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Abstract

In typed functional languages, one can typically only manipulate data

in a type-safe manner if it first has been deserialised into an in-memory

tree represented as a graph of nodes-as-structs and subterms-as-pointers.

We demonstrate how we can use QTT as implemented in Idris 2 to de-

fine a small universe of serialised datatypes, and provide generic programs

allowing users to process values stored contiguously in buffers.

Our approach allows implementors to prove the full functional correct-

ness by construction of the IO functions processing the data stored in the

buffer.

1 Introduction

In (typed) functional language we are used to manipulating structured data by
pattern-matching on it. We include an illustrative example below.
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data Tree

= Leaf

| Node Tree Bits8 Tree

sum : Tree -> Nat

sum t = case t of

Leaf => 0

Node l b r =>

let m = sum l

n = sum r

in (m + cast b + n)

On the left, an example of a binary tree storing bytes in its nodes and nothing
at its leaves. On the right, a small Idris 2 snippet defining the corresponding
inductive type and declaring a function summing up all of the nodes’ contents.
It proceeds by pattern-matching: if the tree is a leaf then we immediately return
0, otherwise we start by summing up the left and right subtrees, cast the byte to
a natural number and add everything up. Simply by virtue of being accepted by
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the typechecker, we know that this function is covering (all the possible patterns
have been handled) and total (all the recursive calls are performed on smaller
trees).

At runtime, the tree will quite probably be represented by constructors-as-
structs and substructures-as-pointers: each constructor will be a struct with a
tag indicating which constructor is represented and subsequent fields will store
the constructors’ arguments. Each argument will either be a value (e.g. a byte)
or a pointer to either a boxed value or a substructure. If we were to directly
write a function processing a value in this encoding, proving that a dispatch over
a tag is covering, and that the pointer-chasing is terminating relies on global
invariants tying the encoding to the inductive type. Crucially, the functional
language allows us to ignore all of these details and program at a higher level
of abstraction where we can benefit from strong guarantees.

Unfortunately not all data comes structured as inductive values abstracting
over a constructors-as-structs and substructures-as-pointers runtime represen-
tation. Data that is stored in a file or received over the network is typically
represented in a contiguous format.

We include below a textual representation of the above tree using node and
leaf constructors and highlighting the data in red.

(node (node (node leaf 1 leaf) 5 leaf) 10 (node leaf 20 leaf))

This looks almost exactly like the list of bytes we get when using a näıve
serialisation format based on a left-to-right in-order traversal of this tree. In the
encoding below, leaves are represented by the byte 00, and nodes by the byte 01
(each byte is represented by two hexadecimal characters, we have additionally
once again highlighted the bytes corresponding to data stored in the nodes):

01

(node (node leaf 1 leaf) 5 leaf)
︷ ︸︸ ︷

01 01 00 01 00
︸ ︷︷ ︸

(node leaf 1 leaf)

05 00 0a 01 00 14 00

The idiomatic way to process such data in a functional language is to first
deserialise it as an inductive type and then call the sum function we defined
above. If we were using a lower-level language however, we could directly process
the serialised data without the need to fully deserialise it. Even a näıve port of
sum to C can indeed work directly over buffers:

1 int sumAt ( uint8 t buf [ ] , int ∗ptr ) {
2 uint8 t tag = buf [∗ ptr ] ; (∗ ptr )++;
3 switch ( tag ) {
4 case 0 : return 0 ;
5 case 1 :
6 int m = sumAt( buf , ptr ) ;
7 uint8 t b = buf [∗ ptr ] ; (∗ ptr )++;
8 int n = sumAt( buf , ptr ) ;
9 return (m + ( int ) b + n) ;

10 default : e x i t (−1) ; }}
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This function takes a buffer of bytes, and a pointer currently indicating the
start of a tree and returns the corresponding sum. We start (line 2) by reading
the byte the pointer is referencing and immediately move the pointer past it.
This is the tag indicating which constructor is at the root of the tree and so we
inspect it (line 3). If the tag is 0 (line 4), the tree is a leaf and so we return 0 as
the sum. If the tag is 1 (line 5), then the tree starts with a node and the rest of
the buffer contains first the left subtree, then the byte stored in the node, and
finally the right subtree. We start by summing the left subtree (line 6), after
which the pointer has been moved past its end and is now pointing at the byte
stored in the node. We can therefore dereference the byte and move the pointer
past it (line 7), compute the sum over the right subtree (line 8), and finally add
up all the components, not forgetting to cast the byte to an int (line 9). If the
tag is anything other than 0 or 1 (line 10) then the buffer does not contain a
valid tree and so we immediately exit with an error code.

As we can readily see, this program directly performs pointer arithmetic,
explicitly mentions buffer reads, and relies on undocumented global invariants
such as the structure of the data stored in the buffer, or the fact that the pointer
is being moved along and points directly past the end of a subtree once sumAt

has finished computing its sum.
Our goal with this work is to completely hide all of these dangerous aspects

and offer the user the ability to program over serialised data just as seamlessly
and correctly as if they were processing inductive values. We will see that Quan-
titative Type Theory (QTT) [McB16, Atk18] as implemented in Idris 2 [Bra21]
empowers us to do just that purely in library code.

1.1 Seamless Programming over Serialised Data

Forgetting about correctness for now, this can be summed up by the the follow-
ing code snippet in which we compute the sum of the bytes stored in our type
of binary trees.

sum : Pointer.Mu Tree _ -> IO Nat

sum ptr = case !(view ptr) of

"Leaf" # _ => pure Z

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure (m + cast b + n)

We reserve for later our detailed explanations of the concepts used in this
snippet (Pointer.Mu in Section 5, view in Section 7.4). For now, it is enough to
understand that the function is an IO process inspecting a buffer that contains a
tree stored in serialised format and computing the same sum as the pure function
seen in the previous section. In both cases, if we uncover a leaf ("Leaf" # _)
then we return zero, and if we uncover a node ("Node" # l # b # r) with a left
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branch l, a stored byte b, and a right branch r, then we recursively compute
the sums for the left and right subtrees, cast the byte to a natural number and
add everything up. Crucially, the two functions look eerily similar, and the
one operating on serialised data does not explicitly perform error-prone pointer
arithmetic, or low-level buffer reads. This is the first way in which our approach
shines.

One major difference between the two functions is that we can easily prove
some of the pure function’s properties by a structural induction on its input
whereas we cannot prove anything about the IO process without first explicitly
postulating the IO monad’s properties. Our second contribution tackles this
issue.

1.2 Correct Programming over Serialised Data

We will see that we can refine that second definition to obtain a correct-by-
construction version of sum, with almost exactly the same code.

sum : Pointer.Mu Tree t ->

IO (Singleton (Data.sum t))

sum ptr = case !(view ptr) of

"Leaf" # _ => pure [| Z |]

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure [| [| m + [| cast b |] |] + n |]

In the above snippet, we can see that the Pointer.Mu is indexed by a phan-
tom parameter: a runtime irrelevant t which has type (Data.Mu Tree). And
so the return type can mention the result of the pure computation (Data.sum
t). Singleton is, as its name suggests, a singleton type (cf. Section 6) i.e. the
natural number we compute is now proven to be equal to the one computed by
the pure sum function. The implementation itself only differs in that we had to
use idiom brackets [MP08], something we will explain in Section 6.2.

In other words, our approach also allows us to prove the functional correct-
ness of the IO procedures processing trees stored in serialised format in a buffer.
This is our second main contribution.

1.3 Generic Programming over Serialised Data

Last but not least, as Altenkirch and McBride demonstrated [AM02]: “With
dependently (sic) types, generic programming is just programming: it is not
necessary to write a new compiler each time a useful universe presents itself.”

In this paper we carve out a universe of inductive types that can be uniformly
serialised and obtain all of our results by generic programming. In practice this
means that we are not limited to the type of binary trees with bytes stored
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in the nodes we used in the examples above. We will for instance be able to
implement a generic and correct-by-construction definition of fold operating
on data stored in a buffer whose type declaration can be seen below (we will
explain how it is defined in Section 7.5).

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))

This data-genericity is our third contribution.

1.4 Plan

In summary, we are going to define a library for the seamless, correct, and
generic manipulation of algebraic types in serialised format.

Section 2 introduces the language of descriptions capturing the subset of
inductively defined types that our work can handle. It differs slightly from
usual presentations in that it ensures the types can be serialised and tracks
crucial invariants towards that goal. Section 3 gives a standard meaning to
these data descriptions as strictly positive endofunctors whose fixpoints give
us the expected inductive types. We will use this standard meaning in the
specification layer of our work. Section 4 explores the serialisation format we
have picked for these trees: a depth-first, left-to-right infix traversal of the trees,
with additional information stored to allow for the random access of any subtree.
Section 5 defines the type of pointers to trees stored in a buffer and shows how
we can use such pointers to write the corresponding tree to a file. Section 6
introduces the terminology of views and singleton types that is crucial to the
art of programming in a correct-by-construction manner. Section 7 defines IO
primitives that operate on serialised trees stored in an underlying buffer. They
encapsulate all the unsafe low-level operations and offer a high-level interface
that allows users to implement correct-by-construction procedures. Section 8
defines a set of serialisation combinators that allows users to implement correct-
by-construction procedures writing values into a buffer. Section 9 discusses some
preliminary performance results for the library.

2 Our Universe of Descriptions

We first need to pin down the domain of our discourse. To talk generically about
an entire class of datatypes without needing to modify the host language we have
decided to perform a universe construction [BDJ03, Mor07, LM11]. That is to
say that we are going to introduce an inductive type defining a set of codes
together with an interpretation of these codes as bona fide host-language types.
We will then be able to program generically over the universe of datatypes by
performing induction on the type of codes [PR99].
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The universe we define is in the tradition of a sums-of-products vision of in-
ductive types [JJ97] where the data description records additional information
about the static and dynamic size of the data being stored. In our setting, con-
structors are essentially arbitrarily nested tuples of values of type unit, bytes,
and recursive substructures. A datatype is given by listing a choice of construc-
tors.

2.1 Descriptions

We start with these constructor descriptions; they are represented internally by
an inductive family Desc declared below.

data Desc : (rightmost : Bool) ->

(static : Nat) -> (offsets : Nat) ->

Type

This family has three indices corresponding to three crucial invariants being
tracked. First, an index telling us whether the current description is being used
in the rightmost branch of the overall constructor description. Second, the
statically known size of the described data in the number of bytes it occupies.
Third, the number of offsets that need to be stored to compensate for subterms
not having a statically known size. The reader should think of rightmost as an
‘input’ index whereas static and offsets are ‘output’ indices.

Next we define the family proper by giving its four constructors.

data Desc where

None : Desc r 0 0

Byte : Desc r 1 0

Prod : {sl, sr, ol, or : Nat} ->

Desc False sl ol -> Desc r sr or ->

Desc r (sl + sr) (ol + or)

Rec : Desc r 0 (ifThenElse r 0 1)

Each constructor can be used anywhere in a description so their return
rightmost index can be an arbitrary boolean.

None is the description of values of type unit. The static size of these values
is zero as no data is stored in a value of type unit. Similarly, they do not require
an offset to be stored as we statically know their size.

Byte is the description of bytes. Their static size is precisely one byte, and
they do not require an offset to be stored either.

Prod gives us the ability to pair two descriptions together. Its static size and
the number of offsets are the respective sums of the static sizes and numbers of
offsets of each subdescription. The description of the left element of the pair will
never be in the rightmost branch of the overall constructors description and so
its index is False while the description of the right element of the pair is in the
rightmost branch precisely whenever the whole pair is; hence the propagation
of the r arbitrary value from the return index into the description of the right
component.
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Last but not least, Rec is a position for a subtree. We cannot know its size in
bytes statically and so we decide to store an offset unless we are in the rightmost
branch of the overall description. Indeed, there are no additional constructor
arguments behind the rightmost one and so we have no reason to skip past the
subterm. Consequently we do not bother recording an offset for it.

2.2 Constructors

We represent a constructor as a record packing together a name for the con-
structor, the description of its arguments (which is, by virtue of being used at
the toplevel, in rightmost position), and the values of the static and offsets

invariants. The two invariants are stored as implicit fields because their value
is easily reconstructed by Idris 2 using unification and so users do not need to
spell them out explicitly.

record Constructor (nm : Type) where

constructor (::)

name : nm

{static : Nat}
{offsets : Nat}
description : Desc True static offsets

Note that we used (::) as the name of the constructor for records of type
Constructor. This allows us to define constructors by forming an expression
reminiscent of Haskell’s type declarations: name :: type. Returning to our
running example, this gives us the following encodings for leaves that do not
store anything and nodes that contain a left branch, a byte, and a right branch.

Leaf : Constructor String

Leaf = "Leaf" :: None

Node : Constructor String

Node = "Node" :: Prod Rec (Prod Byte Rec)

2.3 Datatypes

A datatype description is given by a number of constructors together with a
vector (also known as a length-indexed list) associating a description to each of
these constructors.

record Data (nm : Type) where

constructor MkData

{consNumber : Nat}
constructors : Vect consNumber (Constructor nm)

We can then encode our running example as a simple Data declaration: a
binary tree whose node stores bytes is described by the choice of either a Leaf

or Node, as defined above.
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Tree : Data String

Tree = MkData [Leaf, Node]

Now that we have a language that allows us to give a description of our
inductive types, we are going to give these descriptions a meaning as trees.

3 Meaning as Trees

We now see descriptions as functors and, correspondingly, datatypes as the ini-
tial objects of the associated functor-algebras. This is a standard construction
derived from Malcolm’s work [Mal90], itself building on Hagino’s categorically-
inspired definition of a lambda calculus with a generic notion of datatypes [Hag87].

In our work these trees will be used primarily to allow users to give a precise
specification of the IO procedures they actually want to write in order to process
values stored in buffers. We expect these inductive trees and the associated
generic programs consuming them to be mostly used at the 0 modality i.e. to
be erased during compilation.

3.1 Descs as Functors

We define the meaning of descriptions as strictly positive endofunctors on Type

by induction on said descriptions. Meaning gives us the action of the functors
on objects.

Meaning : Desc r s n -> Type -> Type

Meaning None x = ()

Meaning Byte x = Bits8

Meaning Rec x = x

Meaning (Prod d e) x

= Tuple (Meaning d x) (Meaning e x)

Both None and Byte are interpreted by constant functors (respectively the
one returning the unit type, and the one returning the type of bytes). Rec is
the identity functor. Finally (Prod d e) is interpreted as the pairing of the
interpretation of d and e respectively. We use our own definition of pairing
rather than the standard library’s because it gives us better syntactic sugar.

record Tuple (a, b : Type) where

constructor (#)

fst : a

snd : b

This gives us the action of descriptions on types, let us now see their action
on morphisms. We once again proceed by induction on the description.
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fmap : (d : Desc r s o) -> (a -> b) -> Meaning d a -> Meaning d b

fmap None f v = v

fmap Byte f v = v

fmap (Prod d e) f (v # w) = (fmap d f v # fmap e f w)

fmap Rec f v = f v

All cases but the one for Rec are structural. Verifying that these definitions
respect the functor laws is left as an exercise for the reader.

3.2 Data as Trees

Given a datatype description cs, our first goal is to define what it means to
pick a constructor. The Index record is a thin wrapper around a finite natural
number known to be smaller than the number of constructors this type provides.

record Index (cs : Data nm) where

constructor MkIndex

getIndex : Fin (consNumber cs)

We use this type rather than Fin directly because it plays well with inference.
In the following code snippet, implementing a function returning the description
corresponding to a given index, we use this to our advantage: the cs argument
can be left implicit because it already shows up in the type of the Index and
can thus be reconstructed by unification.

description : {cs : Data nm} -> (k : Index cs) ->

let cons = index (getIndex k) (constructors cs) in

Desc True (static cons) (offsets cons)

description {cs} k

= description (index (getIndex k) (constructors cs))

This type of indices also allows us to provide users with syntactic sugar
enabling them to use the constructors’ names directly rather than confusing nu-
meric indices. The following function runs a decision procedure isConstructor
at the type level in order to turn any raw string str into the corresponding
Index.

fromString : {cs : Data String} -> (str : String) ->

{auto 0 _ : IsJust (isConstructor str cs)} ->

Index cs

fromString {cs} str with (isConstructor str cs)

_ | Just k = MkIndex k

If the name is valid then isConstructorwill return a valid Index and Idris 2
will be able to automatically fill-in the implicit proof. If the name is not valid
then Idris 2 will not find the index and will raise a compile time error. We
include a successful example on the left and a failing test on the right hand side
(failing blocks are only accepted in Idris 2 if their body leads to an error).
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indexLeaf : Index Tree

indexLeaf = "Leaf"

failing

notIndexCons : Index Tree

notIndexCons = "Cons"

Once equipped with the ability to pick constructors, we can define the type
of algebras for the functor described by a Data description. For each possible
constructor, we demand an algebra for the functor corresponding to the meaning
of the constructor’s description.

Alg : Data nm -> Type -> Type

Alg cs x = (k : Index cs) -> Meaning (description k) x -> x

We can then introduce the fixpoint of data descriptions as the initial algebra,
defined as the following inductive type.

data Mu : Data nm -> Type where

(#) : Alg cs (assert_total (Mu cs))

Note that here we are forced to use assert_total to convince Idris 2 to
accept the definition. Indeed, unlike Agda, Idris 2 does not (yet!) track whether
a function’s arguments are used in a strictly positive manner. Consequently the
positivity checker is unable to see that Meaning uses its second argument in a
strictly positive manner and that this is therefore a legal definition.

Now that we can build trees as fixpoints of the meaning of descriptions, we
can define convenient aliases for the Tree constructors. Note that the leftmost
(#) use in each definition corresponds to the Mu constructor while later ones
are Tuple constructors. Idris 2’s type-directed disambiguation of constructors
allows us to use this uniform notation for all of these pairing notions.

leaf : Mu Tree

leaf = "Leaf" # ()

node : Mu Tree -> Bits8 -> Mu Tree -> Mu Tree

node l b r = "Node" # l # b # r

This enables us to define our running example as an inductive value:

example : Mu Tree

example = node (node (node leaf 1 leaf) 5 leaf) 10 (node leaf 20 leaf)

3.3 Generic Fold

Mu gives us the initial fixpoint for these algebras i.e. given any other algebra
over a type a, from a term of type (Mu cs), we can compute an a. We define
the generic fold function over inductive values as follows:

fold : {cs : Data nm} -> Alg cs a -> Mu cs -> a

fold alg (k # t) = alg k (assert_total $ fmap _ (fold alg) t)
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We first match on the term’s top constructor, use fmap (defined in Sec-
tion 3.1) to recursively apply the fold to all the node’s subterms and finally
apply the algebra to the result.

Here we only use assert_total because Idris 2 does not see that fmap

only applies its argument to strict subterms. This limitation could easily be
bypassed by mutually defining an inlined and specialised version of (fmap _

(fold alg)). as we demonstrate in Appendix A. In an ideal type theory these
supercompilation steps, whose sole purpose is to satisfy the totality checker,
would be automatically performed by the compiler [MG12].

Further generic programming can yield other useful programs e.g. a generic
proof that tree equality is decidable or a generic definition of zippers [LM11].

4 Serialised Representation

Before we can give a meaning to descriptions as pointers into a buffer we need
to decide on a serialisation format. The format we have opted for is split in two
parts: a header containing data that can be used to check that a user’s claim
that a given file contains a serialised tree of a given type is correct, followed by
the actual representation of the tree.

For instance, the following binary snippet is a hex dump of a file containing
the serialised representation of a binary tree belonging to the type we have been
using as our running example. The raw data is semantically highlighted: 8-
bytes-long offsets, a type description of the stored data, some nodes of the
tree and the data stored in the nodes.

87654321 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

00000000: 07 00 00 00 00 00 00 00 02 00 02 03 02 01 03 01

00000010: 17 00 00 00 00 00 00 00 01 0c 00 00 00 00 00 00

00000020: 00 01 01 00 00 00 00 00 00 00 00 01 00 05 00 0a

00000030: 01 01 00 00 00 00 00 00 00 00 14 00

More specifically, this block is the encoding of the example given in the
previous section and, knowing that a leaf is represented here by 00 and a node

is represented by 01 the careful reader can check (modulo ignoring the type
description and offsets for now) that the data is stored in a depth-first, left-to-
right traversal of the tree (i.e. we get exactly the bit pattern we saw in the näıve
encoding presented in Section 1).

4.1 Header

In our example, the header is as follows:

07 00 00 00 00 00 00 00 02 00 02 03 02 01 03
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The header consists of an offset allowing us to jump past it in case we do not
care to inspect it, followed by a binary representation of the Data description of
the value stored in the buffer. This can be useful in a big project where different
components produce and consume such serialised values: if we change the format
in one place but forget to update it in another, we want the program to gracefully
fail to load the file using an unexpected format. We detail in Section 10.2.1 how
dependent type providers can help structure a software project to prevent such
issues.

The encoding of a data description starts with a byte giving us the number
of constructors, followed by these constructors’ respective descriptions serialised
one after the other. None is represented by 00, Byte is represented by 01, (Prod
d e) is represented by 02 followed by the representation of d and then that of
e, and Rec is represented by 03.

Looking once more at the header in the running example, the Data descrip-
tion is indeed 7 bytes long like the offset states. The Data description starts
with 02 meaning that the type has two constructors. The first one is 00 i.e.
None (this is the encoding of the type of Leaf), and the second one is 02 03 02

01 03 i.e. (Prod Rec (Prod Byte Rec)) (that is to say the encoding of the type
of Node). According to the header, this file does contain a Tree.

4.2 Tree Serialisation

Our main focus in the definition of this format is that we should be able to
process any of a node’s subtrees without having to first traverse the subtrees
that come before it. This will allow us to, for instance, implement a function
looking up the value stored in the rightmost node in our running example type
of binary trees in time linear in the depth of the tree rather than exponential.
To this end each node needs to store an offset measuring the size of the subtrees
that are to the left of any relevant information.

If a given tag is associated to a description of type (Desc True s o) then the
representation in memory of the associated node will look something like the
following.

tag o offsets tree1 · · · byte1 · · · treek · · · bytes treeo+1

0 1 1 + 8 ∗ o 8 ∗ o+ s+Σo

i=1oi

On the first line we have a description of the data layout and on the second
line we have the offset of various positions in the block with respect to the tag’s
address.

For the data layout, we start with the tag then we have o offsets, and finally
we have a block contiguously storing an interleaving of subtrees and s bytes
dictated by the description. In this example the rightmost value in the descrip-
tion is a subtree and so even though we have o offsets, we actually have (o+ 1)
subtrees stored.
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The offsets of the tag with respect to its own address is 0. The tag occupies
one byte and so the offset of the block of offsets is 1. Each offset occupies 8
bytes and so the constructor’s arguments are stored at offset (1+8 ∗ o). Finally
each value’s offset can be computed by adding up the offset of the start of the
block of constructor arguments, the offsets corresponding to all of the subtrees
that come before it, and the number of bytes stored before it; in the case of the
last byte that gives 1 + 8 ∗ o+Σo

i=1oi + s− 1 hence the formula included in the
diagram.

Going back to our running example, this translates to the following respec-
tive data layouts and offsets for a leaf and a node.

Leaf

00

0

Node

01 offset left subtree byte right subtree

0 1 9 9 + o1 10 + o1

Now that we understand the format we want, we ought to be able to imple-
ment pointers and the functions manipulating them.

5 Meaning as Pointers into a Buffer

Now that we know the serialisation format, we can give a meaning to construc-
tor and data descriptions as pointers into a buffer. For reasons that will become
apparent in Section 7.5 when we start programming over serialised data in a
correct-by-construction manner, our types of ‘pointers’ will be parameterised
not only by the description of the type of the data stored but also by a runtime-
irrelevant inductive value of that type. For now, it is enough to think of these
indices as a lightweight version of the ‘points to’ assertions used in separation
logic [Rey02] when reasoning about imperative programs. We expand on this
analogy in Appendix C where we also discuss the connection with the combina-
tors defined in Section 7.

5.1 Tracking Buffer Positions

We start with the definition of the counterpart to Mu for serialised values.

record Mu (cs : Data nm) (t : Data.Mu cs) where

constructor MkMu

muBuffer : Buffer

muPosition : Int

muSize : Int

A tree sitting in a buffer is represented by a record packing the buffer, the
position at which the tree’s root node is stored, and the size of the tree. Note
that according to our serialisation format the size is not stored in the file but
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using the size of the buffer, the stored offsets, and the size of the static data we
will always be able to compute a value corresponding to it.

record Meaning (d : Desc r s o) (cs : Data nm)

(t : Data.Meaning d (Data.Mu cs)) where

constructor MkMeaning

subterms : Vect o Int

meaningBuffer : Buffer

meaningPosition : Int

meaningSize : Int

The counterpart to a Meaning stores additional information. For a descrip-
tion of type (Desc r s o) on top of the buffer, the position at which the root of
the meaning resides, and the size of the layer we additionally have a vector of o
offsets that allow us to efficiently access any value we want.

5.2 Writing a Tree to a File

Once we have a pointer to a tree in a buffer, we can easily write it to a file be
it for safekeeping or sending over the network.

writeToFile : {cs : Data nm} -> FilePath ->

forall t. Pointer.Mu cs t -> IO ()

writeToFile fp (MkMu buf pos size) = do

desc <- getInt buf 0

let start = 8 + desc

let bufSize = 8 + desc + size

buf <- if pos == start then pure buf else do

Just newbuf <- newBuffer bufSize

| Nothing => failWith "\{__LOC__} Couldn’t allocate buffer"

copyData buf 0 start newbuf 0

copyData buf pos size newbuf start

pure buf

Right () <- writeBufferToFile fp buf bufSize

| Left (err, _) => failWith (show err)

pure ()

We first start by reading the size of the header stored in the buffer. This
allows us to compute both the start of the data block as well as the size of the
buffer (bufSize) that will contain the header followed by the tree we want to
write to a file. We then check whether the position of the pointer is exactly the
beginning of the data block. If it is then we are pointing to the whole tree and
the current buffer can be written to a file as is. Otherwise we are pointing to a
subtree and need to separate it from its surrounding context first. To do so we
allocate a new buffer of the right size and use the standard library’s copyData
primitive to copy the raw bytes corresponding to the header first, and the tree
of interest second. We can then write the buffer we have picked to a file and
happily succeed.
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Now that we have pointers and can save the tree they are standing for, we
are only missing the ability to look at the content they are pointing to. But
first we need to introduce some basic tools to be able to talk precisely about
this stored content.

6 Interlude: Views and Singletons

The precise indexing of pointers by a runtime-irrelevant copy of the value they
are pointing to means that inspecting the buffer’s content should not only return
runtime information but also refine the index to reflect that information at
the type-level. As a consequence, the functions we are going to define in the
following subsections are views.

6.1 Views

A view in the sense of Wadler [Wad87], and subsequently refined by McBride
and McKinna [MM04] for a type T is a type family V indexed by T together with
a function which maps values t of type T to values of type V t. By inspecting the
V t values we can learn something about the t input. The prototypical example
is perhaps the ‘snoc‘ (‘cons’ backwards) view of right-nested lists as if they were
left-nested. We present the Snoc family below.

data Snoc : List a -> Type where

Lin : Snoc []

(:<) : (init : List a) -> (last : a) -> Snoc (init ++ [last])

By matching on a value of type (Snoc xs) we get to learn either that xs is
empty (Lin, nil backwards) or that it has an initial segment init and a last
element last (init :< last). The function unsnoc demonstrates that we can
always view a List in a Snoc-manner.

unsnoc : (xs : List a) -> Snoc xs

unsnoc [] = Lin

unsnoc (x :: xs@_) with (unsnoc xs)

_ | [<] = [] :< x

_ | init :< last = (x :: init) :< last

Here we defined Snoc as an inductive family but it can sometimes be con-
venient to define the family recursively instead. In which case the Singleton

inductive family can help us connect runtime values to their runtime-irrelevant
type-level counterparts.

6.2 The Singleton type

The Singleton family has a single constructor which takes an argument x of
type a, its return type is indexed precisely by this x.
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data Singleton : {0 a : Type} -> (x : a) -> Type where

MkSingleton : (x : a) -> Singleton x

More concretely this means that a value of type (Singleton t) has to be a
runtime relevant copy of the term t. Note that Idris 2 performs an optimisation
similar to Haskell’s newtype unwrapping: every data type that has a single non-
recursive constructor with only one non-erased argument is unwrapped during
compilation. This means that at runtime the Singleton / MkSingleton indi-
rections will have disappeared.

We can define some convenient combinators to manipulate singletons. We
reuse the naming conventions typical of applicative functors which will allow us
to rely on Idris 2’s automatic desugaring of idiom brackets [MP08] into expres-
sions using these combinators.

pure : (x : a) -> Singleton x

pure = MkSingleton

First pure is a simple alias for MkSingleton, it turns a runtime-relevant
value x into a singleton for this value.

(<$>) : (f : a -> b) -> Singleton t -> Singleton (f t)

f <$> MkSingleton t = MkSingleton (f t)

Next, we can ‘map’ a function under a Singleton layer: given a pure func-
tion f and a runtime copy of t we can get a runtime copy of (f t).

(<*>) : Singleton f -> Singleton t -> Singleton (f t)

MkSingleton f <*> MkSingleton t = MkSingleton (f t)

Finally, we can apply a runtime copy of a function f to a runtime copy of
an argument t to get a runtime copy of the result (f t).

As we mentioned earlier, Idris 2 automatically desugars idiom brackets using
these combinators. That is to say that [| x |] will be elaborated to (pure x)
while [| f t1 · · · tn |] will become (f <$> t1 <*> · · · <*> tn). This lets us
apply Singleton-wrapped values almost as seamlessly as pure values.

We are now equipped with the appropriate notions and definitions to look
at a buffer’s content.

7 Inspecting a Buffer’s Content

We can now describe the combinators allowing our users to inspect the value
they have a pointer for. We are going to define the most basic of building
blocks (poke and out), combine them to derive useful higher-level combinators
(layer and view), and ultimately use these to implement a generic correct-by-
construction version of fold operating over trees stored in a buffer (cf. Sec-
tion 7.5).

Readers may be uneasy about the unsafe implementations of the basic build-
ing blocks but we argue that it is a necessary evil by drawing an extended
analogy to separation logic in Appendix C.
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7.1 Poking the Buffer

Our most basic operation consists in poking the buffer to unfold the description
by exactly one step. The type of the function is as follows: provided a pointer
for a meaning t, we return an IO process computing the one step unfolding of
the meaning.

poke : {0 cs : Data nm} -> {d : Desc r s o} ->

forall t. Pointer.Meaning d cs t ->

IO (Poke d cs t)

The result type of this operation is defined by case-analysis on the descrip-
tion. In order to keep the notations user-friendly, we mutually define a recursive
function Poke interpreting the straightforward type constructors and an induc-
tive family Poke’ with interesting return indices.

Poke : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type

Poke None _ t = ()

Poke Byte cs t = Singleton t

Poke Rec cs t = Pointer.Mu cs t

Poke d@(Prod _ _) cs t = Poke’ d cs t

Poking a buffer containing None will return a value of the unit type as no
information whatsoever is stored there.

If we access a Byte then we expect that inspecting the buffer will yield a
runtime-relevant copy of the type-level byte we have for reference. Hence the
use of Singleton.

If the description is Rec this means we have a substructure. In this case we
simply demand a pointer to it.

Last but not least, if we access a Prod of two descriptions then the type-level
term better be a pair and we better be able to obtain a Pointer.Meaning for
each of the sub-meanings. Because Idris 2 does not currently support definitional
eta equality for records, it will be more ergonomic for users if we introduce Poke’
rather than yielding a Tuple of values. By matching on Poke’ at the value level,
they will see the pair at the type level also reduced to a constructor-headed tuple.

data Poke’ : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type where

(#) : Pointer.Meaning d cs t ->

Pointer.Meaning e cs u ->

Poke’ (Prod d e) cs (t # u)

The implementation of this operation proceeds by case analysis on the de-
scription. As we are going to see shortly, it is necessarily somewhat unsafe as
we claim to be able to connect a type-level value to whatever it is that we read
from the buffer. Let us go through each case one-by-one.

poke {d = None} el = pure ()
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If the description is None we do not need to fetch any information from the
buffer and can immediately return ().

poke {d = Byte} el = do

bs <- getBits8 (meaningBuffer el) (meaningPosition el)

pure (unsafeMkSingleton bs)

If the description is Byte then we read a byte at the determined position.
The only way we can connect this value we just read to the type index is to
use the unsafe combinator unsafeMkSingleton to manufacture a value of type
(Singleton t) instead of the value of type (Singleton bs) we would expect from
wrapping bs in the MkSingleton constructor. As we explain in Appendix C.2.1,
in separation logic this would correspond to declaring an axiom about the poke
language construct.

poke {d = Prod {sl, ol} d e} {t} (MkMeaning sub buf pos size) = do

let (subl, subr) = splitAt ol sub

let sizel = sum subl + cast sl

let left = MkMeaning subl buf pos sizel

let posr = pos + sizel

let right = MkMeaning subr buf posr (size - sizel)

pure (rewrite etaTuple t in left # right)

If the description is the product of two sub-descriptions then we want to
compute the Pointer.Meaning corresponding to each of them. We start by
splitting the vector of offsets to distribute them between the left and right
subtrees.

We can readily build the pointer for the left subdescription: it takes the left
offsets, the buffer, and has the same starting position as the whole description of
the product as the submeanings are stored one after the other. Its size (sizel)
is the sum of the space reserved by all of the left offsets (sum subl) as well as
the static size occupied by the rest of the content (sl).

We then compute the starting position of the right subdescription: we need
to move past the whole of the left subdescription, that is to say that the starting
position is the sum of the starting position for the whole product and sizel.
The size of the right subdescription is then easily computed by subtracting
sizel from the overall size of the paired subdescriptions.

We can finally use the lemma etaTuple saying that a tuple is equal to the
pairing of its respective projections in order to turn t into (fst t # snd t) which
lets us use the Poke’ constructor (#) to return our pair of pointers.

poke {d = Rec} (MkMeaning _ buf pos size) = pure (MkMu buf pos size)

Lastly, when we reach a Rec description, we can discard the vector of offsets
and return a Pointer.Mu with the same buffer, starting position and size as our
input pointer.
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7.2 Extracting one layer

By repeatedly poking the buffer, we can unfold a full layer. This operation’s
result is defined by induction on the description. It is identical to the definition
of Poke except for the Prod case: instead of being content with a pointer for
each of the subdescriptions, we demand a Layer for them too.

Layer : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type

Layer None _ _ = ()

Layer Byte _ t = Singleton t

Layer Rec cs t = Pointer.Mu cs t

Layer d@(Prod _ _) cs t = Layer’ d cs t

data Layer’ : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type where

(#) : Layer d cs t -> Layer e cs u -> Layer’ (Prod d e) cs (t # u)

This function can easily be implemented by induction on the description and
repeatedly calling poke to expose the values one by one.

layer : {0 cs : Data nm} -> {d : Desc r s o} ->

forall t. Pointer.Meaning d cs t -> IO (Layer d cs t)

layer el = poke el >>= go d where

go : forall r, s, o. (d : Desc r s o) ->

forall t. Poke d cs t -> IO (Layer d cs t)

go None p = pure ()

go Byte p = pure p

go (Prod d e) (p # q) = [| layer p # layer q |]

go Rec p = pure p

7.3 Exposing the top constructor

Now that we can deserialise an entire layer of Meaning, the only thing we are
missing to be able to generically manipulate trees is the ability to expose the
top constructor of a tree stored at a Pointer.Mu position. Remembering the
data layout detailed in Section 4.2, this will amount to inspecting the tag used
by the node and then deserialising the offsets stored immediately after it.

The Out family describes the typed point of view: to get your hands on the
index of a tree’s constructor means obtaining an Index, and a Pointer.Meaning
to the constructor’s arguments (remember that these high-level ‘pointers’ store
a vector of offsets). The family’s index (k # t) ensures that the structure of
the runtime irrelevant tree is adequately described by the index (k) and the
Data.Meaning (t) the Pointer.Meaning is for.
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data Out : (cs : Data nm) -> (t : Data.Mu cs) -> Type where

(#) : (k : Index cs) ->

forall t. Pointer.Meaning (description k) cs t ->

Out cs (k # t)

As a first step, we can get our hands on the index of the head constructor.
We obtain a byte by calling getBits8, cast it to a natural number and then
make sure that it is in the range [0 · · ·consNumber cs[ using natToFin.

getIndex : {cs : Data nm} -> forall t. Pointer.Mu cs t -> IO (Index cs)

getIndex mu = do

tag <- getBits8 (muBuffer mu) (muPosition mu)

let Just k = natToFin (cast tag) (consNumber cs)

| _ => failWith "Invalid representation"

pure (MkIndex k)

The out function type states that given a pointer to a tree t of type cs we
can get a value of type (Out cs t) i.e. we can get a view revealing what the
index of the tree’s head constructor is.

out : {cs : Data nm} -> forall t. Pointer.Mu cs t -> IO (Out cs t)

The implementation is fairly straightforward except for another unsafe step
meant to reconcile the information we read in the buffer with the runtime-
irrelevant tree index.

out {t} mu = do

k <- getIndex mu

let 0 sub = unfoldAs k t

val <- (k #) <$> getConstructor k {t = sub.fst}
(rewrite sym sub.snd in mu)

pure (rewrite sub.snd in val)

We start by reading the tag k corresponding to the constructor choice. We
then use the unsafe unfoldAs postulate to step the type-level t to something of
the form (k # val).

%unsafe

0 unfoldAs :

(k : Index cs) -> (0 t : Data.Mu cs) ->

(val : Data.Meaning (description k) (Data.Mu cs)

** t === (k # val))

The declaration of unfoldAs is marked as runtime irrelevant because it can-
not possibly be implemented (t is runtime irrelevant and so cannot be inspected)
and so its output should not be relied upon in runtime-relevant computations.
Its type states that there exists a Meaning called val such that t is equal to (k
# val)

Now that we know the head constructor we want to deserialise and that we
have the ability to step the runtime irrelevant tree to match the actual content
of the buffer, we can use getConstructor to build such a value.
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getConstructor : (k : Index cs) ->

forall t. Pointer.Mu cs (k # t) ->

IO (Pointer.Meaning (description k) cs t)

getConstructor (MkIndex k) mu

= let offs : Nat; offs = offsets (index k $ constructors cs) in

getOffsets (muBuffer mu) (1 + muPosition mu) offs

$ let size = muSize mu - 1 - cast (8 * offs) in

\ subterms, pos => MkMeaning subterms (muBuffer mu) pos size

To get a constructor, we start by getting the vector of offsets stored im-
mediately after the tag. We then compute the size of the remaining Meaning

description: it is the size of the overall tree, minus 1 (for the tag) and 8 times
the number of offsets (because each offset is stored as an 8 bytes number). We
can then use the record constructor MkMeaning to pack together the vector of
offsets, the buffer, the position past the offsets and the size we just computed.

getOffsets : Buffer -> (pos : Int) ->

(n : Nat) ->

forall t. (Vect n Int -> Int -> Pointer.Meaning d cs t) ->

IO (Pointer.Meaning d cs t)

getOffsets buf pos 0 k = pure (k [] pos)

getOffsets buf pos (S n) k = do

off <- getInt buf pos

getOffsets buf (8 + pos) n (k . (off ::))

The implementation of getOffsets is straightforward: given a continuation
that expect n offsets as well as the position past the last of these offsets, we read
the 8-bytes-long offsets one by one and pass them to the continuation, making
sure that we move the current position accordingly before every recursive call.

7.4 Offering a convenient View

We can combine out and layer to obtain the view function we used in our
introductory examples in Section 1.1. A (View cs t) value gives us access to
the (Index cs) of t’s top constructor together with the corresponding Layer of
deserialised values and pointers to subtrees.

data View : (cs : Data nm) -> (t : Data.Mu cs) -> Type where

(#) : (k : Index cs) ->

forall t. Layer (description k) cs t ->

View cs (k # t)

The implementation of view is unsurprising: we use out to expose the top
constructor index and a Pointer.Meaning to the constructor’s payload. We
then user layer to extract the full Layer of deserialised values that the pointer
references.
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view : {cs : Data nm} ->

forall t. Pointer.Mu cs t ->

IO (View cs t)

view ptr = do k # el <- out ptr

vs <- layer el

pure (k # vs)

It is worth noting that although a view may be convenient to consume, a
performance-minded user may decide to directly use the out and poke combi-
nators to avoid deserialising values that they do not need. We present a case
study in Appendix B comparing the access patterns of two implementations of
the function fetching the byte stored in a tree’s rightmost node depending on
whether we use view or the lower level poke combinator.

By repeatedly calling view, we can define the correct-by-construction generic
deserialisation function that turns a pointer to a tree into a runtime value equal
to this tree.

deserialise : {cs : Data nm} -> forall t.

Pointer.Mu cs t -> IO (Singleton t)

We can measure the benefits of our approach by comparing the runtime of a
function directly operating on buffers to its pure counterpart composed with a
deserialisation step. For functions like rightmost that only explore a very small
part of the full tree, the gains are spectacular: the process operating on buffers
is exponentially faster than its counterpart which needs to deserialise the entire
tree first (cf. Section 9).

7.5 Generic Fold

The implementation of the generic fold over a tree stored in a buffer is going
to have the same structure as the generic fold over inductive values: first match
on the top constructor, then use fmap to apply the fold to all the substructures
and, finally, apply the algebra to the result. We start by implementing the
buffer-based counterpart to fmap. Let us go through the details of its type first.

fmap : (d : Desc r s o) ->

(0 f : Data.Mu cs -> b) ->

(forall t. Pointer.Mu cs t -> IO (Singleton (f t))) ->

forall t. Pointer.Meaning d cs t ->

IO (Singleton (Data.fmap d f t))

The first two arguments to fmap are similar to its pure counterpart: a de-
scription d and a (here runtime-irrelevant) function f to map over a Meaning.
Next we take a function which is the buffer-aware counterpart to f: given any
runtime-irrelevant term t and a pointer to it in a buffer, it returns an IO process
computing the value (f t). Finally, we take a runtime-irrelevant meaning t as
well as a pointer to its representation in a buffer and compute an IO process
which will return a value equal to (Data.fmap d f t).
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We can now look at the definition of fmap.

fmap d f act ptr = poke ptr >>= go d where

go : (d : Desc{}) -> forall t. Poke d cs t ->

IO (Singleton (Data.fmap d f t))

go None {t} v = pure byIrrelevance

go Byte v = pure v

go (Prod d e) (v # w)

= do fv <- fmap d f act v

fw <- fmap e f act w

pure [| fv # fw |]

go Rec v = act v

We poke the buffer to reveal the value the Pointer.Meaning named ptr

is pointing at and then dispatch over the description d using the go auxiliary
function.

If the description is None we use byIrrelevance which happily builds any
(Singleton t) provided that t’s type is proof irrelevant.

If the description is Byte, the value is left untouched and so we can simply
return it immediately.

If we have a Prod of two descriptions, we recursively apply fmap to each of
them and pair the results back.

Finally, if we have a Rec we apply the function operating on buffers that we
know performs the same computation as f.

We can now combine out and fmap to compute the correct-by-construction
fold: provided an algebra for a datatype cs and a pointer to a tree of type cs

stored in a buffer, we return an IO process computing the fold.

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))

We first use out to reveal the constructor choice in the tree’s top node, we
then recursively apply (fold alg) to all the substructures by calling fmap, and
we conclude by applying the algebra to this result.

fold alg ptr

= do k # t <- out ptr

rec <- assert_total (fmap _ _ (fold alg) t)

pure (alg k <$> rec)

We once again (cf. Section 3.3) had to use assert_total because it is not
obvious to Idris 2 that fmap only uses its argument on subterms. This could
have also been avoided by mutually defining fold and a specialised version of
(fmap (fold alg)) at the cost of code duplication and obfuscation. We once
again include such a definition in Appendix A.
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8 Serialising Data

So far all of our example programs involved taking an inductive value apart and
computing a return value in the host language. But we may instead want to
compute another value in serialised form. We include below one such example:
a map function which takes a function f acting on bytes and applies it to all of
the ones stored in the nodes of our type of Trees.

map : (f : Bits8 -> Bits8) ->

(ptr : Pointer.Mu Tree t) ->

Serialising Tree (Data.map f t)

map f ptr = case !(view ptr) of

"Leaf" # () => "Leaf" # ()

"Node" # l # b # r => "Node" # map f l # [| f b |] # map f r

It calls the view we just defined to observe whether the tree is a leaf or a
node. If it’s a leaf, it returns a leaf. If it’s a node, it returns a node where
the map has been recursively applied to the left and right subtrees while the
function f has been applied to the byte b.

In this section we are going to spell out how we can define high-level con-
structs allowing users to write these correct-by-construction serialisers.

8.1 The Type of Serialisation Processes

A serialisation process for a tree t that belongs to the datatype cs is a function
that takes a buffer and a starting position and returns an IO process that seri-
alises the term in the buffer at that position and computes the position of the
first byte past the serialised tree.

record Serialising (cs : Data nm) (t : Data.Mu cs) where

constructor MkSerialising

runSerialising : Buffer -> Int -> IO Int

We do not expect users to define such processes by hand and in fact prevent
them from doing so by not exporting the MkSerialising constructor. Instead,
we provide high-level, invariant-respecting combinators to safely construct such
serialisation processes.

8.2 Building Serialisation Processes

Our main combinator is (#): by providing a node’s constructor index and a
way to serialise all of the node’s subtrees, we obtain a serialisation process for
said node. We will give a detailed explanation of All below.

(#) : {cs : Data nm} -> (k : Index cs) ->

{0 t : Meaning (description k) (Data.Mu cs)} ->

All (description k) (Serialising cs) t ->

Serialising cs (k # t)
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The keen reader may refer to the accompanying code to see the implementa-
tion. Informally (cf. Section 4.2 for the description of the format): first we write
the tag corresponding to the choice of constructor, then we leave some space
for the offsets, in the meantime we write all of the constructor’s arguments and
collect the offsets associated to each subtree while doing so, and finally we fill
in the space we had left blank with the offsets we have thus collected.

The All quantifier performs the pointwise lifting of a predicate over the
functor described by a Desc. It is defined by induction over the description.

All : (d : Desc r s o) -> (p : x -> Type) -> Meaning d x -> Type

All None p t = ()

All Byte p t = Singleton t

All Rec p t = p t

All d@(Prod _ _) p t = All’ d p t

If the description is None then there is nothing to apply the predicate to and
so we return the unit type. If the description is Byte we only demand that we
have a runtime copy of the byte so that we may write it inside a buffer. This is
done using the Singleton family discussed in Section 6.2. If the description is
Rec then we demand that the predicate holds. Finally, if the description is a the
Prod of two subdescriptions, we once again use an auxiliary family purely for
ergonomics. It is defined mutually with All and does the expected structural
operation.

data All’ : (d : Desc r s o) -> (p : x -> Type) ->

Meaning d x -> Type where

(#) : All d p t -> All e p u -> All’ (Prod d e) p (t # u)

It should now be clear that (All (description k) (Serialising cs)) indeed
corresponds to having already defined a serialisation process for each subtree.

This very general combinator should be enough to define all the serialisers
we may ever want. By repeatedly pattern-matching on the input tree and using
(#), we can for instance define the correct-by-construction generic serialisation
function.

serialise : {cs : Data nm} -> (t : Data.Mu cs) -> Serialising cs t

We nonetheless include other combinators purely for performance reasons.

8.3 Copying Entire Trees

We introduce a copy combinator for trees that we want to serialise as-is and
have a pointer for. Equipped with this combinator, we are able to easily write
e.g. the swap function which takes a binary tree apart and swaps its left and
right branches (if the tree is non-empty).

swap : Pointer.Mu Tree t -> Serialising Tree (Data.swap t)

swap ptr = case !(view ptr) of

"Leaf" # () => leaf

"Node" # l # b # r => node (copy r) b (copy l)
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We could define this copy combinator at a high level either by composing
deserialise and serialise, or by interleaving calls to view and (#). This
would however lead to a slow implementation that needs to traverse the entire
tree in order to simply copy it.

Instead, we implement copy by using the copyData primitive for Buffers
present in Idris 2’s standard library. This primitive allows us to grab a slice of
the source buffer corresponding to the tree and to copy the raw bytes directly
into the target buffer.

copy : Pointer.Mu cs t -> Serialising cs t

copy ptr = MkSerialising $ \ buf, pos => do

let size = muSize ptr

copyData (muBuffer ptr) (muPosition ptr) size buf pos

pure (pos + size)

This is the one combinator that crucially relies on our format only using
offsets and not absolute addresses and on the accuracy of the size information
we have been keeping in Pointer.Mu and Pointer.Meaning. As we can see in
Section 9, this is spectacularly faster than a deep copying process traversing the
tree.

8.4 Executing a Serialisation Action

Now that we can describe actions serialising a value to a buffer, the last basic
building block we are still missing is a function actually performing such actions.
This is provided by the execSerialising function declared below.

execSerialising : {cs : Data nm} -> {0 t : Data.Mu cs} ->

Serialising cs t -> IO (Pointer.Mu cs t)

By executing a (Serialising cs t), we obtain an IO process returning a
pointer to the tree t stored in a buffer. We can then either compute further
with this tree (e.g. by calling sum on it), or write it to a file for safekeeping
using the function writeToFile introduced in Section 5.2.

8.5 Evaluation Order

The careful reader may have noticed that we can and do run arbitrary IO op-
erations when building a value of type Serialising (cf. the map example in
Section 8 where we perform a call to view to inspect the input’s shape).

This is possible thanks to Idris 2 elaborating do-blocks using whichever ap-
propriate bind operator is in scope. In particular, we have defined the following
one to use when building a serialisation process:

(>>=) : IO a -> (a -> Serialising cs t) -> Serialising cs t

io >>= f = MkSerialising $ \buf, start =>

do x <- io

runSerialising (f x) buf start

26



By using this bind we can temporarily pause writing to the buffer to make
arbitrary IO requests to the outside world. In particular, this allows us to
interleave reading from the original buffer and writing into the target one thus
having a much better memory footprint than if we were to first use the IO

monad to build in one go the whole serialisation process for a given tree and
then execute it.

9 Benchmarks

Now that we have the ability to read, write, and program directly over trees
stored in a buffer we can run some experiments to see whether this allows us to
gain anything over the purely functional programming style.

For all of these tests we generate a full tree of a given depth and compare the
time it takes to run the composition of deserialising the tree and applying the
pure function to the time it takes to run its pointer-based counterpart. Each
test is run 20 times in a row, and the duration averaged. We manually run
chezscheme’s garbage collector before the start of each time measurement.

All of our plots use a logarithmic y axis because the runtime of the deserialisation-
based function is necessarily exponential in the depth of the full tree.

The sum function explores the entirety of the tree and as such the difference
between the deserialisation-based and the pointer-based functions is minimal.
The rightmost function only explores the rightmost branch of the tree and
we correspondingly see an exponential speedup for the pointer-based function
which is able to efficiently skip past every left subtree.

5 10 15 20

105

107

109

depth

su
m

(n
s)

pointer
data

5 10 15 20
104

106

108

depth

ri
g
h
tm

o
st

(n
s)

pointer
data

The deep copy is unsurprisingly also exponential in the depth of the tree
being copied whereas the version based on the copyData primitive for buffers is
vastly faster.
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10 Conclusion

We have seen how, using a universe of descriptions indexed by their static and
dynamic sizes, we can define a precise language of values serialised in a buffer.
This allowed us to develop a library to manipulate such trees in a seamless,
correct, and generic manner either using low-level combinators like poke or
high-level programs like a data-polymorphic fold. We then provided users with
convenient tools to write serialisation processes thus allowing them to composi-
tionally build correct-by-construction values stored in buffers.

10.1 Related Work

This work sits at the intersection of many domains: data-generic programming,
the efficient runtime representation of functional data, programming over seri-
alised values, and the design of serialisation formats. Correspondingly, a lot of
related work is worth discussing. In many cases the advantage of our approach
is precisely that it is at the intersection of all of these strands of research.

10.1.1 Data-Generic Programming

There is a long tradition of data-generic programming [Gib06] and we will mostly
focus here on the approach based on the careful reification of a precise universe
of discourse as an inductive family in a host type theory, and the definition of
generic programs by induction over this family.

One early such instance is Pfeifer and Rueß’ ‘polytypic proof construc-
tion’ [PR99] meant to replace unsafe meta-programs deriving recursors (be they
built-in support, or user-written tactics).

In his PhD thesis, Morris [Mor07] declares various universes for strictly pos-
itive types and families and defines by generic programming further types (the
type of one-hole contexts), modalities (the universal and existential predicate
lifting over the functors he considers), and functions (map, boolean equality).

Löh and Magalhães [LM11] define a more expressive universe over indexed
functors that is closed under composition and fixpoints. They also detail how
to define additional generic construction such as a proof of decidable equality,
various recursion schemes, and zippers. This work, quite similar to our own in
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its presentation, offers a natural candidate universe for us to use to extend our
library.

10.1.2 Efficient Runtime Representation of Inductive Values

Although not dealing explicitly with programming over serialised data, Mon-
nier’s work [Mon19] with its focus on performance and in particular on the
layout of inductive values at runtime, partially motivated our endeavour. Pro-
vided that we find a way to get the specialisation and partial evaluation of the
generically defined views, we ought to be able to achieve –purely in user code–
Monnier’s vision of a representation where n-ary tuples have constant-time ac-
cess to each of their component.

10.1.3 Working on Serialised Data

Swierstra and van Geest [vGS17] define in Agda a rich universe of data descrip-
tions and generically implement serialising and deserialising, proving that the
latter is a left inverse to the former. Their universe is powerful enough that
later parts of a description can be constrained using the value associated to
ealier ones. We will be able to rely on this work when extending our current
universe to one for type families. In turn, our approach could be ported to their
setting to avoid the need to fully deserialise the data in order to process it.

LoCal [VKR+19] is the work that originally motivated the design of this
library. We have demonstrated that generic programming within a dependently
typed language can yield the sort of benefits other language can only achieve
by inventing entirely new intermediate languages and compilation schemes.

LoCal was improved upon with a re-thinking of the serialisation scheme
making the approach compatible with parallel programming [KRV+21]. This
impressive improvement is a natural candidate for future work on our part: the
authors demonstrate it is possible to reap the benefits of both programming over
serialised data and dividing up the work over multiple processors with almost
no additional cost in the case of a purely sequential execution.

10.1.4 Serialisation Formats

The PADS project [MFW+07] aims to let users quickly, correctly, and compo-
sitionally describe existing formats they have no control over. As they reminds
us, ad-hoc serialisation formats abound be it in networking, logging, billing,
or as output of measurement equipments in e.g. gene sequencing or molecu-
lar biology. Our current project is not offering this kind of versatility as we
have decided to focus on a specific serialisation format with strong guarantees
about the efficient access to subtrees. But our approach to defining correct-by-
construction components could be leveraged in that setting too and bring users
strong guarantees about the traversals they write.

ASN.1 [Lar99] gives users the ability to define a high-level specification of the
exchange format (the ‘abstract syntax’) to be used in communications without
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the need to concern themselves with the actual encoding as bit patterns (the
‘transfer syntax’). This separation between specification and implementation
means that parsing and encoding can be defined once and for all by generic
programming (here, a compiler turning specifications into code in the user’s host
language of choice). The main difference is once again our ability to program
in a correct-by-construction manner over the values thus represented.

Yallop’s automatic derivation of serialisers using an OCaml preprocessor [Yal07]
highlights the importance of empowering domain experts to take advantage of
the specifics of the problem they are solving to minimise the size of the en-
coded data. By detecting sharing using a custom equality function respecting
α-equivalence instead of the default one, he was able to serialise large lambda
terms using only a quarter of the bytes OCaml’s standard library marshaller.

10.2 Limitations and Future Work

Although our design is already proven to be functional by two implementations
in Idris 2 and Agda respectively, we can always do better. In this section we are
going to see what benefits future work could bring across the whole project.

10.2.1 A More Robust Library

For sake of ease of presentation we have not dealt with issues necessitating buffer
resizing: in Section 8, we defined execSerialising by allocating a fixed size
buffer and not worrying whether the whole content would fit. A real library
would need to adopt a more robust approach akin to the one used in the imple-
mentation of Idris 2’s own serialisation code: whenever we are about to write a
byte to the buffer, we make sure there is either enough space left or we grow it.
Note that our Agda port does not suffer from this limitation as it can rely on
Haskell’s bytestring library and use its Builder type.

In our library, the data types descriptions currently need to be defined as
values in the host language. This opens up the opportunity for bugs if, say, we
write a server in Idris 2 and a client in Agda and accidentally use two slightly
different descriptions in the projects. This could be solved at the language
level by equipping our dependently typed languages with type providers like
Idris 1 had [Chr13]. This way the format could be loaded at compile time from
the same file thus ensuring all the components are referring to the exact same
specification.

10.2.2 A More Efficient Library

Looking at the code generated by Idris 2, we notice that our generic programs
are not specialised and partially evaluated even when the types they are working
on are statically known. Refactoring the library to use a continuation-passing-
style approach does help the compiler generate slightly more specialised code
but the results are in our opinion not good enough to justify forcing users to
program in this more cumbersome style. A possible alternative would be to
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present users with macros rather than generic programs so that the partial
evaluation would be guaranteed to happen at typechecking time. This however
makes the process of defining the generic programs much more error prone. A
more principled approach would be to extend Idris 2 with a proper treatment of
staging e.g. by using a two-level type theory as suggested by Kovács [Kov22].

Our serialisation format has been designed to avoid pointer-chasing and thus
ensures entire subtrees can be easily copied by using the raw bytes. Correspond-
ingly it currently does not support sharing. This could however be a crucial
feature for trees with a lot of duplicated nodes and we would like to allow users
to, using the same interface, easily pick between different serialisation formats
so that the library ends up using the one that suits their application best. To
this end, we could take inspiration from Yallop’s definition of preprocessors gen-
erating serialisers [Yal07]. It maintains an object map containing the already
serialised nodes and uses it to maximally detect sharing and maintain it both
when serialising and deserialising.

Our current approach allows us to define a correct-by-construction sum op-
erating directly on serialised data but it does not eliminate the call stack used
in the näıve functional implementation. Converting a fold to a tail recursive
function in a generic manner is a well studied problem and the existing solu-
tions [McB08, TS18] should be fairly straightforward, if time-consuming, to port
to our setting.

10.2.3 A More Expressive Universe of Descriptions

We have used a minimal universe to demonstrate our approach but a practical
application would require the ability to store more than just raw bytes. An easy
extension is to add support for all of the numeric types of known size that Idris 2
offers (Bits{8,16,32,64}, Int{8,16,32,64}), for Bool as well as a unbounded
data such as Nat, or String as long as an extra offset is provided for each value.

The storage of values smaller than a byte (here Bool) naturally raises the
question of bit packing: why store eight booleans as eight bytes when they
could fit in a single one? Our recent work [All23] on the efficient runtime
representation of inductive families as values of Idris 2’s primitive types points
us in the direction of a solution.

A natural next candidate is a universe allowing the definition of parametrised
types [LM11]: we should be able to implement functions over arbitrary (List
a) values stored in a buffer, provided that we know that a is serialisable. This
was already an explicit need in ASN.1 [Lar99], reflecting that protocols often
leave ‘holes’ where the content of the protocol’s higher layer is to be inserted.

Next, we will want to consider a universe of indexed data: we can currently
natively model algebraic datatypes such as lists or trees, we can use the host
language to compute the description of vectors by induction on their length, but
we cannot model arbitrary type families [Dyb94] e.g. correct-by-construction
red-black trees.

Last but not least we may want to have a universe of descriptions closed
under least fixpoints [Mor07] in order to represent rose trees for instance.
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10.2.4 A More Expressive Library

Using McBride’s generalisation of one hole contexts [McB08] we ought to be
able to give a more precise type to the combinator (#) used to build seriali-
sation processes. When defining the serialisation of a given subtree, we ought
to have access to pointers to the result of serialising any subtree to the left of
it. In particular this would make building complete binary trees a lot faster by
allowing us to rely on copyData for duplicating branches rather than running
the computation twice.

Last, but not least we currently do not support in-place updates to the data
stored in a buffer. This could however be beneficial for functions like map. It
remains to be seen whether we can somehow leverage Idris 2’s linear quantity
annotation to provide users with serialised value that can be safely updated in
place. This would turn our ongoing metaphor involving Hoare triples [Hoa69],
heap pointers, and separation logic [Rey02] into a bona fide shallow embedding.
Poulsen, Rouvoet, Tolmach, Krebbers, and Visser’s pioneering work [PRT+18,
Rou21] on definitional interpreters for languages with references and the use of
a shallowly embedded separation logic to minimise bookkeeping give us a clear
set of techniques to adapt to our setting.
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A Safe Implementations of fold

We include below the alternative definitions of fold (respectively processing
inductive data and data stored in a buffer) which are seen as total by Idris 2.
Each of them is mutually defined with what is essentially the supercompilation
of (\ d => fmap d (fold alg)).

parameters {cs : Data nm} (alg : Alg cs a)

fold : Data.Mu cs -> a

fmapFold : (d : Desc{}) ->

Data.Meaning d (Data.Mu cs) -> Data.Meaning d a

fold (k # t) = alg k (fmapFold (description k) t)

fmapFold None t = t

fmapFold Byte t = t

fmapFold (Prod d e) (s # t)

= (fmapFold d s # fmapFold e t)

fmapFold Rec t = fold t

parameters {cs : Data nm} (alg : Alg cs a)

fold : Pointer.Mu cs t -> IO (Singleton (fold alg t))

fmapFold : (d : Desc{}) -> forall t. Pointer.Meaning d cs t ->

IO (Singleton (fmapFold alg d t))

fold ptr

= do k # t <- out ptr

rec <- fmapFold (description k) t

pure (alg k <$> rec)

fmapFold d ptr = poke ptr >>= go d where

go : (d : Desc{}) -> forall t. Poke d cs t ->

IO (Singleton (fmapFold alg d t))

go None {t} v = rewrite etaUnit t in pure (pure ())

go Byte v = pure v

go (Prod d e) (v # w)

= do v <- fmapFold d v

w <- fmapFold e w

pure [| v # w |]

go Rec v = fold v
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B Access Patterns: Viewing vs. Poking

In this example we implement rightmost, the function walking down the right-
most branch of our type of binary trees and returning the content of its rightmost
node (if it exists).

The first implementation is the most straightforward: use view to obtain
the top constructor as well as an entire layer of deserialised values and pointers
to substructures and inspect the constructor. If we have a leaf then there is no
byte to return. If we have a node then call rightmost recursively and inspect
the result: if we got Nothing back we are at the rightmost node and can return
the current byte, otherwise simply propagate the result.

rightmost : Pointer.Mu Tree t -> IO (Maybe Bits8)

rightmost ptr = case !(view ptr) of

"Leaf" # _ => pure Nothing

"Node" # _ # b # r => do

mval <- rightmost r

case mval of

Just _ => pure mval

Nothing => pure (Just (getSingleton b))

In the alternative implementation we use out to expose the top construc-
tor and then, in the node case, call poke multiple times to get our hands on
the pointer to the right subtree. We inspect the result of recursively calling
rightmost on this subtree and only deserialise the byte contained in the cur-
rent node if the result we get back is Nothing.

rightmost : Pointer.Mu Tree t -> IO (Maybe Bits8)

rightmost ptr = case !(out ptr) of

"Leaf" # _ => pure Nothing

"Node" # el => do

(_ # br) <- poke el

(b # r) <- poke br

mval <- rightmost !(poke r)

case mval of

Just _ => pure mval

Nothing => do

b <- poke b

pure (Just (getSingleton b))

This will give rise to two different access patterns: the first function will have
deserialised all of the bytes stored in the nodes along the tree’s rightmost path
whereas the second will only have deserialised the rightmost byte. Admittedly
deserialising a byte is not extremely expensive but in a more realistic example
we could have for instance been storing arbitrarily large values in these nodes.
In that case it may be worth trading convenience for making sure we are not
doing any unnecessary work.
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C Analogy to Separation Logic

Some readers may feel uneasy about the fact that parts of our library are im-
plemented using Idris 2 escape hatches. This section justifies this practice by
drawing an analogy to separation logic and highlighting that this practice cor-
responds to giving an axiomatisation of the runtime behaviour of our library’s
core functions.

C.1 Interlude: Separation Logic

A Hoare triple [Hoa69] of the form

{ P } e { v.Q }

states that under the precondition P , and binding the result of evaluating the
expression e as v, we can prove that Q holds. One of the basic predicates of
separation logic [Rey02] is a ‘points to’ assertion (ℓ 7−→ t) stating that the label
ℓ points to a memory location containing t.

A separation logic proof system then typically consists in defining a language
and providing axioms characterising the behaviour of each language construct.
The simplest example involving memory is perhaps a language with pointers to
bytes and a single deref construct dereferencing a pointer. We can then give
the following axiom

{ ℓ 7−→ bs } deref ℓ { v. bs = v ∗ ℓ 7−→ bs }

to characterise deref by stating that the value it returns is precisely the one
the pointer is referencing, and that the pointer is still valid and still referencing
the same value after it has been dereferenced.

The axioms can be combined to prove statements about more complex pro-
grams such as the following silly one for instance. Here we state that if we
dereference the pointer a first time, discard the result and then dereference it
once more then we end up in the same situation as if we had dereferenced it
only once.

{ ℓ 7−→ bs } deref ℓ; deref ℓ { v. bs = v ∗ ℓ 7−→ bs }

Note that in all of these rules bs is only present in the specification layer.
deref itself cannot possibly return bs directly, it needs to actually perform an
effectful operation that will read the memory cell’s content.

C.2 Characterising Our Library

We are going to explain that we can see our library as a small embedded Domain
Specific Language (eDSL) [Hud96] that has poke and out as sole language con-
structs. Our main departure from separation logic is that we want to program
in a correct-by-construction fashion and so the types of poke and out have to be
just as informative as the axioms we would postulate in separation logic. This
dual status of the basic building blocks being both executable programs and
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an axiomatic specification of their respective behaviour is precisely why their
implementations in Idris 2 necessarily uses unsafe features.

We are going to write ℓ
J d K (µ cs)
7−−−−−−→ t for the assumption that we own a pointer

ℓ of type (Pointer.Meaning d cs t), and ℓ
µ cs

7−−→ t for the assumption that we
own a pointer ℓ of type (Pointer.Mu cs t). In case we do not care about the
type of the pointer at hand (e.g. because it can be easily inferred from the
context), we will simply write ℓ 7−→ t.

C.2.1 Axioms for poke

Thinking in terms of Hoare triples, if we have a pointer ℓ to a term t known to
be a single byte then (poke ℓ) will return a byte bs and allow us to observe that
t is equal to that byte.

{ ℓ
J Byte K (µ cs)
7−−−−−−−−→ t } poke ℓ { bs . t = bs ∗ ℓ 7→ t }

Similarly, if the pointer ℓ is for a pair then (poke ℓ) will reveal that the term t

can be taken apart into the pairing of two terms t1 and t2 and return a pointer
for each of these components.

{ ℓ
J Prodd1d2 K (µ cs)
7−−−−−−−−−−−→ t }

poke ℓ

{ (ℓ1, ℓ2). ∃t1. ∃t2. t = (t1 # t2) ∗ ℓ 7→ t ∗ ℓ1
J d1 K (µ cs)
7−−−−−−−→ t1 ∗ ℓ2

J d2 K (µ cs)
7−−−−−−−→ t2 }

Last but not least, poking a pointer with the Rec description will return another
pointer for the same value but at a different type.

{ ℓ
J Rec K (µ cs)
7−−−−−−−→ t } poke ℓ { ℓ1. ℓ1

µ cs

7−−→ t ∗ ℓ 7−→ t }

C.2.2 Example of a Derived Rule for layer

Given that layer is defined in terms of poke, we do not need to postulate any
axioms to characterise it and can instead prove lemmas. We will skip the proofs
here but give an example of a derived rule. Using the description (Prod Rec

(Prod Byte Rec)) of the arguments to a node in our running example of binary
trees, layer’s behaviour would be characterised by the following statement.

{ ℓ
J Prod Rec (Prod Byte Rec) K (µ cs)
7−−−−−−−−−−−−−−−−−−−−−→ t }

layer ℓ

{ (ℓ1, bs, ℓ2). ∃t1. ∃t2. t = (t1 # bs # t2) ∗ ℓ1
µ cs

7−−→ t1 ∗ ℓ2
µ cs

7−−→ t2 ∗ ℓ 7−→ t }

It states that provided a pointer to such a meaning, calling layer would return
a triple of a pointer ℓ1 for the left subtree, the byte bs stored in the node, and
a pointer ℓ2 for the right subtree.
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C.2.3 Axiom for out

The only other construct for our small DSL is the function out. Things are a lot
simpler here as the return type is not defined by induction on the description.
As a consequence we only need the following axiom.

{ ℓ
µ cs

7−−→ t } out ℓ { (k, ℓ1). ∃t1. t = (k # t1) ∗ ℓ 7−→ t ∗ ℓ1
J csk K (µ cs)
7−−−−−−−−→ t1 }

It states that under the condition that ℓ points to t, (out ℓ) returns a pair of an
index and a pointer to the meaning of the description associated to that index
by cs, and allows us to learn that t is constructed using that index and that
meaning.

By combining out and layer we could once more define a derived rule and
prove e.g. that every tree can be taken apart as either a leaf or a node with a
pointer to a left subtree, a byte, and a pointer to a right subtree i.e. what view
does in our library.
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