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We present a novel vector quantization (VQ) module for the two state-of-the-art long-range simultaneous localization and mapping
(SLAM) algorithms. Te VQ task in SLAM is generally performed using unsupervised methods. We provide an alternative approach
trough embedding a semisupervised hyperbolic graph convolutional neural network (HGCN) in the VQ step of the SLAM processes.
Te SLAM platforms we have utilized for this purpose are fast appearance-based mapping (FABMAP) and oriented fast and rotated
short (ORB), both of which rely on extracting the features of the captured images in their loop closure detection (LCD)module. For the
frst time, we have considered the space formed by these SURF features, robust image descriptors, as a graph, enabling us to apply an
HGCN in the VQ section which results in an improved LCD performance.TeHGCN vector quantizes the SURF feature space, leading
to a bag-of-word (BoW) representation construction of the images.Tis representation is subsequently used to determine LCD accuracy
and recall. Our approaches in this study are referred to as HGCN-FABMAP and HGCN-ORB.Te main advantage of using HGCN in
the LCD section is that it scales linearly when the features are accumulated.Te benchmarking experiments show the superiority of our
methods in terms of both trajectory generation accuracy in small-scale paths and LCD accuracy and recall for large-scale problems.

1. Introduction

Autonomous robots are increasingly utilized in various
felds to assist humans with complex tasks. Regardless of the
domain, it is crucial for robots to be able to operate safely
and robustly in dynamic and unfamiliar environments [1].
Te emergence of autonomous robotics along with the in-
tegration into the principles of industry has become
a prevalent topic, primarily due to technological advance-
ments [2]. Autonomous robots and vehicles that possess the
ability to navigate complex environments over prolonged
time intervals are desirable in numerous applications.

Accurate localization is crucial in autonomous robots, as
it is necessary for a robot to navigate precisely and reach its
designated goal locations [3]. In many situations, robots have
no prior knowledge of the environment and no global

positioning system (GPS) is available. Although GPS provides
acceptable localization accuracy, in various situations, such as
indoor places, tunnels, and even urban areas where buildings
obscure GPS signals, it may fail to provide proper localization,
causing inconsistence performance of robots. Visual simul-
taneous localization and mapping (vSLAM) provides an al-
ternative approach to address the navigation challenges in
unknown areas with no accessible GPS. vSLAM enables
autonomous vehicles to construct maps and navigate properly
using only visual sensors like cameras. In vSLAM, place
recognition is defned by the loop closure detection (LCD)
problem, which refers to the process of identifying a location
where the robot or the device has previously visited a loop.

Trajectory generation and LCD are vital for preserving
localization accuracy, and they constitute the core part of
every SLAM process. While many solutions to the SLAM
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problem have been proposed, several challenges like loop
closure detection in a long range remain to be addressed.
Approaches like FABMAP had great success in several large-
scale experiments, including the 1000 km trajectory plan-
ning in England [1]. However, this method sufers from low
LCD recall.

In this research, we provide a solution for vector quan-
tization (VQ) by envisioning feature space representation in
another way. First, the extracted SURF features from images
are encoded as a graph, which enables us to apply a graph
convolutional neural network (GCN) for feature classifca-
tion. Second, we introduce a new semisupervised node
prediction algorithm that replaces the custom unsupervised
clustering algorithm as a part of VQ. Accuracy and recall of
the LCD are enhanced signifcantly as a consequence of
employing the new VQ step in the FABMAP2 algorithm.

Tough not proven, we conjecture that large-scale
SLAM performance degradation in FABMAP2 is caused
by incorrect clustering on the SURF feature space. Te
intuition behind this assumption is that features are vi-
sualized as a tree with numerous potential cycles, and as the
images accumulate, the number of features grows expo-
nentially and becomes intertwined. Hence, Euclidean
embedding may not be suitable for such complex graph
structures. Te inadequacy of Euclidean spaces stems from
the fact that they cannot represent the distances between
the knotted features properly. Tus, clustering algorithms
like Kmeans, Kmeans++, and partition around medoids
(PAM) which employ pairwise Euclidean distances be-
tween data points fail to vector quantize the space properly.
Hence, we propose using a hyperbolic embedding that is
suitable for our intricate hierarchically structured graph
feature data. Next, the VQ module in the FABMAP2 al-
gorithm that uses BoW representation of images is replaced
with a hyperbolic-based vector quantization module. Te
computational complexity of BoW-based SLAM is not
signifcantly higher than that of other methods, and it is
feasible to use this technique as a standard method in the
long-range SLAM algorithm’s LCD section. Te main
disadvantage of BoW-based loop closure detection on
large-scale problems is the increment in vocabulary size for
the maps that are built from a large number of images.
Accordingly, the VQ process, which involves matching
thousands of features against each other, becomes ex-
pensive compared to small-scale SLAM. Moreover, there is
also an associated low recall due to perceptual aliasing.

In our approach, we rebuild the vocabulary and replace
the BoW construction block (normally produced from
unsupervised algorithms) with a semisupervised approach
called HGCN [4]. We integrate this model in two SLAM
algorithms, ORB-SLAM and FABMAP2, to solve the LCD
problem. Our benchmark results show that the new FAB-
MAP algorithm (which we call HGCN-FABMAP) out-
performs the original FABAMAP2.

Te paper is organized as follows: Section 2 contains
a review of some of the current BoW-based LCDs in the
SLAMmethod literature. In Section 3, a concise background
on FABMAP2, ORB-SLAM, and HGCN is presented.
Furthermore, a comprehensive study of our novel

methodologies is presented in this section. Section 4 con-
tains experiments and results. Finally, Section 5 contains the
future direction of our research.

2. Related Works

In this section, we briefy review the BoW-based LCD de-
tection methods, but we avoid deeply delving into them so as
not to get distracted from presenting our main study. We
have prepared a nutshell and a brief background of our main
methods in the next section.

To the best of our knowledge, no supervised or semi-
supervised methods currently address vector quantization
in SLAM.

In [5, 6], the authors proposed a stochastic graph nearest
neighbor (SGNN) search to accelerate BoW image retrieval.
SGNN starts at a random node and uses a greedy approach
to traverse the graph structure. Te computational cost of
fnding an approximate nearest neighbor for a random query
node Q in SGNN is bounded by min nd, 2n1/dd2􏼈 􏼉, where n is
the number of points and d is the dimension of the hy-
percube (volume 1) from which the points are randomly
selected. Tis technique is highly efective; nevertheless, it
imposes strict restrictions on the distance between each
point and its closest neighbor.

To overcome regular BoW limitations such as perceptual
aliasing, Kejriwal, Kumar, and Shibata proposed an online
method to construct a bag-of-word pair (BoWP) approach
which uses spatial co-occurrence of words [7].

Han et al. in [8] proposed an incremental method for
learning and updating binary vocabulary which is invariant
to robot pose, and it is suitable for loop closure detection as it
utilizes a simplifed likelihood function tailored to this
objective. Te generation process of binary vocabulary is
based on tracking features across consecutive images.

To mention other methods, Garcia-Fidalgo et al. present
iBoW-LCD, a novel online-like appearance-based LCD
method that employs an incremental BoW schema on
feature descriptors, eliminating the necessity for a pre-
determined training vocabulary [9]. iBoW-LCD makes use
of an efcient mechanism to group images similar in time
complexity and associated with binary feature words [9].

Maxime Ferrera [10] proposes OV2, as another online
visual SLAM algorithm that handles the SLAM tasks con-
currently using a multithreaded system. Lucas–Kanade op-
tical fow has been employed to track and provide camera
pose estimations. To provide continuous localization through
3D map population and drift minimization in a single local
map-tracking step, OV2 makes use of iBoW-LCD [9] for loop
closing.

3. Methods

3.1. Backgrounds

3.1.1. FABMAP2. In this section, we try to present the
previous works in which our main methods are based on.

In [11], two versions of the FABMAP algorithm are
introduced that make use of a probabilistic framework for
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environments with distinct locations. Te LCDmodule of both
versions uses a BoW representation, and at time k, the map is
built up using locations Lk � L1, . . . , Lnk

􏽮 􏽯. Here, each Li is
the set p(ei � 1|Li), . . . ., p(e|]| � 1|Li)􏽮 􏽯, where eis corre-
spond to scene elements generated by the locations. In FAB-
MAP2, local scene observations, Zk, is the set z1, . . . , z|]|􏽮 􏽯,
where zi is a binary variable indicating the presence or absence
of the ith word in the vocabulary. For environments with more
than hundreds of thousands of locations in themap, an inverted
index technique needs to organize visual words, aiding FAB-
MAP2 in large dataset loop closure detection, and we avoid
using FABMAP1. Tis is because it needs the computation of
appearance likelihood (observation) factors 􏽑

(|υ|)
(q�2)p(zq ∣ zpq

,

Li), where zq is the children of zpq
in the Chow–Liu tree, and

this is intractable. Amodifcation in the parameterizedmodel of
each location makes the computation of p(zq ∣ zpq

, Li) �

􏽐seq
∈ 0,1{ }p(zq ∣ eq � seq

, zpq
)p(eq � seq

∣ Li). To illustratemore,
suppose that our map has only 4 locations, the FABMAP1
method takes diferent values for the term p(zq ∣ zpq

, Li) for
each location (this is an unrestricted model). For the restricted
model (FABMAP2), locations share the same value for the term
p(zq ∣ zpq

, Li) when q is not observed, as indicated in Table 1.

3.1.2. ORB-SLAM. On the line of our research, we make use
of ORB-SLAM to present its modifed version.

ORB-SLAM [12] is built on the primary ideas of Klein
and Murray’s PTAM [13]. In [12], instead of limiting the
vSLAM procedure to incremental mapping frame-by-frame
that results in a sparse map with high-quality features,
a solution with more dense features but lower quality is
proposed. Te PTAM algorithm has several drawbacks; for
example, it is only applicable in small-scale environments.
Further disadvantages of this algorithm include an in-
efcient loop closing method and the requirement for hu-
man input for map bootstrap. ORB-SLAM as a monocular
SLAM method has overcome the drawbacks of the PTAM’s
algorithm as discussed in the introduction section of [12].

Tis algorithm establishes initial correspondences by
extracting features from the current frame Fc and searches
for matches between these features and those in the refer-
ence frame Fr. Next, two parallel threads are initiated to
compute geometric models for both planar and nonplanar
scenes:

xc � Hcrxr,

xcFcrxr � 0.
(1)

Here, xc is the current frame, xr is the reference frame, and
Hcr and Fcr are homography and fundamental matrices. Next,
as part of a RANSAC scheme, the procedure for bothmodels is
made homogeneous by predefning the number of iterations
and the points to be used at each one.Tat is, 8 points are used
for the Fcr matrix and 4 points for the Hcr [14]. At each it-
eration, a score SM is computed for each model M:

SM � 􏽘
i

ρM d
2
cr x

i
c, x

i
r, M􏼐 􏼑􏼐 􏼑 + ρM d

2
rc x

i
c, x

i
r, M􏼐 􏼑􏼐 􏼑,

(2)

ρM d
2

􏼐 􏼑 �
Γ − d

2
, if d

2 <TM,

0, if d
2 ≥TM,

􏼨 (3)

where d2
cr and d2

rc in formula (2) are symmetric transfer
errors from one frame to another and TM in (3) is the outlier
rejection threshold. To ensure homogeneity in the process, Γ
equals TH which is a user-defned threshold. Tis results in
both models having the same score for the same d in their
inlier region. Fcr and Hcr are matrices with the highest score
retained. In steps three and four, a heuristic method de-
termines whether to use Hcr or Fcr. By employing Hcr, the
model gets initialized from the plane. In situations with high
parallax, the heuristic of utilizing Fcr is adopted:

RH �
SH

SH + SF

. (4)

If RH > 0.45 homography matrix is used and otherwise
the fundamental is selected.

3.1.3. HGCN. Our secondary aim is to investigate HGCNs
into the previously discussed SLAM methods.

In [15], the authors introduced graph convolutional
neural networks (GCNs), a variant type of convolutional
neural network, which directly operate on graphs. Tis
model scales linearly with the number of graph edges.
However, dealing with graphs with exponentially many
leaves might not respect the structures very well.

Representing data in spaces such as hyperbolic or
spherical has been growing due to their occurrence in real-
world scenarios. For example, [4, 16] extend the capabilities
of graph neural networks to better handle data with non-
Euclidean properties. HGCN [4] resolves difculties asso-
ciated with unsupervised methods including large distortion
in embedding real-world graphs. Here, it is shown how
HGCN works, and at the end of this section, two more
methods are further discussed.

In HGCN, information propagation consists of three
steps: message computation, aggregation, and update.

In the message computation step, neighboring nodes
exchange messages based on relationships between data
points:

∗ h
l,H
i � W

l ⊗ Kl−1x
l−1,H
i􏼐 􏼑⊕Kl−1bl � MSG x

l−1,H
i􏼐 􏼑. (5)

Te two operators ⊗ and ⊕, namely, linear (conventional
matrix multiplication) and Mobius addition, are formulated
for hyperbolic spaces as

W⊗ k
X

l,H
� expk

0 W logk
0 X

l,H
􏼐 􏼑􏼐 􏼑,

X
H ⊗ k

b � expk
XH exp P

k
o⟶XH (b)􏼐 􏼑.

(6)
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To aggregate neighbor messages for hidden represen-
tation computation, the data points need to be mapped to
a tangent space to the hyperbolic space. Next, central gravity
is calculated, and the points are mapped back to the next
hyperbolic layer:

∗y
l,H
i � AGGkl−1h

l,H
i . (7)

In update function formula (8), a nonlinearity is applied
and mapped back to a diferent curvature. Notably, the
inverse curvature of the layers l and l − 1 is represented as kl

and kl− 1. Te mapping between hyperbolic and Euclidean
tangent space is also performed:

x
l,H
i � σ⊗kl−1 ,k1y

(l,H)
i � Updatekl−1 ,kl y

l,H
i􏼐 􏼑, (8)

where

σ⊗kl−1 ,k1 X
H

􏼐 􏼑 � expkl

o σ logkl−1
o X

H
􏼐 􏼑􏼐 􏼑􏼐 􏼑. (9)

Te underlying principle of using hyperbolic spaces is
the existence of exponentially many points in Euclidean
spaces. Node features in Euclidean spaces are learned by
most GCNs [17]. However, it has been shown that hyper-
bolic geometry provides more ability to embed graphs with
scale-free or hierarchical structures compared with Eu-
clidean geometry [4, 17, 18]. HGCN [4] extends the graph
convolution on the hyperboloid manifold of the hyperbolic
spaces, and feature transformation is actually conducted in
tangent spaces [18]. Te hyperbolic graph operations, in-
cluding feature transformation and nonlinearity activation,
are derived from the Lorentz GCN (LGCN) framework to
ensure the transformed node features follow hyperbolic
geometry [18]. Our primary contribution in this work is to
present and substitute a new hyperbolic vector quantization
module in the FABMAP2 algorithm, which we will discuss
in the next section.

3.2. New Methods

3.2.1. HGCN-Vector Quantization. Vector quantization is
a procedure used in computer vision to assign image features
to their nearest corresponding cluster centroids. In our
approach, we frst classify the extracted SURF feature space
using a HGCN. Next, using the clustering centroids, we
calculate the quantized version of the vectors by

Q
(i)
k � x : x −x̂

i

k

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌⩽ x −x̂
j

k

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌; ∀j ∈ 1, ..., n{ }􏼚 􏼛. (10)

3.2.2. HGCN-FABMAP. Te main part of the LCD section
in the FABMAP2 process uses BoW representation for
Chow–Liu tree training. Furthermore, BoW representation
construction requires fnding clustering centroids (vocab-
ulary) of the feature data, which up to now has been carried
out using unsupervised approaches.

Here, we introduce a semisupervised approach with
HGCN for this step. Te reason for such selection is that
extracted SURF features from images form a tree with a large
number of interleaved leaves, which causes distortion. To
make the features more clusterable, we use HGCN to map
the features to a hyperboloid, hence reducing distortion and
increasing the LCD accuracy. One of the primary advantages
of using HGCN over traditional unsupervised methods is
that the number of extracted features scales linearly. Our
method, HGCN-FABMAP, is built upon FABMAP2.

In the initial version of FABMAP (FABMAP1; described
in the appendix), locations are not constrained, and the log-
likelihood of each location can take any value. However, as
presented in Table 1, in FABMAP2, various constraints are
applied to the likelihood values of places, see Section 3.1.1.
Te likelihood of locations where a visual word q has not
been seen before has a fxed value. Furthermore, the like-
lihoods can be incremented using one of the following values
for a given word and a particular location (see appendix):

Case1: Sq � 1, Spq
� 1􏼒 􏼓,

Case2: Sq � 1, Spq
� 0􏼒 􏼓,

Case3: Sq � 0, Spq
� 1􏼒 􏼓,

Case4: Sq � 0, Spq
� 0􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

As discussed in Section 3.1.1, zi ∈ Zk � z1, ..., z|υ|􏽮 􏽯

represents a noisy measurement of visual words q. States in
formula (13) are determined by the presence or the absence
of the visual word q and its parent pq. Because observations
are typically sparse, and since the inverted-index technique
is employed, Case4 in which both zq and zpq

are zero is the
most likely scenario for our observations. Tus, the default

Table 1: Exploring spatial models: unrestricted model with unique location values, FABMAP2’s log-likelihood consistency for unobserved
“q” values, and the normalized interpretation of FABMAP2.

L1 L2 L3 L4

a p(zq|zpq
, L1) p(zq|zpq

, L2) p(zq|zpq
, L3) p(zq|zpq

, L4)

b p(zq|zpq
, L1) p(zq|zpq

, L2)|0 p(zq|zpq
, L3)|0 p(zq|zpq

, L4)

c log(p(zq|zpq
, L1)/p(zq|zpq

, L)|0) 0 0 log(p(zq|zpq
, L4)/p(zq|zpq

, L)|0)

Part (a) depicts an unrestricted model where each location can take a specifc value. In part (b), the FABMAP2 model is shown in which log-likelihood of
locations where “q” values are not observed must take the same value. Part (c) shows the normalized version of part (b) [1].

4 International Journal of Intelligent Systems



likelihood for each location Li is computed using Case4, as
shown in Algorithm 1.

In this algorithm:

d
∗
1 �

((1 − CLtree(1, q)) × 0.61 ×(1 − CLtree(3, q)))

(CLtree(1, q) × 0.39 ×(1 − CLtree(3, q)) +(1 − CLtree(1, q)1, q) × 0.61 ×(1 − CLtree(3, q)))
, (12)

d1 � log d
∗
1( 􏼁. (13)

In (13), d1 is the initial likelihood for each location, and it
is set to a default value that assumes a null observation; i.e., q
has occurred neither in the observation nor in the obser-
vation’s parent. Tis value can be viewed as the sum of
default votes for each observed word at the location. It
should be noted that the default likelihood will vary for each
location. Tis frst algorithm is responsible for initializing
the locations to their default likelihood.

Te HGCN-FABMAP method, like the FABMAP2 al-
gorithm, returns a confusion matrix using which the LCD
accuracy and recall are calculated. In formula (12), q rep-
resents the index of the word in the vocabulary for each

image and ranges from 0 to |C|, and CLtree (i,q) represents
the value of the Chow–Liu tree at level i for the index q.
While processing new observations, we only need to adjust
the default likelihood of locations. Tis adjustment is rep-
resented in Algorithm 2. In the frst part of Algorithm 2, we
only evaluate the changes where zq � 1.

Weights will be updated according to the content of the
current observation using the terms d3 and d4. In the fnal
section of this algorithm, the likelihood is altered when the
word q is not observed and its parent in the Chow–Liu tree is
present:

d2num �
(CLtree(1, q) × 0.61 ×(1 − CLtree(2, q)))

((1 − CLtree(1, q)) × 0.39 × CLtree(2, q))
, (14)

d2den �
CLtree(1, q) × 0.61 × CLtree(2, q)

2
× 0.39􏼐 􏼑

([(1 − CLtree(1, q)) × 0.61 ×(1 − CLtree(2, q)) + CLtree(1, q) × 0.39 × CLtree(2, q)] ×(1 − 0.39 × CLtree(1, q)))
,

(15)

d2 � log
d2num

1 − d2den􏼐 􏼑
⎛⎝ ⎞⎠ − dq, (16)

d3den �
((CLtree(1, q)) ×(1 − CLtree(1, q))0.39 × CLtree(3, q))

((1 − CLtree(1, q)) × CLtree(1, q) ×(1 − CLtree(3, q)))
, (17)

d3num
�

((1 − CLtree(1, q)) × 0.39 × CLtree(3, q))

((1 − CLtree(1, q)) × 0.39 × CLtree(3, q) + CLtree(1, q) × 0.61 ×(1 − CLtree(3, q)) )
, (18)

d3 � log
d3num
d3den

􏼠 􏼡 − dq, (19)

d
∗
4 �

(CLtree(1, q) × 0.61)

(1 − 0.39 × CLtree(1, q))
, (20)

d4 � log d
∗
4( 􏼁 − dq, (21)

d3 and d4 in formulas (21) and (23) are used to calculate the
log-likelihood of the locations where word q was observed.
d2 in formula (18) is used to calculate the log-likelihood of
unobserved words that are children of observed parent
words in CLtree. Next, to update the log-likelihood of each

of these locations, the default vote Dq is subtracted and the
appropriate vote is added.

In equations (14), (16), (17), (23), and (22), CLtree refers
to the Chow–Liu tree created from the training vocabulary
using the BoW representation, which is obtained by applying
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HGCN on the image’s feature space. For more information
about the formulation, we refer the reader to the source code
in [9].

When applying HGCN, we need to calculate N-
connected nodes for each feature in the space. For this
process, we utilize the parallel Faiss algorithm described in
[19] to obtain the nearest connected nodes.

For the modifed FABMAP2 method, after extracting
features for both training and test data, the BoW repre-
sentation of images is calculated. As shown in Figure 1, the
set of all features is obtained for each image and vector
quantized on the cluster centroids of the features extracted
from all train/test images. Following that, TF-IDF weighting
is applied to the image’s BoW representation.Tis procedure
is repeated for each image, resulting in a BoW representation
of all images. Next, a Chow-Liu tree is trained using only the
training data, their cluster centroids, and training BoW data.
Using the obtained CLtree and BoW representation of image
i, we determine whether a new place is detected, or we have
encountered a loop closure. At the end of the algorithm,
a confusion matrix is outputted through similarity between
images; therefore, potential loop closures can be obtained.

FABMAP2 and its HGCN-extended version require no
repetitive paths in the training and testing datasets. Te two
datasets must also have similar contexts; otherwise, the al-
gorithm will not perform well. For all the algorithms tested
in this article, we have extracted the standard 128-d SURF
features from the dataset. Te feature matrix is then pro-
jected onto the PCA coordinates (with the number of

principal components set to 20), which is then inputted into
the Faiss algorithm [19] to construct the adjacency graph.
Te number of the closest node is set to 9, and this number is
obtained by trial and error and sufciently describes the
graph. Next, we feed the obtained data into a 2-layer hy-
perbolic graph convolutional neural network implemented
in PyTorch [4] to obtain cluster centroids of the images.
BoW representation is then obtained in the next step and
along with the centroids will be used in the HGCN-
FABMAP procedure.

Next, as shown in Figure 1, the sequence of images in the
test dataset is read one by one, and the new place likelihood
is calculated. Based on the data association rule, the algo-
rithm determines e to update and add the new location in the
map or to declare loop closure.

Te described procedure, HGCN-FABMAP, is depicted
in Figure 1, and it is implemented using the modifed C++
package provided by [9].

3.2.3. HGCN-ORB SLAM. HGCN-ORB is a SLAM algo-
rithm. We assume that oriented fAST and rotated brief
(ORB) features extracted from a sequence of images form
a graph or tree with a large number of leaves. ORB-HGCN
SLAM in the LCD section in the ofine phase uses a new
BoW representation of all images, which is created by ap-
plying an HGCN over the extracted features. In the online
phase, the BoW representation is incorporated into the LCD
section. Here, we replace the obtained LCD module using

(1) For q← 1 to #clusters do
(2) Locations← Inverted-Index [q]
(3) For Li in Locations do
(4) Log-Likelihood [Li] +� d1
(5) End for
(6) End for

ALGORITHM 1: Default log-likelihood.

(1) For zq ∈ Z where zq � 1 do
(2) Locations← Inverted-Index [q]
(3) For Li in Locations do
(4) If CLtree (0, 1)> 0 then
(5) Log-Likelihood [Li]+� d4 − d1
(6) else
(7) Log-Likelihood [Li]+� d3 − d1
(8) End if
(9) End for
(10) End for
(11) For zq ∈ Z where zq � 0 and zpq

� 1 do
(12) Locations← Inverted-Index [q]
(13) For Li in Locations do
(14) Log-Likelihood [Li]+� d2 − d1
(15) End for
(16) End for

ALGORITHM 2: Filling log-likelihood.
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hyperbolic GCN in the ORB-SLAM trajectory generation
process and compare the root mean squared error (RMSE)
of the plotted trajectory against the ground truth trajectory.
Here, the path is the surrounding area of a table which is
approximately a circle.

4. Experimental Results

We utilized both indoor and outdoor datasets to evaluate the
performance of our methods, HGCN-FABMAP, HGCN-
BoW, and HGCN-ORB. Our presented methods are
benchmarked against FABMAP, BoW, ORB, LSD-SLAM,
ORB-SLAM2, FOVIS, and methods described in references
[20, 21] and [22].

Performance evaluations were carried out on TUM se-
quence 11, St. Lucia (train/test), Newer College (short exper-
iment), New College, and Lip6indoor datasets. ORB-SLAM
was also applied to the TUM Freiburg-3 long ofce household
dataset. Te datasets used in this study are briefy reviewed in
the following section. Te ORB algorithm has only been tested
on the Frieburg-3 dataset.

4.1. Datasets Used for HGCN-FABMAP and HGCN-BoW.
Table 2 summarizes the information about the source,
number of images, and the environment for each dataset.
Sample images from each of the datasets in Table 2 are
depicted in Figure 2.

Figure 2 represents samples of images from each dataset.
Part (a) of this fgure represents part of TUM dataset
sequence-11, parts (b) and (c) represent part of the Oxford
university dataset, part (d) is the Lip6indoor dataset which is
a narrow corridor of a lab, and the last part is the Frieburg-3
dataset.

4.2. Loop Closure Detection Performance Metrics. For model
performance evaluation, we use the same metrics as in [13].
Te recall and accuracy of loop closure detection are defned
by

recall �
􏽐i􏽐j((ConfusionMatrix[i][j] > threshold)∧ (groundtruth[i][j] �� 1))

􏽐i􏽐j(ConfusionMatrix[i][j] �� 1> threshold)
, (22)

accuracy �
􏽐i􏽐j((ConfusionMatrix[i][j] > threshold)∧ (groundtruth[i][j] �� 1))

􏽐i􏽐j(groundtruth[i][j] �� 1)
. (23)

Te HGCN-FABMAP algorithm outputs a confusion
matrix in which rows and columns represent images, and
each entry (ith, jth) represents a number between zero and
one (more similar).

Te numerator in formulas (22) and (23) indicates true
positives, i.e., the number of elements in the confusion
matrix greater than a given threshold for which the corre-
sponding elements in the ground truth matrix are also ones.

Extracted Features
from images

dataset (Graph)

P

Read images in test
P Read Images one by one, and employ

HGCN to Vector Quantize image descriptor on vocabulary

BoW encoding

BoW Representation

No images

Output
Confusion matrix

High probability of
loop closure

No
ADD new Location

Vocabulary of features

Using the row i of the
BoW matrix, calculate

the new place likelihood.

Declare loop
closure.

Update the confusion matrix

Figure 1: Te overall HGCN-FABMAP procedure.
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Training and testing data in benchmarking Tables 3 and
4 are indicated in columns 1 and 2, respectively. Accuracy
and recall in each experiment are reported for HGCN-
FABMAP and FABMAP2 in Table 3.

Table 4 shows the same measurement for HGCN-BoW
and BoW methods. Te accuracy and recall of the algorithm
that performs the best are represented in bold. As can be seen,
our algorithm performs better than FABMAP2 and BoW in
all cases. Te frst row of Table 3 demonstrates that HGCN-
FABMAP outperforms the normal FABMAP2 algorithm for
the New College dataset, with St. Lucia (train) dataset serving
as our training data. Te second row of Table 3 displays the
results of comparing the two methods HGCN-FABMAP and
FABMAP2, with TUM sequence 11 as our training dataset
and Lip6indoor lab as our testing dataset. FABMAP2 and
HGCN-FABMAP perform similarly here, with the exception
of recall 81.5, where HGCN-FABMAP performs somewhat
better. Our conjecture behind this observation is that the

environment of TUM sequence 11 is not a perfect match for
the Lip6indoor dataset. In addition, CLtree was formed on
a very limited training set.Te third row in Table 3 shows that
FABMAP2 and HGCN-FABMAP perform equally well on
the Newer College dataset.

Te confusion matrices represented in Figure 3 have
a fuzzy nature (instead of binary) as is the case in FABMAP2.
Each element of the confusion matrices plotted in Figure 3 is
the dot product between the two images i and j weighted by
the TF-IDF representation. Dark regions represent higher
similarity or potential loop closures. Figures 3(b–d) depict
the confusion matrix produced by applying HGCN-BoW to
the Lip6indoor, Newer College, and St. Lucia datasets.

Table 4 represents the comparison between HGCN-BoW
and regular BoW algorithm. To determine the accuracy and
recall of loop closure detection, a ground truth confusion
matrix is required. Typically, a binary matrix that represents
the ground truth is used for this purpose, and it is only

Table 2: An overview of the datasets utilized in various studies, including HGCN-FABMAP, HGCN-BoW, HGCN-ORB College,
Lip6indoor, and Frieburg3.

Datasets
Number of
images Long range Dataset description Ref.

Train Test
Lip6indoor dataset 350 Images are taken from a lab environment with a narrow corridor [23]

TUM sequence-11 1500 Images are taken from a lab environment with diferent lighting conditions. Tese
data are our training dataset, where Lip6indoor is the test dataset [24]

New College 1073 ●

Tis dataset has been taken from the Oxford university campus, which includes
complex repetitive structures. Tis is a stereo dataset with left and right sequences.
We have used the left sequence containing images with 640× 480 resolution as our

training data for the Newer College dataset

[25]

Newer College 200 Tis is a large video with the same context of the New College dataset, and it
contains 3 loops. Te camera is experiencing cluttered movements [26]

St. Lucia suburbs 540 1000 ● Images are taken by a camera-equipped car. Te dataset has two parts: a training
dataset and a set of test images as test data [27]

Freiburg-3 2500 Images taken from the surrounding area of a table and it contains one loop [28]

(a) (b)

(c) (d)

(e)

Figure 2: Example images of the used datasets. (a) TUM sequence 11, (b) New College, (c) Newer College, (d) Lip6indoor, and (e) Frieburg-
3 datasets.
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Table 3: Comparing HGCN-FABMAP and FABMAP2 methods for LCD.

Train dataset Test dataset
HGCN-FABMAP FABMAP2

Acc (%) Rec (%) Acc (%) Rec (%)
St. Lucia New College 50.07 100 50.02 100
311417 160500 56.00 86.00 56.8 82.00

77.30 68.62 77.60 63.00
TUM sequence-11 Lip6indoor 50.30 100 50.34 100
392449 27189 54.90 90.50 54.90 90.50

59.55 81.50 52.59 81.20
St. Lucia St. Lucia 75.00 72.00 50.80 100
311417 235510 54.05 95.85 50.40 90.00

59.55 81.50
New College Newer College 90.20 80.85 71.00 80.30
160500 194000 97.40 72.34 79.00 72.34

99.00 67.75 80.02 67.55

Table 4: Comparing HGCN-BOW and BoW methods for LCD.

HGCN-BoW BoW
Acc (%) Rec (%) Acc (%) Rec (%)

St. Lucia New College 50.00 100 50.00 85.00
311417 160500 91.00 70.50
TUM sequence-11 Lip6indoor 50.03 100 34.00 100
392449 27189 54.48 90.00

60.00 81.00
St. Lucia St. Lucia 62.00 72.00 34 72.00
311417 235510 58.90 99.00
New College Newer College Ground Ground 44.00 100
160500 194000 Truth Truth
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Figure 3: Continued.
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necessary for the test dataset. Unfortunately, we do not have
a ground truth matrix for the Newer College (short ex-
periment) dataset (as shown in Table 4); therefore, we used
the HGCN-BoW algorithm to create a similar matrix and
regard it as our ground truth.

Table 5 shows the result of applying two state-of-the-art
diferent methods described in [29]. According to Table 3,
HGCN-FABMAP outperforms the long-range algorithm de-
scribed in reference [29] for the St. Lucia dataset; however, the
method described in reference is superior to our algorithm.
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Figure 3: Ground truth (left) and confusion (right) matrices are depicted for the datasets New College, Lip6indoor, Newer College, and
St. Lucia in (a–d), respectively.
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Finally, we compare the ORB-SLAM approach against
HGCN-ORB-SLAM. Although we do not outperform the
algorithm, the results are competitive. Te absolute RMSE
for keyframe trajectory (m) in ORB-SLAM is 0.054353, while
it is 0.1 in our technique. We modifed the MATLAB
package provided by Mathworks. Figure 4 depicts a com-
parison of these two methods.

In Figure 4, we observe a comparison between two al-
gorithms: ORB-SLAM and HGCN-ORB-SLAM. Although
our proposed algorithm does not perform better than the

ORB-SLAM algorithm, it can be said that these two algo-
rithms have a close competition with each other. Te result
of executing the algorithm is a trajectory that provides us
with the diference in path compared to the ground truth,
measured in meters.

Table 6 shows the results of the comparison between
HGCN-ORB-SLAM and several up-to-date and state-of-
the-art trajectory mapping algorithms. It can be observed
that our method is superior to FOVIS, LSD-SLAM, and the
method described in references [21, 29, 30].

Table 5: Comparing methods described in [29, 29] and for LCD.

Methods [29] [30]
Dataset Saint Lucia New College

Precision Recall Precision Precision
35% 62% 100% 35%
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Figure 4: Trajectory of Frieburg-3 dataset: (a) ground truth, (b) ORB-SLAM, and (c) HGCN-ORB before applying pose graph optimization.

Table 6: Comparing new methods against HGCN-ORB-SLAM.

Methods ORB-SLAM2 ORB-SLAM HGCN-ORB IBuild LSD-SLAM FOVIS
RMSE 0.010 0.05 0.10 0.30 0.38 0.51
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5. Conclusion and Future Works

In this work, we introduced extensions to current state-of-
the-art SLAM algorithms and compared them to FABMAP2,
ORB-SLAM, BoW, and several other state-of-the-art algo-
rithms.We showed that clustering in the vector quantization
component of the SLAM improves loop closure detection
accuracy and recall greatly. Our next goal is to make HGCN-
FABMAP work over longer distances. Tis may not be
possible with hyperbolic graph convolutional neural net-
works, because HGCNs need the whole graph available in
RAM at once, and as the number of images and data in-
creases, the task becomes intractable with common com-
puters and servers. We can, however, use semisupervised.

Latent Dirichlet allocation (LDA) is used to frst calculate
local clusters for each dataset and then merge the resulting
clusters to generate global clusters in the second phase.

Appendix

Review of FABMAP1

Te following is a brief tutorial on the FABMAP model
architecture, adapted from [1, 9].

Te FABMAP1 model builds a generative model for
a bag-of-words data based on the idea that words that co-
occur are typically from the same environment.

Tis system employs a bag-of-words representation of
the received data, which was chosen due to the reduction in
learning and inference complexity it provides.

Let Zk � z1, ..., z|]|􏽮 􏽯 denote a local scene observation at
time k, where zi is a binary variable indicating the presence
or absence of the ith word in the vocabulary and Zk rep-
resents the set of all observations up to time k.

At time k, the algorithm constructs a map from a set of
locationsLk � L1, ..., Lnk

􏽮 􏽯, each of which is associated with
an appearance model.

Te appearance model of a location is just a set of prob-
abilities of scene elements that exist at that location, i.e., Li �

p(ei� 1|Li), ...., p(e|]|� 1|Li)􏽮 􏽯 where every ei is a scene ele-
ment that is generated independently for that location. Te
elements eq and the feature zq are linked using a detectormodel
as follows:

D �
p zq� 1|eq � 0􏼐 􏼑, false positive probability,

p zq� 1|eq � 0􏼐 􏼑, false negative probability.

⎧⎪⎨

⎪⎩
(A.1)

Te purpose of introducing scene elements is frst to create
a natural framework for combining data from many sources
with various error formulations. Second, it allows us to split the
p(Z ∣ Li) distribution into two sections.Tefrst part is a simple
model made up of variables called eq. Te second and more

complicated part, which is built ofine and can be combined
with a simple model based on the assumption that conditional
dependencies between appearance words are independent of
location and how this is achieved, explains the localization and
mapping procedure through the use of Bayes flters.

Imagine the robot is in the middle of the path, taking
images, and we only have a partial map. When the robot
acquires new data, we calculate the likelihood of being in
each place, assuming we have all of the observations ac-
quired thus far.

Inference in FABMAP

Calculating probability p(Li ∣Z
k) for each place Li is for-

mulated as follows:

P Li ∣ Z
k

􏼐 􏼑 �
p Zk ∣ Li, Z

(k− 1)
􏼐 􏼑p Li ∣ Z

(k− 1)
􏼐 􏼑

p Zk ∣ Z
(k−1)

􏼐 􏼑
, (A.2)

in which p(Li ∣Z
k− 1) is the prior probability about the

location and p(Zk ∣ Li,Z
k− 1) is the observation likelihood,

and the denominator is the normalization term, taking
independence criteria between current and past.

Owing to the high order of the conditional dependency
between appearance words in calculating p(Zk ∣ Li), this
term is estimated using the naive Bayes formula:

p Zk ∣ Li( 􏼁 � 􏽙

|v|

q�1
P Zq ∣ Li􏼐 􏼑, (A.3)

p(zq ∣ Li) can be expanded as follows:

p zq ∣ Li􏼐 􏼑 � 􏽘
s∈ 0,1{ }

p zq ∣ eq � s􏼐 􏼑p eq � s ∣ Li􏼐 􏼑.[zwj]. (A.4)

Furthermore, assuming errors are independent of po-
sition in the world p(zq ∣ eq, Li) � p(zq ∣ eq), therefore,

p zq ∣ Li􏼐 􏼑 � 􏽘
s∈ 0,1{ }

p zq ∣ e � Li􏼐 􏼑p eq � s ∣ Li􏼐 􏼑. (A.5)

For the sake of tractability, we assume p(eq � Ssq
∣ zpq

,

Li) � p(eq � seq
∣ Li) which yields

p Zq ∣ Zpq
, Li􏼒 􏼓 � 􏽘

seq
∈ 0,1{ }

p Zq ∣ eq � seq
, zpq

􏼒 􏼓p eq � seq
∣ Li􏼒 􏼓.

(A.6)

To derive the probability that an observation came from
somewhere other than the map, we must compute
p(zk ∣ zk− 1), which translates the appearance likelihood into
a probability of loop closure. In order to calculate p(zk ∣ zk− 1),
our space must be partitioned into mapped and unmapped
parts:

p Z
k ∣ Z(k− 1)

􏼐 􏼑 � 􏽘

m∈Lk( )

p Z
k ∣ Lm􏼐 􏼑p Lm ∣ Z(k−1)􏼐 􏼑 + 􏽘

u∈Lk( )

p(􏽢Zk│L u )p(L u│Z ((k − 1) ) ).
(A.7)
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Unfortunately, the second term cannot be evaluated di-
rectly because it contains unknown locations; however, this
part can be approximated using mean-feld approximation:

p Zk ∣ Lavg􏼐 􏼑 � 􏽘

u∈Lk

p Lu ∣ Zk−1( 􏼁,
(A.8)

where 􏽐
u∈Lk p(Lu ∣ Zk−1) is the prior probability of being in

a new place and p(Zk ∣ Lavg) is the average place.
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