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ABSTRACT 

Biological aging is a multifactorial process involving complex interactions of cellular and 
biochemical processes that is reflected in omic profiles. Using common clinical laboratory 
measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive 
biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk 
and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model 
EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and 
OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic 
diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, 
n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic 
biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search 
space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a 
measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections 
central to the aging process. 

Keywords: epigenetics, proteomics, metabolomics, biological aging,  multi-omics, aging, clock, 
biobank 

MAIN 

A major goal of aging research is to define biomarkers of aging that capture inter-individual 
differences in functional decline, chronic disease development, and mortality not identified 
through chronological age alone1. Both molecular and clinical data have been used to quantify 
various attributes of the biological aging process. Multiple molecular biomarkers of aging, or 
“clocks'', have been developed as proxies for these hallmarks of aging2. These biomarkers have 
been variously based on telomere length3, neuro-imaging data4–7, immune cell counts8, and large-
scale omics including DNA methylation (DNAm)2,9–11, metabolomics12, glycomics13, and 
proteomics14–16. 

Over the last two decades, electronic medical records (EMR) have been widely used in clinical 
research, in particular for precision medicine, enabling deep phenotype mining from dense, 
comprehensive time-dependent data17. By utilizing comprehensive EMR data, we can capture 
clinical physiological changes over time that robustly illustrate phenotypic changes in real-time 
health status. Capitalizing on EMRs provides a unique opportunity to quantify the aging process 
in a reproducible way across clinical settings. While healthy aging encompasses both quality of 
life and life span, metrics of biological age have traditionally focused on using either clinical data 
to quantify quality of life18,19, or mortality risk to quantify life span20, resulting in biological 
phenotypes that are optimized to one of these attributes, while not fully capturing the other. With 
the wealth of data captured via EMRs, biological aging phenotypes that incorporate both dense 
clinical data and mortality can be created to synthesize these important attributes of aging into a 
single measure.  

While clinical data are essential in creating aging phenotypes, connecting these phenotypes to 
the molecular underpinnings of the aging process is equally important. We do so by combining 
EMR data with comprehensive ‘omic profiling to assess the biological processes that ultimately 
govern aging. The strong molecular link between DNA methylation (DNAm) and the aging process 
has resulted in the widespread development and success of DNAm clocks with various biologic 
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aging phenotypes aimed at reflecting clinical biomarkers (e.g. PhenoAge18), mortality (e.g. 
GrimAge20), and the rate of aging (e.g. DunedinPACE21).  

Despite their broad use across both research and commercial settings, DNAm clocks have 
notable limitations. One such limitation is the difficulty of accurately reducing dimensionality due 
to the technical noise in measuring individual CpGs , which subsequently affects the precision 22. 
The heterogeneity of immune cell subsets is also a confounder of DNAm aging estimates , and 
whilst cellular deconvolution methods have been applied, to date immune deconvolution has 
considered a limited number of cell types23,24. Further, the inclusion of a CpG in a predictive aging 
clock does not necessarily imply causality nor functionality25, and identifying causal CpGs from  
DNAm clocks remains a challenging task, one that limits their biological potential.  

Proteomics and metabolomics are more directly related to biological phenomena and may have 
utility as components of aging clocks. The proteome is altered by hallmarks of aging including 
loss of proteostasis, dysregulated nutrient sensing26, altered intercellular communication27 and 
cellular senescence28. Further, blood plasma contains circulating proteins derived from nearly all 
organs and cell types, making it possible to associate findings in peripheral blood with specific 
tissues and organs21. The metabolome not only provides critical information about metabolic 
processes, but it also provides measures of environmental exposures, including xenobiotics, that 
may be critically linked to the aging process. Further, the peripheral blood metabolome carries 
information from multiple tissues across the body, increasing the potential aging information of 
metabolomics compared to methylation and transcriptomic clocks of blood cells29. 

Despite the important advantages of other omics, the development of transcriptomic, proteomic, 
and metabolomic clocks  for biologic aging phenotypes has been limited. Initial work has 
demonstrated that while individual omics clocks share commonalities, each omic data type 
provides a distinct window of features that illustrate  the aging process30, suggesting that the best 
and most clinically informative approach would harmonize combined information from multiple 
omic measurements to create an optimized aging clock. However, the integration of multiple 
omics into a multi-omic clock or to optimize and further inform upon the biological processes of 
improvement upon DNAm clocks remains an area of unfulfilled clinical potential. 

Using ~30,000 participants from the Massachusetts General Brigham (MGB) Biobank, we 
developed and validated three distinct and clinically relevant measures of biological age: 1) 
EMRAge, a clinically-based and versatile death mortality predictor that can be broadly 
recapitulated across EMRs; 2) DNAmEMRAge, a DNA methylation aging biomarker trained to 
predict EMRAge; and 3) OMICmAge, the first DNA methylation-based multi-omic aging biomarker 
trained to predict EMRAge, that integrates proteomic, metabolomic, and clinical data through the 
use of Epigenetic Biomarker Proxies (EBP) (i.e., methylation surrogates) 31–33. By outperforming 
current methylation-based clocks in associations with chronic disease outcomes and mortality, 
we demonstrate the value of DNAmEMRAge, and OMICmAge, while further substantiating the 
biological relevance and value of  integrating multiple omic data into one biological aging 
phenotype. 
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RESULTS 

Overview of Study Design 

To develop and validate EMRAge, DNAmEMRAge, and OMICmAge, we used participants in the 
Massachusetts General Brigham (MGB) Biobank. Individuals with available plasma and clinical 
data were used to develop EMRAge (n=30,884) (Extended Figure S1). A subset of these 
individuals who had available omic data were used to develop DNAmEMRAge and OMICmAge 
(MGB Aging Biobank Cohort (MGB-ABC), n=3,451). Finally, we validated these aging biomarkers 
using an independent cohort, the TruDiagnostic Biobank (n=12,666) (Figure 1). The additional 
clinical characteristics and demographics for these cohorts are described in Extended Table S1. 
Overall the population in the MGB Biobank cohort has a higher prevalence and broader range of 
comorbidities than individuals enrolled in the TruDiagnostic Biobank cohort.  

Development of EMRAge 

First, 30,884 individuals were apportioned randomly into training and testing sets using a 70:30 
ratio. A Cox proportional hazards (Cox-PH) model was fitted in the training set to estimate the 
weightings of the 19 selected features (Extended Table S7). In a manner analogous to the 
GrimAge approach20, we converted the linear combination of estimated weights and predictor 
values into an "age" metric (Method). The Pearson correlation coefficient between EMRAge and 
chronological age was found to be greater than 0.75 (Extended Figure S2). We validated the 
EMRAge predictors by re-training the algorithm at four time points in 2-year increments: January 
1st of 2008, 2010, 2012, and 2014. The four derived equations were then applied to participants 
(N=11,673) on January 1st of 2016. The Pearson correlations amongst these estimates were 
nearly 1, affirming the robustness of the EMRAge predictors (Figure 2A). Figure 2B shows that 
all aging-related health outcomes, including all-cause mortality, stroke, type-2 diabetes, chronic 
obstructive pulmonary disease (COPD), depression, other cardiovascular diseases (CVD), and 
any type of cancer, are significantly positively associated with higher EMRAge. The highest 
hazard ratio was seen for all-cause mortality (HR = 1.10 with 95% CI [1.10, 1.11]), followed by 
stroke and COPD. For the odds ratio, type-2 diabetes (OR = 1.08 with 95% CI [1.08, 1.09]) 
showed the highest values, followed by CVD and COPD. The training and testing sets showed 
very similar results for all the health outcomes. As illustrated in Figure 2C, participants with older 
EMRAge and older PhenoAge exhibit a markedly higher mortality risk than their younger 
counterparts. However, EMRAge more effectively discriminates between populations with high 
versus low survival probabilities, particularly among the oldest demographic. Furthermore, after 
adjusting for covariates, EMRAge has higher HR for all aging-related outcomes, with the 
exception of Type 2 Diabetes, when compared with PhenoAge (Figure 2D). 

Development of DNAmEMRAge 

After developing the EMRAge measure, we created a DNAm surrogate predictor of EMRAge, 
DNAmEMRAge, using DNA methylation data in an elastic net regression model (alpha=0.1) to 
select the CpGs that are most predictive of EMRAge (Method). The model for DNAmEMRAge 
included 1,097 CpG sites and age as predictors. A 25-fold cross validation showed an R2=0.827, 
suggesting good concordance in prediction. However, to further assess the agreement between 
DNAmEMRAge and the EMRAge, the data was resampled to identify a new training data set 
composed of samples used to generate the model and samples not in the model (N=2,762). 
Within the training data, the resulting DNAmEMRAge and EMRAge values showed high 
correlation (Figure 3A, N=2,762, R2=0.82, p<2.2e-16, Rho=0.91, p<2.2e-16). Finally, we also 
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used a smaller test dataset which was not used for training to assess concordance; we find 
comparable correlations within this test set (N = 689, R2=0.83, p<2.2e-16, Rho=0.91, p<2.2e-16, 
see Figure 3B). Finally, the mean absolute error between DNAmEMRAge to EMRAge is 8.33 
years in the training set and 8.50 years in the testing set and the intraclass correlation coefficient 
(ICC) was 0.995 (Figure 3C). 

Development of OMICmAge 

Metabolomic, Proteomic, and Clinical Epigenetic Biomarker Proxies (EBPs) 

Untargeted global plasma metabolomic profiling was performed on the Metabolon platform. After 
preprocessing and scaling, the final dataset consists of 1,459 metabolites, that cover a broad 
range of metabolic pathways (Extended Figure S3), across 1,986 individuals, among which 
1,691 were matched to methylation data. Global proteomic data were generated using the Seer 
SP100 platform, based on liquid chromatography mass spectrometry. The final processed dataset 
consisted of 2,805 non-unique and 536 unique protein groups (denoted as “proteins”) across 
1,789 individuals, among which 1,475 were matched with methylation data. We further considered 
46 clinical variables that have potential relationships with aging and aging-related outcomes. We 
selected proteins, metabolites, and clinical variables with a significant Pearson correlation 
(p<0.05) to EMRAge greater than 0.1, resulting in 299 metabolites, 110 proteins, and 25 clinical 
variables. We then generated Epigenetic Biomarker Proxies (EBPs) - epigenetic predictors for 
each selected metabolite, protein, and clinical variable - via an elastic net regression model. We 
retained all EBPs with a significant (p<0.05) Pearson correlation above 0.2 with their estimated 
metabolite/protein/clinical value. In total, 266 metabolite EBPs, 109 protein EBPs, and 21 clinical 
EBPs were retained, totaling 396 EBPs to be included as features in the predictive model for 
OMICmAge (Extended Table S2). OMICmAge was then generated by integrating proteomic, 
metabolomic, and clinical data into a DNA methylation clock. 

Predictive model for the OMICmAge 

OMICmAge was generated via a penalized elastic net regression model of EMRAge that included 
methylation CpG values, relative percentages of 12 immune cell subsets, 396 EBPs (Extended 
Table S2), age and sex as features in the model. This model retained 990 CpGs, 40 EBPs (16 
protein EBPs, 14 metabolite EBPs, and 10 clinical EBPs) (Figure 4A) and age as significant 
predictors of EMRAge with varying weightings in the final model. Interestingly, the model did not 
retain any of the immune cell subsets after penalization. We tested an independent model 
including them as unpenalized features, but results did not change substantially. Thus, we 
continued with the model where all the features were penalized. Figure 3 shows the correlation 
between EMRAge and OMICmAge in the training (N = 2,762, R2=0.83, p<2.2e-16; rho=0.91, 
p<2.2e-16) and testing sets (N = 689, R2=0.84, p<2.2e-16; rho=0.92, p<2.2e-16), as well as the 
ICC using 30 replicates (0.998). In terms of error, the mean absolute error between OMICmAge 
and EMRAge was 4.96 years in the training set and 4.97 years in the testing set, which was 
notably lower than the mean absolute error for DNAmEMRAge (8.33 and 8.50, respectively).  

Inferring the underlying biology from selected EBPs in the OMICmAge 

A total of 40 EBPs spanning 8 biological systems are incorporated into OMICmAge and they 
predominantly represent cardiovascular, inflammatory, and endocrine systems; however, several 
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of the selected metabolites and proteins EBPs do not have current clinical applications. We 
observed strong correlations between several of the selected EBPs and actual clinical values 
(e.g. rho=0.66 and 0.63 for EBP(CRP) and EBP(HbA1C) respectively). We also found significant 
associations between traditional disease biomarkers and EBPs, including positive associations 
between EBP(glucose), EBP(HbA1c) and type 2 diabetes and negative associations between 
EBP(FEV1) and COPD. Together, the directionality of these EBPs  and their associated disease 
states are consistent with clinical disease biomarkers in both cohorts (Figure 4B-C). We observed 
more significant disease associations with EBPs in the MGB-ABC, which is likely due to the 
decreased health in MGB-ABC (Extended Table S1). We observed multiple associations 
between lifestyle factors and EBPs (Figure 4B-C). Overall, the direction of effect for these 
associations was consistent with the known biological knowledge for the relationship between the 
actual metabolite, protein, and clinical measurements and the specific chronic disease and 
lifestyle features being tested. This suggests that the EBPs are effective at capturing the 
underlying biological relationship of the original biomarkers.  

Comparison of OMICmAge to previous epigenetic biomarkers of aging  

We compared DNAmEMRAge and OMICmAge to previous epigenetic clocks in terms of their 
relationship with immune cell subsets, the CpGs sites included in the predictive model, the 
relationship with age-related disease outcomes, and five- and ten-year mortality. We generally 
observed consistent correlations between all epigenetic clocks and immune subsets; however, 
we observed stronger correlations with sex for both OMICmAge and DNAmEMRAge (R=0.28, p-
value = 0.02, and R=0.36, p-value = 0.009, respectively) in comparison to previous clocks 
(Extended Figure S4B). There was minimal overlap between the CpG sites selected for 
estimating DNAmEMRAge and OMICmAge compared with previous clocks (Figure 5A); 
DNAmEMRAge and OMICmAge had 660 and 657 unique CpG sites respectively. Interestingly 
411 CpG sites are shared between these two clocks. While PhenoAge and Horvath clock share 
50 CpG sites and Horvath and Hannum share 29, the maximum number of probes shared 
between OMICmAge and any previous clock is 3. We also compared the prevalence and 
incidence of age-related disease outcomes between DNAmEMRAge, OMICmAge, and other 
aging clocks in the MGB-ABC and Tru Diagnostic Biobank cohorts (Figure 5B, Extended Table 
S3). For MGB-ABC OMICmAge or DNAmEMRAge had the highest ORs for type-2 diabetes, 
stroke, CVD and depression whereas PCGrimAge had the highest OR for COPD and the first-
generation clocks (PCHorvath pan tissue, PCHorvath skin and blood, and PCHannum) had the 
highest ORs for cancer. Regarding HRs in MGB-ABC, OMICmAge or DNAmEMRAge had the 
highest HRs for type-2 diabetes, stroke, CVD, depression, COPD and all-cause mortality whereas 
PCGrimAge and PCHorvath pan tissue had the highest HRs with cancer. We observed 
comparable findings for prevalent disease associations in the Tru Diagnostic Biobank cohort, with 
OMICmAge or DNAmEMRAge having the highest ORs for all comorbidities except COPD where 
PCGrimAge had the highest observed OR. We also calculated the Area Under the Curve (AUC) 
for 5-year and 10-year survival using prediction classifiers for OMICmAge, DNAmEMRAge, 
PCGrimAge, and chronological age (Figure 5C).  DNAmEMRAge showed the highest AUC 
values (5-year: 0.894, 10-year: 0.889), followed by OMICmAge with very similar values (5-year: 
0.889, 10-year: 0.874). PC GrimAge and chronological age had AUC values that were 
approximately 5 percent less accurate than either DNAmEMRAge or OMICmAge.  

Using MGB-ABC, we observed strong positive associations between OMICmAge and male sex, 
tobacco smoking, chronological age, and body mass index (BMI) while we observed significant 
negative associations with physical activity and higher education (Figure 6A). In the 
TruDiagnostic cohort (Figure 6B), we observed similar estimated effects for sex, tobacco 
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smoking, chronological age, BMI, and physical activity. When evaluating other lifestyle factors, 
recreational drug consumption was associated with a higher OMICmAge while high sexual 
activity, fish oil supplementation, and antioxidants were associated with a lower OMICmAge 
(Extended Table S4).  

DISCUSSION 

Previously defined aging biomarkers have been developed using either clinical data or mortality 
prediction models alone22,23. Recognizing that both clinical measures that reflect overall health 
and the overall risk of death are critical yet distinct attributes of aging, we developed EMRAge, a 
hybrid aging phenotype that distills measures of both health and wellness and mortality into a 
single measure, as demonstrated by the robustness of EMRAge. We created a predictive model 
of time until death using 27 clinical EMR measures and mortality data from ~30,000 individuals in 
the MBG Biobank, spanning up to 30 years. When assessing mortality, we found that EMRAge 
demonstrates more accurate mortality risk prediction than either chronologic age or PhenoAge 
over a 10-year period. By creating multiple predictive models of EMRAge at different points in 
time in the EMR, we found strong reproducibility of EMRAge as an aging phenotype trained with 
common laboratory measures. We then created both DNAm and multi-omic biomarkers for aging 
for EMRAge, DNAmEMRAge, and OMICmAge.  We demonstrate that both DNAmEMRAge and 
OMICmAge have strong associations with chronic diseases and mortality and outperformed 
current DNAm aging biomarkers. Importantly, we observe strong associations with multiple age-
related diseases across two diverse cohorts representing poor to moderate overall health (MGB-
ABC) and moderate to excellent overall health (TruDiagnostic Biobank) as demonstrated in 
Extended Table S1. Furthermore, we demonstrate marked improvements in the accuracy of both 
5- and 10-year mortality risk. While both DNAmEMRAge and OMICmAge have similar overall
performance, through the use of EBPs, the generation of OMICmAge has expanded the predictive
search space to consider age-relevant proteins, metabolites, and clinical data while being
generated through DNA methylation data alone. This expanse of biological input via multiple
omics provides new translational opportunities for identifying clinically-relevant interconnections
that are central to the aging process.

To date, aging clocks have been generated predominantly using singular omic data types, with 
varying degrees of accuracy31,37. It is clear that DNA methylation is one of the strongest predictors 
of aging phenotypes26; however, other omic data - in particular proteomics and metabolomics - 
have also demonstrated strong predictive accuracy and add the distinct advantage of providing 
more tangible biological insights into the aging process24. While the epigenome is a central 
mechanism for aging, the biological functions of epigenetic perturbations are often less clear to 
identify. In contrast, proteins capture a broad range of age-related biology, including immune 
function and inflammatory processes that are often well-understood and have clear clinical 
implications for treatment and/or modification. Changes in oxidative stress, hormones, and lipid 
profiles are just a few examples of the metabolic processes captured via the metabolome that 
reflect specific biology relevant for aging processes27. As such, by including the metabolome, 
proteome, epigenome, and clinical data into predictive space for OMICmAge, our modeling 
approach captures the aging processes on multiple levels of systems biology that may further 
elucidate relevant biological aging functions.  

One ongoing challenge with multi-omic approaches is the complexity of integrating different omic 
data together and the subsequent interpretation of the findings. Moreover, final biological models 
that include multiple omic data types are most often impractical from a clinical perspective due to 
high costs, logistical difficulties, and time delays from multiple assay measurements. While our 

7

https://www.zotero.org/google-docs/?e2RjE5
https://www.zotero.org/google-docs/?0SzNnw
https://www.zotero.org/google-docs/?QsBZIp
https://www.zotero.org/google-docs/?7nCETq
https://www.zotero.org/google-docs/?7gfNxC


development of OMICmAge incorporates metabolomics, epigenetics, proteomics, and clinical 
data, we distilled OMICmAge into a single DNAm based aging algorithm through the creation and 
inclusion of EBP for associated metabolites, proteins, and clinical measures32–34. The resulting 
algorithm, OMICmAge, showed several important improvements over previous epigenetic 
biomarkers. First, OMICmAge had stronger associations with all cause mortality relative to the 
other epigenetic based aging biomarkers we evaluated. We also observed increased accuracy of 
10-year death prediction when compared to GrimAge. Notably, we observed strong associations
between OMICmAge and major age-related diseases across two distinctly different cohorts. This
consistency suggests its broad applicability to population outcomes in a clinical setting.
Furthermore, the congruence in our findings remains noteworthy even when considering the use
of both ICD9/10 codes and self-diagnoses for prevalent diseases. Besides, high levels of
reproducibility has previously been an issue with epigenetic biomarkers which has traditionally
only been improved through the inclusion of summary features such as principal components
2231,32. With OMICmAge alone, we observed high ICCs, demonstrating the strong reproducibility
of this metric.

The inclusion of EBPs into the feature space and predictive model for aging biomarkers expands 
the biological processes that may be represented in epigenetic aging biomarkers. Previously, 
these biomarkers have had difficulty explaining why aging biomarkers might be accelerated or 
decelerated in an individual. This has limited the utility of aging biomarkers in clinical practice, as 
the large heterogeneity in accelerated aging can manifest through many different biological 
mechanisms. Through the measurement of OMICmAge and EBPs, we may better identify the 
specific biology associated with aging that is captured via the metabolome, proteome, or other 
clinical factors and assess their overall relationship with OMICmAge. The strong correlations 
between EBPs and the biological measures they are predicting as well as the observed 
associations with relevant disease and lifestyle factors suggests that some EBPs capture 
important biology of what they are predicting through DNAm alone.  

The relationships between aging and several of the protein and metabolite EBPs selected in 
OMICmAge are well-known. Albumin was selected as the largest weighted EBP in OMICmAge 
and is a protein known to decrease with age33. OMICmAge also included the androsterone sulfate. 
Androsterone sulfate is a well-known androgenic steroid that declines with age in men and women 
due to andropause and menopause that was also retained as a EBP in OMICmAge. However, 
OMICmAge also selected proteins and metabolites EBPs with little or no known relationship with 
aging, such as ribitol which has been identified as a metabolite predictive of mortality but has very 
little mechanistic information34.  Furthermore, it is important to recognize that all EBPs and CPGs 
retained in the predictive model for OMICmAge are not causal; nor do they necessarily have the 
strongest overall associations with OMICmAge. They are merely included as predictive variables; 
further functional work and/or causal modeling via Mendelian Randomization is necessary to infer 
causality. 

There are several limitations which need to be addressed in future work. First is the notion that, 
while our EMRAge model is predicated on EMR data, it's essential to recognize that real-world 
data, such as EMRs, might not match the quality of data derived from clinical trials or surveys. 
This discrepancy arises because EMRs are primarily tailored for clinical care rather than research 
objectives. The quality of our data was influenced by three primary factors: 1) the absence of 
complete clinical lab values on the plasma collection date; 2) potential selection bias due to 
reliance on a singular data source, which could impact the broader applicability of EMRAge; and 
3) the unavailability of lab test results in the initial study phase, attributed to the limited use of
sophisticated analyzers. To mitigate the first concern, we calculated the median lab test value
from a five-year span surrounding the collection date, ensuring a robust sample size for EMRAge
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development. The validity of our chosen EMRAge predictors was further reinforced by the near-
perfect pairwise correlations among four reconstructed EMRAge estimates. To address the third 
limitation, we prioritized commonly conducted lab tests as EMRAge predictors. While this strategy 
might introduce a new selection bias, it effectively maximizes the sample size and maintains a 
manageable predictor pool. To circumvent the second limitation, we introduced OMICmAge and 
DNAmAge models, subsequently corroborating their strong associations with various aging-
related diseases across two diverse cohorts. More work will continue to improve the accuracy and 
precision of EBPs. There are also important considerations with regard to omic data. The profiling 
platforms for both proteomics and metabolomics do not provide absolute quantification of proteins 
or metabolites which prevents EBPs from reflecting clinical levels of each variant. Refinement and 
the use of targeted assays will improve the accuracy of the EBPs. Furthermore, proteomic and 
metabolomic EBPs could be improved by regressing out known genetic proteinQTL and 
metaboliteQTL effects from the protein/metabolites levels prior to generating the EBPs. This 
should be done to preclude the signatures being driven by common SNP data that are invariant 
across the lifespan. Finally, there is room to expand upon the EBPs that were included into the 
feature space for OMICmAge, both with additional metabolites/proteins and also with other omics. 
While our omic profiling platforms covered a broad range of metabolites/proteins, we only included 
396 EBPs with a significant correlation with EMRAge. Future analyses we will expand upon the 
EBPs in the training of OMICmAge. Finally, additional validation of OMICmAge across diverse 
populations will continue to highlight potential limitations in our phenotype. By identifying a healthy 
biobank cohort, we purposely selected a validation cohort that was distinctly different from MGB-
ABC, which had more comorbidities than the general population. We found consistency in the 
observed associations in our findings, suggesting that OMICmAge is robust; however, further 
interrogation will continue to inform upon our overall understanding of this phenotype.  

Overall, we believe the creation of DNAmEMRAge and OMICmAge represents a step forward in 
the evolution of improvement of epigenetic aging clocks. EMRAge is the first clinical biomarker 
based clock trained using EMR data to the phenotype of time until death. This provides a unique 
EMR resource to quantify aging and longevity in large EMR populations. Additionally, OMICmAge 
is the first epigenetic clock that integrates metabolomic, clinical, and proteomic data via EBPs. 
Finally, DNAmEMRAge and OMICmAge have the strongest overall associations with prevalent 
and incidents chronic diseases outcomes and the most accurate 5- and 10-year mortality 
prediction that were observed.    
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METHODS 

Discovery Cohort 

Massachusetts General Brigham (MGB) Biobank 

The Massachusetts General Brigham (MGB) Biobank is a large biorepository that provides access 
to research data and approximately 130,000 high-quality banked samples (plasma, serum, and 
DNA) from >100,000 consented patients enrolled in the MGB system35. These patients can be 
linked to corresponding Electronic Medical Record (EMR) data, dating from the start of their 
medical history within the MGB network, in addition to survey data on lifestyle, environment, and 
family history. The original number of participants from the MGB Biobank who provided plasma 
samples was 60,371. Of these, 124 participants were excluded because they were younger than 
18 years old at the time of plasma collection. Among the remaining adult participants, the vital 
status of 59,213 has been verified as either alive or deceased, with an accurate record of the date 
of death as of 07/28/2022. The other 1,034 participants were excluded due to missing verification 
of their vital status (Extended Figure S1). 

Massachusetts General Brigham Aging Biobank Cohort (MGB-ABC) 

The MGB-Aging Biobank Cohort (MGB-ABC) is a cohort of 3,451 randomly selected participants 
from the MGB Biobank to create a proportionate aging biobank population. The cohort was 
selected based on even weighting in terms of age, sex and BMI, representative of the MGB 
Biobank. Comprehensive EMR, metabolomic profiling, proteomic profiling, and epigenetics are 
available for select subjects in MGB-ABC.  
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Blood samples, collected either as part of clinical care or through research draws at Brigham and 
Women's Hospital (BWH) or Massachusetts General Hospital (MGH), were used for serum, 
plasma, and DNA/genomic research. Each blood draw typically involved collecting 30-50 ml of 
blood, which was linked to the corresponding clinical data from the Electronic Medical Record 
(EMR). The Biobank team also gathered additional health-related information during the blood 
draw process. 

The administration of questionnaires for the study was carried out electronically or in written form, 
and participants spent approximately 10-15 minutes completing the surveys. The survey included 
questions related to family history, lifestyle, and environment. and utmost care was taken to 
ensure the confidentiality and security of the information. Participants' identities were protected, 
as no personally identifiable information was requested. The survey data was encrypted to ensure 
privacy.  

The Phenotype Discovery Center (PDC) of MGB integrates various data sources, including the 
Research Patient Data Registry (RPDR), health information surveys, and genotype results, into 
the Biobank Portal. This portal combines specimen data with EMR data, creating a 
comprehensive SQL Server database with a user-friendly web-based application35. Researchers 
can perform queries, visualize longitudinal data with timestamps, employ established algorithms 
to define phenotypes, utilize automated natural language processing (NLP) tools for analyzing 
EMR data using the Informatics for Integrating Biology and the Bedside (i2b2) toolkit36, and 
request samples from cases and controls. Data in the Biobank Portal database includes narrative 
data from clinic notes, text reports (cardiology, pathology, radiology, operative, discharge 
summaries), codified data (e.g., demographics, diagnoses, procedures, labs and medications) as 
well as patient-reported data from the health information survey on exposures and family history. 
Validated phenotypes are available in the Biobank Portal user interface for genotyped Biobank 
participants. Other relevant measures such as lung function were extracted using a self-
developed algorithm incorporating NLP. 

Metabolomic Profiling 

Untargeted global plasma metabolomics profiling was generated by Metabolon Inc. Coefficients 
of variation were measured in blinded QC samples randomly distributed among study samples. 
Batch variation was controlled for in the analysis. Sample preparation and global metabolomics 
profiling was performed according to methods described previously37. Metabolomic profiling was 
performed using four liquid chromatography tandem mass spectrometry (LC-MS) methods that 
measure complementary sets of metabolite classes described previously38: 1) Amines and polar 
metabolites that ionize in the positive ion mode; 2) Central metabolites and polar metabolites that 
ionize in the negative ion mode; 3) Polar and non-polar lipids; 4) Free fatty acids, bile acids, and 
metabolites of intermediate polarity. All reagents and columns for this project will be purchased in 
bulk from a single lot and all instruments will be calibrated for mass resolution and mass accuracy 
daily39. 

Metabolite peaks are quantified using area-under-the-curve. Raw area counts for each metabolite 
in each sample are normalized to correct for variation resulting from instrument inter-day tuning 
differences by the median value for each run-day, therefore, setting the medians to 1.0 for each 
run. Metabolites are identified by automated comparison of the ion features in the experimental 
samples to a reference library of ~8,000 chemical standard entries that include retention time, 
molecular weight (m/z), preferred adducts, and in-source fragments as well as associated MS 
spectra and curated by visual inspection for quality control using software developed at 
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Metabolon, Inc.39. Identification of known chemical entities is based on comparison to 
metabolomic library entries of purified standards. Additional mass spectral entries will be created 
for structurally unnamed biochemicals, which are identified by virtue of their recurrent nature. 
These compounds have the potential to be identified by future acquisition of a matching purified 
standard or by classical structural analysis. Quality control (QC) and data processing was 
performed using an in-house method that has now been adopted by colleagues across the Boston 
Longwood Medical Area40–42. Briefly, metabolite features with a signal-to-noise ratio <10 were 
considered unquantifiable and excluded, as were features with undetectable/missing levels 
for >10% of the samples. All remaining missing values were imputed with the half the minimum 
peak intensity for that feature across the whole population. Features with a CV in the pooled 
samples greater than 25% were excluded to ensure good technical reproducibility. Metabolite 
features were analyzed as measured LC-MS peak areas and were log-transformed to create 
approximately Gaussian distributions and to stabilize variance, and pareto scaled to account for 
the differences in the scales of measurements across the metabolome. After the QC, 1,459 
metabolites across a sample size of 1,986 samples were used in the subsequent analyses.  

Methylation profiling 

DNA methylation/epigenetic data was generated using the Illumina Infinium® MethylationEPIC 
850K BeadChip. The MethylationEPIC 850K BeadChip combines comprehensive coverage and 
high-throughput capabilities with comprehensive genome-wide coverage (greater than 850,000 
methylation sites), including CpG islands, non-CpG and differentially methylated sites, FANTOM5 
enhancers, ENCODE open chromatin, ENCODE transcription factor binding sites, and miRNA 
promoter regions. Biobanked samples were stored in -80C prior to shipment to the TruDiagnostic 
Inc. (Lexington, KY) for DNA extraction and preprocessing. Briefly, 500 ng of DNA was extracted 
from whole blood samples and bisulfite converted using the Zymo Research EZ DNA methylation 
kit. All manufacturer’s instructions were followed. Bisulfite-converted DNA was randomly assigned 
to chip wells on the Infinium HumanMethylationEPIC array. Lab preprocessing included the 
following: 1) DNA amplification, 2) hybridization to the EPIC array, 3) stain, washing, and imaging 
with the Illumina iScan SQ instrument to generate raw image intensities. 

Raw  methylation data for the MGB-Biobank was processed using the minfi pipeline43, and low 
quality samples were identified using the qcfilter() function from the ENmix package44, using 
default parameters. Overall, a total of 4,803 samples passed the QA/QC (p < 0.05) and were 
deemed to be high quality samples. In addition, we removed low quality probes (p < 0.05 out-of-
band) that were identified among the samples. This process retained 721,802 among 866,239 
probes that were high quality and indicated that the large portion of the methylation data was of 
high quality. A combinatorial normalization processing using the Funnorm procedure (minfi 
package), followed by RCP method (ENmix package) was performed in order to minimize sample 
to sample variation as noted in Foox et al. 202145. 

Proteomic Profiling 

We used the Seer proteomic platform for its ability to discover novel proteins and peptides related 
to chronological and biological aging.  While Seer uses LC-MS/MS like other proteomic platforms, 
its patented and novel nanoparticles strategy uses nanoparticles with different binding capabilities 
to isolate and extract peptides and proteins via corona covalent attachment to its surface. This 
technique is unique as it gives the platform the ability to detect low abundance peptides and 
proteins without the need to depletion of the fraction which can be 10x more expensive. Moreover, 
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this increases the number of quantified proteins by 3–5 fold compared to depleted and un-
depleted serum proteomics. The Proteograph untargeted approach is also different from other 
popular platforms based on aptamer technologies which only quantifies peptides which they 
specifically target. This also allows for an unbiased discovery of proteomic associations. 

Relative protein levels were quantified for 2,000 samples - 1,600 from the MGB-ABC and 400 
process controls - using the Proteograph Product Suite (Seer, Inc.) and LC-MS. Briefly, the 
samples were incubated with five proprietary nanoparticles which formed protein coronas on the 
Seer SP100 proteograph, which allowed for the capture of proteins using physicochemical 
binding. The resulting proteins were digested using trypsin, and relative levels were quantified 
using the default DIA method provided in the Protograph Analysis Software (PAS). Protein groups 
were ultimately considered for downstream analyses for two reasons: peptides identified can 
ambiguously map to multiple proteins, and combining peptides into protein groups can improve 
protein quantification devoid of spurious quantification. Thus, protein group data was sent through 
pre-processing, control based normalization, and outlier detection. This produced estimations of 
a total of 28,490 peptides across blood samples (average 15,239), and 10,265 (average 4,281) 
across the controls. Peptides were then further consolidated into 3,695 total protein groups 
(average 2,587) in MGB-ABC samples, and 1,360 total protein groups among the plate controls. 
Following the signal drift and batch effect correction via the Quality Control-Robust Spline 
Correction (QCRSC) algorithm46, we applied Log10 Transformation, Pareto Scaling, and kNN 
imputation based on current guidelines47. Stringent filters, including 80% protein presence, RSD-
qc < 0.20%, and D-ratio < 0.70 , were utilized to reinforce data validity and reliability48. The final 
processed dataset consists of 2,805 non-unique, or 536 unique, protein groups, across 1,789 
samples, in which the majority of samples (N = 1,475) matched to methylation data.  

Definition of age-related diseases 

We utilized ICD-9/10 codes to identify age-related diseases, including type-2 diabetes, COPD, 
depression, cancer, stroke, and other cardiovascular diseases, as detailed in Extended Table 
S5. 

Validation cohort 

TruDiagnostic Biobank cohort 

The TruDiagnostic Biobank cohort included 13,109 individuals who took the commercial 
TruDiagnostic TruAge test and had their DNA methylation data generated. The participants were 
recruited between October 2020 and April 2023 and were predominantly  from the United States. 
These participants were in better health compared with individuals from Mass General Biobank, 
likely due to their proactive interest in health and willingness to pay for epigenetic testing. The 
majority of these samples were performed under a healthcare provider’s recommendation and 
guidance while less than 5% were in a direct-to-consumer setting. As a result, these individuals 
may experience a self selection bias whereby they seek preventative medicine and have fewer 
comorbidities than normal patient populations.  During the recruitment of participants, they were 
asked to complete a survey that included questions about personal information, medical history, 
social history, lifestyle, and family history. The study involving human participants was reviewed 
and approved by the IRCM IRB and the participants provided written informed consent to take 
part in the study. 

13

https://www.zotero.org/google-docs/?lVBjNe
https://www.zotero.org/google-docs/?mUJGfL
https://www.zotero.org/google-docs/?d4gcDc


Methylation profiling 

Peripheral blood samples were collected using a lancet and capillary method and placed in a lysis 
buffer for DNA extraction. Then, 500 ng of DNA was treated with bisulfite using the EZ DNA 
Methylation kit from Zymo Research following the manufacturer's instructions. The bisulfite-
treated DNA samples were randomly assigned to a well on the Infinium HumanMethylationEPIC 
BeadChip, which was then amplified, hybridized, stained, washed, and imaged with the Illumina 
iScan SQ instrument to obtain raw image intensities. 

To pre-process the TruDiagnostic methylation data, we used the same pipeline as for the MGB-
ABC cohort. A total of 12,666 individuals, representing 96.7% of the original samples, passed the 
QA/QC (p < 0.05) and were deemed to be high quality samples. However, we did not remove any 
probe in order to keep all the CpG sites needed for clock calculation. Due to computational 
limitations, we were unable to apply the same normalization methods as in the MGB-ABC cohort. 
Thus, we applied normal-exponential out-of-band (Noob) normalization using the 
preprocessNoob function from the minfi package. Finally, we used a 12 cell immune 
deconvolution method to estimate cell type proportions49,50. 

Statistical analysis 

Development of EMRAge 

We extracted 27 clinical phenotypes from 59,213 participants in the MGB Biobank with plasma 
samples (Extended Table S6). To address missing values and instrumental variations, the 
median value of all numerical observations, except height and age, were replaced with missing 
median values of all median observations within 5 years around the first plasma collection. The 
resulting individuals with complete data for all clinical phenotypes were used in the analysis 
(n=28,733). Selected samples were divided into training and testing sets using a 70:30 ratio, and 
then fitted a Cox proportional hazards (Cox-PH) model in the training set to estimate the 
weightings (i.e., coefficients) of the selected features. To assure the generalizability of the 
equation, we did not scale the training data. Using the trained model, we calculated the risk 
estimate for each individual in the training set by linearly combining the estimated weightings and 
predictor values (Xβ). This estimate was further transformed into the EMRAge value using the 
equation below to get the same mean and variance as chronological age: 

EMRAge = 9.95006 * Xβ_{train} + 52.14512 

Where 9.95006 belongs to the mean of chronological age and 52.14512 to the standard deviation. 

We utilized one-hot encoding to convert categorical variables into binary variables and 
standardized the numerical variables. Then we used a LASSO Cox regression model to predict 
time-til-death among 28,733 individuals. To determine the optimal model, we assessed model 
performance based on Harrell's C index. As a result, the optimized model selected 25 clinical 
variables, which were then passed to a Cox Proportional-Hazard (Cox-PH) model for further 
filtering. Ultimately, 19 clinical variables remained as they had an adjusted p-value ≤ 0.05 in the 
fitted Cox-PH model. As a result, 30,884 participants with all available electronic medical records 
of selected clinical variables remained in the final cohort. We then evaluated the Pearson 
correlation of EMRAge to chronological age in the training and testing sets.  
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Since the EMRAge predictors (i.e., clinical phenotypes) were selected based on imputed data, 
we validated their robustness by re-training the algorithm at four different time points: Jan 1st of 
2008, 2010, 2012, and 2014. During each time point, we replaced the values of the selected 
phenotypes with the median values of observations within a one-year timeframe, ensuring no 
overlap of data scans. To make a sensible comparison, we excluded the Charlson Comorbidity 
Index indicators because they are less sensitive to time in our data. As a result, we had 4 
estimating equations trained using the same predictors but different data. Then we applied these 
equations to calculate the EMRAge value of the participants (N=11,673) with complete data of 
predictors around 1-year centered on January 1st of 2016, and then checked Pearson's 
correlations among these four estimates.  

We then assessed the relationship between EMRAge and both incident and prevalent aging-
related health outcomes, including all-cause mortality, stroke, type-2 diabetes, COPD, 
depression, other cardiovascular diseases (CVD), and any type of cancer. We used the following 
criteria based from the patient EMRs for a positive diagnosis of an age-related health outcome: 
1) at least 2 relevant ICD-9/10 codes were recorded in the patient's EMR, and 2) the first and last
dates of the relevant ICD codes should be at least 1 day apart. We estimated the incident risk of
the EMRAge for all prospective adverse events in the Cox-PH model, adjusting for age, sex, race,
BMI, smoking status and alcohol consumption. We also estimated the odds ratio of the EMRAge
for all prevalent morbidities in the logistic regression model, adjusting for the same covariates.

Comparison of EMRAge and PhenoAge 

We compared the incidence and prevalence of age-related health outcomes between EMRAge 
and PhenoAge by applying the same linear models described above with PhenoAge as the 
outcome. We calculated PhenoAge for our MGB Biobank cohort using the established toolkit, as 
initially proposed by Levine et al. (2018) and developed by Belsky and Kwon51. Although 
PhenoAge is derived from eight clinical lab metrics, one specific parameter, C-reactive protein, is 
not frequently ordered in routine clinical settings. To maximize sample retention, we employed 
the same strategy to retain the median value of observations over a 5-year window centered on 
the plasma collection date. Following this imputation, our sub-cohort consisted of 17,093 
participants, with 11,945 samples in the training set and 5,148 in the testing set.  

Development of DNAmEMRAge 

After developing the EMRAge measure, we next created a DNAm surrogate predictor of EMRAge 
using matched EPIC array data (DNAmEMRAge). To this end, we used the MGB-ABC cohort, 
which is a subset of the MGB Biobank that was created with the aim of possessing a proportionate 
aging biobank population. DNA Methylation was generated from a total of 4,803 samples using 
the EPICv1 array. To allow for training, samples were then selected for having EMRAge quantified 
and the availability of chronological age and sex information, which retained 3,451 samples. To 
develop DNAmEMRAge, the normalized DNA methylation dataset was transposed so that CpG 
sites were considered features, and trained to EMRAge values. Using an 80-20 train to test split, 
the glmnet R package52 (version 4.1-8) was used to train a Gaussian penalized regression model 
using an alpha parameter of 0.1. Using a cross validation fold number of 25, an optimal lambda 
was selected based on the alpha parameter. Sex was classified as Gender_M (males) and 
Gender_F (females) using one-hot encoding, and was included as penalized features along with 
chronological age and the relative cell proportions of 12 immune cell types. All CpGs and the 
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covariates mentioned were included as penalized features. Those features that showed a non 
zero coefficient were selected for the final model. 

Development of Epigenetic Biomarker Proxies (EBP) models 

To generate EBPs elastic net models, the normalized DNA methylation dataset was transposed 
to which the features were considered to be CpG sites. CpGs were not pre-filtered, and all CpGs 
that passed QC were used for training. Training was conducted to each significant clinical, 
metabolite, and protein group values. To ensure the best model associated with EMRAge was 
generated, the glmnet R package was used to train Gaussian penalized regression models across 
all measures. In order to maximize the number of CpGs, an alpha value of 0.1 was utilized. 
However, for three clinical values (smoking pack years, total bilirubin, and total cholesterol), an 
alpha of 0.5 was applied as they produced the highest correlation between predicted and 
observed values. Using a cross validation fold number of 25, an optimal lambda was selected at 
each alpha threshold and implemented to select the features. Sex was classified as Gender_M 
(males) and Gender_F (females) using one-hot encoding, and was included as penalized features 
along with chronological age. Features that showed a non zero coefficient were selected for each 
EBP.  EBPs with a significant (p<0.05) Pearson correlation greater than 0.2 were selected to 
include as features in the model to train OMICmAge. 

We assessed the association between the EBPs and multiple chronic disease and lifestyle 
outcomes in both MGB-ABC and TruDiagnostic Biobank cohort. Specifically, we standardized all 
EBPs and utilized a generalized linear regression model with disease/lifestyle as the outcome 
and each individual EBP as the predictor variable, adjusting for age, sex, ethnicity, BMI, and 
tobacco smoking.  

Development of OMICmAge 

OMICmAge was developed using the individuals used to develop DNAmEMRAge (N = 3,451), 
and applying a similar 80:20 train:test split.  Penalized regression models using an alpha of 0.1 
and the optimal lambda identified after a 25 cross-validation were used to train a single composite 
model among the train samples. For training, the following values were inputted as penalized 
features regression model and trained to EMRAge: all CpG sites present in the first and second 
generation of Illumina EPIC arrays; all selected clinical, metabolite, and proteins EBPs estimates 
from the training samples; relative estimates of 12 cell immune cell subtypes; and the 
demographic information (Age, sex, and BMI). For sex, a similar one-hot encoding was used to 
identify males (Gender_M) and females (Gender_F). Features which showed non-0 coefficients 
were kept in the final multivariate model. 

Comparison of OMICmAge, EMRAge and Previous Clocks 

For comparison of OMICmAge and EMRage clocks to previous methods of biological age 
prediction, we chose to analyze PCHorvath10, PCHannum11, PCPhenoAge51, PCGrimAge20, and 
DunedinPACE53. We chose their PC (i.e., principal component) versions as they have much better 
precision while still maintaining their relationships to health outcomes54. In order to compare the 
CpG sites included in each model, we used the non-PC clocks because the PC models do not 
contain CpG sites as predictors. 
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We used the Cox Proportional-Hazard regression model to assess the association between each 
clock and incident age-related diseases, such as type-2 diabetes, stroke, depression, COPD, 
other cardiovascular diseases, and any type of cancer. We also employed the logistic regression 
model to assess the association between each clock and prevalent age-related diseases. Each 
model was adjusted for age, gender, race, BMI, smoking status, and alcohol drinking habits. 
Furthermore, to predict the 5-year and 10-year survival probability, we used a simple logistic 
regression model with a binary survival flag as the outcome and each clock as the sole predictor. 
We drew ROC curves and estimated the Area Under the Curve (AUC) based on this model. 
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Figure 1. Overall study design. A) Workflow of the study. B) Description of the study population used in the study. MGB: Massachusetts General 
Brigham. MGB-ABC: MGB Aging Biobank Cohort. TruD: TruDiagnostic. EBP: Epigenetic Biomarker Proxy. 
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Figure 2. Development, Robustness, and Comparaters of EMRAge. A) Pairwise correlation between different 4 estimates of EMRAge at 
timepoints Jan 1st of 2008, 2010, 2012, and 2014. B) Forest plot of hazard ratio and odds ratio between EMRAge and aging-related health 
outcomes. C) Kaplan-Meier Plot of EMR Age vs. PhenoAge. D) Hazard ratios and confidence intervals of one standard deviation change to onset of 
aging-related diseases. These values were estimated in the testing dataset from the MGB Cohort (N = 5,148) adjusting for chronological age, sex, 
race, smoking status, and alcohol consumption. 
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Figure 3. Correlation plots to EMRAge and intra-class correlation coefficients (ICC) for DNAmEMRAge and OMICmAge. A) Correlation 
between DNAmEMRAge and EMRAge in the training set (N=2762). B) Correlation between DNAmEMRAge and EMRAge in the testing set 
(N=689). C) Intra-class correlation coefficients for DNAmEMRAge using 30 replicates. D) Correlation between OMICmAge and EMRAge in the 
training set (N=2762). E) Correlation between OMICmAge and EMRAge in the testing set (N=689). F) Intra-class correlation coefficients for 
OMICmAge using 30 replicates. 
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Figure 4. Epigenetic Biomarker Proxies (EBPs) included in the OMICmAge. A) EBPs selected in OMICmAge after penalization of the 
OMICmAge segmented by a system approach. Each color represents one of the 7 systems. B) Association of EBPs to diseases and lifestyle factors 
in the MGB-Aging Biobank Cohort. C)  Association of EBPs to diseases and lifestyle factors in the TruDiagnostic biobank. We evaluated the 
association between each EBP and 6 major diseases (Depression, Stroke, COPD, Cancer, CVD, and Type-2 Diabetes Mellitus) and multiple 
lifestyle factors, including alcohol consumption, education level, and exercise per week, among others. The strength of the color is proportional to 
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the estimate of the linear regression adjusted by age, sex, ethnicity, BMI, and tobacco smoking. In red, positive associations. In blue, negative 
associations. 
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Figure 5. Comparison of OMICmAge and DNAmEMRAge to previously established aging biomarkers. A) Intersection of predictive CpG sites 
included in the previously published epigenetic clocks, DNAmEMRAge, and OMICmAge. The horizontal bars represent the total number of CpG sites 
included in each epigenetic clock. The vertical bars represent the number of unique or shared CpG sites between clocks. PhenoAge refers to the 
DNA methylation version. B) Horizontal errorbar plot of odds/hazard ratios of each methylation clock to aging-related diseases in TruDiagnostic 
Biobank cohort or testing set of MGB-ABC cohort. C) ROC curves for 5-year and 10-year survival prediction classifiers utilizing prior methylation 
clocks or chronological age. The orange line represents OMICmAge, the purple line represents DNAm EMRAge, the light blue line represents 
PCGrimAge, the remaining grey lines represent other PC aging clocks. 
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Figure 6. Bubble plot for the representation of the lifestyle factors associated with OMICmAge. A) MGB-ABC Biobank. B) TruDiagnostic 
Biobank. Visual representation of the effect sizes found with the OMICmAge. Circle diameter represents the calculated estimated value of the factor. 
Significant positive associations are represented in green whereas significant negative associations in red. All the associations are adjusted by 
chronological age, biological sex, ethnicity, body mass index (BMI), and tobacco use. 
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Extended Figure S1. Flowchart for inclusion of participants from the Massachusetts General Brigham (MGB) Biobank for the 
development of EMRAge. 
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Extended Figure S2.  Pearson’s correlation between EMRAge and chronological age in the test and train sets. 
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Extended Figure S3.  Distribution of super pathways (A) and subpathways for all the metabolites (B). 
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Extended Figure S4.  Correlation plots between epigenetic clocks and immune cells in the MGB-ABC and TruDiagnostic biobanks. A) 
Discovery cohort - MGB-ABC biobank. B) Validation cohort - TruDiagnostic biobank. Each column represents a covariate among age, gender male, 
gender female, and immune cells. The size is related to the magnitude of the correlation and the color to the direction (positive or negative). *: p-
value < 0.05, **: p-value < 0.01, ***: p-value < 0.001. 
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Extended Tables 

Extended Table S1. Demographics for the study populations used for developing EMRAge, DNAmEMRAge, and OMICmAge and for the 
study population used for validating the clocks. 

Extended Table S2. Information of the 396 Epigenetic Biomarker Proxies (EBPs) included as features in the predictive model for 
OMICmAge development. Among them, 266 are metabolite EBPs, 109 are protein EBPs, and 21 are clinical EBPs. The table contains information 
on MSE, the R2, and the Pearson correlation between the EBPs and the values for each feature. For those EBPs selected for the OMICmAge after 
penalization, there is also a description of the biomarker. 

Extended Table S3a. Hazard/Odds ratios of one unit change to disease for multiple aging biomarkers in the MBG-ABC and TruDiagnostic 
Biobank.  

Extended Table S3b. Hazard/Odds ratios of one standard deviation change to disease for multiple aging biomarkers in the MBG-ABC and 
TruDiagnostic Biobank.  

Extended Table S4. Association between OMICmAge and lifestyle factors in MGB-ABC and TruDiagnostic biobank3 

Extended Table S5. Table of the ICD-9/10 codes  

Extended Table S6. Table of the extracted clinical phenotypes (N = 27) from the Massachusetts General Brigham (MGB) Biobank. 

Extended Table S7. Table of the selected phenotypes and respective estimated weighting for development of EMRAge 
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