Check for
Updates

Provably Unlinkable Smart Card-based Payments

Sergiu Bursuc
University of Luxembourg
Esch-sur-Alzette, Luxembourg
sergiu.bursuc@uni.lu

Sjouke Mauw
University of Luxembourg
Esch-sur-Alzette, Luxembourg
sjouke. mauw@uni.lu

ABSTRACT

The most prevalent smart card-based payment method, EMV, cur-
rently offers no privacy to its users. Transaction details and the card
number are sent in cleartext, enabling the profiling and tracking of
cardholders. Since public awareness of privacy issues is growing
and legislation, such as GDPR, is emerging, we believe it is neces-
sary to investigate the possibility of making payments anonymous
and unlinkable without compromising essential security guarantees
and functional properties of EMV. This paper draws attention to
trade-offs between functional and privacy requirements in the de-
sign of such a protocol. We present the UTX protocol — an enhanced
payment protocol satisfying such requirements, and we formally
certify key security and privacy properties using techniques based
on the applied 7-calculus.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; Logic
and verification; Privacy protections.

KEYWORDS

protocol design, payment protocols, security analysis

ACM Reference Format:

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov . 2023. Prov-
ably Unlinkable Smart Card-based Payments. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS °23),
November 26-30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3576915.3623109

1 INTRODUCTION

As a payment method, EMV came into place in the mid-1990s to
replace magstripe cards as they are incapable of computation and
easy to clone. The EMV standard [1] is a series of documents that
specify how exactly payments should be done with the main focus
on card-terminal communication. This specification is quite flexible
- only minimal requirements must be respected, so it is up to the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623109

This work is licensed under a Creative Commons Attribution
International 4.0 License.

1392

Ross Horne
University of Luxembourg
Esch-sur-Alzette, Luxembourg
University of Strathclyde
Glasgow, UK
ross.horne@strath.ac.uk

Semen Yurkov
University of Luxembourg
Esch-sur-Alzette, Luxembourg
semen.yurkov@uni.lu

payment system that implements EMV which additional options to
include. Hence, the standard describes not a single protocol, but a
whole variety of configurations. It was shown several times that
some configurations are not secure [11, 21, 31, 33], thus to achieve
the primary goal of EMV, the safety of money, one should carefully
select a secure configuration.

On the other hand, currently, the privacy of payments is not
an explicit requirement of EMV. To this day the communication
between the card and the terminal is not encrypted. Valuable sensi-
tive data such as the card number PAN (Primary Account Number),
the amount, the country code, and the time, are exposed and an
attacker eavesdropping on wireless communications can profile
cardholders engaged in transactions. In addition, the card presents
its PAN - a strong form of identity — to any device that asks. Nearby
smartphones supporting NFC and antennas [25], installed, e.g., at a
doorway or by a seat on public transport, are examples of active
attackers that can power up cards without cardholders being aware.
After being powered-up, a card engages in what it thinks is a le-
gitimate EMV session during which the PAN is transmitted. This
enables an attacker to track the movements of anyone who holds a
payment card by forcing the card to run a session and obtaining the
card’s permanent identity, even without a genuine EMV transaction
involved. Hence, active attackers capable of initiating communica-
tion with cards using an unauthorised device should be part of the
threat model when privacy is among our concerns.

Our position is that unwanted data collection should be miti-
gated at the protocol level since legal sanctions are not enough
to ensure privacy — we have examples of their violation [7, 8].
EMVCo, a consortium of payment processing companies that de-
velops the EMV standard, is aware that privacy issues are present
in EMV and have proposed in the next generation of EMV (EMV
2nd Gen) to encrypt communications between the card and the
terminal [3] by running an authenticated key establishment before
exchanging sensitive data. Obviously, a narve solution to employ
the standard Diffie-Hellman (DH) would not solve the tracking
problem described above since the card’s permanent identity, its
public key, involved in the handshake allows both eavesdroppers
and active attackers to identify the same card through different
sessions. To mitigate that, EMVCo developed a blinded version of
the DH protocol, BDH [2], where in each session the card’s public
key is blinded with a fresh scalar, making eavesdroppers locked out
from subsequent communication. However, even in the presence of

https://orcid.org/0000-0002-0409-5735
https://orcid.org/0000-0003-0162-1901
https://orcid.org/0000-0002-2818-4433
https://orcid.org/0000-0002-9200-4601
https://doi.org/10.1145/3576915.3623109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623109
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623109&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

encryption, the problem of active attackers persists: the card still
sends its unblinded signed public key, a strong form of identity, to
the terminal allowing the attacker to trace the card.

The recently proposed UBDH [26] protocol, an unlinkable ver-
sion of the BDH protocol, where an attacker cannot link key estab-
lishment sessions with the same card, is an example of an authenti-
cated key establishment protocol that satisfies both the initial EMV
privacy goals [2], and rules out active attackers. The essence of
UBDH is that the public key of the card appears to be fresh in each
session, yet a terminal can still authenticate that the card was issued
by a recognised payment system. The following table summarises
the privacy level each key establishment mechanism achieves.

passive privacy active privacy
DH X X
BDH 4 X
UBDH 4 4

According to the proposal of EMVCo [2, 3], an EMV 2nd Gen
transaction would consist of a key establishment phase followed
by a data exchange. Hence we need to consider unlinkability of the
full protocol, as an active attacker in the second phase could gather
the information allowing to link payment sessions even if the first
phase, key agreement, is unlinkable. If we simply follow what EMV
offers now, this information includes the card’s explicit identity
PAN that the payment system uses to route payments through
the network. The table below presents the degrees of privacy ob-
tained by combining a key establishment with the default EMV
data exchange.

passive privacy active privacy
EMV X X
BDH + EMV v X
UBDH + EMV v X
UBDH + ? = UTX v v

While there is no privacy in cleartext EMV, encrypting EMV by
running BDH or UBDH as the first step does not help achieve an
unlinkable protocol where an active attacker cannot link payment
sessions, thereby tracing the cardholder. The fact that EMVCo offi-
cially abandoned efforts on EMV 2nd Gen to enhance privacy in
2019 [5] also emphasises the need for a newly designed protocol
(called UTX in the table) to meet future privacy demands.

To the best of our knowledge, no existing solutions satisfy the
basic functional and security requirements of EMV while relying ex-
clusively on the computational resources of a smart card and being
unlinkable at the same time. Mobile wallet apps like Apple Pay [28]
protect the card number from being revealed by replacing it with
a permanent Device Account Number (DAN) stored in the device
(e.g. the smartphone). The DAN is exposed to an active attacker in
the same way the PAN is exposed in a traditional EMV transaction!.
At the same time, anonymous credential (AC) schemes [18, 34] are
a popular way for establishing unlinkability, e.g. in the context
of anonymous access to online services. Some AC schemes have
been effectively implemented on smart cards [12, 35]. In principle,
an AC scheme could be employed to prove the legitimacy of the
card to the terminal without revealing any identifying information.
However, the full functionality of an EMV-like transaction requires

'However, an additional layer of security is provided in this case since the device
should be ready for communication, e.g. unblocked with the proper app running, etc.

1393

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

a much richer functionality. For example, the parties need to agree
on the parameters of the transaction, the terminal may need to
verify the user PIN, and the bank needs to check that the payment
request comes from a valid interaction with the corresponding card.
AC schemes can be augmented with attributes that can be used
to encode a richer functionality (e.g. attesting that the card is still
valid at a certain date). However, such extensions typically rely on
zero-knowledge proofs, that we aim to avoid since they would in-
troduce too much overhead for a payment smart card. Furthermore,
the design question remains, i.e. how to adapt an AC scheme for
use in a larger payment system. In this paper, we demonstrate that
a protocol with the desired functional, security and privacy require-
ments can be designed based on a particular and simple instance
of anonymous credentials, namely self-blindable certificates [34].
We discuss some deployment questions at the end of the paper
and argue that our protocol could be implemented with minimal
overhead on current smart cards.
The main contributions of the paper are as follows.

e A non-trivial threat model. We build on recent work [26] that
explains why active attackers pose a real threat for contact-
less payments and how an appropriate Dolev-Yao model [20]
fully accounts for them. A key novelty of our model is that
we account for both honest and dishonest terminals, but in
very different ways. Attackers impersonating terminals not
requiring the PIN are implicitly accounted for in the Dolev-
Yao model. In contrast, honest terminals requiring the PIN
are explicitly represented as processes.

e Requirements for privacy-preserving card payments. From
EMV we extract functional and security requirements. For
privacy requirements we extract from the EMV 2nd Gen
draft [5] an unlinkability requirement and clarify it with
respect to our threat model.

e A new payment protocol. We design a non-trivial protocol
that we argue is feasible to implement since it uses standard
components that respect limited computational resources of
the card. The assemblage, however, is unique. We also explain
that new demands imposed by the protocol on infrastructure
may be handled by software updates for the existing EMV
infrastructure.

A proof that the protocol satisfies our requirements. Notably,

unlinkability is proven directly using state-of-the-art bisim-

ulation techniques and does not make use of tools since our
particular combination of protocol and threat model is not
yet in scope of current tools.

We begin by presenting a design space where we determine
the requirements of an unlinkable payment protocol in Section 2,
and draw attention to trade-offs between functional and privacy
requirements. We then present an unlinkable payment protocol
UTX in Section 3, and provide formal analysis in Section 4.

2 DESIGN SPACE FOR UNLINKABLE
TRANSACTIONS

In this section, we explore the design space for a privacy-preserving
payment protocol. This top-level design space is narrowed down in

Provably Unlinkable Smart Card-based Payments

later sections to guide the design of our proposed protocol. We ex-
plain the architecture of a payment system that should be respected,
and emphasise the functional, security and privacy requirements.

2.1 EMV infrastructure

We present an overview of the payment infrastructure, assumed
by the current EMV standard, in Figure 1. The card C is manufac-
tured by the issuing bank BC in collaboration with the payment
system PaySys (e.g. Visa or Amex). The terminal T'is connected to
an acquiring bank BT supporting PaySys that processes payments
on behalf of the terminal. The acquiring bank processes payments
by connecting to the PaySys network that exchanges messages
between banks.

Figure 1: Payment architecture.

A successful run of the protocol results in the generation of an
Application Cryptogram AC by C. AC is eventually sent by T to
BT, either before of after the payment is approved by the terminal,
depending on whether the payment is online or offline, respectively.
The issuing bank BC receiving AC, decides to decline or accept the
transaction, and replies with the appropriate message.

In this paper, we are concerned about hiding the information
about the card from the terminal. Thus, when modelling the system,
we merge BT, PaySys, and BC into a single agent B, modelling their
common interface with the terminal when processing payments,
as indicated in Figure 1. This is consistent with the fact, that EMV
currently does not enforce any exact processing method on the
bank’s side, i.e. the standard contains an example while “issuers
may decide to adopt other methods” [1, Book 2, Section 8].

2.2 Requirements for unlinkable payments

An unlinkable protocol should satisfy three types of requirements:
functional, security and privacy requirements. We extract func-
tional and security requirements from the current EMV specifica-
tion, strengthen some security requirements, and introduce privacy
requirements not previously present in EMV.

2.2.1 Functional requirements. We consider smart card-based pay-
ments, hence we rely only on the computational resources of the
smart card and the terminal. Devices like smartphones that can
establish direct communication between the card and the bank are
excluded from the discussion in this paper. We also prohibit indirect
card-bank communication by means of, e.g. synchronised clocks
since the card has no long-term power source.

The card should use Elliptic-Curve Cryptography (ECC), as
already required for the new iteration of the EMV standard [2].
Since, currently, the card must be present within the reader’s field

1394

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

for at most 500ms [6], computationally-heavy general-purpose zero-
knowledge proofs are out of scope.

The protocol should support contact and contactless transactions.
For the purpose of this analysis we consider the PIN as the only
cardholder verification method and the PIN is always required for
high-value transactions. Hardware solutions that might help to
replace the PIN are beyond the scope of this work.

Cards can optionally support offline transactions which carry
two risks resulting in the terminal not being paid (when AC is
finally processed by the bank): either there is not enough money
in the cardholder’s account, or the card is blocked, e.g. reported as
stolen. If offline transactions are supported, the insurance policy
must cover these risks.

2.2.2 Security requirements. Recall that some configurations of
EMYV have been shown to be insecure. The primary security goals
we extract from good configurations of EMV are the following
authentication and secrecy properties.

e Tmust be sure that the presented card is a legitimate card
that was issued by the PaySys that T supports and that Cis
not expired.

o If the bank accepts the transaction, then T, C, and the bank
must agree on the transaction.

o Keys for message authentication and PIN are secret.

Notice that the card does not authenticate the terminal. The
reason is, in the philosophy of the EMV standard, that the payment
system allows anyone to manufacture terminals. We strengthen
these requirements by assuring the card that if the cryptogram is
processed, then it is processed by a legitimate bank.

In addition to the requirements extracted from EMV above we in-
troduce the additional requirement that the application cryptogram
AC must be secret. This is in line with the proposal of secret chan-
nel establishment [2], where a session-specific secret channel was
introduced to protect all messages between the card and the ter-
minal from eavesdroppers. Currently, the communication between
the card and the terminal is in cleartext, and the AC, that contains
transaction details, is always exposed. Formal security definitions
reflecting these requirements are introduced in Section 4.4 where
we present the analysis of our proposal for a protocol.

2.2.3 Privacy requirements. As mentioned in the introduction and
expanded upon next, currently no privacy properties are preserved
by EMV. The privacy property we aim for in this paper is unlink-
ability. Unlinkability is standardised in the Common Criteria for
Information Technology Security Evaluation ISO 15408 [4], as en-
suring that two uses of a card cannot be linked. ISO standard 15408
also covers anonymity. Unlinkability is stronger in the sense that,
if two sessions are not anonymous then they can be linked, but
the converse does not hold. This explains why unlinkability is a
suitable benchmark for privacy.

For this initial discussion, we give an intuitive scheme for defin-
ing unlinkability. A formal definition is presented in Section 4.3,
where we prove that the protocol we introduce in later sections
satisfies unlinkability.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

ScHEME 1. (unlinkability) Transactions are unlinkable if an at-
tacker cannot distinguish between a system where a card can partici-
pate in multiple transactions and another system where a card can
participate in at most one transaction.

Let us reflect on the above scheme. The former system repre-
sents a real-world scenario where the card is issued and within
its lifespan can participate in several protocol sessions. The latter
system is an idealised situation, where cards are disposed of af-
ter each transaction and can participate in one payment session
at most, hence sessions are trivially unlinkable. Whenever, with
respect to all attack strategies, there is no distinction between the
two scenarios for a given payment protocol, such a protocol is
unlinkable. Guaranteeing this property without compromising the
aforementioned security and privacy requirements is our primary
challenge.

We explain that unlinkability cannot hold in all contexts, if we
aim to fulfil also our functional and security requirements. As men-
tioned above, two sessions that are not anonymous can be linked.
Therefore, to achieve unlinkability, certainly any identity unique
either to the card or the cardholder must never be revealed to an
attacker. We call such identities strong and they include the card-
holder’s name, the PAN, the card’s public key, and any signature
on the data specific to the card.

On the other hand, even if strong identities were protected, coarse
identities, that are common to a group of cards, may enable track-
ing of groups of cardholders. Coarse identities include the pay-
ment system, the validity date, the format of transaction data, and
other implementation-specific features. Some coarse identities are
inevitably exposed as a consequence of the requirements in Sec-
tions 2.2.1, 2.2.2. For instance, the terminal needs to know which
payment system the card uses to authenticate the card, and needs
to be able to distinguish between valid and expired cards. Other
coarse identities include the network traffic response times, which
may reveal information about whether the card belongs to a local
or foreign bank.

Coarse identities can be combined to fingerprint a card. Thus
we are obliged to accept that unlinkability can only be achieved
up to their fingerprint, that is, we can link two sessions with the
same fingerprint only. However, we require that this fingerprint is
minimised, thereby limiting the capability of an attacker to perform
unauthorised profiling of cardholders and their behaviours.

3 THE UTX PROTOCOL

In this section, we introduce the UTX (Unlinkable Transactions)
protocol that satisfies the security and privacy requirements intro-
duced in Section 2.2. We pay particular attention to minimising
the fingerprint given by the coarse identities thereby maximising
unlinkability. We start by discussing the initialisation phase, then
we introduce the message theory representing cryptographic primi-
tives employed in the protocol. We then explain the key distribution
between the participants of the protocol. Finally, we thoroughly
explain transactions that can either be offline, online, high, or low-
value.

1395

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

3.1 Application selection

The card can generally support several payment methods, or, in
EMV lingo, applications. In Fig. 2 we schematically show how the
terminal currently selects the application. First, the terminal asks
the card to send the list of supported applications, then the card
provides the list, and the terminal selects one (possibly with the
help of the cardholder). Knowing the payment system, the terminal
can select the appropriate public key to authenticate the data on
the card. Notice that the list of payment applications is a coarse
identity of the card even if this list consists of a single application,
since it can still be distinguished from other cards.

[c] []

SELECT PaySys_List

PaySys, ... PaySys,

SELECT PaySys;

[PaySys; transaction]

- -

Figure 2: Payment System Selection.

In order to avoid a coarse identity being exposed at this point,
we design the protocol such that the card presents a list comprising
a single element, Unlinkable. This means that a group of payment
systems agree to provide privacy-preserving payments using the
name Unlinkable for the respective application. Terminals, thus,
should also be upgraded to support Unlinkable in order to accept un-
linkable payments, before such cards are rolled out. An alternative
is to allow each payment system to provide their own unlinkable
application, and to tolerate that the payment system becomes part
of the coarse identity of the card. Our analysis covers both choices.

3.2 Keys required to set up Unlinkable

Here we explain who generates and holds keys and signatures
involved in the UTX protocol. An authority, who is either a pay-
ment system or a delegate acting on behalf of a group of payment
systems, produces signatures involved in the protocol using two
types of signing keys. Firstly, a secret key s, is used to produce
certificates for banks, which are kept by the terminal and used by
the card to check that the terminal is connected to a legitimate
bank. Secondly, a list of secret keys ymm is maintained for each new
calendar month. They are used by the authority upon request from
the payment system to generate month certificates unique to each
card supporting Unlinkable for every month the card is valid. A
card valid for five years would store 61 such month certificates,
that the terminal checks to be sure that the card is valid at the
month of a particular purchase. The public key for checking month
certificates is broadcast to terminals from the first of every month.

Provably Unlinkable Smart Card-based Payments

We take care to prohibit an attacker from learning the expiry
or the issuing month, which would allow many cards to be distin-
guished. To do so, we introduce the following pointer mechanism.
The card maintains a pointer to the most recent month certificate
that has been used in response to a legitimate request by the termi-
nal. When the terminal asks the card to show the certificate for the
month, the card compares the pointer with the received month. If
the received month is greater than what the pointer references, the
card advances the pointer to this month and shows the respective
certificate. If either the received month coincides with or is one
month behind the pointer, the card simply shows the certificate for
this month and the pointer remains untouched. Otherwise, if the
month requested is older than two months the card terminates the
session. A terminal cannot request a month in the future, assuming
that the public keys for verification are carefully managed, such
that they are never released in advance.

We allow a window of two months, to allow time for offline
terminals to eventually receive the most recent public key for the
month. For this reason a new card valid for 60 months is loaded
with 61 month certificates with a pointer referencing the issuing
month. That way a newly issued card cannot be distinguished from
cards already in circulation as it is ready to present the certificate
for the month prior to the month in which it was issued. Thus, the
only coarse identities revealed are whether the card is outdated or
has not been used since the beginning of the month.

3.3 Message theory

We now introduce cryptographic primitives employed by the UTX
protocol. Since later in Section 4 we reason about UTX symbolically
and assume perfect cryptography, low-level details such as ECC
domain parameters are out of scope. In particular, we assume the
use of an encryption scheme that guarantees message integrity.
Fig. 3 presents the message theory that consists of the syntax, that
defines messages agents can form, and the equational theory E, that
axiomatises cryptographic operations.

The message theory admits operations for ECC, i.e. multipli-
cation between two field elements (scalars), and multiplication
between a scalar and an element of the DH group. Whenever we
say that “a message is blinded with a scalar”, we mean multiplica-
tion by that scalar. Next, we include a standard set of cryptographic
operations such as hashing, symmetric key cryptography, n-tuples,
and generic digital signatures. Finally, we introduce the Verheul
signature scheme [34], which is invariant under blinding of the
message-signature pair (hence can appear as “new” in each ses-
sion). This scheme supports ECC and has been demonstrated to
work sufficiently fast on smart cards [12]. We also define several
constants employed in UTX.

The equational theory E captures the two types of multiplication
and contains conventional destructor functions: decryption, projec-
tion, and two versions of signature verification. A digital signature
is successfully verified whenever the message corresponds to the
message extracted from the signature by applying the appropriate
check function. Notice that the last equation ensures that if the
function vcheck(-, -) is applied to the signature, blinded with some
scalar and the matching Verheul public key, it returns the message,
blinded with the same scalar.

1396

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

M,N =g DH group generator (constant)
| x variable
|M-N multiplication
| (M, N) scalar multiplication
|h(M) hash
[{M}N symmetric encryption
[(M, ..., M) n-tuple
| pk(M) public key
|sig(M,N) signature
| vpk(M) Verheul public key
|vsig(M, N) Verheul signature
| check(M, N) check signature
| veheck(M, N) check Verheul signature
|pi(N) ith projection
|dec(N, M) symmetric decryption
| L, ok, accept, auth, lo, hi constants

M-N=gN-M

(M-N)-K=gM-(N-K)

$(M - N,K) =g ¢(M, $(N,K))

pi ({My, ..., Mg)) =g M;

dec(K, {M}K) =E M
check(sig(M,K),pk(K)) =g M
vcheck(vsig(M,K),vpk(K)) =g M
#(M,vsig(N,K)) =g vsig(¢(M,N),K)

Figure 3: UTX message theory.

3.4 Before running the protocol: the setup

Before describing the protocol we explain how the payment system
issues a card in collaboration with the issuing bank, how the acquir-
ing bank joins the payment system, and how the terminal connects
to the acquiring bank. In the next section, where we describe the
transaction, we collapse the payment system, the issuing bank, and
the acquiring bank into a single agent.

3.4.1 Issuing a card. Here we outline how a card could be manu-
factured involving a signing authority that payment systems could
share as explained in Section 3.2.

To issue a card, the payment system generates a new card’s
private key ¢, computes the card’s public key ¢(c, g), and asks the
signing authority to generate the following list of month Verheul
signatures {(MM, vsig(¢(c, g), XMM»}S]&:O which it loads to the card
together with pk(s), ¢, ¢(c, g), PAN, and PIN. Then the card is sent
to the issuing bank together with ¢(c, g), PAN, and PIN; the bank
generates and loads to the card a new master key mk, and finally
sends the card to the user. Since no one should ever have access to
c except the card, we assume the payment system never shares or
stores c.

3.4.2 The keys used by the terminal to connect to the payment
system. To allow an acquiring bank supporting the payment system
to process payments in the month MM, the authority knowing s
issues a certificate of the form ((MM, ¢(b;,8)), sig({MM, (b, 8)), s))
to each acquiring bank, where b; is the private key of the bank. In
turn, the acquiring bank loads the terminal with both this data and

CCS *23, November 26-30, 2023, Copenhagen, Denmark

a symmetric key kbt used for secure communication between the
terminal and the bank. The terminal presents the bank’s certificate
at each run of the protocol. As explained in Section 3.2, the terminal
and the bank must update the month key certificate and the month
validation key regularly without being offline for more than two
months.

First, we explain why the month MM is signed. Recall the card
points to the most recent month it has seen. Hence, if this month
requested by the terminal is the month pointed to by the card, or the
month before, it is safe to reveal that it is valid for either of these two
months. The signature sig({MM, ¢(bs, g)),s) containing the month
MM is required in the situation where the next month is requested,
in which case this signature serves as proof to the card that the next
month has arrived. This prevents attackers learning whether the
card is valid next month, and also avoids the pointer being advanced
too quickly thereby invalidating the card in the current month.
Notice that vpk(ywm) is publicly known for the past few months
and could have been transferred by the terminal to the card and used
by the card to check whether a request for the next month is valid.
However, since checking Verheul signatures is too expensive for
the card, we avoid using keys vpk(ywm), and instead only check the
certificate ((MM, ¢ (b;,0)), sig((MM, (b, §)), s)) against the generic
pk(s) already present in the card which can employ a more efficient
signature scheme since it does not need to support blinding.

Second, the bank’s certificate enables the card to verify that
¢ (s, g) is a public key for a legitimate bank connected to the pay-
ment system providing Unlinkable, hence it can safely use ¢(b;, g)
to encrypt the application cryptogram at the end of the transac-
tion. This signature helps to avoid the situation when an attacker
introduces their own public key and thereby can look inside the
cryptogram to gather sensitive information including the PAN.

It is efficient to transmit the month and the bank’s public key
in a single message, however, in principle, the signatures on each
could be separate. In this case, to prevent offline guessing attacks,
the payment system should introduce certain padding to small
and publicly known constants MM representing months. If a bank
requires multiple keys, the payment system could produce multiple
certificates.

The secure channel between the bank and the terminal modelled
here as a symmetric key kbt could be established by other means,
which is consistent with EMV as it is not specified.

3.5 The UTX transaction

We introduce online and offline modes of the UTX protocol in Fig. 4.
The PIN is asked for in high-value purchases. In the offline mode,
the PIN is sent to the card. As the PIN must be transferred to the
card, and the card cannot leave the session until the PIN is entered,
high-value offline transactions are always performed as a contact
payment. In online mode, the PIN is not sent to the card, instead it
is sent to the bank together with the application cryptogram. Parts
of the protocol involving the PIN check are indicated by dashed
lines and annotated as of f and on indicating these two modes
of operation. In Fig. 4 the two messages exchanged between the
terminal and the bank are either executed during the transaction
(online mode) or postponed to the moment when the terminal goes

1397

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

online to upload collected cryptograms and, optionally, to update
its bank’s certificate (offline mode).

3.5.1 Initialisation. When the card is close enough to the terminal,
it is powered up, and the terminal asks which payment methods the
card supports by issuing the SELECT command. The card supporting
unlinkable payments, replies with a singleton list containing only
Unlinkable, as explained in Section 3.1 The terminal then selects
this payment method and sends to the card the ephemeral public
key ¢(t,g). The card in response sends to the terminal ¢(a, ¢(c, g)),
which is its public key, blinded with a fresh scalar a. After that
the card and the terminal establish the symmetric session key kc:=
h(¢(a-c @(t,9)) =g h(¢p(t, d(a $(c,g)))) = ks which they use to
encrypt all further communications. In Fig. 4, phases of the protocol
that are encrypted are represented by a box with a label in the
top-left corner indicating the encryption key.

A passive eavesdropper who only observes messages is now
locked out from the session since it has no access to the derived key.
However, an active attacker can choose their own public key and
engage in the handshake. We will explain below how active attacks
are mitigated. The only information about the card exposed at this
point is the fact that the card supports the application Unlinkable.

3.5.2 Validity check. After the secret key is established, the card
presents evidence that it is valid. To do so, firstly, the terminal sends
to the card ((MM, ¢ (bs, g)), sig({MM, ¢ (b, g)), s)), the current bank’s
certificate. The card verifies this certificate against the public key
pk(s), hence believes that this terminal is connected to a legitimate
acquiring bank, and that MM, and ¢ (b;, g) are authentic.

Having received this legitimate request to show the month cer-
tificate corresponding to MM, the card updates its pointer, leaves it
untouched or, aborts the transaction as described in Section 3.2.
After the decision about the pointer has been made, the card blinds
the appropriate month Verheul signature vsig(¢(c, g), yum) with a
the scalar a, and sends to the terminal the following blinded pair
(#(a, ¢(c.9)), p(a, vsig(¢(c.8), yum)))-

The terminal verifies this blinded message-signature pair against
the current month Verheul public key vpk(ywv) and additionally
checks that the first element of the received pair coincides with the
card’s blinded public key used to establish a session key. This check
ensures that the terminal is still communicating with the same card
and prevents the construction of fake cards loaded with previously
exposed blinded message-signature pairs.

Since both elements of the message coming from the card at this
stage are freshly blinded, as for the session key, they are distinct
in each session, hence the terminal cannot use it to reidentify the
card in future sessions by simply requesting the same month. At
this point in the protocol the card exposes that it is valid at the
month MM (since the key vpk(ymuv) fits) which is not a coarse card’s
identity, as all other cards that have not yet expired and support
unlinkable payments, expose the same information.

3.5.3 Cardholder verification (high-value). In case of a high-value
offline transaction, the terminal asks the cardholder to enter the PIN
and sends the entered number uPIN to the card together with the
transaction details. If this input matches the actual card’s PIN, the
card includes the ok message both in the reply to the terminal and
in the cryptogram to indicate to the issuing bank that the PIN has

Provably Unlinkable Smart Card-based Payments CCS ’23, November 26-30, 2023, Copenhagen, Denmark

pk(s), ({(MM, vsig(p(c,8) .) Himo s ©: (MM, § (b, 8)), sig({MM, (br,0)). 5)), by, kbt, $(c, q),
$(c.g), mk, PAN, PIN vpk (i) , kbt TX! mk, PAN, PIN

C T B
SELECT PaySys_List

(Unlinkable)

fresh a fresh t

SELECT Unlinkable, Z; := ¢(t,g)

ZZ = ¢(a’ ¢(C’ g))

kei= h((a- ¢, Z1)) | ke= h($(£ Z2))

=) (MC, MCs) 1= (MM, §(br, 8)). Sig((MM, $(br,0)).5))

check(MCg, pk(s)) = MC |

[B,Bs] = (¢(a, 4(c.9)) . $(a vsig(g(c,9), yam)))

vcheck(Bs, vpk(ymm)) = B
B= ZZ

,F- oo of f
TX = TX’L,,,‘

high-value

Enter

kepi=h(¢(a-c.§(brg))) | AC := (a, PAN,TX,| ok)
AChmac = h(<AC, mk))

N =7
{(AC, /\(’hlnzll')}k{;b’ Lofkj’ >

r---7a0n

TX/) Zy, {(AC’ Achmm'>}k ‘

|
ch’ L _ 1

kpe:=h($(be, Z2)) [= kep |

h((AC, mk)) = /“\C/zmuv
TX =TX

$(a, d(c,9)) =22
(PAN, TX, a) is unique

TX, accept

Figure 4: The UTX protocol. Offline and online high-value modes are annotated as off and on respectively.

1398

CCS *23, November 26-30, 2023, Copenhagen, Denmark

been successfully verified on the card’s side. Otherwise, the card
includes the L message in the reply and in the cryptogram, which
the terminal has to send to the bank anyway to log failed attempts
to enter the PIN for auditing purposes. In case of a high-value online
transaction, the terminal also asks the cardholder to enter the PIN
but instead keeps it and sends it to the acquiring bank together
with the cryptogram.

3.5.4 Cryptogram generation. The terminal sends to the card the
transaction details TX’ comprising the currency, the amount, and
the date; and either L (when the transaction is low-value), or, the
entered uPIN (when the transaction is high-value offline). The card
computes k.= h(¢p(a-c,¢(bs, g))), which serves as a symmet-
ric session key between the card and the acquiring bank for this
transaction only. Then the card generates one of the cryptograms.

e AC* := (a,PAN, TX) if no uPIN has been received.
o ACK := (g, PAN, TX, ok) if the received uPIN is correct.
e AC™ := (g, PAN, TX, no) otherwise.

Finally, the card uses the master key mk that has already been
shared between the card and the issuing bank to compute hash-
based message authentication code of the form h({AC, mk)) and
replies respectively with one the following messages to the terminal.

o ({(ACL, h((ACL, mk)))}i.,. L, TX)
o ({(ACOK, h((AC°k, mk)))}kcb,ok,)
o ({(AC™, h((AC™, mk)))} .., Mo, TX)

Each of these messages corresponds to the cryptograms de-
scribed and contains additional information on whether the PIN
was successfully verified by the card (ok entry), or the PIN verifi-
cation has failed (no entry) because the terminal cannot open the
cryptogram encrypted for the acquiring bank.

Notice that the card includes the nonce a in each of the cryp-
tograms to make it unique per session. The fact that the same a
is used for blinding the card’s public key at the initialisation step
allows the bank to strongly connect the cryptogram to the current
session, thereby avoiding the cryptogram being replayed in other
sessions. Although a trusted terminal is already assured that a valid
card generated the cryptogram in the current session, it is beneficial
for the bank to also check this. This is because the bank may not
fully trust the terminal to be implemented correctly in which case,
if the terminal fails to authenticate the card properly as described in
Section 3.5.2, the terminal cannot be reimbursed for the cryptogram
generated by an honest card in another session and replayed in a
session with an unauthenticated device posing as a card. Therefore
UTX ensures recent aliveness of the card from the perspective of
the bank even in the presence of compromised terminals.

3.5.5 Transaction authorisation. In the final stage of the protocol
the terminal asks the bank to authorise the payment. The termi-
nal uses the pre-established secret key kbt that is shared with the
acquiring bank to send the following.

e The transaction details TX'.

e The blinded card’s public key Z; = ¢(a, ¢(c,g)).

e The encrypted cryptogram of one of the three types de-
scribed above that it has received from the card.

o The user-entered PIN uPIN in case the transaction is high-
value online, or the message L otherwise.

1399

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

Recall that B in Fig. 4 represents both the acquiring and the
issuing banks. The acquiring bank uses its private key b; and the
received card’s blinded public key Z; to compute the symmetric
key with the card kp.:= h(@(bs, Z2)) = h(P(bs, p(a, p(c,g)))) and
to decrypt the cryptogram. Internally to B, the acquiring bank
uses the PAN from the decrypted cryptogram and forwards all the
information received from terminal to the issuing bank. In turn, the
issuing bank determines mk, ¢(c, g), and the PIN corresponding to
the PAN received and performs the following.

o It checks that the first element of the cryptogram hashed with
mk equals the second element, making sure the cryptogram
is authentic.

It checks that the transaction details TX” received from the
terminal match the transaction details from the cryptogram:
X =TX

It checks that the blinding factor a from the cryptogram mul-
tiplied by the card’s public key ¢(c, g) matches the blinded
public key Z received from the terminal: ¢(a,¢$(c,8))=Z5.
It checks the transaction history of the card and ensures that
the received a has not been used for an identical transaction,
hence preventing a replay of the cryptogram. This replaces
the transaction counter ATC from the EMV standard.

If the transaction value is high, the bank checks if the ok tag
is present in the cryptogram and proceeds with the reply,
otherwise, if the ok tag is not present, the bank checks if
the received uPIN matches the card’s PIN: uPIN = PIN and
proceeds with the reply.

If the above is successful, the terminal receives the reply message
(TX, accept) encrypted with kbt.

Notice that in UTX the payment system still uses the PAN to
route payments between acquiring and issuing banks, however, it
is now hidden from the terminal in contrast to the current EMV
standard, where it is exposed. The main changes to the infrastruc-
ture to roll out UTX are as follows. The acquiring bank requires a
key for decrypting the cryptogram. The issuing bank is required
to ensure itself that the nonce from the cryptogram is tied to the
legitimate card-terminal session. In addition a substantial update is
needed for public key infrastructure explained in Sections 3.2, 3.4.1,
and 3.4.2.

4 UNLINKABILITY AND SECURITY ANALYSIS

We specify and verify our proposed protocol in a variant of the
applied 7-calculus [9]. In the formulation of the property of trans-
action unlinkability, we employ quasi-open bisimilarity [27] — an
equivalence notion that is preserved in all contexts and captures an
attacker capable of making dynamic decisions - and its correspond-
ing labelled transition system. For the properties that constitute
payment security, we rely on the ProVerif tool and its notion of
correspondence assertions [13, 14]. We focus the analysis on the
core component of our protocol, modelling its key agreement and
transaction authorisation steps. We omit the application selection
step as it involves only constant messages that are the same for all
sessions.

Provably Unlinkable Smart Card-based Payments

4.1 Attacker model

The attacker model we use for verification of the UTX protocol is a
Dolev-Yao attacker [20] who controls the communications between
the card, the terminal, and the bank. Such attackers can intercept,
block, modify, and inject messages. In the presence of contactless
payments, the Dolev-Yao attacker is particularly relevant since,
within a range of 100cm, an attacker can power up the card and
interact with it [25], explaining why we insist on this attacker
model when verifying our protocol. The connection between the
terminal and the bank is not necessarily secure and an attacker
could manipulate this connection, e.g. cutting it and forcing the
terminal to go offline.

We assume that cardholders only enter their PIN into honest
terminals. In other words, the cardholder uses terminals at rep-
utable points of sale in the process of a conscious purchase and
never enters their PIN into random terminals that pop up on the
street. The properties of unlinkability and PIN secrecy are immedi-
ately compromised if the PIN is entered into a malicious terminal
which reveals the PIN to attackers. If an attacker possesses a PIN,
clearly the card can be stolen and then used for high-value pur-
chases for which the PIN is required. While theft may be mitigated
by cancelling cards, an attacker knowing the PIN may authorise
high-value purchases by relaying the messages between an hon-
est terminal and an honest card [24], making it difficult for the
cardholder to dispute the transaction, as legally a cardholder is
always held liable for transactions authorised by a PIN; and hence
the primary goal of the security of money in the account would
be compromised. Supposing that relay attacks were mitigated, an
attacker knowing the PIN may still attack unlinkability as follows.
For high-value transactions, it becomes possible for a terminal that
remembers the PIN to track cards by the fact that the same PIN is
used. Moreover, even in a low-value contact scenario not requiring
the PIN, the PIN can nonetheless be used to track specific individu-
als, since such terminals remembering PINs can run a fake session
with a high-value amount requiring the PIN to be sent from the
terminal to the card in order to check if it has already seen this card
before processing the legitimate low-value transaction. In contrast
to the above, if an attacker is physically unable to perform contact
transactions, low-value contactless payments are unlinkable even
if the PIN is compromised. We analyse this case separately in the
extended version of the current paper [16].

There are other attacker models. We could have verified with
respect to a weaker distant attacker that operates within a distance
of 100cm to 20m from the card and can only eavesdrop on com-
munications [23, 32]. This attacker would have been sufficient to
establish privacy for the proposal already considered by EMVCo
establishing a channel to encrypt regular EMV transactions [2].
Other attackers may attempt side-channel attacks by measuring
execution time of cryptographic operations, or the response time
from the bank, which is out of scope of our analysis.

4.2 Formal specification of the protocol

We use the applied r-calculus language [9] to specify the formal
model of the UTX protocol where all cards are synchronised to
execute within the same month MM. In the essence of this formalism,
we have processes that can communicate by sending and receiving

1400

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

messages using channels. We write ch(M) and ch(x) for sending the
message M or receiving the input x on the channel ch, respectively.
A process can also generate private values (used e.g. for fresh secret
keys and nonces), written as va, be replicated using the ! operator
(allowing an unbounded number of its instances to execute), and
run in parallel with other processes using the | operator. In Fig. 5
we have three processes that model the execution of a session of
our protocol by the three roles in the UTX protocol: the terminal,
the card, and the bank. Events, marked with ev:, will be used in
the security analysis and can be ignored until Section 4.4. Fig. 6
specifies the top-level process that expresses how these processes
are assembled and instantiated across multiple payment sessions
in a full execution of the protocol.

4.2.1 The card process. C, described in Fig. 5a, represents the exe-
cution of a payment session by a card.

vch.card(ch).C(ch, c, pks, vsiguy, PAN, mk, PIN)

It is parameterised by the session channel ch, the card’s secret key c,
the system-wide public key pks used to check the bank’s certificate
crt received from the terminal, the signature vsigyy on the card’s
public key for the current month (considering the currently valid
month only simplifies the initial analysis), the card number PAN,
and the PIN. First, the card establishes a key with the terminal,
then checks the certificate of the terminal and sends back its own
month certificate (comprising its public key and the corresponding
Verheul signature) blinded with the scalar a used in the shared key
establishment. Using the data provided in the terminal’s certificate,
the card also generates k.j, which is a fresh symmetric key to
be used by the card to communicate securely with the bank (the
terminal cannot obtain this key). Upon receiving the transaction
details, the card decides as follows: if no PIN has been provided
or the corresponding PIN matches its own PIN, the card accepts
the transaction and replies with the corresponding cryptogram.
Otherwise, the rejection cryptogram AC™ is generated and sent as
reply to the terminal.

4.2.2 The terminal process. The modes in which a terminal can
operate are combined in a role T defined as follows.

veh.term(ch).T (user, ch, pkwm, crt, kbt)

T is parametrised by the secret channel user used to enter the PIN,
the session channel ch, the public key used for verifying the card
certificate for the given month pkwy, and the shared secret key
between the terminal and the bank kbt. To incorporate various
operation modes for the terminal, we have three types of processes
from which the terminal process T is made of: the process for online
high-value transactions Tonhi, for offline high-value transactions
Toffhi> and for low-value transactions Tj,.

Initially, each terminal proceeds with the key establishment
phase with the card, sends its certificate, and checks the received
month certificate. High-value terminals rely on the PIN entered by
the cardholder to perform transaction authorisation. To represent
the different types of transactions that can occur, we have constants
lo and hi for low-value and high-value transactions respectively.

The online high-value terminal process Tonpi is given in Fig. 5b.
Since the transaction is high-value, the PIN is required and after
the initialisation, the user enters the PIN using the private channel

CCS *23, November 26-30, 2023, Copenhagen, Denmark

(a) ’ Card C(ch, ¢, pks, vsiguy, PAN, mk, PIN) ‘

ch(z1).

va.letzy = $(a,$(c,g)) in
c_h(zz).
letke:=h(¢(a-c,z1))in
ch(m). =

let ((MM,yg),MCjs) :=dec(m, k) in
if check(MCs, pks) =(MM,yg) then
leteme:={(¢(a.¢(c.0)).¢(a,vsigum)) i, in
ch{emc).
ch(x).
let(TX,uPin) :=dec(x, k) in
letACt := (a,PAN,TX) in
1let AC% = (a,PAN,TX, 0k} in
1et AC" := (q,PAN, TX,no) in
letkep:=h(¢p(a-c,yp))in
if uPin=1 then
letHAC := (AC,h((ACt, mk))) in
leteac:= {({HAC} . L, TX)}f, in

ev:CRunB (eac)

cb’

ev:CRun (z1,z2,m, emc, x, eac)
ch{eac)

elseif uPin=PIN then
let HAC := (AC% h({AC°K, mk))) in
leteac:= {({HAC}y,,,0k TX)}f. in
ev:CRunB ({HAC}_,)
ev:CRun (z1,z2,m, eme,x, eac)
ch{eac)

else
letHAC := (AC"°,h({(AC"®, mk})) in
leteac:= {{{HAC} ,,n0, TX)} in
ev:CRunB ({HAC},,)

ev:CRun (z1,z2,m, emc, x, eac)

Jl(eac)

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

(b)] Terminal Tonn; (user, ch, pkww, crt, kbt) \ © \ Bank B(ch, si, kbt, b;) \

vTXdata.

letTX:=(TXdata,hi) in

vt.letzy :=¢@(t,¢)in

ch(z1).

ch(zz).

letks=h(p(t,z2))in

E{{crt}k).

ch(n).

let(B,Bs) :=dec(n,k;) in

if vcheck(Bs, pkum) =B then

if B=z5 then

user(uPIN).

letetx={(TX, L)}k, in

ch(etx).

ch(y).

let (EHAC, pinV,tx) :=dec(y,k;) in

if tx=TX then

ev:TComC (21,2, {crt},.n, etxy)

letreq={(TX,z2, EHAC,uPIN)}p; in

ev:TRunBC (req,zl,ZZ,{crt}kt,n, etx,y)

E(req).

ch(r).

if dec(r,kbt) =(TX,rtype) then
ev:TComBC (req, r,z1,za,{crt},.n, etx,y)
if rtype=accept then

ev:TAccept (kbt, TX)

ch(auth)

ch(x).
let(TX’,z3, EAC,uPIN) := dec(x, kbt)
letkpe:i=h(¢p(bs,z2))in
let (AC,ACpmac) :=dec(EAC, kp.)in
let (x4, PAN, TX, pinV) =AC in
(si, PAN) (PIN, mk, pk).
if h((AC,mk)) =ACjmae then
if TX=TX then
if ¢(xq pke) =22
let (TXdata, TXtype) :=TX in
if TXtype=1o then
ev:BComC (EAC)
ev:BRunT (x,{(TX’,accept) } rps)
ev:BComTC(x)
ch({(TX",accept) } k)
elseif TXtype=hi then
if (pinV=o0k) V (uPIN=PIN) then
ev:BComC (EAC)
ev:BRunT (x, {(TX',accept) }xp)
ev:BComTC(x)
a({(TX',accept)}kbt>
else
ev:BReject (kbt,TX)
ev:BComC (EAC)
ev:BRunT (x,{(TX’,reject)}rp)
ev:BComTC(x)

ch{({{TX’,reject)} xp-

In addition, there are processes Tofhi and T1, defining the behavior for offline high-value and low-value transactions, respectively
(presented in the proof of Theorem 1 [16]). Moreover there is T defined as Tonhi + Torfhi + T1o- The star * indicates at which point the card
selects the appropriate month certificate to present (see Appendix D of [16] for a larger specification making this choice explicit).

Figure 5: Specifications for the three roles in the UTX protocol.

1401

Provably Unlinkable Smart Card-based Payments

(a) The real protocol specification UTXjpp)

v user, s, si,)(MM,ﬁ(pk(s)).m(vpk()(m)).(

'WPIN, mk, c, PAN.(
letcrtC == vsig(¢(c,g), yuv) in
lvch.card{ch).C(ch, c, pk(s), crtC, PAN, mk, PIN)
| Yuser(PIN)| !(si, PAN)((PIN, mk, ¢(c,8)))) |
vby.lvkbt.
vch.bank (ch).B(ch, si, kbt, by) |
letcrt == (MM, §(bz, 9)), sig({MM, §(br, @), 5))in
vch.term{ch).T (user, ch, vpk(yum) , crt, kbt)))

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

(b) The ideal unlinkable protocol specification UTXspec

v user, s, si,)(MM.m(pk(s)).m(vpk()(m)).(

1WPIN, mk, c, PAN.(
letcrtC = vsig(¢(c,g), yum) in
vch.card{ch).C(ch, c, pk(s) , crtC, PAN, mk, PIN)
| luser(PIN)| !(si, PAN)((PIN, mk, $(c,8)))) |
vby \wkbt.(
veh.bank({ch).B(ch, si, kbt, b;) |
letcrt = ((MM, (b, 9)), sig({MM, ¢ (br, 8)), 5))in
veh.term{chy.T (user, ch, vpk(ymm) , crt, kbt)))

Figure 6: Specifications for the real UTX protocol and its ideal unlinkable version

user, which models that the PIN can only be entered into honest
terminals. Then the terminal sends the transaction details to the
card, receives the application cryptogram in the response, and sends
it to the bank together with the entered PIN. Since we are in the
online mode, the terminal authorises the transaction only after
receiving confirmation from the bank. In contrast, offline terminals
authorise transactions right after receiving the reply from the card.

The offline high-value and low-value modes are similar, and their
specifications appear in Appendix B of [16]. The offline high-value
mode requires the terminal to send the entered PIN to the card
since only the card can verify the PIN if the terminal is offline.
Terminals operating in this mode accept transactions only if the
ok reply has been received from the card, however, regardless of
the outcome, the cryptogram is always sent to the bank eventually.
Low-value transactions are PINless, hence the corresponding role
specification Tj, does not require that online and offline modes are
distinguished.

4.2.3 The bank process. B, specified in Fig. 5c, that connects to a
terminal session identified by the shared key kbt is represented as
follows.

vch.bank{ch).B(ch, si, kbt, b;)

In addition to kbt, its parameters are the session channel ch, the
system-wide channel si that is used by the payment system to ac-
cess the card database, and the bank’s secret key b;. We model
each entry inserted into the card database using the instruction
I(si, PAN)((PIN, mk, ¢(c, g))), and the corresponding entry can be
read by receiving a message on the channel consisting of the pair
(si, PAN) where the first component of the channel keeps the data-
base private to the bank and the second component indicates the
entry to look up. After receiving a transaction request from a termi-
nal, the bank derives the symmetric key with the card k., obtains
the PAN from the cryptogram, and obtains the card’s PIN, its mas-
ter key mk, and the public key ¢(c, g) from the database channel
si. The integrity of the cryptogram is then checked against the
corresponding information from the database, taking into account
the verification of the PIN if the transaction is high value. If all the
checks are ok, the transaction is accepted, otherwise not; and in all
cases, a confirmation message is sent in reply to the terminal.

1402

4.2.4 The full protocol. To complete the specification, in Fig. 6 we
present the full system, which operates as follows. At the start, the
system-wide parameters are generated and public data that includes
the system public key pk(s) and the month public key vpk(ymv)
is announced on the public channel out. A new card is issued by
the generation of the card-specific parameters PIN, mk, ¢, and PAN,
and can participate in many sessions, hence the red replication
operator “!”. Notice that together with the card the system has a
user(PIN) process that models the user entering PIN into a terminal
on the channel user known only to the terminals; and the process
(si, PAN)((PIN, mk, ¢(c,g))) that models the entry into the card
database that the bank can access to get the card’s data. The bottom
part of the figure specifies the back end of the system, i.e. the banks
and the terminals. There is a system-wide secret key of the bank b;
and a session-wise (hence the replication) symmetric key between
the bank and the terminal kbt. Notice also that we are using public
session channels ch to give an attacker the power to observe which
agents are communicating.

4.2.5 The Dolev-Yao model accounts for malicious terminals. Ter-
minals operated by attackers should be accounted for in our threat
model, since, consistent with EMV, terminals are not authenticated
by the card and hence can be implemented and operated by any-
one. In our model, indeed, an attacker can impersonate a termi-
nal, either up until the point when the PIN is requested, or, in
modes where the PIN is never requested, proceed to obtain the
encrypted application cryptogram produced by the card. To op-
erate as a terminal, an attacker only needs the bank’s certificate
(MM, @ (br, 9)), sig({MM, ¢ (b, g)),s)) which is straightforward to
obtain since an honest terminal gives away this certificate to any-
one it communicates with. Indeed, a fake card can be used to obtain
new monthly certificates even if authorities only distribute them
to honest terminals. Such a fake card would first engage in a Diffie-
Hellman handshake with an honest terminal, which establishes a
channel on which an attacker can receive the certificate currently
loaded into the terminal. No knowledge of any private key is re-
quired to implement such fake cards. This viable threat is accounted
for in the proofs of unlinkability theorems in the next section.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

4.3 Unlinkability definition and analysis

In this section, we clarify the informal definition of unlinkability
given by Scheme 1 presented in Section 2.2.3 and formally prove
that UTX is unlinkable. We also present some variations on the
unlinkability problem that show that unlinkability still holds even
if certain marginal coarse identities are tolerated.

4.3.1 The formal definition of unlinkability. Recall that the core of
the unlinkability scheme is the equivalence between the idealised
and the real-world system. We define both in Fig. 6. Notice that in
the system UTXjyp| defining the real-world scenario the card with
the private key c can participate in any number of sessions, while
in the system UTXspec defining the idealised situation, the card can
only participate in one session at most. The possibility of entering
the PIN arbitrarily many times is given by the process !user(PIN),
and accessing the database in arbitrarily many bank-terminal ses-
sions given by the process !(si, PAN)((PIN, mk, ¢(c,g))), remains
the same for both real and idealised worlds.
We are ready now to give the unlinkability definition.

DEFINITION 1. (unlinkability) We say that the payments are un-
linkable if UTXpmp; ~ UTXspec, where ~ is quasi-open bisimilarity.

There is a difference with the definition of unlinkability for key
establishment considered in [26], where the terminal and the bank
are deliberately omitted. The reason is that the key establishment
in isolation, i.e. the UTX protocol up to the Cardholder verification
phase, requires no shared secret between the parties, yet to exe-
cute, for instance, a full high-value transaction, at least the PIN
is required to be shared between all three parties involved in the
protocol. In addition, to validate a transaction there is a secret mk
shared between the bank and the card, meaning that, even if only
transactions without the PIN are modelled, the bank and card must
be explicitly modelled in a transaction.

Finally we are ready to formulate our first result.

THEOREM 1. UTXjmp ~ UTXpec-

The detailed proof of Theorem 1 is given in [16], however, we
give a proof sketch here. The key is to give a relation R between
processes representing states of the two worlds demonstrating that
an attacker has no strategy allowing to distinguish between these
two worlds. We form such a relation by pairing the appropriate
states and checking that it satisfies the conditions for a quasi-open
bisimulation. We pair the states based on the number of sessions
started with terminals, cards, and banks and the respective stages
of each session; and we ignore the number of exhausted processes
that model entering the PIN and accessing the database for card’s
details. Then we check that each possible transition that either
world can make can be matched by the opposing world; that the
resulting states are related by R, that any two related states are
statically equivalent, i.e. indistinguishable by an attacker who can
only observe which messages are on the network in this state;
and finally, that R is open, i.e. there is no way for an attacker to
distinguish between two worlds by manipulating free variables.

4.3.2 Unlinkability in the face of coarse identities. Below we justify
the observation made in Section 2.2.3 where we pointed out that
unlinkability can only be achieved up to the fingerprint compris-
ing the coarse identities of the card being revealed. We explain

1403

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

below how such coarse identities of the card can exist in the system
without compromising unlinkability.

Signing authority. We demonstrate that UTX is unlinkable even
if an attacker can distinguish two cards that use different signing
authorities. To do so, we exploit the fact that quasi-open bisim-
ilarity is a congruence [27], i.e. when a smaller system satisfies
unlinkability, then a larger system containing the smaller one as
a subsystem also satisfies unlinkability, i.e. process equivalence
is preserved in any context. A context is a process “with a hole”
such as O(-) := !(+). Notice, by putting UTXjmp| into O we obtain
a system with multiple signing authorities. Similarly, by putting
UTXspec into O results in an ideal world in each card engages still
in one session, but may use different signing authorities. Now, since
quasi-open bisimilarity is a congruence, the following holds.

COROLLARY 1. 'UTXpp; ~ 'UTXspec, i.e. UTX is unlinkable even
in the presence of multiple signing authorities.

The above means that unlinkability holds for systems with mul-
tiple signing authorities as long as we tolerate that coarse identity.
That is, we permit a coarse identity, a signing authority, to exist
in the system, as represented by building multiple authorities into
the ideal world ! UTXspec, without compromising unlinkability. In
particular, Corollary 1 concerns the degree of unlinkability that can
be established in a deployment scenario where multiple payment
systems might not agree to provide a common application for un-
linkable payments as discussed in Section 3.1, and therefore these
different payment systems form a coarse identity of the card.

The card has been used recently. To clarify that the existence of
cards valid for several months does not invalidate unlinkability, we
consider a model of unlinkability, where cards can respond to two
months at any moment. Furthermore, this model admits transitions
from one month to the next, maintaining a pointer as described in
Section 3.2. To reflect such behaviour of cards, we build into the
definition of a process modelling a card the ability to respond to
two months at any time and, whenever the new month is asked, to
invalidate the oldest of the two months. Notice that this requires a
card to carry the state, i.e. to remember that it should respond only
to the most recent two months and never respond to older months
if asked. In [16] we show how to employ recursion to model such
behaviour and prove the following.

THEOREM 2. UTXMM,-mPl ~ UTXMM;pec-

In the above UTXMM;yp) and UTXMMpec define the real and
the ideal worlds in an enhanced model. The ideal world models an
infinite supply of cards that are used only once, and in that single
session, may either respond to the two most recent months, or the
three most recent months (the latter modelling the tolerance of
cards that are one month behind and can still be updated to the
current month). Therefore, a coarse identity of whether or not the
card has already been used in a session with an up-to-date terminal
in the current month can also exist in the system without compro-
mising unlinkability. There is an additional assumption made in
this model, specifically, that we do not verify the unlinkability of
cards which have not been used at all in the previous month. The
coarse identity of having used the card in the past month, but not in
the current month, barely gives any identifying information away
at all. However, a card that has not been used for over two month,

Provably Unlinkable Smart Card-based Payments

is relatively easy to identify among a pool of cards that are used in
a normal, more frequent, manner, since it may be tracked with high
probability by observing whether it responds rather than blocks
when presented with a two-month-old certificate.

4.3.3 Tools cannot yet verify the unlinkability of UTX. In the proofs
of Theorems 1 and 2 establishing the unlinkability of UTX, we have
constructed and checked by hand a bisimulation between the real
and the ideal worlds of the respective models of the protocol. Below,
we briefly address the question of whether current tools can be
used to confidently reach the same conclusion.

Widely-used tools such as Tamarin [10] and ProVerif [15] offer
limited support for bisimilarity checking — they can verify diff-
equivalence, i.e., equivalence checking between two processes that
differ only in the messages exchanged. Definition 1 does not fall
into the diff-equivalence category since the UTXjyp) and UTX;spec
processes have different structures. Hence, the use of Tamarin is
ruled out. ProVerif, however, makes an attempt to represent the
equivalence problem for arbitrary processes as a diff-equivalence
problem, thus it can be considered as a candidate for verifying
the unlinkability of UTX. Moreover, recently, a new version of
ProVerif [19] that may verify observational equivalence (aka early
bisimilarity) between two arbitrary processes, lifting restrictions on
diff-equivalence, has been introduced. Our experiments show that
neither ProVerif nor the recent update can yet verify the unlinkabil-
ity of the single-month model of UTX as given in Definition 1. This
means that, for the time being, our manual proofs are justified. We
provide evidence in the repository [17], which contains ProVerif
models that fail to terminate. Hence, the investigation of whether
it is possible to use current tools to verify the unlinkability of UTX,
and to transform Definition 1 into a diff-equivalence problem in a
sound and complete manner is left as future work.

4.4 Authentication in UTX

Our security definition supporting the requirements identified in
Section 2.2.2 relies on an authentication property called injective
agreement [29]. A party X injectively agrees with the parties Y
and Z whenever if X thinks it has authenticated Y and Z, then Y
and Z executed the protocol exchanging the same messages as X
(agreement), and each run of X corresponds to a unique run of Y
and Z (injectivity).

To verify injective agreement in UTX we have already included
events in role specifications in Fig. 5 marking certain stages reached
by processes during the execution of the protocol and then evaluate
correspondence assertions [14] between events listed in Fig. 7 using
the ProVerif tool [13]. The extended paper [16] contains further
details regarding using ProVerif.

The events in Fig. 7 are parametrised by the messages the card,
the terminal and the bank exchange, i.e. z; and z; stand for the
ephemeral terminal’s key and the blinded card’s public key, ec, emec,
etx, eac represent the messages the card exchanges with the terminal
and req, resp the message the terminal exchanges with the bank. Fi-

nally, EAC represents the encrypted cryptogram {(AC, ACp4¢) t k. -

The first three assertions in Fig. 7 are straightforward — whenever
the terminal or the bank thinks it has executed the session with the
rest of the agents, they have exchanged the same messages, thereby
agreeing on crucial data such as the derived keys, transaction details,

1404

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

The terminal agrees with the card (before contacting bank)
TComC(z1, z2, ec, emc, etx, eac) =
CRun(z1, z2, ec, emc, etx, eac)

The terminal agrees wih the bank and the card
TComBC(req, resp, z1, z2, ec, emc, etx, eac) =
BRunT(req, resp) A CRun(zi, z2, ec, emc, etx, eac)

The bank agrees with the terminal and the card
BComTC(req) =

TRunBC(req, z1, z2, ec, emc, etx, eac) A

CRun(z1, z2, ec, emc, etx; eac))

Bank agrees with the card on the encrypted cryptogram
BComC(EAC) = CRunB(EAC)

Figure 7: Injective agreement correspondences in UTX.

the cryptogram, etc. The last assertion, representing the agreement
between the bank and the card, ensures that an honest card was
involved in low-value contactless payment even if terminals are
fully compromised. In this scenario the terminals can be omitted in
the specification as explained in the related work [36].

Security under compromised terminals. Using ProVerif, we support
the point made at the end of Section 3.5.4 that even if a terminal
neglects to perform the checks required to authenticate the card,
the bank is still ensured that a valid card is executing a transaction.
To model that, we remove the Verheul signature verification in the
terminal’s process. In that case, the first property that the terminal
authenticates the card fails as expected, while others are preserved.

Security under compromised ywv. Another scenario in which the
terminal accepts a potentially fake card is when the key ywm is
leaked, allowing attackers to manufacture cards passing the termi-
nal’s check by producing valid Verheul signatures. The verification
outcome in this case is similar - the terminal-card agreement fails,
making offline transactions insecure, while online transactions are
still safe, i.e. the injective agreement involving the bank holds.
Therefore, the payment system should notify terminal owners to
stop accepting offline payments if ywq has been compromised.

The repository [17] contains the code specifying the injective
agreement in the UTX protocol and the expected secrecy of the
private data. All properties are successfully verified within 100
minutes. The code verifying additional scenarios described above
is provided in the directory compromised.

4.4.1 Remark on replay protection. We explain here a small differ-
ence between the model used to verify unlinkability and authenti-
cation concerning replay protection. Recall that replay protection
is enforced by the uniqueness by the bank of the triple (PAN, TX, a),
as specified in Section 3.5.4 and in Fig. 4. This check is an essen-
tial ingredient for authentication, without which authentication
could not be verified. Hence replay protection is accounted for in
the threat model used in Section 4.4, specifically in line 165 of the
ProVerif model.

In contrast, the threat model we use for unlinkability simplifies
this aspect by allowing terminals to replay cryptograms, that is the
bank skips the uniqueness check. This does not introduce problems
for the following two reasons. Firstly, the bank in the UTX protocol

CCS *23, November 26-30, 2023, Copenhagen, Denmark

sends no message intended for the card, hence there is no way for
the terminal to probe cards with such a message in an attempt to
track them. Secondly, an observable auth output by the terminal
that reveals whether the cryptogram was accepted by the bank
introduces no issues regardless of the presence of the check. With
replay protection, any attempt to replay the message from the
terminal to the bank, i.e. the cryptogram with auxiliary data would
result in the absence of auth, while, without replay protection, the
replay would result in the message auth being always present. In
both cases it is impossible for an attacker to link the presence or the
absence of the auth with any session other than the one in which
the cryptogram was created, and hence it cannot be used to link
two sessions with the same card.

4.5 Estimation of the runtime performance

Concluding the analysis, we give a rough estimate of the runtime
performance of the UTX protocol focusing on the card operations.
Indeed since the terminal is a more powerful device than the card
we expect its contribution to the runtime to be minuscule. We
make our assessment based on the estimations reported in [22, 30]
for the Multos Card ML3 supporting ECC scalar multiplication.
The table below summarises the amount of time for individual
operations performed by the card in the UTX protocol. As we expect
the equality check and forming n-tuples operations to be negligible,
we omit them in our calculation. Overall the numbers add up to
700ms per on-card computation per session. We expect that further
optimisation and using more recent smart card platforms would
lower this number within the current 500 ms recommendation [6].

Operation o) | h(-) dec(-,-) | {} check(,-)
of ops 6 3 2 3 1
ms per op 61 11 13 13 228

The numbers from the third line correspond to the 256-bit secu-
rity level for ¢ and check operations, which are evaluated using the
Barreto-Naehrig pairing-friendly curve since Verheul signatures are
pairing-based, and ECDSA, respectively. To the best of our knowl-
edge, there is no credible source for 256-bit security assessment for
the rest, hence we use the available benchmarks — dec and { } are
evaluated using 128-bit key AES in CBC mode on 128-bit message,
and, finally, h has been tested using SHA-256 on 128-bit message.

5 CONCLUSION

In this paper, we have identified in Section 2 the requirements for a
smartcard-based payments protocol, and have demonstrated that at
least one protocol satisfying these requirements exists — the UTX
protocol presented in Fig. 4. We strengthen the initial security of
EMV as explained in Section 2.2. In particular, we request that the
application cryptogram is secret and can only be processed by a
legitimate acquiring bank. This requirement is addressed in UTX
by using the certified bank’s public key that the card obtains at the
beginning of each transaction and uses to encrypt the cryptogram
as we have explained in Sections 3.4.2, 3.5.4. Fig. 7 summarises
how we have proved in ProVerif that UTX satisfies all security
requirements we have identified.

We explain how ISO 15408 supports targeting unlinkability as our
privacy requirement in Section 2.2.3, and highlight that the finger-
print of the card, comprising coarse identities of a card that permit

1405

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov

groups of cards to be tracked, should be minimised. Since strong
identities compromise unlinkability, we have hidden any strong
identity of the card by utilising Verheul signatures to make the valid-
ity signature distinct in every session, as explained in Section 3.5.2,
and by encrypting the cryptogram that contains the PAN to hide it
from the terminal, as explained in Section 3.5.4. We have minimised
the card’s fingerprint by introducing certificates that reveal that the
card is valid for the current and previous months without revealing
the expiry date, as explained in Sections 3.2, 3.5.2. If payment sys-
tems agree on a common certification authority we may reduce the
card’s fingerprint further by introducing the Unlinkable application
as explained in Section 3.1. Theorem 1 proves that these measures
indeed achieve unlinkability in UTX.

We provide precisely three modes which agents should imple-
ment to process UTX payments. The modes of payment should be
standardised and be common to all cards supporting UTX. This
avoids cards being distinguished by implementation differences.
This contrasts to the current EMV standard, which has many dif-
ferent modes of operation, defined in 2000 pages split into several
books; thus the variety of implementations serves as a coarse iden-
tity of the card. Moreover, having a concise, coherent, and linear
presentation can improve the reliability of the system. Our message
sequence chart in Fig. 4 and the applied 7-calculus specification of
UTX in Fig. 5 go some way towards this aim.

Roll-out of the UTX protocol is feasible. The software of banks
and terminals can be updated in advance across a region so both
accept unlinkable payments, while continuing the support of old
payment methods. Then cards supporting unlinkable payments
can be issued. Of course, new cards must implement only one
application to avoid attacks that downgrade cards to EMV.

Regarding the protocol design future work includes introducing
relay protection [33]. Firstly, it should mitigate the situation where
a high-value online transaction is compromised via a relay attack
if the PIN is exposed, as we mention in Section 4.1. Secondly, it is
essential for the protocol that supports PIN tries counter, which
limits the number of incorrect attempts to enter the PIN. An active
attacker can exploit PIN tries counter by relaying messages from the
honest terminal waiting to process an online high-value transaction
to the card and entering the PIN incorrectly enough times to exceed
the limit, thereby blocking the card from any online transactions.
Then to identify such cards, an attacker should yet again relay com-
munication between the card and an online terminal - transactions
would be declined with an explicit reason of the PIN tries exceeded.
Relay protection would mitigate this scenario, making it impossible
to enter the PIN remotely since the user should be physically close
and aware of someone entering the PIN.

Since the question of whether current tools can analyse the
unlinkability of UTX remains open (as we have demonstrated in
Section 4.3.3), future work includes developing automated methods
for proving the privacy of security protocols which would lower
the analysis effort — the proof of Theorem 1 in [16] illustrates the
high cost of the manual analysis of a single protocol.

ACKNOWLEDGMENTS

Semen Yurkov is supported by the Luxembourg National Research
Fund through grant PRIDE15/10621687/SPsquared. We thank the

Provably Unlinkable Smart Card-based Payments

reviewers for their thorough analysis of our threat model and as-
sessment of the scope of related work on tools.

REFERENCES

=
0,

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

2011. EMV Integrated Circuit Card Specifications for Payment Systems. Books
1-4. https://www.emvco.com/document-search/ Accessed: 26-08-2021.

2012. EMV ECC Key Establishment Protocols. RFC until 28th January 2013. EMVCo
LLC. http://www.emvco.com/specifications.aspx?id=243 Accessed: 01-04-2020.
2014. EMV Next Generation. Next Generation Kernel System Architecture
Overview.

2017. Common Criteria for Information Technology Security Evaluation. Part 2:
Security functional components. Version 3.1, Revision 5, CCMB-2017-04-002.
2019. EMVCo Statement — The Advancement of EMV Chip Specifications. https:
//www.emvco.com/specifications/ Accessed: 30-03-2023.

2021. EMV Contactless Specifications for Payment Systems. Book A. https:
//www.emvco.com/document-search/ Accessed: 20-09-2021.

2021. European Court of Human Rights admits RSF complaint against the
BND’s mass surveillance. https://rsf.org/en/news/european-court-human-rights-
admits-rsf-complaint-against-bnds-mass-surveillance Accessed: 25-01-2022.
2022. German police used a tracing app to scout crime witnesses.
https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-
tracing-app-luca/ Accessed: 25-01-2022.

Martin Abadi, Bruno Blanchet, and Cédric Fournet. 2018. The Applied Pi Calculus:
Mobile Values, New Names, and Secure Communication. Journal of the ACM 65,
1(2018), 1:1-1:41. https://doi.org/10.1145/3127586

David Basin, Jannik Dreier, and Ralf Sasse. 2015. Automated Symbolic Proofs of
Observational Equivalence. In Computer and Communications Security (CCS’15).
Association for Computing Machinery. https://doi.org/10.1145/2810103.2813662
David Basin, Ralf Sasse, and Jorge Toro-Pozo. 2021. The EMV Standard: Break,
Fix, Verify. In IEEE Symposium on Security and Privacy (S&P’21). 1766-1781.
https://doi.org/10.1109/SP40001.2021.00037

Lejla Batina, Jaap-Henk Hoepman, Bart Jacobs, Wojciech Mostowski, and Pim
Vullers. 2010. Developing efficient blinded attribute certificates on smart cards
via pairings. In International Conference on Smart Card Research and Advanced
Applications (CARDIS’10) (LNCS, Vol. 6035). Springer, 209-222. https://doi.org/10.
1007/978-3-642-12510-2_15

Bruno Blanchet. 2001. An efficient cryptographic protocol verifier based on
prolog rules. In 14th IEEE Computer Security Foundations Symposium (CSF’01).
IEEE, 82-96. https://doi.org/10.1109/CSFW.2001.930138

Bruno Blanchet. 2009. Automatic verification of correspondences for security
protocols. Journal of Computer Security 17, 4 (2009), 363-434. https://doi.org/10.
3233/JCS-2009-0339

Bruno Blanchet, Martin Abadi, and Cédric Fournet. 2008. Automated verification
of selected equivalences for security protocols. The Journal of Logic and Algebraic
Programming 75, 1 (2008), 3-51. https://doi.org/10.1016/j.jlap.2007.06.002
Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov. 2023. Provably
Unlinkable Smart Card-based Payments (Extended Version). https://arxiv.org/
abs/2309.03128 Accessed: 07-09-2023.

Sergiu Bursuc, Ross Horne, Sjouke Mauw, and Semen Yurkov. 2023. ProVerif
models of UTX. https://github.com/utxprotocol/proverif Accessed: 05-09-2023.

[18] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

[19

transferable Anonymous Credentials with Optional Anonymity Revocation. In
Advances in Cryptology — EUROCRYPT 2001, Birgit Pfitzmann (Ed.). Springer
Berlin Heidelberg, 93-118. https://doi.org/10.1007/3-540-44987-6_7

Vincent Cheval and Itsaka Rakotonirina. 2023. Indistinguishability Beyond Diff-
Equivalence in ProVerif. In 36th IEEE Computer Security Foundations Symposium
(CSF’23). IEEE. https://doi.org/10.1109/CSF57540.2023.00036

1406

[20]

[21]

[22]

[24

[25

[26]

[27]

[29

[30

[31

[32

[33

[34

[35

[36

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE
Transactions on Information Theory 29, 2 (1983), 198-208. https://doi.org/10.1109/
TIT.1983.1056650

Saar Drimer and Steven J. Murdoch. 2007. Keep Your Enemies Close: Distance
Bounding Against Smartcard Relay Attacks. In 16th USENIX Security Symposium
(USENIX Security 07). USENIX Association.

Petr Dzurenda, Sara Ricci, Jan Hajny, and Lukas Malina. 2017. Performance
Analysis and Comparison of Different Elliptic Curves on Smart Cards. In 2017
15th Annual Conference on Privacy, Security and Trust (PST). 365-36509. https:
//doi.org/10.1109/PST.2017.00050

Maximilian Engelhardt, Florian Pfeiffer, Klaus Finkenzeller, and Erwin Biebl.
2013. Extending ISO/IEC 14443 Type A Eavesdropping Range using Higher
Harmonics. In Proceedings of 2013 European Conference on Smart Objects, Systems
and Technologies (SmartSysTech). 1-8.

Lishoy Francis, Gerhard Hancke, Keith Mayes, and Konstantinos Markantonakis.
2010. Practical NFC Peer-to-Peer Relay Attack Using Mobile Phones. In Radio
Frequency Identification (LNCS, Vol. 6370), Siddika Berna Ors Yalcin (Ed.). Springer,

35-49. https://doi.org/10.1007/978-3-642-16822-2_4
René Habraken, Peter Dolron, Erik Poll, and Joeri de Ruiter. 2015. An RFID

Skimming Gate Using Higher Harmonics. In Radio Frequency Identification (LNCS,
Vol. 9440), Stefan Mangard and Patrick Schaumont (Eds.). Springer, 122-137.
https://doi.org/10.1007/978-3-319-24837-0_8

Ross Horne, Sjouke Mauw, and Semen Yurkov. 2022. Unlinkability of an Improved
Key Agreement Protocol for EMV 2nd Gen Payments. In 35th IEEE Computer Se-
curity Foundations Symposium (CSF’22). IEEE. https://doi.org/10.1109/CSF54842.
2022.9919666

Ross Horne, Sjouke Mauw, and Semen Yurkov. 2023. When privacy fails, a
formula describes an attack: A complete and compositional verification method
for the applied pi-calculus. Theoretical Computer Science 959 (2023), 113842.
https://doi.org/10.1016/].tcs.2023.113842

Apple Inc. 2023. Apple Pay. https://www.apple.com/apple-pay/ Accessed:
31-03-2023.

Gavin Lowe. 1997. A hierarchy of authentication specifications. In Proceedings
10th Computer Security Foundations Workshop. IEEE, 31-43. https://doi.org/10.
1109/CSFW.1997.596782

Lukas Malina, Petr Dzurenda, Jan Hajny, and Zdenek Martinasek. 2018. Assess-
ment of Cryptography Support and Security on Programmable Smart Cards. In
2018 41st International Conference on Telecommunications and Signal Processing
(TSP). 1-5. https://doi.org/10.1109/TSP.2018.8441334

Steven J. Murdoch, Saar Drimer, Ross Anderson, and Mike Bond. 2010. Chip and
PIN is Broken. In IEEE Symposium on Security and Privacy (S&P’10). 433-446.
https://doi.org/10.1109/SP.2010.33

David R. Novotny, Jeffrey R. Guerrieri, Michael Francis, and Kate Remley. 2008.
HF RFID electromagnetic emissions and performance. In 2008 IEEE International
Symposium on Electromagnetic Compatibility. 1-7. https://doi.org/10.1109/ISEMC.
2008.4652133

Andreea-Ina Radu, Tom Chothia, Christopher J.P. Newton, Ioana Boureanu, and
Liqun Chen. 2022. Practical EMV Relay Protection. In IEEE Symposium on Security
and Privacy (S&P’22). 433-452. https://doi.org/10.1109/SP46214.2022.00026
Eric R. Verheul. 2001. Self-blindable credential certificates from the Weil pairing.
In International Conference on the Theory and Application of Cryptology and
Information Security (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer, 533-551. https:
//doi.org/10.1007/3-540-45682-1_31

Pim Vullers and Gergely Alpar. 2013. Efficient Selective Disclosure on Smart
Cards Using Idemix. In Policies and Research in Identity Management, Simone
Fischer-Hiibner, Elisabeth de Leeuw, and Chris Mitchell (Eds.). Springer Berlin
Heidelberg, 53-67. https://doi.org/10.1007/978-3-642-37282-7_5

Semen Yurkov. 2023. Analysis of Smartcard-based Payment Protocols in the Applied
Pi-calculus using Quasi-Open Bisimilarity. PhD thesis. University of Luxembourg.
http://hdl.handle.net/10993/55510

https://www.emvco.com/document-search/
http://www.emvco.com/specifications.aspx?id=243
https://www.emvco.com/specifications/
https://www.emvco.com/specifications/
https://www.emvco.com/document-search/
https://www.emvco.com/document-search/
https://rsf.org/en/news/european-court-human-rights-admits-rsf-complaint-against-bnds-mass-surveillance
https://rsf.org/en/news/european-court-human-rights-admits-rsf-complaint-against-bnds-mass-surveillance
https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-tracing-app-luca/
https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-tracing-app-luca/
https://doi.org/10.1145/3127586
https://doi.org/10.1145/2810103.2813662
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1007/978-3-642-12510-2_15
https://doi.org/10.1007/978-3-642-12510-2_15
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.1016/j.jlap.2007.06.002
https://arxiv.org/abs/2309.03128
https://arxiv.org/abs/2309.03128
https://github.com/utxprotocol/proverif
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1109/CSF57540.2023.00036
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/PST.2017.00050
https://doi.org/10.1109/PST.2017.00050
https://doi.org/10.1007/978-3-642-16822-2_4
https://doi.org/10.1007/978-3-319-24837-0_8
https://doi.org/10.1109/CSF54842.2022.9919666
https://doi.org/10.1109/CSF54842.2022.9919666
https://doi.org/10.1016/j.tcs.2023.113842
https://www.apple.com/apple-pay/
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/TSP.2018.8441334
https://doi.org/10.1109/SP.2010.33
https://doi.org/10.1109/ISEMC.2008.4652133
https://doi.org/10.1109/ISEMC.2008.4652133
https://doi.org/10.1109/SP46214.2022.00026
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/978-3-642-37282-7_5
http://hdl.handle.net/10993/55510

	Abstract
	1 Introduction
	2 Design space for unlinkable transactions
	2.1 EMV infrastructure
	2.2 Requirements for unlinkable payments

	3 The UTX protocol
	3.1 Application selection
	3.2 Keys required to set up Unlinkable
	3.3 Message theory
	3.4 Before running the protocol: the setup
	3.5 The UTX transaction

	4 Unlinkability and security analysis
	4.1 Attacker model
	4.2 Formal specification of the protocol
	4.3 Unlinkability definition and analysis
	4.4 Authentication in UTX
	4.5 Estimation of the runtime performance

	5 Conclusion
	Acknowledgments
	References

