 

The results indicate that the FT-SDA version, which combines both 
local and global data manipulation, achieves the highest level of success. 
This version achieves a classification accuracy of 94.54%. On the other 
hand, the FT-LSDA version, which only utilizes local data manipulation, 
achieves an accuracy of 92.44%. Similarly, the FT-GSDA version, which 
solely employs global augmentation, attains an accuracy of 93.19%. 

The superior performance of the FT-SDA version can be attributed to 
the fact that global and local augmentations attempt to replicate distinct 
aspects of protein sequence evolution. They mimic changes such as 
insertion and deletion, amino acid mutations, and antigenic drift. These 
factors contribute to their effectiveness in improving classification 
accuracy. 

4. Discussion 

In this section, we compare SDA part of the pipeline to the similar 
substitution (SS) method [35]. Since we have defined the problem of 
using HA to predict HxNy for the first time, there is no existing 
state-of-the-art model for direct comparison. As a result, we adapt the 

architecture of the most recent model designed for predicting Hx and Ny 
subtypes individually [14] to predict HxNy subtype. Then we compare 
its performance with our own pipeline. Finally, we examine a scenario 
where an unknown subtype is treated as a class, representing subtypes 
that are not included in the seven classes represented in the dataset. 

4.1. Comparing the amino acid composition of real and synthetic data 

In this section, the amino acid composition (AAC) of both synthetic 
and real data is examined. Fig. 6 presents density plots for eight amino 
acids, comparing the real data with data generated using two methods: 
the SDA function and SS method. We define three different versions of 
SDA function using combinations of local and global manipulation fac
tors. The SS method in the work of [35], called replacement dictionary, 
involves randomly substituting amino acids in a primary sequence with 
similar amino acids based on substitution rules. Each amino acid is 
independently replaced with a probability denoted as p. In their study, 
they found the best substitution as follows: [[A,V], [S,T], [F,Y], [K,R], 
[C,M], [D,E], [N,Q], [V,I]]. We have adopted the same mapping for our 
study. 

Fig. 6 displays the kernel density estimate (KDE) diagram of eight 

Fig. 5. The effectiveness of data augmentation in preserving the unique char
acteristics of each class can be observed through the extracted features shown in 
FT-SDA (up) and FT-NoSDA (down). The preserved features in the augmented 
data suggest that supervised data augmentation can help improve the quality 
and quantity of data for machine learning models. 
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Fig. 6. KDE plots for amino acid composition, real vs synthetic data. In the case of SDA, the first value represents γl, while the second value represents γg . On the 
other hand, SS refers to the similar substitution method, with a probability denoted as p. The x-axis shows the percentage of presences of the amino acid in each 
protein sequence, and the y-axis rep-resents the probability density function of sequences that include the amino acid. 
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amino acids: A, M, A, S, F, T, K, and D. A KDE plot is a way to visualize 
the distribution of data using a continuous probability density curve, 
similar to a histogram. According to Fig. 6, SDA allows to generate 
synthetic data based on data-driven assumptions, ensuring the preser
vation of the data distribution. On the other hand, the SS method gen
erates data that completely alters the distribution of the real data. 

4.2. Comparison with state-of-art 

As we have introduced the novel challenge of utilizing HA protein 
sequences for the prediction of HxNy subtypes, there are no established 
state-of-the-art models available for direct benchmarking. Conse
quently, we customize the architecture of the latest model, originally 
designed for predicting Hx and Ny subtypes separately [14], to address 
the specific task of HxNy subtype prediction. In this work, the re
searchers employed a transformer encoder block, which was followed by 
dense layers. Notably, they utilized a 3-g tokenization approach and 
incorporated sinusoidal positional encoding. According to our results, 
PreIS achieved an accuracy of 94.54%, while this model yielded 89.6%. 

4.3. Evaluation using unknown class 

The level of certainty expressed by a machine learning model in its 
predictions can be measured by a critical metric known as the confi
dence score. This metric plays a crucial role in evaluating the reliability 
and accuracy of the model’s performance, serving as an indicator of the 
confidence level the model holds in its predictions. This score is often 
employed to identify cases where the model may display uncertainty or 
require further refinement. Typically ranging between 0 and 1, the 
confidence score represents a probability value that reflects the likeli
hood of a prediction being correct. 

The main objective of prediction models is to facilitate the rapid and 
accurate diagnosis of unknown subtypes of the influenza A virus. These 
models play a critical role in enhancing influenza surveillance and 
controlling its transmission by enabling the precise identification of 
virus hosts and subtypes. 

In order to evaluate the effectiveness of the PreIS pipeline in iden
tifying new virus subtypes, a special class called ‘unknown’ is included 
during the testing phase of the model. This class consists of HA protein 
sequences whose subtypes are not included in the 7 classes used for 
training the model. Fig. 7 illustrates a graph displaying confidence score 
values, which provides insights into the model’s performance in recog
nizing the unknown class within the test data. It is observed that when 
the SDA approach is employed during model training, the model ex
hibits improved performance in identifying the unknown class accu
rately. Specifically, the model trained using the SDA approach exhibits 
relatively low confidence scores when faced with unknown data. 
Conversely, this is not observed in the model that does not employ SDA. 
In the model trained Using SDA, whenever it assigns a low confidence 
score to a specific sequence, it could potentially indicate the presence of 
a novel subtype and open up new possibilities for investigation. 

Fig. 8 shows the results of applying PCA to each EX vector where X is 

derived from the test set. It provides evidence of the effectiveness of the 
SDA approach in detecting unknown subtypes when extracting features 
using RITA, without the need for fine-tuning. Additionally, the data from 
the model that incorporates SDA demonstrates a reduction in overlap 
among different classes compared to the model that does not utilize SDA. 

5. Conclusion 

Previous computational methods for predicting IAV subtypes have 

Fig. 7. The confidence score values are presented in four different tests, including the presence and absence of data augmentation for two test groups: one with the 
unknown class and the other without the unknown class. 

Fig. 8. Extracted features in FT-SDA (up) and FT-NoSDA (down) demonstrate 
data augmentation’s effectiveness in preserving class-specific characteristics. To 
facilitate better visualization, unknown samples with 42 different labels were 
plotted using a single color. 
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focused on predicting either HA or NA subtypes, not both, as in the case 
of HxNy. This limitation arises from the fact that the NCBI often provides 
sequences for either the HA or NA proteins of a given strain, but not both 
simultaneously. However, in real-world scenarios, subtypes are defined 
based on variations in both HA and NA proteins. 

The primary challenge addressed in this study was predicting HxNy 
subtypes in IAV solely using HA protein sequences. Specifically, we 
investigated whether protein language models, defined on protein se
quences, could enable predictor models to distinguish between HxNy 
and HxNz subtypes based on the minor differences in HA protein se
quences. To address this challenge, we introduced a novel pipeline 
named PreIS. Our pipeline incorporates a new supervised data 
augmentation method designed to generate additional training data, 
thereby enhancing dataset diversity and quality during model training. 
Additionally, we utilized a pre-trained protein language model for 
protein sequence embedding, named RITA. Different versions of PreIS 
were defined to assess the impact of each step on IAV subtype prediction. 
The results indicate that supervised data augmentation and fine-tuning 
RITA significantly improve IAV subtype prediction. 

While our study demonstrated the effectiveness of supervised data 
augmentation in simulating antigenic drift in HA proteins, there is still 
room for enhancing the efficiency of each pipeline step for more accu
rate IAV subtype prediction. Considering the rapid advancements in 
deep learning within the healthcare domain [36–38] and recognizing 
the significance of overcoming data limitations through data augmen
tation, we propose exploring advanced deep learning approaches 
beyond the current MLP step for IAV classification. 
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