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A B S T R A C T

This work investigates the application of a Local Search (LS) enhanced Genetic Programming (GP) algorithm
to the control scheme’s design task. The combination of LS and GP aims to produce an interpretable control
law as similar as possible to the optimal control scheme reference. Inclusive Genetic Programming (IGP), a GP
heuristic capable of promoting and maintaining the population diversity, is chosen as the GP algorithm since
it proved successful on the considered task. IGP is enhanced with the Operators Gradient Descent (OPGD)
approach, which consists of embedding learnable parameters into the GP individuals. These parameters are
optimized during and after the evolutionary process. Moreover, the OPGD approach is combined with the
adjoint state method to evaluate the gradient of the objective function. The original OPGD was formulated by
relying on the backpropagation technique for the gradient’s evaluation, which is impractical in an optimization
problem involving a dynamical system because of scalability and numerical errors. On the other hand, the
adjoint method allows for overcoming this issue. Two experiments are formulated to test the proposed
approach, named Operator Gradient Descent - Inclusive Genetic Programming (OPGD-IGP): the design of
a Proportional–Derivative (PD) control law for a harmonic oscillator and the design of a Linear Quadratic
Regulator (LQR) control law for an inverted pendulum on a cart. OPGD-IGP proved successful in both
experiments, being capable of autonomously designing an interpretable control law similar to the optimal
ones, both in terms of shape and control gains.
1. Introduction

Genetic Programming (GP) [1] is a powerful algorithm to evolve
computer programs, represented as trees, by iteratively selecting, re-
combining, and mutating a population of candidate solutions. Thanks
to this symbolic representation, GP generates solutions that, differently
to the ones achieved with other artificial intelligence (AI) techniques,
may be interpreted (i.e., when the GP trees present a limited number
of nodes) by domain experts. Nevertheless, the search performed by
GP operators (crossover and mutation) is solely syntactic. Thus, there
is no explicit parameter optimization during the evolutionary process.
This can lead to evident drawbacks, as pointed out by Castelli et al.
[2]. For instance, let us consider the scenario where the evolutionary
search led to an individual with the following syntax 𝐾(𝑥) = 𝑥+ sin(𝑥),
while the optimal solution is 𝐾∗(𝑥) = 3.3𝑥 + 1.003 sin(0.0001𝑥). Since
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there is no explicit parameters optimization, the solution 𝐾(𝑥) might
be easily lost during the selection phase, leading to a very inefficient
process. Including a Local Search (LS) routine in traditional GP has
proven to be an effective method to overcome this limitation [2–4]. The
advantages of embedding a gradient-based approach as an LS method
in the evolutionary GP flow have emerged clearly in tasks such as
symbolic regression [5] and image classification [6].

The objective of this study is to demonstrate that this combination
can also play a critical role in control applications, where GP offers
a compelling option for generating comprehensible control laws [7,8],
thus providing a major benefit with respect to other Artificial Intelli-
gence (AI) alternatives, such as Neural Networks (NNs). Interpretability
is especially relevant in control applications, where knowledge of the
control equation can be used for evaluating systems’ reliability and
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behavior. For example, in linear systems, the knowledge of the control
law expression is used to build the closed-loop transfer function of
the whole system [9]. This is then used to perform stability analysis.
Moreover, in the context of AI applied to control systems, having an
interpretable control law helps increase the trust towards AI-based
control systems, making the connection between input and output
explicit [10]. The use of GP for control system generation has been
previously documented in the literature [11,12]. Yet, it remains rel-
atively infrequent, and to the best of the authors’ knowledge, this
is the first application of a combination of GP and gradient-descent-
based LS to the task of control system design. Specifically, the method
developed by Pietropolli et al. [5], named Operators Gradient Descent
(OPGD), has been used in this work, considering the promising results
reported in its previous application [5]. The idea underpinning OPGD
is simple and yet effective: learnable parameters are embedded in GP
programs, and the standard GP evolutionary approach is combined
with a gradient-based refinement of the individuals. In this study, the
method has been adequately modified to deal with control problems.
In the original OPGD, the backpropagation technique was employed to
evaluate the gradient of the fitness function w.r.t. the GP parameters.
The backpropagation is impractical to use in control problems since an
implicit dependency between the state and control variables appears
in the chain of derivatives. The implicit dependency is caused by
the absence of the analytic expression of the states, which results in
the impossibility of evaluating, symbolically, the partial derivatives
of the states w.r.t. the control variables. Automatic differentiation
could be used to avoid the symbolic evaluation of the aforementioned
partial derivative, but it would require performing the backpropagation
through the ODE solver, which leads to a high memory cost and intro-
duces additional numerical errors [13]. A different approach that would
avoid the backpropagation through the solver and that scales efficiently
to large problems is the adjoint state method [14] applied in this work.
To test the suitability of this OPGD variant, two control problems were
chosen: a harmonic oscillator controlled by a Proportional–Derivative
(PD) control law and an inverted pendulum on a cart controlled by
a Linear Quadratic Regulator (LQR) control law. Experimental results
confirm the validity of the proposed algorithm: the produced control
laws are well-performing in terms of fitness and control task, and the
integration of a local search strategy leads to a substantial improvement
in both the desired control structure and the associated parameters
compared with others GP-based approaches without any LS mechanism
and a feedforward NN.

This paper is structured as follows: Section 2 reviews previous
work on combining LS strategies in GP and GP applied to design a
control law. Section 3 describes the overall framework introduced in
this work, comprising a detailed description of the OPGD technique,
IGP algorithm, and adjoint state method, and how they are combined.
Subsequently, Section 4 describes the two control problems chosen to
test the ability of the GP-based algorithm, and Section 5 discusses the
results of the experimental campaign. Finally, Section 6 summarizes
the main contribution achieved in this study and provides directions
for future works.

2. Related works

This section reviews existing work related to the method developed
in this study. In particular, Section 2.1 outlines contributions concern-
ing the combination of GP and local search strategies and then presents
recent papers in which gradient-descend-based algorithms have been
coupled with the GP evolutionary process. Subsequently, Section 2.2
briefly discusses different approaches for the design of control laws,
highlighting the reason for using a GP-based approach in this paper.
2

2.1. GP with local search and gradient-based algorithms

A refinement process consists of embedding a LS strategy in the
evolutionary process. In particular, the additional LS operator considers
one or more individuals and searches for the local optima near them.
These techniques are a simple type of memetic algorithm [15], which
exploits the fact that Evolutionary Algorithms (EAs) can explore large
areas of the search space while local optimizers improve solutions
gradually and steadily. Their complementary strengths have inspired
a lot of novel research in recent years [3,4,16–18].

While several works linking EAs and LS can be found in the litera-
ture, the ones that focus on the combination of GP and LS constitute a
limited subset [16]. In Eskridge and Hougen [19], authors introduced
the LS directly on the GP crossover operator, named memetic crossover,
that allows individuals to imitate the observed success of others. Later,
in Wang et al. [20], authors proposed a new GP algorithm with local
search strategies, named Memetic Genetic Programming (MGP), for
dealing with classification problems. Another example can be found
in Muñoz et al. [3], where authors proposed a sequential GP memetic
structure with Lamarckian inheritance. In this case, two LS methods
have been combined: a greedy pruning algorithm and least squares
parameter estimation.

Focusing on the combination of GP and gradient-descent-based
algorithms, examples can be found in the literature [5,6,21,22]. Nev-
ertheless, existing contributions deal with a specific task or focus
on particular components of the evolutionary search. For instance,
in Topchy et al. [21], the authors complemented a genetic search
for tree-like programs at the population level with terminal values
optimization via gradient descent at the individual level. Experimental
results show that tuning random constants, besides improving fitness
results, requires minimal computational overhead. Zhang and Smart
[6] applied a gradient descent algorithm to the numeric parameter
terminals in each individual program for object classification problems.
Two methods (an online gradient descent scheme and an offline gra-
dient descent scheme) are developed and compared with the basic GP.
Experimental results demonstrated that introducing this kind of LS out-
performs standard GP in terms of classification accuracy and training
time. Another application dealing with constant values optimization
can be found in Graff et al. [23], where authors considered the problem
of time series forecasting, specifically wind speed time series.

The first example of the inclusion of weight parameters at the inter-
nal nodes level is described in the work of Smart and Zhang [24]. Here,
a parameter called the inclusion factor is assigned to each node, and a
gradient descent search is applied to the inclusion factors. This method
obtained promising results, but the experimental study only considered
classification tasks. Moreover, the GP system was evaluated using an
unusually narrow function set (only sum and multiplication), which is
an unrealistic configuration. Later, in Kommenda et al. [25], a gradient-
based non-linear least squares optimization algorithm, i.e., Levenberg
Marquardt, is used for adjusting constant values in symbolic expression
trees during their evolution. Additionally, artificial nodes are inserted
in the symbolic expression tree to account for the linear scaling terms.

In Trujillo et al. [17], a Lamarckian memetic GP incorporates LS
strategy to refine GP individuals. A simple parametrization for GP
trees, where the same functions share the same coefficients, is pro-
posed with different heuristic methods to determine which individ-
uals should be subject to the LS. More recently, in Harrison et al.
[26], authors investigate how gradient-based techniques can optimize
coefficients in symbolic regression tasks. Lastly, in Pietropolli et al.
[5], the authors proposed embedding learnable parameters in GP pro-
grams and combining the standard GP evolutionary approach with
a gradient-based refinement of the individuals employing the Adam
optimizer. Two different algorithms (that differ in how these param-
eters are shared in the expression operators) are proposed and sub-
sequently tested on real-world problems, demonstrating proficiency in

significantly outperforming plain GP.
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Due to its simplicity, this GP tree embedding can be easily inte-
grated into other GP approaches, as done in this work. Specifically, in
this study, this LS strategy has been applied to a variant of GP, namely
the IGP developed by Marchetti and Minisci [27]. IGP was specifically
developed for control problems, where it is used to design a control
law. Its peculiarity is the capability to promote and maintain population
diversity during the evolutionary process. Moreover, it proved superior
to a standard GP algorithm, both on control law design and regression
tasks. A more detailed description of the IGP is provided in Section 3.2.

2.2. GP and other AI-based approaches for the control laws design

The use of GP to design a control law is not novel in the literature.
Koza himself [28] pointed out the capability of GP to automatically
design human competitive control laws. Other recent examples can
be found in the work of Verdier and Mazo, Jr. [29], where GP is
employed to automatically produce a control Lyapunov function and
the modes of a switched state feedback controller. In Łapa et al. [30],
the authors applied GP to evolve a Proportional Integral Derivative
(PID) based controller resistant to noise. To this end, they used a
Genetic Algorithm (GA) to optimize the parameters in a GP control
law. Another interesting example of GP based Symbolic Regression
(SR) used to design a controller is presented in the work of Danai
and La Cava [31], where the authors applied a variant of GP, the
Epigenetic Linear Genetic Programming (ELGP), to produce the models
describing the open-loop input for a desired plant output. This inverse
solution approach allows for avoiding the time-consuming closed-loop
controller evaluation by performing algebraic evaluations. Diverging
from the approaches highlighted in the aforementioned works, the
method described in this manuscript employs a gradient-based LS
technique relying on the adjoint state method for gradient computation.
This methodology generates optimal control laws both in terms of shape
and parameters. Moreover, this combination results in reduced compu-
tational times compared to the utilization of a GA for the LS phase.
Additionally, as described in the subsequent sections, this approach
is more suitable than backpropagation for implementing LS within a
control environment and represents a novelty in the literature.

Aside from GP, other AI techniques can be used to design control
laws, for example, NNs. Plenty of research exists on this topic. Some
early applications are described in the book of Irwin et al. [32], while
a recent survey of NN control systems applied to aerospace vehicles can
be found in [33]. A work closely related to this work is AI Pontryagin
of Böttcher et al. [34]. AI Pontryagin is an NN-based control framework
capable of designing optimal control laws. Nonetheless, the models
produced by this method are not interpretable. Because of the lack of
interpretability produced by NNs or other AI algorithms, a thorough
comparison of the proposed approach with these techniques was not
performed. In fact, the objective of this study is to produce interpretable
control laws that resemble the optimal control law of reference, both
in terms of shape and parameters.

Nonetheless, alternative AI-based approaches for designing inter-
pretable control laws are documented in the literature. Notably, Hein
et al. have undertaken a series of studies incorporating Reinforcement
Learning (RL) combined with GP [35–37]. In [35], they introduced the
Fuzzy GP Reinforcement Learning (FGPRL) algorithm, utilizing GP to
generate Fuzzy Logic (FL) control policies within an RL framework,
while [36] explores the use of GP to directly learn algebraic con-
trol policies in an RL framework. Lastly, [37] presents a comparative
analysis of these approaches against traditional PID and LQR control
schemes, as well as other non-conventional methodologies.

Several differences emerge between the proposed work and the
approaches presented by Hein et al. Primarily, the learning framework
is different, as they evaluated the fitness of the individuals within an
RL context. To this end, they generated a database of transition tuples
and then used a NN to create a surrogate model of the environment.
3

They showed that GP can effectively learn state–action correlations
Fig. 1. Depiction of the plain and parametrized GP tree.

within this framework. Conversely, the proposed methodology employs
a quadratic objective function to evaluate the entire trajectory derived
from a GP-based control policy, simulating a trajectory using an avail-
able analytical model to directly assess the GP model’s performance.
While Hein et al.’s approach is well-suited to systems lacking analytical
models, their research acknowledges the limitations of directly apply-
ing GP to data, as evidenced in [36], where such application results in
diminished performance. Contrarily, the findings of this work indicate
that integrating the impact of the control policy on the generated
trajectory into fitness assessment enables GP to effectively learn a
control policy. Furthermore, the goal of this work is to develop control
policies that are optimal in both structure and parameters through
the application of gradient-based local search to refine the GP models
during and after the evolutionary phase. This aspect is only partially
addressed in the work of Hein et al. where the emphasis primarily
lies on creating structurally optimal models. However, in [35], a local
search is performed at the end of the evolutionary process to fine-tune
the parameters of the generated FL control policy. It can be argued
that performing LS only at the end of the evolutionary process may
yield suboptimal results. This is motivated by the observation that
poorly performing individuals may result from suboptimal parameter
settings. Hence, in this work, it is proposed that these parameters
be adjusted throughout the evolutionary process to facilitate more
effective exploitation.

3. Parametrized GP with adjoint state method

This Section contains a detailed explanation of the building blocks
forming the OPGD-IGP algorithm introduced in this work. The OPGD
and IGP algorithms are described along with a detailed discussion on
gradient evaluation techniques, justifying the choice of the adjoint
state method. This Section concludes with a schematic summary of the
overall framework.

3.1. Parametrized genetic programming

One of the main strengths of GP is the possibility of interpreting
the solutions that it generates. Nevertheless, the search performed by a
GP algorithm only relies on syntactic operations, such as crossover and
mutation, to improve the quality of the individuals. In fact, standard
GP does not adjust the (implicit) parameters of the given expression.
To overcome this problem, different possibilities for integrating a LS
algorithm in the GP routine have been proposed in recent years. In
this work, the expressive capability of GP individuals is enhanced by
adding learnable parameters on their operators, as proposed in [5].
The resulting GP individuals are interpretable as parametric functions,
which can be optimized. A canonical GP individual can be represented
as a tree where all the edge connections between nodes take a constant
value of 1. Yet, the possibility of modifying those values leads to a large
pectrum of possible solutions. An example follows.

Fig. 1 shows, on the left, a canonical GP individual encoding the
xpression in Eq. (1):

𝑥 − 2) + (𝑦 + 3) (1)
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On the right, the same GP individual is enriched with the addition of the
parameters 𝛾𝑖 over all the edge connections and encodes the expression
in Eq. (2):

𝛾1 ⋅ (𝛾3 ⋅ 𝑥 − 𝛾4 ⋅ 2) + 𝛾2 ⋅ (𝛾5 ⋅ 𝑦 + 𝛾6 ⋅ 3) (2)

Eq. (2) would correspond to Eq. (1) if all the weights 𝛾𝑖 were set to 1.
The Operators Gradient Descent (OPGD) [5] is used, which assigns

different set of weights to each instance of the GP operators, leading
o a total number of parameters equal to the number of nodes in
he tree. Moreover, to fully exploit the LS potential, a gradient-based
ptimization of the parameters is performed both during and after the
volutionary process. When the optimizer is used after each generation,
t is applied to the whole population of individuals. On the other hand,
hen applied at the end of the evolutionary process, it is used solely on

he best individual of the population obtained. This optimization can
e performed using different optimization algorithms, both local and
lobal. The algorithms employed in this work are Adam [38] (during
he evolutionary process) and the Broyden–Fletcher–Goldfarb–Shanno
BFGS) algorithm [39] at the end of it. Adam was chosen to achieve
aster optimizations during the evolutionary process, while BFGS is
referred at the end of the evolution to better improve the partial
esults obtained during the evolution. The overall evolutionary process
nhanced with the OPGD approach is summarized in Algorithm 1.

Algorithm 1 Pseudocode of evolutionary process with OPGD approach
1: Initialize population
2: Store best individual
3: for 𝑖 = 1 → 𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: for 𝑗 = 1 → 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 do
5: Insert learnable parameters in j-th individual
6: Perform optimization of j-th individual, using Adam with a

learning rate 𝛼 for 𝑛𝑜𝑝𝑡 steps.
7: Assign the highest fitness found at the previous step to the

j-th individual
8: Remove learnable parameters from j-th individual
9: end for
0: Perform crossover and mutation to generate offspring
1: Evaluate fitness of offspring repeating lines 4 to 9.
2: Apply selection to generate new population
3: Update best individual
4: end for
5: Insert learnable parameters in the best individual from all

generations
6: Optimize the best individual with BFGS

In the original OPGD approach, Adam was used in combination
ith the backpropagation technique to evaluate the gradient, and this

esulted in a fast optimization process. Nonetheless, as explained in
ection 3.3, a more suitable approach to evaluate the gradient can be
sed when dealing with control problems.

.2. Inclusive genetic programming

OPGD can be applied to any GP formulation. In this work, it is
pplied to the Inclusive Genetic Programming (IGP) introduced in [27].
he resulting method is referred to as OPGD-IGP. IGP was chosen be-
ause it was developed specifically for control applications and showed
uperior performance than standard GP thanks to its ability to promote
nd maintain the genotypic population’s diversity.

Greater genotypic diversity means that bigger individuals are not
iscarded by the bloat control operators but considered during the
rossover and mutation operations, and only the selection is performed
o favor smaller individuals. The genotypic material of these bigger
ndividuals may capture the nonlinearities of the studied dynamical
ystem better than smaller individuals, and it is thus an essential piece
f information. IGP applies a modified version of the 𝜇+𝜆 evolutionary
trategy, the Inclusive 𝜇 + 𝜆 summarized in Algorithm 2. The core
4

operations are the niches’ creation mechanism, the Inclusive Crossover
and Mutation, and the Inclusive Tournament. A detailed description
of each of these operations is given in [27]. Briefly, a newly created
population is subdivided into niches, which act as containers for indi-
viduals with a determined size. The maximum and minimum size that
a niche can contain is defined by linearly dividing the interval between
the maximum and minimum size of the individuals in the population
by 𝑛 + 1, where 𝑛 is the number of niches. The Inclusive Crossover
and Mutation consist of applying crossover and mutation by selecting
individuals from different niches, and the Inclusive Tournament is a
Double Tournament sequentially applied to each niche. Using these
operations, a wider distribution of individuals’ lengths is considered,
and genotypic information is not lost during the evolutionary process
due to bloat control operators.
Algorithm 2 Pseudocode of Inclusive 𝜇 + 𝜆 evolutionary strategy
1: Perform population initialization
2: Best individual all-time ← Best individual initial population
3: for 𝑖 = 1 → 𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: Generate 𝑛 niches from the current population
5: Perform Inclusive Crossover and Inclusive Mutation to generate

𝜆 offspring from 𝜇 parents
6: Apply Inclusive Tournament to select 𝜇 individuals from a

starting population of 𝜇 parents + 𝜆 offspring
7: if Fitness of Best individual in 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 > Fitness of Best

individual all-time then
8: Best individual all-time ← Best individual 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖
9: end if
0: end for

3.3. Gradient evaluation techniques

Gradient-based search algorithms perform the gradient evaluation
during the optimization process. The gradient can be evaluated with
different approaches, the most common of which is the finite differ-
ences approach, which gives a numerical approximation of the gradient
at a computational cost proportional to the problem’s dimensionality
(i.e., the number of optimization variables). For limiting the compu-
tational cost, other approaches are employed, such as the backprop-
agation algorithm [40] often used to optimize a NN’s parameters.
Backpropagation efficiently computes chain of partial derivatives of
the entire NN model [41], leading to a straightforward evaluation of
the gradient. However, as explained in the following, backpropagation
becomes impractical in control problems. The adjoint state method [14]
is chosen as an alternative to evaluate the gradient in the OPGD
algorithm applied to a control problem. An additional benefit of this
technique is that it can scale efficiently to problems with a high number
of optimization variables.

The rest of this Subsection contains a brief demonstration of why
the backpropagation approach is impractical in control problems and a
description of the adjoint state method.

3.3.1. Backpropagation
The backpropagation algorithm is an efficient approach to evalu-

ating derivatives by leveraging the chain rule. In classical regression
problems, it is possible to build the entire chain of derivatives to express
the gradient of an objective function 𝐽 with respect to the optimization
ariables 𝜸. As an example, a regression problem is considered, and GP

is used to create a regression model. The considered GP individual is a
function of the selected features and a set of parameters 𝜸, as described
in Section 3.1. The goal is to find the optimal set of parameters 𝜸 such
that an objective function 𝐽 is minimized. 𝐽 can be evaluated as the

ean Square Error (MSE) between the output of the GP model 𝑧̂ and
the desired output 𝑧, as 𝐽 = 1 ∑𝑛 (𝑧 − 𝑧 )2, where 𝑛 is the number of
𝑛 𝑖=1 𝑖 𝑖
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samples in the dataset. Using the chain rule, the gradient of 𝐽 w.r.t. 𝜸
an be computed as shown in Eq. (3).
𝜕𝐽
𝜕𝜸

= 𝜕𝐽
𝜕𝑧̂

𝜕𝑧̂
𝜕𝜸

(3)

Since 𝑧̂ (produced by the GP algorithm) is expressed in symbolic
orm, the partial derivatives in Eq. (3) can be evaluated analytically.
onetheless, when considering a control problem, i.e. a dynamical

ystem, an implicit dependency between the state variables and the
ontrol variables appears. As an example, a control problem is consid-
red where 𝐮 is the vector of control variables and 𝐲 is the vector of
tate variables. The dynamical system is defined by Eq. (4), where GP
s used to design the control law.

̇̂ = 𝐟 (𝐲̂(𝑡),𝐮(𝑡)) = 𝐟 (𝐲̂(𝑡),𝐮𝐺𝑃 (𝐲̂(𝑡), 𝜸)) (4)

The GP model is expressed as a function of the states 𝐲̂ and parame-
ers 𝜸. The goal is to track a desired trajectory 𝐲 by finding the optimal
et of parameters 𝜸 that minimizes the error between the obtained
rajectory 𝐲̂ and the desired trajectory 𝐲. By using the chain rule, Eq. (5)
s obtained.
𝜕𝐽
𝜕𝜸

= 𝜕𝐽
𝜕𝐲̂

𝜕𝐲̂
𝜕𝜸

= 𝜕𝐽
𝜕𝐲̂

𝜕𝐲̂
𝜕𝑢

𝜕𝑢
𝜕𝜸

(5)

In Eq. (5), the term 𝜕𝐲̂
𝜕𝑢 represents an implicit dependency since the

nalytical expression of the states is not known. Derivatives of implicit
unctions can be computed with two techniques: the implicit function
heorem, as detailed in the work of Bell et al. [42], or through numer-
cal methods. Concerning the former approach, Margossian et al. [43]
nalyzed the application of both the implicit function theorem and
he adjoint state method, used in this work, for computing derivatives
f implicit functions. They demonstrated that while both methods are
pplicable to any implicit function, the adjoint method typically offers
uperior efficiency in implicit function differentiation. In particular,
he implicit function theorem enables the calculation of directional
erivatives for implicit functions using Fréchet derivatives, whereas the
djoint method directly computes these derivatives without intermedi-
ry steps, leveraging the inherent structure of the system. Please refer
o [43] for the complete demonstration and discussion.

Regarding the use of numerical methods, the straightforward ap-
roach would be to use the finite differences technique, which results in
high computational cost. In fact, if the dynamical system is composed
f 𝑑 differential equations and 𝑝 optimizable parameters, the cost of ap-
lying the finite differences is (𝑑(𝑝+1)), i.e., 𝑝+1 Ordinary Differential

Equations (ODE) propagations at the cost of 𝑑 differential equations.
Another approach is the continuous local sensitivity analysis, which
scales proportionally with the number of optimization parameters and
leads to a cost of (𝑑𝑝) [44]. A last alternative is the adjoint state

ethod. This algorithm computes one forward pass of the ODE system
omposed of 𝑑 differential equations and one backward pass of the
djoint dynamical system composed of 𝑝 differential equations, one

for each optimization variable, leading to a computational cost of
(𝑑 + 𝑝). Moreover, the derivatives involved in the adjoint method can
be computed symbolically, leading to lower computational errors than
other numerical methods [45].

3.3.2. Adjoint state method
The adjoint state method has its roots in optimal control theory. It

llows the evaluation of the gradient by defining the Lagrangian of the
ost functional and the related adjoint variable. The steps to perform
he gradient evaluation with the adjoint state method are described
n the following. The derivation of the adjoint state method equations
resented in the remaining part of this section is taken from [46] and
dapted for the proposed work.

Consider the dynamical system in the form of Eq. (6), where 𝐲 are
5

he state variables, u the control variables, 𝜸 the optimization variables,
nd 𝐟 is a nonlinear mapping describing the initial value problem with
(𝑡 = 0) = 𝐲0 as initial conditions.

̇ = 𝐟 (𝐲(𝑡),𝐮(𝐲(𝑡), 𝜸)) (6)

The goal of the optimization process is to minimize a functional in
he form of Eq. (7). To do so, the gradient of 𝐽 with respect to 𝜸 is
ought, as illustrated in Eq. (8)

(𝐲, 𝜸) = ∫

𝑇

0
𝑔𝑑𝑡 + ℎ(𝑇 ) (7)

𝑑𝐽
𝑑𝜸

= ∫

𝑇

0

𝑑𝑔
𝑑𝜸

𝑑𝑡 + 𝑑ℎ
𝑑𝜸

(𝑇 ) = ∫

𝑇

0

( 𝜕𝑔
𝜕𝜸

+
𝜕𝑔
𝜕𝐲

𝜕𝐲
𝜕𝜸

)

𝑑𝑡 + 𝑑ℎ
𝑑𝜸

(𝑇 ) (8)

The term 𝜕𝐲
𝜕𝜸 in Eq. (8) cannot be computed analytically due to

he implicit relation between 𝐲 and 𝜸. To overcome this issue, the
ptimization can be framed as an equality-constrained minimization
roblem by introducing the Lagrangian of the function, as in Eq. (9),
ith the associate adjoint variable 𝝂.

(𝐲, 𝜸, 𝝂) = 𝐽 (𝐲, 𝜸) + ∫

𝑇

0
𝝂(𝑡)𝑇

(

𝐟 − 𝑑𝐲
𝑑𝑡

)

𝑑𝑡 (9)

The gradient of the Lagrangian is then computed as in Eq. (10). The
last term in the integral in Eq. (10) can be integrated by part resulting
in Eq. (11)

𝑑
𝑑𝜸

= ∫

𝑇

0

( 𝜕𝑔
𝜕𝜸

+𝝂(𝑡)𝑇 𝜕𝐟
𝜕𝜸

+
( 𝜕𝑔
𝜕𝐲

+𝝂(𝑡)𝑇 𝜕𝐟
𝜕𝐲

) 𝑑𝐲
𝑑𝜸

−𝝂(𝑡)𝑇 𝑑
𝑑𝑡

𝑑𝐲
𝑑𝜸

)

𝑑𝑡+ 𝑑ℎ
𝑑𝜸

(𝑇 )

(10)

𝑑
𝑑𝜸

=∫

𝑇

0

( 𝜕𝑔
𝜕𝜸

+ 𝝂(𝑡)𝑇 𝜕𝐟
𝜕𝜸

+
( 𝜕𝑔
𝜕𝐲

+ 𝝂(𝑡)𝑇 𝜕𝐟
𝜕𝐲

+
(𝑑𝝂
𝑑𝑡

)𝑇 ) 𝑑𝐲
𝑑𝜸

)

𝑑𝑡+

+ 𝝂(0)𝑇
𝑑𝐲
𝑑𝜸

(0) − 𝝂(𝑇 )𝑇
𝑑𝐲
𝑑𝜸

(𝑇 ) + 𝑑ℎ
𝑑𝜸

(𝑇 )
(11)

Since the optimization problem was rewritten as an equality-
onstrained optimization, the goal is to set the second term in Eq. (9) to
ero, therefore resulting in (𝐲, 𝜸, 𝝂) = 𝐽 (𝐲, 𝜸). According to this, it can
e stated that the gradient of the Lagrangian in Eq. (11) corresponds
o the gradient of the functional ∇𝐽𝛾 .

By setting some of the elements in Eq. (11) to zero, it can be used to
valuate the gradient of the functional. The resulting set of equations
s summarized in Eq. (12).

𝑑𝐽
𝑑𝜸

= ∫

𝑇

0

( 𝜕𝑔
𝜕𝜸

+ 𝝂(𝑡)𝑇 𝜕𝐟
𝜕𝜸

)

𝑑𝑡 (12a)

𝑑𝝂
𝑑𝑡

= −
( 𝜕𝐟
𝜕𝐲

)𝑇
𝝂(𝑡) −

( 𝜕𝑔
𝜕𝐲

)𝑇
(12b)

𝝂(𝑡 = 𝑇 ) = 𝑑ℎ
𝑑𝐲

(𝑇 ) (12c)

Employing the notation introduced in [46], and summarized in
q. (13), Eq. (12) can be simplified as Eq. (14)

= 𝜕𝐟
𝜕𝐲

,𝐁 = 𝜕𝐟
𝜕𝜸

, 𝜼 = 𝜕ℎ
𝜕𝐲

,𝝓 =
𝜕𝑔
𝜕𝐲

,𝝍 =
𝜕𝑔
𝜕𝜸

(13)

𝑑𝐽
𝑑𝜸

= ∫

𝑇

0

(

𝝍 + 𝝂(𝑡)𝑇𝐁
)

𝑑𝑡 (14a)

𝑑𝝂
𝑑𝑡

= −𝐀𝑇 𝝂(𝑡) − 𝝓𝑇 (14b)

(𝑡 = 𝑇 ) = 𝜼(𝑇 ) (14c)

The overall process of evaluating the gradient using the adjoint state
ethod can be summarized in three steps:

1. Forward propagation of the dynamic system in Eq. (4).
2. Backward propagation of the adjoint system in Eq. (14b) eval-

uating the initial conditions with Eq. (14c). This propagation is

performed from 𝑡 = 𝑇 to 𝑡 = 0.
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3. Evaluate the gradient with Eq. (14a) and the objective function
with Eq. (7)

The adjoint state method can be applied effortlessly to optimize
GP control law. The parametrized GP laws enter the dynamical

ystem as in Eq. (4), where 𝜸 are the parameters to be optimized or
he optimization variables in the optimization problem. The GP law
𝐺𝑃 can be built using only differentiable functions, resulting in a
ifferentiable equation that can be inserted explicitly in the equation
f motion. Subsequently, the partial derivatives in Eq. (13) can be
valuated symbolically.

From this point onward, the acronym OPGD will be used to refer
o the OPGD with the gradient evaluation performed using the adjoint
tate method.

.4. OPGD-IGP framework summary

Fig. 2 presents the frameworks of plain OPGD and OPGD-IGP. The
atter represents the novel approach introduced in this work. The nov-
lties introduced in this work are highlighted in Fig. 2 by the colored
oxes and are the following: (1) the GP algorithm to which OPGD is
pplied; (2) the target application or data source; (3) the approach used
o evaluate the gradient; (4) the optimizer used to optimize the best
ndividual found during the evolutionary process. The original OPGD
as used to enhance a standard GP algorithm, while in this work, it
as applied to IGP as highlighted by the GP algorithm box. The second
ifference lies in the data passed to OPGD. In OPGD-IGP, the data orig-
nated through the interaction with a dynamical system, while in the
riginal OGPD, a static dataset was used (Data source box). Because of
his different data source, a different approach to evaluate the gradient
s employed (Gradient evaluation approach box), as explained in the pre-
ious subsections. Lastly, to optimize the best individual found during
he evolutionary process, OPGD-IGP relies on the BFGS optimization
lgorithm, while in the standard OPGD, Adam was employed (Optimizer

box). In comparison to the broader academic literature, the OPGD-
IGP represents a novel approach to control law generation. Traditional
methods of deriving control laws through GP typically do not prioritize
the attainment of an optimal controller in terms of both its structure
and parameters. Conversely, the LS integrated within the OPGD-IGP
facilitates the achievement of such optimality. Additionally, in con-
ventional gradient-based LS methodologies, gradient computation often
relies on finite differences or backpropagation. The incorporation of the
adjoint state method within this framework represents an innovative
step forward from these conventional approaches, exhibiting superior
suitability for control applications, as demonstrated in this study.

4. Experimental study — test cases

Two control problems are chosen to test the ability of the OPGD-
IGP to design a control law automatically, both in terms of shape and
parameters: a harmonic oscillator controlled by a PD control scheme
and an inverted pendulum controlled by an LQR control scheme.

4.1. Harmonic oscillator

The formulation of the harmonic oscillator is the one defined in [46]
and described by the nonlinear ODE system in Eq. (15). The state
variables are the position 𝑥 and the speed 𝑣. Thus, 𝐲 = [𝑥, 𝑣]. 𝑢 is the
control variable.
̇ = 𝑣

𝑣̇ = − 𝑘
𝑚
𝑥 − 𝑐

𝑚
(𝑎𝑥2 + 𝑏)𝑣 + 𝑢

𝑚
(15)

The constant parameters used in Eq. (15) are reported in Table 1.
The initial conditions were set as 𝑥0 = 4 m, 𝑣0 = 0 m∕s, 𝑡0 = 0 s,

hile the desired final conditions are 𝑥𝑓 = 0 m, 𝑣𝑓 = 0 m∕s, 𝑢𝑓 = 0 N,
𝑡 = 10 s.
6

𝑓 i
Table 1
Harmonic oscillator parameters.
Parameter Value Description

m 1 kg Mass
k 2 kg∕s2 Spring stiffness
a 1 m−2 First damper coefficient
b −1 Second damper coefficient
c 0.3 kg/s Third damper coefficient

Table 2
Inverted pendulum parameters.
Parameter Value Description

M 0.1 kg Cart mass
m 0.02 kg Pendulum mass
L 0.1 m Pendulum length
g −9.8 m∕s−2 Gravitational acceleration

The control scheme designed for this test case is a PD control scheme
that receives as input the tracking errors on the position 𝑒𝑥 and speed
𝑒𝑣. The methodology used to obtain the proportional and derivative
gains is described in [46]. Eq. (16) illustrates the final control law used
as a reference.

𝑢 = −1.753𝑒𝑥 − 3.010𝑒𝑣 (16)

4.2. Inverted pendulum on a cart

The formulation of the inverted pendulum was taken from Brunton
and Kutz [47] and described by the nonlinear ODE system in Eq. (17).
The states variables are the position 𝑥, speed 𝑣, angular position 𝜃 and
angular speed 𝜔, therefore 𝐲 = [𝑥, 𝑣, 𝜃, 𝜔]. 𝑢 is the control variable.

𝑥̇ = 𝑣

𝑣̇ =
−𝑚2𝐿2 𝑔 cos(𝜃) sin(𝜃) + 𝑚𝐿2(𝑚𝐿𝜔2 sin(𝜃)) + 𝑚𝐿𝑢2

𝑚𝐿2(𝑀 + 𝑚(1 − cos(𝜃)2))
𝜃̇ = 𝜔

̇ =
(𝑚 +𝑀)𝑚𝑔𝐿 sin(𝜃) − 𝑚𝐿 cos(𝜃)(𝑚𝐿𝜔2 sin(𝜃)) − 𝑚𝐿 cos(𝜃)𝑢

𝑚𝐿2(𝑀 + 𝑚(1 − cos(𝜃)2))

(17)

The constant parameters used in Eq. (17) are described in Table 2.
he initial conditions were set as 𝑥0 = −1 m, 𝑣0 = 0 m∕s, 𝜃0 = 𝜋+0.1 rad
0 = 0 rad∕s, 𝑡0 = 0 s, and the desired final conditions are 𝑥𝑓 = 1 m,
𝑓 = 0 m∕s, 𝜃𝑓 = 𝜋 rad, 𝜔𝑓 = 0 rad∕s, 𝑢𝑓 = 0 N, 𝑡𝑓 = 10 s.

The same LQR design process described in [47] was used, with 𝐐
et as a 4 × 4 identity matrix and 𝑅 = 1.

The reference control law for the LQR scheme is displayed in
q. (18), where the input variables are the errors on the states.

= −𝐊𝐞 = 1𝑒𝑥 + 1.419𝑒𝑣 − 8.131𝑒𝜃 − 1.223𝑒𝜔 (18)

The parameters used to design the LQR controller were chosen
o have the LQR gains close to 1. This is necessary to have a good
utcome from the optimization process: because a local optimization
cheme was employed, the choice of the initial condition influences
he optimization process. Since no prior information is available on the
nitial value of the GP parameters, these were initialized as 1. Therefore,
he optimization process converges if the desired value is close to 1 as
ell. Different optimization approaches can be used to deal also with

arger gain values. Nonetheless, it is not the aim of this work to explore
ifferent optimization algorithms.

. Experimental results

To test the proposed methodology, Standard Genetic Programming
SGP), IGP, OPGD-IGP, and a feedforward NN were compared. The
omputational costs associated with these algorithms are summarized

n Table 3. Referring to the terminology employed in Section 3.3.1,
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Fig. 2. Diagrams of the OPGD-IGP (left) and OPGD (right) workflows.
1

Table 3
Computational costs associated with the analyzed
algorithms and test cases.
Algorithm Computational

Cost

SGP (𝑛𝑔𝑛𝑖𝑑)
IGP (𝑛𝑔𝑛𝑖𝑑)
OPGD-IGP ((𝑛𝑔𝑛𝑖𝑛𝑜𝑝𝑡 + 𝑛𝐵𝐹𝐺𝑆 )(𝑑 + 𝑝))
NN Loop (𝑛𝐵𝐹𝐺𝑆 (𝑑 + 𝑝))

𝑑 is the number of differential equations in the considered dynamical
system, while 𝑝 is the number of optimization variables that correspond
to the number of differential equations of the adjoint system. 𝑛𝑔 is the
number of generations, 𝑛𝑖 the number of individuals, 𝑛𝑜𝑝𝑡 the number
of intra-evolution optimization steps and 𝑛𝐵𝐹𝐺𝑆 the number of extra-
evolution optimization steps, which correspond to the training epochs
for the NN trained in the loop.

The computational cost represents the theoretical cost associated
with the complete execution of the algorithm. For the SGP and IGP, this
cost is in the order of (𝑛𝑔𝑛𝑖𝑑), meaning that one trajectory propagation
for a dynamical system comprising 𝑑 differential equations is performed
for each individual at each generation. Conversely, for the OPGD-IGP,
the computational cost is in the order of ((𝑛𝑔𝑛𝑖𝑛𝑜𝑝𝑡 + 𝑛𝐵𝐹𝐺𝑆 )(𝑑 + 𝑝)),
Here, 𝑛𝑜𝑝𝑡 executions of the adjoint state method, involving one forward
propagation of 𝑑 differential equations and one backward propagation
of 𝑝 differential equations, are performed for each individual at each
generation. Then, 𝑛𝐵𝐹𝐺𝑆 optimization steps are performed at the end of
the evolutionary process on the best-performing individual. Regarding
the NN trained in the loop, the adjoint state method is applied at
each training epoch, resulting in a computational cost in the order of
(𝑛𝐵𝐹𝐺𝑆 (𝑑 + 𝑝)).

The control laws’ parameters for the two reference control schemes
7

were obtained through an optimization process. Therefore, the goal of
the experimental campaign is to use the aforementioned algorithms to
design a well-performing control law by solving the same optimization
problem as those considered in the references. The similarity between
the obtained control laws and the reference ones, both in terms of shape
and parameters, is considered to assess the success of the experiments.

On the other hand, the NN does not produce interpretable models
and is only used as a reference to understand how OPGD-IGP compares
against a different and more established approach. The NN is trained
in two ways: (1) with a dataset produced using the optimal control
laws of reference — this experiment is meant to discover the smallest
configuration necessary to learn the desired model; (2) training the NN
in-the-loop as done with the OPGD-IGP. This last training method is
summarized in Algorithm 3.
Algorithm 3 Pseudocode of the training process with NN in-the-loop
1: Create NN model
2: Extract the NN weights and store them in the vector of optimization

variables p
3: Start optimization process
4: while Termination criteria is not met do
5: Insert the updated weights from p into the NN
6: Propagate the ODE system using the NN as controller
7: Evaluate the objective function according to the obtained

trajectory
8: Evaluate the gradient with the adjoint state method
9: Update the p vector with the optimizer routine
0: end while

A discussion of the outcome of each training method is provided at
the end of Sections 5.3 and 5.4 for the oscillator and pendulum test
cases respectively. A description of the dataset and training results of
the former approach is provided in Appendix A. For the SGP, IGP and
OPGD-IGP algorithms, 30 independent runs were performed to obtain
a statistical sample. The Adam optimizer in OPGD-IGP considered a
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Table 4
SGP, IGP and OPGD-IGP settings for both test cases.

Oscillator Pendulum

Population Size 300 individuals
Maximum Generations 300
Stopping criteria Reaching maximum number of generations
Crossover probability 0.2 → 0.65
Mutation probability 0.7 → 0.25
Evolutionary strategy Inclusive 𝜇 + 𝜆
𝜇 Population size
𝜆 Population Size × 1.2
Limit Height 10
Limit Size 15 30
Selection Mechanism Inclusive Tournament
Double Tournament fitness size 2
Double Tournament parsimony size 1.2
Tree creation mechanism Ramped half and half

Mutation mechanisms Uniform (50%), Shrink (5%),
Insertion (25%), Mutate Ephemeral (20%)

Crossover mechanism One point crossover
Primitives Set +,−,×
Fig. 3. Harmonic oscillator’s position 𝑥 trajectories obtained using SGP, IGP,
OPGD-IGP, and the NN models.

learning rate of 0.01 and 5 optimization steps, respectively 𝛼 and 𝑛𝑜𝑝𝑡
in Algorithm 1, during the evolutionary process. At the end of the
evolutionary process, the best individual is optimized using the BFGS
algorithm implemented in the Python library Scipy [48]. An objective
function precision threshold of 10−6 was used as termination criterion
for the BFGS algorithm. BFGS with these settings was used to train
the NN in-the-loop as well. The developed code will be available at
https://github.com/strath-ace/smart-ml.

5.1. GP settings

The common settings of OPGD-IGP, IGP, and SGP for the two test
cases are listed in Table 4. IGP and SGP use two ephemeral constants,
while OPGD-IGP does not consider ephemeral constants. This choice is
motivated by the fact that OPGD-IGP should be able to find the correct
parameters autonomously. On the other hand, ephemeral constants
are necessary to allow IGP and SGP to evolve parametric control
laws. Differently from IGP, SGP uses the standard 𝜇 + 𝜆 evolutionary
strategy and the Double Tournament selection process. Finally, the SGP
crossover and mutation probability are fixed respectively to 0.8 and
0.2. All GP algorithms receive as input the tracking errors on the states
and output the control force 𝑢.

5.2. Fitness function

For the two test cases, the fitness function was computed as 𝐹 = −𝐽 ,
where J is detailed in Eq. (7). This adjustment is made to ensure
consistency in terminology, given that fitness is a metric intended for
8

Fig. 4. Harmonic oscillator’s speed 𝑣 trajectories obtained using SGP, IGP, OPGD-IGP,
and the NN models.

maximization. Conversely, the selected objective function 𝐽 is designed
for a minimization problem, and the comparison with the reference
control schemes is based on the objective function value. Therefore,
the discussion presented in the following will refer to the objective
function rather than the fitness. The functions 𝑔 and ℎ in Eq. (7) are
set as quadratic functions, as described in Eqs. (19) and (20),

𝑔 = 1
2
(𝐞𝑇𝑦 𝐐𝑔𝐞𝑦 + 𝐞𝑇𝑢 𝐐𝑢𝐞𝑢) (19)

ℎ = 1
2
𝐞𝑇𝑦 𝐐ℎ𝐞𝑦 (20)

where 𝐞𝑦 is the vector of the tracking errors on the state variables,
and 𝐞𝑢 is the vector of the tracking errors on the control variables.
𝐐𝑔 ,𝐐𝑢,𝐐ℎ are diagonal matrices used to weight the different contri-
butions to the objective function. These functions are used to minimize
the tracking errors on the states and control variables. Using Eq. (7),
the integral of 𝑔 is evaluated, leading to the minimization of both the
states and controls tracking errors on the whole trajectory. ℎ is used to
evaluate the tracking error on the final position. In this work, also the
tracking for the complete trajectory is performed against the desired
final conditions. Therefore, each reference trajectory can be imagined
as a constant line at the desired value of the considered state or control
variable.

5.3. Harmonic oscillator

For this test case, the objective function’s parameters were set as
follows: 𝐞𝑦 = [𝑒𝑥, 𝑒𝑣], 𝐞𝑢 = 𝑒𝑢, 𝐐𝑔 = 𝑑𝑖𝑎𝑔([5, 5]),𝐐𝑢 = 1,𝐐ℎ =
𝑑𝑖𝑎𝑔([1, 1]). The tracking errors are evaluated as the difference between

https://github.com/strath-ace/smart-ml
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Fig. 5. Harmonic oscillator’s control action 𝑢 trajectories obtained using SGP, IGP,
OPGD-IGP, and the NN models.

the current state and control variables and the desired final values listed
in Section 4.1. Using the reference control law, a reference objective
function equal to 𝐽 = 56.152 was obtained by applying Eq. (7). The
objective function was evaluated by propagating the dynamical system
using the Runge–Kutta 4 scheme with an integration step of 0.05 s.

The obtained results are presented from Figs. 3 to 7 and in Ap-
pendix B. In the following Figures, NN Data refers to the NN trained on
the dataset, while NN Loop refers to the NN optimized in the control
loop. The smallest NN architecture capable of capturing the optimal
control law behavior is composed of one hidden layer with one neuron.
More details are given in Appendix A. The same configuration is trained
in-the-loop to compare the effect of a different training approach.

Figs. 3 and 4 depict the state trajectories, while Fig. 5 shows
the control force trajectories. In these plots, the reference trajectory,
obtained via the reference control law, is depicted as a dashed black
line. The pink lines represent the trajectories obtained with SGP, the
blue lines represent those obtained with IGP, the orange lines represent
those obtained with OPGD-IGP, while the brown and olive lines the
trajectories obtained with the NNs trained on the dataset and in-the-
loop, respectively. For SGP, IGP, and OPGD-IGP, the continuous lines
show the best of the 30 runs performed while the dashed lines represent
trajectories from all the other runs. The inset in each plot highlights
the distribution of the obtained trajectories. As can be seen in Figs. 3,
4 and 5, all the tested algorithms evolve well-performing control laws,
capable of generating a behavior close to the reference one. Among
the GP algorithms, it can be seen how SGP is the least consistent,
with many of the produced trajectories straying from the reference.
When considering IGP and OPGD-IGP, the magnified sections show that
IGP produces control laws that result in a wider range of behaviors,
while the trajectories produced with OPGD-IGP are all overlapped,
meaning that they always converge to the same mathematical model.
Regarding the NN models, the NN Data trajectory is not clearly visible
since it perfectly overlaps with the reference one, whereas the NN Loop
trajectory is close to the reference with a behavior similar to the best
of the OPGD-IGP trajectories.

Figs. 6 and 7 depict statistical analyses of the obtained objective
function values. Specifically, Fig. 6 shows the best individual’s objective
function evolution. It is possible to observe that OPGD-IGP can reach
the final solution in fewer generations (∼ 65 generations) with respect
to IGP (> 100 generations), while SGP results are worse than the other
two GP-based algorithms.

Fig. 7 displays the objective function values obtained in the sim-
ulations performed with the GP algorithms and both NN’s training
approaches. The objective function of the NN trained in-the-loop comes
naturally from the optimization process, while the objective function of
the NN trained on the data is obtained by propagating a trajectory with
9

Fig. 6. Objective function evolution of the SGP, IGP, and OPGD-IGP algorithms for the
harmonic oscillator case. The solid lines represent the mean, while the shaded areas
depict the error bands, i.e. standard deviations, for both algorithms.

Fig. 7. Objective function of the best-performing individual for the SGP, IGP,
OPGD-IGP, and NN models for the harmonic oscillator case. For the GP-based
algorithms, 30 simulations were considered.

the trained model and evaluating the objective function as described in
Section 5.2.

Looking at Fig. 7, it can be seen how OPGD-IGP always converges to
the same individual, while IGP tends to produce different control laws
with different performance and, as observed also from Figs. 3 to 5, SGP
is the least consistent performer among the GP algorithms. Moreover,
these boxplots show that IGP can achieve a lower objective value than
OPGD-IGP. This is likely due to the random mutation applied to the
ephemeral constants. This mechanism, absent in OPGD-IGP, allows for
a greater exploration of the search space in contrast to the exploitation
fostered by the use of LS. Regarding the NNs, it can be seen how the
two training approaches lead to slightly different results. In fact, the
objective function obtained with the NN trained on the data matches
almost exactly the reference objective function, while the one trained
in-the-loop shows an objective function worse than IGP and OPGD-
IGP. This suggests that a network with more parameters is required to
improve the results with the train in-the-loop approach.

The complete list of models produced by the GP algorithms can
be found in Appendix B. As one can observe, IGP and SGP produce
a variety of models, while OPGD-IGP always converges to the same
combination of control law shape and parameters, thus confirming the
ability of OPGD-IGP to autonomously produce the desired control law
for a dynamical system in terms of shape and parameters. Table 5
lists the reference control law and the most frequent OPGD-IGP control
law. The difference between the reference and the obtained optimal
parameters is caused by the different optimization algorithms used in
this work and in [46].

5.4. Inverted pendulum on a cart

For this test case, the objective function’s parameters were set as
follows: 𝐞 = [𝑒 , 𝑒 , 𝑒 , 𝑒 ], 𝐞 = 𝑒 , 𝐐 = 𝑑𝑖𝑎𝑔([5, 5, 5, 5]),𝐐 = 1,𝐐 =
𝑦 𝑥 𝑣 𝜃 𝜔 𝑢 𝑢 𝑔 𝑢 ℎ
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Table 5
Reference control law and most frequent model output by the OPGD-IGP for the
harmonic oscillator test case.

Control Law

Reference −1.753𝑒𝑥 − 3.010𝑒𝑣
OPGD-IGP −1.854𝑒𝑥 − 3.158𝑒𝑣

Fig. 8. Trajectories of the pendulum’s position 𝑥 obtained using SGP, IGP, OPGD-IGP
and the NN models.

𝑑𝑖𝑎𝑔([1, 1, 1, 1]). The tracking errors are evaluated between the current
and the desired final values reported in Section 4.2. The optimization
problem is structured in a slightly different way than the reference.
The same objective function is used, but different plant models are
employed. In particular, the reference control law was evaluated using
the linearized models necessary to perform the LQR design while SGP,
IGP,OPGD-IGP, and NNs were tested using the complete nonlinear
model in Eq. (17). This procedure allows for assessing the ability of the
tested algorithms to produce the desired control law when considering
a nonlinear model.

As for the previous test case, in Figs. 8 to 14 NN Data refers to the
NN trained on the dataset, while NN Loop refers to the NN optimized
in the control loop. Again, the smallest NN architecture capable of
capturing the optimal control law behavior consists of one hidden layer
with one neuron. More details are given in Appendix A. As for the
oscillator case, the same configuration is trained in-the-loop to assess
the effect of a different training approach.

Using the reference control law, an objective function value 𝐽 =
16.264 is obtained. The objective function is evaluated by applying
Eq. (7) after propagating the dynamical system using the Runge–Kutta
4 scheme with an integration step of 0.01 s. The integration step was
reduced to 0.005 s to perform the training of the NN in-the-loop (more
details at the end of this subsection.).

Figs. 8 to 12 depict the trajectories obtained by propagating the
dynamical system using the control laws evolved by the SGP, IGP,
and OPGD-IGP algorithms on the 30 simulations performed and by
the best-performing NN architectures (obtained using both training
approaches). As for the previous test case, the continuous lines rep-
resent the best solution, while the dim dashed lines depict the other
ones. The black dashed line represents the reference trajectory. These
results prove the capability of IGP, OPGD-IGP, and the NN trained
on data to produce well-performing control laws, while SGP and NN
trained in-the-loop show poorer performance. Once again, OPGD-IGP
performs more consistently than IGP, producing a set of overlapping
trajectories. On the other hand, IGP and SGP produce a broad range
of models, some of which do not exhibit good performance in terms
of trajectory. Regarding the NN results, the training performed on the
data led to a perfect overlap with the reference trajectory, while the
training in-the-loop failed to find a well-behaving model.

Figs. 13 and 14 show the statistical analysis of the objective function
values. As for the oscillator test case, Fig. 13 highlights the faster
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Fig. 9. Trajectories of the pendulum’s speed 𝑣 obtained using SGP, IGP, OPGD-IGP
and the NN models.

Fig. 10. Trajectories of the pendulum’s angular position 𝜃 obtained using SGP, IGP,
OPGD-IGP and the NN models.

Fig. 11. Trajectories of the pendulum’s angular speed 𝜔 obtained using SGP, IGP,
OPGD-IGP and the NN models.

convergence of OPGD-IGP compared to IGP. OPGD-IGP can reach the
minimum objective function in ∼ 40 generations while IGP requires
more than 100 generations. As for the previous test case, SGP performs
worse than the other two GP algorithms.

Fig. 14 displays the statistical distribution of the objective function
values obtained with the tested algorithms. The boxplots for the GP
algorithms are created considering the best objective function value
achieved in each of the 30 simulations. OPGD-IGP converges to similar
individuals and also reaches a lower objective function compared to
the IGP algorithm, while the SGP produced individuals with worse
performance than the other GP algorithms. Regarding the NN results,
the training from data led to an almost perfect match with the optimal
solution, while the training in-the-loop led to poor results. These results
are discussed in Section 5.5.
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Fig. 12. Trajectories of the pendulum’s control force 𝑢 obtained using SGP, IGP,
OPGD-IGP and the NN models.

Fig. 13. Objective function evolution of the SGP, IGP and OPGD-IGP algorithms for
the pendulum case. The solid lines represent the mean, while the shaded areas show
the error bands, i.e. standard deviations.

Fig. 14. Objective function of the best-performing individual for the SGP, IGP, OPGD-
IGP and NN models for the pendulum case. For the GP algorithms, 30 simulations were
considered.

The complete list of the models produced by the GP algorithms
is listed in Appendix B. These results show that OPGD-IGP can often
(21∕30 simulations) converge to individuals with the same shape and
similar parameters to the reference one. On the other hand, IGP pro-
duces only one model (simulation 5) with the same shape and similar
parameters as the reference. SGP is capable of finding more models
with the appropriate shape than IGP. However, the parameters are far
from their optimal values (e.g., simulations 7, 10, 11, 24, 27), and the
overall result is a set of models that perform worse than those found
by IGP.

Table 6 lists the reference control law and the most frequent model
obtained by the OPGD-IGP method.

The difference in the parameters’ values is caused by the differ-
ence in the plant’s models used to obtain them and the employed
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Table 6
Reference control law and most frequent model output by OPGD-IGP for the inverted
pendulum test case.

Control Law

Reference 1𝑒𝑥 + 1.419𝑒𝑣 − 8.131𝑒𝜃 − 1.223𝑒𝜔
OPGD-IGP 0.781𝑒𝑥 + 1.161𝑒𝑣 − 5.842𝑒𝜃 − 0.952𝑒𝜔

optimization schemes. The LQR gains are evaluated by solving the
continuous-time algebraic Riccati equation using the linearized plant
models. On the other hand, in OPGD-IGP, the parameters are optimized
with a numerical scheme, and the complete nonlinear models are
considered. This result is particularly interesting since it showcases how
OPGD-IGP can be applied to a fully nonlinear model and still produces
a control law close to the optimal one. This approach would allow
designing an optimal control law even for complex systems that cannot
be linearized or without resorting to linearization techniques that can
cause a loss of information.

5.5. Summary of findings

The conducted experiments yielded several observations. Firstly,
IGP consistently outperforms SGP, providing further evidence of its
suitability for the task of designing control schemes. In turn, IGP is
outperformed by OPGD-IGP, which incorporates the LS strategy. The
latter shows superior performance and statistical consistency compared
to the original IGP, consistently producing control laws that closely
match the reference ones in terms of shape, albeit with minor dif-
ferences in terms of parameters. These differences are due to the
different optimization algorithms employed (Fletcher-Reeves vs. Adam
and BFGS), as observed in the oscillator case, and differences in the
employed plant models (linear vs. nonlinear), as seen in the pendulum
case.

The ability to generate optimal control laws is only partially ob-
served in the other two GP algorithms. Regarding the oscillator case,
they can produce models with similar shapes but with randomly as-
signed parameters, resembling the reference model but lacking consis-
tency across multiple runs. In the pendulum case, they fail to achieve
the desired shape since the problem’s increased complexity forces the
GP algorithms to generate more complex models to compensate for
suboptimal parameters. Furthermore, the convergence speed benefits
from the embedded LS strategy, enabling OPGD-IGP to converge in
approximately half the number of generations required by IGP alone.

This comparison highlights the role of LS in producing optimal
control laws in terms of both shape and parameters. Furthermore,
it illustrates how LS can enhance the convergence properties of GP
algorithms.

Regarding the NN models, two different training methodologies
were tested for the NN: (1) training with a dataset generated from
the reference optimal control law and (2) training within the control
loop. The first approach primarily serves to determine the minimal
configuration capable of learning the reference optimal control law.
In fact, this approach cannot be directly compared with the OPGD-
IGP since the latter learns how to control a system by interacting with
it, while the NN trained on pre-existing data lacks knowledge of the
system to be controlled. Furthermore, if the control law is available
and used to produce the dataset, creating a regression model on those
data becomes superfluous.

The objective of OPGD-IGP is to generate an interpretable control
law, similar to the optimal one both in shapes and parameters, by solv-
ing the same optimization problem used to find the reference control
law. Consequently, this study aims to demonstrate that the OPGD-IGP
can autonomously find an interpretable and optimal control law solely
by interacting with the controlled system knowing only the high-level
goal, i.e., the objective function of the optimization problem, and with
no prior knowledge of the reference control law itself. That is why the
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NN is also trained in-the-loop, i.e., in the same training setting used
by OPGD-IGP. The smallest configuration found after training on the
data is considered since it proves that the NN has enough parameters
to learn the desired control law. Thus, it should also be able to do it
when trained in-the-loop. While this is true in the oscillator case, where
the two training approaches lead to similar results, it is not true in
the pendulum case. This discrepancy can be traced back to the greater
nonlinearity of the pendulum’s ODE system compared to the oscillator
one. This translates into a greater sensitivity to the control input and
makes the training in-the-loop a complex local optimization problem. It
was observed that the NN’s weight initialization plays a crucial role in
this. In fact, by varying the initialization, the results vary significantly.
Few initialization approaches were tested, but none led to satisfactory
results.

The training in-the-loop required lowering the integration step from
0.01 to 0.005 to stabilize the ODE propagation, which is another
proof of the greater instability of the pendulum’s ODE system and
its sensitivity to the control input. On the other hand, OPGD-IGP
can successfully find a good model because, during the evolutionary
process, it learns to discard those solutions that lead to a failure of the
ODE system’s propagation. The results of the NN trained in-the-loop
could improve by increasing its complexity and performing a thorough
study of several initialization techniques. However, this would result in
a non-interpretable model straying from the scope of this work.

6. Conclusions

This work applies OPGD-IGP, an IGP algorithm enhanced with
a gradient-based LS strategy proposed by some of the authors in a
previous work, for automatically designing a control law for a desired
plant.

OPGD was designed for dealing with regression problems and lever-
ages the backpropagation technique to evaluate the gradient of the
objective function w.r.t the GP parameters. The backpropagation is
impractical to use in control problems due to the implicit dependency
of the state variables on the control variables. To overcome this issue,
this study used the adjoint state method. The adjoint state method is
a powerful mathematical approach that allows the evaluation of the
gradient of an optimization problem involving a dynamical system with
minimal computational effort and numerical errors compared to other
techniques.

The proposed method was tested on two test cases: a harmonic
oscillator controlled by a PD control law and an inverted pendulum on
a cart controlled by a LQR control law. The objective of the experiments
was to test the OPGD-IGP’s capability to automatically design a control
law similar, in terms of parameters and shape, to the reference one
by leveraging the intra-evolution LS optimization. To understand the
importance of the LS applied to GP, the performances achieved by
OPGD-IGP have been compared with the ones achieved by IGP (a GP
variant that does not involve any LS step), a Standard GP (SGP) without
any LS step, and a feedforward NN. The NN was trained with two
different approaches. First, it was trained on the data produced using
the reference control laws. This training was performed to find the
minimal NN topology necessary to capture the optimal control law
behavior. Secondly, the NN with the minimal topology was trained
in-the-loop, i.e., by interacting with the dynamical system as done
by OPGD-IGP. The NN trained with this last approach is the one to
consider when comparing NN with OPGD-IGP.

IGP and OPGD-IGP proved capable of performing the desired task,
being able to produce a well-behaving control law for all the performed
simulations with a good resemblance of shape and parameters with
the reference control law. In particular, in the oscillator problem, IGP
evolved 20∕30 control laws with the same shape as the reference and
imilar parameters. On the other hand, OPGD-IGP achieved the desired
hape and parameters in 30∕30 simulations. Regarding the pendulum,
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IGP produced the desired shape and parameters only in 1∕30 simulation
while OPGD-IGP did it in 21∕30 simulations.

Different performances were observed for SGP and the NN trained
in-the-loop. Both performed well when applied to the oscillator test
case. SGP produced a control law with the desired shape on 28/30
simulations. However, despite obtaining more models than IGP with the
same shape as the reference, the resulting behaviors were more varied
and less consistent than those produced by IGP. The NN trained in-
the-loop was capable of controlling the system successfully, resulting in
an objective function comparable to the one achieved by the GP-based
algorithms. On the other hand, both SGP and NN trained in-the-loop
showed poor performance when applied to the pendulum test case.
This can be explained by the greater nonlinearity of the considered sys-
tem, resulting in a more complex optimization problem that appeared
extremely sensitive to the provided initial conditions.

These results confirm that GP is a valid alternative to classical
approaches for automatically designing a control law. In particular, the
use of LS combined with the GP evolutionary process led to inferring
the optimal shape and parameters of the desired control law, in contrast
with a GP approach not enhanced with an LS, where the control laws
are different from each other and also different from the ground-truth.
Moreover, comparing OPGD-IGP and SGP results on the oscillator case,
it can be seen how the SGP can achieve the desired shape almost as
often as the OGPD-IGP, although the parameters’ values are randomly
assigned. On the other hand, using an LS within the evolutionary
process allows GP to find both the optimal shape and parameters.
Finally, OPGD-IGP showed better performance than a feedforward NN.
This result can be explained by the ability of GP to evolve models
with different genotypes but with a phenotype close to the reference
control law. Thus, GP can compensate for the sensitivity to the initial
conditions in the pendulum test case by discarding those models that
lead to a failure of the dynamical system propagation.

The obtained results have important implications, such as allowing
control practitioners to automate the control law design process and
explore new control law formulations when dealing with complex non-
linear problems. In fact, the results show that an optimal control law
can be produced automatically also by considering the full nonlinear
system.

Future research will focus on four directions. First, it would be
interesting to apply OPGD-IGP online to create an Intelligent Control
(IC) system. This would fully exploit the LS phase to adapt to unfore-
seen disturbances. Second, OPGD-IGP could be applied to systems with
greater nonlinearities to automatically develop control schemes that
otherwise would require an extensive design effort from the engineers.
Third, the comparison between IGP and OPGD-IGP on the oscillator
case shed light on the benefits of promoting exploration during the
evolutionary process. It would be interesting to analyze the effects
of a randomized initialization of the learnable parameters during the
evolutionary process. This approach could lead to the exploitation of
different local minima through the LS and allow the discovery of novel
and better-performing control schemes. Lastly, a comparison with other
AI-based approaches to generate interpretable control models should be
performed. Control policies generated by GP in an RL framework have
exhibited promising performance in similar tasks. A comparison with
this approach could shed light on the advantages and limitations of
the two learning methods. Such a comparison may also provide deeper
insight into the poor performance of the NN trained in the loop, as
discussed in this work. This observed behavior contrasts with other
works in existing literature, where NNs trained in an RL framework
show good performance across diverse domains.
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ppendix A. Neural networks training from data: settings and
esults

This appendix contains the settings used to train the NNs from the
13

ata and a summary of the training outcome.
A.1. Dataset

10000 samples were generated using a Latin Hypercube Sampling
between [−2,2] for all the input features. These were then passed
to Eqs. (16) and (18) to generate the corresponding output data for
the oscillator and pendulum test cases. This way, one dataset for the
oscillator case and one dataset for the pendulum case were created. The
datasets were then split into train+validation (80%) and test datasets
(20%). The train+validation dataset was further split into train (80%)
and validation (20%) datasets.

A.2. Architecture and settings

For both test cases, a minimal architecture consisting of one hidden
layer with one neuron was used. This architecture proved sufficient
to learn the optimal control laws from the data, as reported in Ap-
pendix A.3. Linear activation functions were used for each layer since
the target model was a linear one. The weights were initialized with the
Glorot uniform initialization, and the biases were initialized as zero.
Considering all this, the NN model for the oscillator test case contains
five tunable parameters, while the one used in the pendulum case
contains seven parameters. The difference lies in the different number
of inputs.

A.3. Training

The training was performed with the Adam optimizer with a learn-
ing rate of 0.001 for 100 epochs. The MSE was used as a loss function.

The plots of the training and validation losses are depicted in Fig. A.15,
Fig. A.15. Train and validation losses for the oscillator and pendulum test cases.
Fig. A.16. Comparison of true and predicted output using the test dataset.
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while the prediction performances on the test data are depicted in
Fig. A.16.

The models obtained are listed below and can be compared with
Eqs. (16) and (17).

𝑢𝑁𝑁,𝐷𝑎𝑡𝑎𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 = −1.966(0.891𝑒𝑥 + 1.530𝑒𝑣 + 0.297) + 0.585 =

= −1.752𝑒𝑥 − 3.009𝑒𝑣 + 0.000262

𝑢𝑁𝑁,𝐷𝑎𝑡𝑎𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = − 3.133( − 0.319𝑒𝑥 − 0.452𝑒𝑣 + 2.594𝑒𝜃 + 0.390𝑒𝜔+

+ 0.201) + 0.631 =

= − 1.000𝑒𝑥 + 1.418𝑒𝑣 − 8.131𝑒𝜃 − 1.222𝑒𝜔 − 0.000419

ppendix B. Produced control laws

This appendix contains the models produced in all the simulations
erformed with SGP, IGP, and OPGD-IGP. The reported models are
btained by algebraically simplifying the models produced by the GP
lgorithms.

.1. Oscillator

.1.1. SGP

𝑢𝑆𝐺𝑃1 = −1.437𝑒𝑥 − 2.874𝑒𝑣
𝑢𝑆𝐺𝑃2 = −1.418𝑒𝑥 − 2.836𝑒𝑣
𝑢𝑆𝐺𝑃3 = −1.456𝑒𝑥 − 2.912𝑒𝑣
𝑢𝑆𝐺𝑃4 = −1.421𝑒𝑥 − 2.842𝑒𝑣 − 0.011

𝑢𝑆𝐺𝑃5 = −2.118𝑒𝑥 − 3.566𝑒𝑣
𝑢𝑆𝐺𝑃6 = −1.421𝑒𝑥 − 2.842𝑒𝑣
𝑢𝑆𝐺𝑃7 = −1.413𝑒𝑥 − 2.826𝑒𝑣
𝑢𝑆𝐺𝑃8 = −1.43𝑒𝑥 − 2.86𝑒𝑣
𝑢𝑆𝐺𝑃9 = −1.424𝑒𝑥 − 2.848𝑒𝑣

𝑆𝐺𝑃10 = −1.963𝑒𝑥 − 3.309𝑒𝑣

𝑆𝐺𝑃11 = −1.407𝑒𝑥 − 2.814𝑒𝑣

𝑆𝐺𝑃12 = −1.406𝑒𝑥 − 2.751𝑒𝑣

𝑆𝐺𝑃13 = −1.421𝑒𝑥 − 2.694𝑒𝑣

𝑆𝐺𝑃14 = −1.674𝑒𝑥 − 2.824𝑒𝑣

𝑆𝐺𝑃15 = −2𝑒𝑥 − 3.42𝑒𝑣

𝑆𝐺𝑃16 = −1.418𝑒𝑥 − 2.836𝑒𝑣

𝑆𝐺𝑃17 = −1.422𝑒𝑥 − 2.844𝑒𝑣

𝑆𝐺𝑃18 = −1.464𝑒𝑥 − 2.928𝑒𝑣

𝑆𝐺𝑃19 = −1.506𝑒𝑥 − 2.819𝑒𝑣

𝑆𝐺𝑃20 = −1.429𝑒𝑥 − 2.858𝑒𝑣

𝑆𝐺𝑃21 = −1.835𝑒𝑥 − 3.115𝑒𝑣

𝑆𝐺𝑃22 = −1.806𝑒𝑥 − 2.806𝑒𝑣

𝑆𝐺𝑃23 = −1.67𝑒𝑥 − 3.082𝑒𝑣

𝑆𝐺𝑃24 = −1.743𝑒𝑥 − 2.743𝑒𝑣

𝑆𝐺𝑃25 = −1.421𝑒𝑥 − 2.711𝑒𝑣

𝑆𝐺𝑃26 = −1.481𝑒𝑥 − 2.718𝑒𝑣

𝑆𝐺𝑃27 = −1.426𝑒𝑥 − 2.852𝑒𝑣

𝑆𝐺𝑃28 = −2.097𝑒𝑥 − 3.368𝑒𝑣

𝑆𝐺𝑃29 = −1.457𝑒𝑥 − 2.914𝑒𝑣 − 0.0393

= −1.419𝑒 − 2.838𝑒
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𝑆𝐺𝑃30 𝑥 𝑣
.1.2. IGP

𝑢𝐼𝐺𝑃1 = −1.775𝑒𝑥 − 3.059𝑒𝑣
𝑢𝐼𝐺𝑃2 = −1.868𝑒𝑥 − 3.181𝑒𝑣
𝑢𝐼𝐺𝑃3 = −1.831𝑒𝑥 − 3.123𝑒𝑣
𝑢𝐼𝐺𝑃4 = −2𝑒𝑥 − 3.324𝑒𝑣
𝑢𝐼𝐺𝑃5 = 𝑒𝑥(0.378𝑒𝑣 − 1.307) − 3.324𝑒𝑣
𝑢𝐼𝐺𝑃6 = −1.853𝑒𝑥 − 3.157𝑒𝑣
𝑢𝐼𝐺𝑃7 = −1.823𝑒𝑥 − 3.142𝑒𝑣
𝑢𝐼𝐺𝑃8 = −1.771𝑒𝑥 − 3.108𝑒𝑣
𝑢𝐼𝐺𝑃9 = −1.875𝑒𝑥 − 3.178𝑒𝑣
𝑢𝐼𝐺𝑃10 = −1.912𝑒𝑥 − 3.234𝑒𝑣
𝑢𝐼𝐺𝑃11 = −2𝑒𝑥 + 0.115(−𝑒𝑣 − 0.208)𝑒𝑣 − 3.517𝑒𝑣
𝑢𝐼𝐺𝑃12 = −1.614𝑒𝑥 + 1.614(0.086𝑒𝑣 − 0.0265)𝑒𝑥 − 3.228𝑒𝑣
𝑢𝐼𝐺𝑃13 = −1.841𝑒𝑥 − 3.138𝑒𝑣
𝑢𝐼𝐺𝑃14 = −1.848𝑒𝑥 − 3.094𝑒𝑣
𝑢𝐼𝐺𝑃15 = −1.871𝑒𝑥 − 3.159𝑒𝑣
𝑢𝐼𝐺𝑃16 = −2𝑒𝑥 − 3.68𝑒𝑣 − 0.139𝑒2𝑣
𝑢𝐼𝐺𝑃17 = −1.805𝑒𝑥 − (0.788𝑒𝑣 + 2.840)𝑒𝑣 − 1.805𝑒𝑣
𝑢𝐼𝐺𝑃18 = −1.936𝑒𝑥 − 3.281𝑒𝑣
𝑢𝐼𝐺𝑃19 = (𝑒𝑣 − 0.34(𝑒𝑣 + 𝑒𝑥)2)(𝑒𝑥 − 3.205)

𝑢𝐼𝐺𝑃20 = −1.986𝑒𝑥 − 3.301𝑒𝑣
𝑢𝐼𝐺𝑃21 = −𝑒𝑥 − 2𝑒𝑣 + 0.655(𝑒𝑣 + 𝑒𝑥)(𝑒𝑥 − 4.639)

𝑢𝐼𝐺𝑃22 = −1.965𝑒𝑥 − 3.335𝑒𝑣
𝑢𝐼𝐺𝑃23 = −2.384𝑒𝑥 − 3.462𝑒𝑣 − 2.384𝑒𝑥(−0.093𝑒𝑣 − 0.304)

𝑢𝐼𝐺𝑃24 = −1.881𝑒𝑥 − 3.183𝑒𝑣
𝑢𝐼𝐺𝑃25 = −1.841𝑒𝑥 − 3.198𝑒𝑣
𝑢𝐼𝐺𝑃26 = −1.829𝑒𝑥 − 3.134𝑒𝑣
𝑢𝐼𝐺𝑃27 = 1.749𝑒𝑣(0.00499𝑒2𝑥 − 1.749) − 1.749𝑒𝑥
𝑢𝐼𝐺𝑃28 = −1.859𝑒𝑥 − 3.187𝑒𝑣
𝑢𝐼𝐺𝑃29 = −1.892𝑒𝑥 − 3.191𝑒𝑣
𝑢𝐼𝐺𝑃30 = −1.448𝑒𝑥 − 4.804𝑒𝑣 + 0.465𝑒𝑣(𝑒𝑥 + 2.493)

B.1.3. OPGD-IGP

𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃1 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃2 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃3 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃4 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃5 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃6 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃7 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃8 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃9 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃10 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃11 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃12 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃13 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃14 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢 = −1.854𝑒 − 3.158𝑒
𝑂𝑃𝐺𝐷−𝐼𝐺𝑃15 𝑥 𝑣
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𝑢

𝑢

𝑢

𝑢

𝑢

𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃16 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃17 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃18 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃19 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃20 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃21 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃22 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃23 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃24 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃25 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃26 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃27 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃28 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃29 = −1.854𝑒𝑥 − 3.158𝑒𝑣
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃30 = −1.854𝑒𝑥 − 3.158𝑒𝑣

B.2. Pendulum

B.2.1. SGP

𝑢𝑆𝐺𝑃1 = 𝑒𝜔 + 𝑒𝜃𝑒𝑥(6.557 − 𝑒𝜔) + 𝑒𝑥(𝑒𝜔𝑒𝑣 + 𝑒𝜔 − 𝑒𝑣)

𝑢𝑆𝐺𝑃2 = −𝑒2𝜔 − 𝑒𝜔 − 2𝑒𝜃 + 𝑒𝑣
𝑢𝑆𝐺𝑃3 = −𝑒𝜔 − 3.317𝑒𝜃(𝑒𝜔 + 𝑒𝑣𝑒𝑥 + 2.495) + 𝑒𝑣 + 0.546𝑒𝑥
𝑢𝑆𝐺𝑃4 = −𝑒2𝜔 − 𝑒𝜔 − 2𝑒𝜃 + 𝑒𝑣
𝑢𝑆𝐺𝑃5 = 𝑒𝜃(−0.48𝑒𝜔𝑒𝜃(2.085𝑒𝜔 − 𝑒𝑣 + 7.325) − 0.56𝑒𝜃 + 2𝑒𝑣 − 2.527)

𝑢𝑆𝐺𝑃6 = −𝑒2𝜔 + 𝑒𝑣 + (𝑒𝜔 + 2𝑒𝜃)(𝑒𝜃 + 𝑒𝑥)

𝑢𝑆𝐺𝑃7 = −𝑒𝜔 − 4.05𝑒𝜃 + 2.05𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃8 = 𝑒𝜃(𝑒𝜔 − 4.203)(𝑒𝑣 + 5.389) − 𝑒𝑣
𝑢𝑆𝐺𝑃9 = 𝑒𝜃(𝑒𝜔 + 𝑒𝑣 + 𝑒𝑥 − 13.233) − 𝑒𝑣

𝑆𝐺𝑃10 = −𝑒𝜔 − 7.035𝑒𝜃 + 2𝑒𝑣 + 𝑒𝑥

𝑆𝐺𝑃11 = −𝑒𝜔 − 3𝑒𝜃 + 𝑒𝑣 − 0.386

𝑆𝐺𝑃12 = −1.022𝑒𝜔 − 𝑒𝜃 + 𝑒𝑣 − 0.204

𝑆𝐺𝑃13 = −𝑒𝜔 − 𝑒𝜃(8.154 − 𝑒𝜔) + 𝑒2𝑣 + 𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃14 = −0.919𝑒𝜔 + 0.919𝑒𝜃(𝑒𝜔 − 6.911) + 1.838𝑒𝑣 + 0.919𝑒𝑥

𝑆𝐺𝑃15 = −𝑒𝜔 − 3𝑒𝜃 + 3𝑒𝑣

𝑆𝐺𝑃16 = −𝑒𝜔𝑒2𝑣 − 𝑒𝜔 − 7.264𝑒𝜃 + 𝑒𝑣(𝑒𝑣 − 0.066) + 𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃17 = −𝑒𝜔 − 2𝑒𝜃 + 𝑒𝑣 − 0.046𝑒𝑥 − 0.428

𝑢𝑆𝐺𝑃18 = −𝑒𝜔 − 17.61𝑒𝜃 + 𝑒2𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃19 = 𝑒𝜔𝑒𝑣(0.687𝑒𝜃𝑒𝑥 − 0.687𝑒𝑣 + 0.687𝑒𝑥 + 1.025) − 3.209𝑒𝜃
𝑢𝑆𝐺𝑃20 = −𝑒𝜔 + 𝑒𝜃(𝑒𝜔 − 5.807) + 2𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃21 = −𝑒𝜃 − (−𝑒𝜔 + 2𝑒𝑣)(𝑒𝜃 + 𝑒𝑥) + (−5.723𝑒𝜃 + 𝑒𝑣)(𝑒𝑣 − 𝑒𝑥)

𝑢𝑆𝐺𝑃22 = −0.089𝑒𝜔 − 5.937𝑒𝜃 − 𝑒2𝑥 + 3.986

𝑢𝑆𝐺𝑃23 = −2.803𝑒𝜔 + 𝑒𝜃 − 1.803𝑒𝑣 + (−𝑒𝜃 + 𝑒𝑣)(−8.89𝑒𝑣 − 8.89𝑒𝑥) − 1.015

𝑢𝑆𝐺𝑃24 = −𝑒𝜔 − 7.453𝑒𝜃 + 2𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃25 = −𝑒𝜔 − 5.501𝑒2𝜃 + 𝑒𝜃(𝑒𝜔 + 𝑒𝑥) + 2.935𝑒𝑣
𝑢𝑆𝐺𝑃26 = (0.023𝑒𝜔 + 𝑒𝜃)(4.033𝑒𝜔 − 2𝑒𝜃 − 𝑒𝑣 + 𝑒𝑥 + 0.259)

𝑢𝑆𝐺𝑃27 = −𝑒𝜔 − 5𝑒𝜃 + 2𝑒𝑣 + 𝑒𝑥
𝑢𝑆𝐺𝑃28 = −𝑒𝜔 + 51.050𝑒𝜃(1.045𝑒𝑣 − 1.254)

𝑢𝑆𝐺𝑃29 = −2𝑒𝜔𝑒𝑣 − 𝑒𝜔 − 2𝑒𝜃 − 𝑒2𝑣 + 𝑒𝑣
15

𝑢𝑆𝐺𝑃30 = −𝑒𝜔 − 2.926𝑒𝜃(−7.445𝑒𝜔𝑒𝜃𝑒𝑥 − 𝑒𝜃𝑒𝑥 + 2.791) + 2𝑒𝑣 + 𝑒𝑥
B.2.2. IGP

𝑢𝐼𝐺𝑃1 = − 1.280𝑒𝜔 − 8.095𝑒𝜃 + 1.560𝑒𝑣 + 𝑒𝑥 + 𝑒𝜃(𝑒𝜔 + 𝑒𝜃 − 𝑒𝑣 − 𝑒𝑥)

𝑢𝐼𝐺𝑃2 = − 𝑒𝜔 − 𝑒𝜃(−9.963𝑒𝜔𝑒𝜃(𝑒𝜔 − 𝑒𝑣(𝑒𝜃 + 1.5)) + 6.686) − 𝑒𝜃+

+ 𝑒𝑣(𝑒𝜃 + 1.5) + 𝑒𝑥
𝑢𝐼𝐺𝑃3 =9.268𝑒𝜔𝑒2𝜃 − 𝑒𝜔 − 9.555𝑒𝜃 + 𝑒2𝑣 − 𝑒𝑣(−𝑒𝑥 − 1.686) + 𝑒𝑥
𝑢𝐼𝐺𝑃4 = − 𝑒𝜔 + 𝑒𝑣 + (−6.765𝑒𝜃 + 𝑒𝑥)(𝑒𝜃 + 0.829)(𝑒2𝜃(𝑒𝜔+

− 7.736)(𝑒𝜔 + 𝑒𝑣) + 0.829)

𝑢𝐼𝐺𝑃5 = − 1.155𝑒𝜔 − 6.993𝑒𝜃 + 1.47𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃6 = − 𝑒𝜔 − 𝑒𝜃(8.693𝑒𝜔𝑒𝜃(−𝑒𝜔 + 𝑒𝑣) − 2.428𝑒𝜃 + 6.667) + 1.428𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃7 = − 𝑒𝜔 + 𝑒𝜃(𝑒𝑣𝑒𝑥 + 𝑒𝑥 − 6.787) + 𝑒𝑣(𝑒𝑣 + 𝑒𝑥 + 0.664) + 𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃8 = − 1.16𝑒𝜔 + 𝑒𝜃(−1.677𝑒𝜔𝑒𝑣 + 5.488𝑒𝜃 − 6.197) + 1.345𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃9 = − 𝑒𝜔 − 𝑒𝜃(9.96𝑒𝜔𝑒𝜃 − 2𝑒𝜃 + 𝑒𝑣 − 𝑒𝑥 + 4.5) + 1.388𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃10 = − 𝑒𝜔 − 7.709𝑒𝜃 + 𝑒𝑣 + 𝑒𝑥 + (𝑒𝑥 + 2.071)(𝑒𝜃(𝑒𝜃 − 6.909)+

+ 𝑒𝑣)(−𝑒𝜃 + 𝑒𝑥 + 2.071)

𝑢𝐼𝐺𝑃11 = − 𝑒𝜔 − 𝑒𝜃(𝑒𝜔 + 9.063) + 𝑒𝑣(−𝑒𝜃 + 𝑒𝑣 + 𝑒𝑥) + 1.715716𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃12 = − 𝑒𝜔 − 𝑒𝜃(−𝑒𝜔 − 7.203𝑒𝜃 + 𝑒𝑣 + 𝑒𝑥 + 8.802) + 𝑒𝜃 + 𝑒𝑣(𝑒𝜃 + 0.444)+

+ 𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃13 =(𝑒𝜃 + 0.031𝑒𝑣((𝑒𝜔 − 2𝑒𝜃)(𝑒𝑣 + 1.835) − 1.159))(𝑒𝜃𝑒𝑥 − 1.835𝑒𝜃+

− 2.755)

𝑢𝐼𝐺𝑃14 = − 𝑒𝜔 + 𝑒𝜃(0.439𝑒𝜔 + 3𝑒𝜃 − 5.753) − 𝑒𝜃 + 1.418𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃15 = − 𝑒𝜔 + 𝑒𝜃(𝑒𝜔 + 𝑒𝑣𝑒𝑥 − 6.116) − 𝑒𝜃 + 𝑒𝑣 + 𝑒𝑥 − (𝑒𝜔+

− 1.57𝑒𝑣)(𝑒𝜃 + 0.254)

𝑢𝐼𝐺𝑃16 = − 𝑒𝜔 − 8.478𝑒𝜃 + 𝑒𝑣(−2𝑒𝜃 + 𝑒𝑥) + 𝑒𝑣(𝑒𝑣 − 0.419) + 2𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃17 = − 𝑒𝜔 − 𝑒𝜃 + 2𝑒𝑣 + 𝑒𝑥 + (0.411 − 𝑒𝜃)(−0.34𝑒𝜔 − 0.660𝑒𝜃 − 𝑒𝑣+

+ 6.702) − 2.78

𝑢𝐼𝐺𝑃18 = − 𝑒𝜔 + 𝑒𝜃(𝑒𝜔 − 𝑒𝜃(−2𝑒2𝜔 − 𝑒𝑥 − 9.545) − 2𝑒𝜃 − 6.259)+

+ 1.377𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃19 = − 1.113𝑒𝜔 − 7.299𝑒𝜃 − 0.113𝑒𝑣(−𝑒𝜔 − 𝑒𝜃 − 𝑒𝑥 + 3.652) + 2𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃20 = − 𝑒𝜔 + 1.105𝑒2𝜃 − 0.187𝑒𝜃𝑒𝑣 − 5.726𝑒𝜃 + 1.187𝑒𝑣 + 0.813𝑒𝑥
𝑢𝐼𝐺𝑃21 = − 𝑒𝜔 − 5.08𝑒𝜃 + 𝑒𝑣 − 0.09072𝑒𝑥(𝑒𝜔 − 𝑒𝜃) + 0.676𝑒𝑥
𝑢𝐼𝐺𝑃22 = − 𝑒𝜔 − 𝑒𝜃(−3𝑒𝜃 − 𝑒𝑣 + 6.92) − 𝑒𝑣(−0.295𝑒𝜔 − 0.346) + 𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃23 = − 1.266𝑒𝜔 + 𝑒𝜃(𝑒𝜔 − 𝑒𝜃 − 𝑒𝑣 − 6.694) + 1.532𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃24 = − 𝑒𝜔 − 8.525𝑒𝜃 + 𝑒𝑣(−𝑒𝜔𝑒𝑣 − 3𝑒𝜃 + 𝑒2𝑣 + 𝑒𝑥) + 2𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃25 = − 𝑒𝜔 + 𝑒𝜃(𝑒𝜔𝑒𝜃(4.593𝑒𝜔 − 6.515) + 𝑒𝜃 − 6.515) − 0.452𝑒𝜃+

+ 1.452𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃26 = − 0.0241𝑒𝜔(𝑒𝑣 + 𝑒𝑥) − 0.916𝑒𝜔 − 5.507𝑒𝜃 + 1.083𝑒𝑣 + 0.711𝑒𝑥
𝑢𝐼𝐺𝑃27 = − 𝑒𝜔 − 𝑒𝜃(𝑒𝑣(−𝑒𝜃(𝑒𝜃 + 4.417) + 0.742) + 8.424) + 𝑒𝑣(−𝑒𝜃+

+ 𝑒𝑣 + 𝑒𝑥 + 0.674) + 𝑒𝑣 + 𝑒𝑥
𝑢𝐼𝐺𝑃28 = − 𝑒𝜔 + 𝑒𝜃(−𝑒𝜃(𝑒𝜔𝑒𝜃 + 𝑒𝜔)(−𝑒𝜔𝑒𝑥 + 𝑒𝜔 − 6.744) − 5.207) + 𝑒𝑣+

+ 0.663𝑒𝑥
𝑢𝐼𝐺𝑃29 = − 1.169𝑒𝜔 + 𝑒2𝜃 − 6.976𝑒𝜃 + 1.413𝑒𝑣 + 𝑒𝑥 + 0.0148

𝑢𝐼𝐺𝑃30 = − 𝑒𝜔 − 𝑒𝜃(−𝑒𝜔 − 7.074𝑒𝜃 + 0.751𝑒𝑣 + 𝑒𝑥 + 7.241) + 1.436𝑒𝑣 + 𝑒𝑥

B.2.3. OPGD-IGP

𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃1 = − 0.951𝑒𝜔 − 0.0274𝑒𝜃(0.0815𝑒𝜔𝑒𝜃 + 0.121𝑒𝜃) − 5.839𝑒𝜃+

+ 1.161𝑒𝑣 + 0.780𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃2 = − 0.951𝑒𝜔 − 5.839𝑒𝜃 + 1.160𝑒𝑣 + 0.780𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃3 = − 0.953𝑒𝜔 − 5.844𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃4 = − 0.952𝑒𝜔 − 5.840𝑒𝜃 + 1.161𝑒𝑣 + 0.780𝑒𝑥
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𝑢
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𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

R

𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃5 = − 0.0172𝑒𝜔𝑒𝑥 − 0.986𝑒𝜔 − 5.847𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃6 = − 0.952𝑒𝜔 − 5.841𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃7 = − 0.949𝑒𝜔 − 5.903𝑒𝜃 + 1.174𝑒𝑣+

− 0.00900𝑒𝑥(2.347𝑒𝜃 − 1.269𝑒𝑣) + 0.780𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃8 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥
𝑢𝑂𝑃𝐺𝐷−𝐼𝐺𝑃9 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃10 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃11 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃12 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃13 = − 0.954𝑒𝜔 + 1.090𝑒𝜃𝑒𝑣(−1.030𝑒𝜔𝑒𝜃 + 0.954𝑒𝜃)+

− 5.806𝑒𝜃 + 1.158𝑒𝑣 + 0.783𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃14 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃15 = − 0.952𝑒𝜔 − 5.839𝑒𝜃 + 1.161𝑒𝑣 + 0.780𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃16 = − 0.953𝑒𝜔 − 0.010𝑒𝜃𝑒𝑥(0.998𝑒𝜃 − 0.994𝑒𝑣)+

− 5.835𝑒𝜃 + 1.162𝑒𝑣 + 0.782𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃17 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃18 = − 0.952𝑒𝜔 − 5.844𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃19 = − 0.953𝑒𝜔 − 5.844𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃20 = − 0.952𝑒𝜔 + 0.0854𝑒2𝜃 − 5.834𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃21 = − 0.952𝑒𝜔 − 5.844𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃22 = − 0.951𝑒𝜔 + 0.00449𝑒𝜃(0.999𝑒𝜔 − 1.999𝑒𝜃 − 0.999𝑒𝑣)+

− 5.835𝑒𝜃 + 1.160𝑒𝑣 + 0.780𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃23 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃24 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃25 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃26 = − 0.952𝑒𝜔 − 5.843𝑒𝜃 + 1.162𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃27 = − 0.952𝑒𝜔 − 5.842𝑒𝜃 + 1.161𝑒𝑣 + 0.781𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃28 = − 0.950𝑒𝜔 − 5.862𝑒𝜃 + 1.153𝑒𝑣 − 0.00907𝑒2𝑥 + 0.7631𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃29 = − 0.952𝑒𝜔 − 5.840𝑒𝜃 + 1.161𝑒𝑣 + 0.780𝑒𝑥

𝑂𝑃𝐺𝐷−𝐼𝐺𝑃30 = − 0.952𝑒𝜔 + 0.0264𝑒𝜃(0.999𝑒𝜃 − 0.999𝑒𝑣(1.000𝑒𝜔 − 0.999𝑒𝑣))

− 5.852𝑒𝜃 + 1.162𝑒𝑣 + 0.782𝑒𝑥
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